JP2008545005A - 混合アルコールの脱水素化 - Google Patents

混合アルコールの脱水素化 Download PDF

Info

Publication number
JP2008545005A
JP2008545005A JP2008519986A JP2008519986A JP2008545005A JP 2008545005 A JP2008545005 A JP 2008545005A JP 2008519986 A JP2008519986 A JP 2008519986A JP 2008519986 A JP2008519986 A JP 2008519986A JP 2008545005 A JP2008545005 A JP 2008545005A
Authority
JP
Japan
Prior art keywords
alcohol
catalyst
feedstock
alkene
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008519986A
Other languages
English (en)
Other versions
JP5867977B2 (ja
JP2008545005A5 (ja
Inventor
グレイシー,ベンジャミン,パトリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Chemicals Ltd
Original Assignee
BP Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Chemicals Ltd filed Critical BP Chemicals Ltd
Publication of JP2008545005A publication Critical patent/JP2008545005A/ja
Publication of JP2008545005A5 publication Critical patent/JP2008545005A5/ja
Application granted granted Critical
Publication of JP5867977B2 publication Critical patent/JP5867977B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/18Phosphorus; Compounds thereof containing oxygen with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/182Phosphorus; Compounds thereof with silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本発明は、少なくともエタノールおよび/またはプロパノールを含有する供給原料からアルケンを生成するプロセスに関する。

Description

発明の詳細な説明
本発明は、少なくとも一つの一価脂肪族パラフィン系アルコールを含有する供給原料からアルケンを生成するプロセスに関する。
従来、オレフィンは炭化水素の水蒸気分解または接触分解により生成されていた。しかし、石油資源の減少につれて必然的に石油価格が上昇し、軽質オレフィンの生成はコストの高いプロセスとなっている。このため、C2およびC+オレフィンを、基本的にはエチレンおよびプロピレンを生成する、石油によらない手法に対するニーズが一段と高まっている。このようなオレフィンは、例えばポリエチレンのようなポリマー生成物を含む多数の化学生成物のための有用な出発物質である。
近年、C2+オレフィンの生成のための代替物質が探求され、その結果、メタノール、エタノールおよび高級アルコール等のアルコールが使用されるようになった。前記アルコールは、例えば糖類および/またはセルロース系物質の発酵により生成される。
あるいは、アルコールは合成ガスからも生成することができる。合成ガスとは、天然ガス、石油液、バイオマスおよび、石炭、再生プラスチック、一般廃棄物またはあらゆる有機物質を含む炭素質物質を用いて合成ガスプラントで生成される水素と酸化炭素の混合物のことを指す。このため、アルコールおよびアルコール誘導体はオレフィンおよびその他の関連炭化水素の石油ベースでない生成方法を提供することができる。
概して、酸素化合物、主としてメタノールの生成は3つのプロセス工程を介して行われる。この3つのプロセス工程とは、合成ガスの調製、メタノールの合成、およびメタノールの精製である。合成ガス調製工程においては、さらに追加段階を採用することができ、その段階による場合、合成ガスに変換する前に供給原料は処理され、例えば供給原料は精製されて、硫黄および他の潜在的な触媒毒を除去する。この処理は、合成ガスの調製後に、例えば石炭またはバイオマスを採用する際に、実施することもできる。
酸化炭素および水素(合成ガス)の混合物生成プロセスは周知である。各生成プロセスには長所と短所があり、どの特定の改質プロセスを用いるかの選択は、経済性および入手可能なフィードストリームに関する考慮、また改質プロセスから得られる供給原料における所望のH2:COモル比によって決定される。合成ガスは、当業者に周知のいずれのプロセスを用いて調製することができ、該プロセスは、炭化水素の部分酸化、水蒸気改質、ガス加熱改質、マイクロチャネル改質(例えば、参照として本明細書に組み入れられる米国特許第6,284,217号明細書に記載されている)、プラズマ改質、オートサーマル改質、およびこれらの組み合わせを含む。これらの合成ガス生成技術に関する考察は“Hydrocarbon Processing”V78,N.4,87−90,92−93(April 1999)および“Petrole et Techniques”,N.415,86−93(July−August 1998)において行われている。合成ガスは微細構造反応装置における炭化水素の触媒部分酸化により得られるとも考えられ、このことは“IMRET 3:Proceedings of the Third International Conference on Microreaction Technology,Editor W Ehrfeld,Springer Verlag,1999,pages 187−196”において実証されている。あるいは、合成ガスは炭化水素供給原料の短時間接触触媒部分酸化によって得ることもでき、これは欧州特許第0303438号明細書に記載されている。好ましくは、合成ガスは“コンパクトリフォーマー”プロセスによって得られ、これは“Hydrocarbon Engineering”,2000,5,(5),67−69;“Hydrocarbon Processing”,79/9,34(September 2000);“Today’s Refinery”,15/8,9(August 2000);国際公開第99/02254号パンフレット;および国際公開第2000/23689号パンフレットに記載されている。
通常、商業用合成ガスの生成のためには、合成ガスが生成される際の圧力は約20〜75バールの範囲であり、合成ガスが改質装置から出る際の温度は約700℃〜1100℃の範囲である。合成ガスにおける水素と酸化炭素とのモル比は、合成ガスの供給原料に依存し、その範囲は0.8〜3である。
改質としても知られる合成ガス調製は、単一工程で行うことができ、それによると、エネルギーを消費するすべての改質反応が単一の管状水蒸気改質装置において達成される。この単一工程改質装置は過剰な水素の生成をもたらす。好ましい代替案では、合成ガスの調製は、二工程改質プロセスで実施することができ、これによると、管状水蒸気改質装置における一次改質は、水素の不足した合成ガスを生成する酸素燃焼による二次改質工程と組み合わされる。この組み合わせにより、合成ガスの組成を調節して、メタノールの合成に最も適した組成を得ることができる。他の代替案として、オートサーマル改質があり、これによると、単独動作型酸素燃焼改質装置は、水素の不足した合成ガスを生成し、その後、酸化炭素を下流で除去して、水素と酸化炭素との所望の比率を回復するものであり、こうして資本コストを抑えた簡便なプロセス構想が得られる。バーナの設計は酸素燃焼によるいずれの工程においても重要な部分である。バーナは炭化水素と酸素を混合し、また炎中での燃焼により、炭化水素の変換に熱が加えられる。合成ガスからメタノールのような酸素化合物への反応は、低温により支持される発熱平衡制限型の反応である。この反応は不均一系触媒に高圧をかけることをも必要とするが、それはメタノールを生成する諸反応は容積の減少を示すからである。米国特許第3,326,956号明細書に開示されているように、低圧メタノール合成は、酸化銅−酸化亜鉛―アルミナ触媒ベースで行われ、該触媒は典型的には、CuO/ZnO/Al2 O3、CuO/ZnO/Cr2 O3、ZnO/Cr2 O3、Fe、Co、Ni、Ru、Os、Pt、およびPdを含むさまざまな触媒上で、呼び圧力5〜10MPa、また約150℃〜450℃の範囲の温度下で作用する。メタノールおよびジメチルエーテルの生成のためZnOベースの触媒が好ましい。低圧の、銅ベースのメタノール合成触媒は英国のBASF、ICI Ltd.、およびHaldor−Topsoeなどのサプライヤーから市販されている。銅ベースの触媒からのメタノールの得率は概して、存在する変換CO+CO2の99.5%を上回っている。水は合成ガスを酸素化合物に変換する際の副生成物である。参照として本明細書に組み入れられる報告書『大規模なメタノールプラントのための技術の選択』(“Selection of Technology for Large Methanol Plants”,by Helge Holm−Larsen,presented at the 1994 World Methanol Conference,Nov.30−Dec.1,1994,in Geneva,Switzerland)では、メタノール生成の発展について考察がなされ、またメタノール生成コストの一段の削減によって処理能力10,000メートルトン/日に迫る非常に大規模なプラントが建設されるであろうことが示されている。
米国特許第4,543,435号明細書は、メタノール、ジメチルエーテル等を含む酸素化合物供給原料を酸素化合物変換反応装置内でC2〜C4オレフィンおよびC5@+炭化水素を含む液体炭化水素に変換するプロセスを開示する。C2〜C4オレフィンは圧縮され、エチレンを多く含むガスが回収される。エチレンを多く含むガスは酸素化合物変換反応装置に再循環される。米国特許第4,076,761号明細書は、酸素化合物をガソリンに変換し、水素を多く含むガス状生成物を合成ガスプラントまたは酸素化合物変換反応ゾーンに戻すプロセスを開示する。米国特許第5,177,114号明細書は、天然ガスを合成ガスに変換し、該合成ガスを粗メタノールおよび/またはジメチルエーテルに変換し、そしてさらに該粗メタノール/ジメチルエーテルをガソリンおよびオレフィンに変換することによって、天然ガスをガソリン級液体炭化水素および/またはオレフィンに変換するプロセスを開示する。Kvisleほかの国際公開第93/13013号パンフレットは、コークス化による非活性化に対する安定性がより高いシリコンーアルミノーリン酸塩触媒を生成するための改良された方法に関する。この特許は、メタノールをオレフィンに(MTO)変換するために用いられる全てのこのような触媒は、主として微孔性の結晶構造がコークス化することにより、すなわち孔構造をブロックする低揮発性の炭素質化合物が充満することにより、一定時間経過後、メタノールを炭化水素に変換する活性能力を失うことを開示する。前記炭素質化合物は空気中での燃焼等の従来の方法により除去することができる。
欧州特許出願公開第0407038号A1明細書は、アルキルアルコールを含有するストリームを蒸留塔反応装置、フィードゾーンにフィードする工程、該ストリームを固定層式固形酸性触媒蒸留構造と接触させて対応するジアルキルエーテルおよび水を形成する工程、ならびに同時に水および未反応物質からエーテル生成物を分画する工程を含むジアルキルエーテルの生成方法を説明する。
米国特許第5,817,906号明細書は、アルコールおよび水を含有する粗酸素化合物供給原料から軽質オレフィンを生成するプロセスを説明する。該プロセスは2つの反応段階を採用する。最初に、蒸留による反応を用いてアルコールをエーテルに変換する。その後、該エーテルを、金属アルミノケイ酸塩触媒を含有する酸素化合物変換ゾーンに通し、軽質オレフィンストリームを生成する。
アルコールからオレフィンを生成するために採用可能な化学反応としては、メタノール・トゥー・オレフィン(MTO)プロセスが周知である。
この方法(MTOプロセス)は、メタノールのオレフィンへの脱水結合として説明できる。このメカニズムは、メタノールの酸触媒反応脱水により生じたC1断片の結合、場合によってはメチルオキソニウム中間体を介して開始されるものと考えられている。しかし、前記のMTOプロセスの主な欠点は、オレフィンのレンジが芳香族系およびアルカン副生成物とともに共生成され、その結果、所望のオレフィンの回収が非常に困難でコストが高いことである。
微孔性結晶型ゼオライト、および非ゼオライト系触媒、特にシリコアルミノ燐酸塩(SAPO)等の分子篩は、メタノール・トゥー・オレフィン(MTO)化学反応により酸素化合物の炭化水素混合物への変換を促進することが知られている。多数の特許明細書が、これらの触媒のさまざまな型式について、このプロセスを説明している。米国特許第3,928,483号明細書、米国特許第4,025,575号明細書、米国特許第4,252,479号明細書(Changほか);米国特許第4,496,786号明細書(Santilliほか);米国特許第4,547,616号明細書(Avidanほか);米国特許第4,677,243号明細書(Kaiser);米国特許第4,843,183号明細書(Inui);米国特許第4,499,314号明細書(Seddonほか);米国特許第4,447,669号明細書(Harmonほか);米国特許第5,095,163号明細書(Barger);米国特許第5,191,141号明細書(Barger);米国特許第5,126,308号明細書(Barger);米国特許第4,973,792号明細書(Lewis);および米国特許第4,861,938号明細書(Lewis)。
この反応は、恐らくメタノールまたはジメチルエーテルの活性化工程において高い活性化エネルギーを有しており、したがって、高変換を達成するためには、例えば450℃の高温として反応を促進させることが必要であることが多い。従来、このようなシステムでは、これらの高温状態を得るために加熱触媒再循環およびダウンサーム加熱システムのようなさまざまな手段が実施されてきた。しかし、残念ながら、前記のような高温下での作用の結果として、触媒の非活性化、コークス化および副生成物の形成等の大きな問題が生じる。これらの問題を回避するために、低温で反応を起こさせることも可能ではあるが、このことは中間体および反応体の高コストな再循環を必要とする。
この方法と関連する別の大きな欠点は、芳香族およびアルカン副生成物がオレフィンとともに共生成されること、またこれら副生成物は所望の生成物からの分離が困難かつ高コストであること、例えばエチレンおよびエタンの分離が高コストなプロセスであることである。
先行技術におけるこれらのそして他の欠点は、アルコールからC2+オレフィンを生成する改良されたおよび/または代替のプロセスが必要であることを示唆している。
この問題に対する解決は本発明により提供され、本発明は新規の非MTOプロセスに特に関し、またC2+アルコールの脱水によるオレフィン生成を介して開始される。
本発明は、2〜3個の炭素原子を有する少なくとも1つの一価脂肪族パラフィン系アルコールを含有する供給原料からアルケンを生成するプロセスに関し、2〜3個の炭素原子を有する前記一価脂肪族パラフィン系アルコールは脱水されて対応する同じ炭素数のアルケンとなり、供給原料中に存在するアルコールはエタノールおよびプロパノール、好ましくはエタノールおよびn−プロパノールおよび/またはイソプロパノール、最も好ましくはエタノールおよびn−プロパノールから構成されることを特徴とする。すなわち、前記供給原料はC3+アルコール、例えばブタノールまたはより高い炭素数のアルコールを含まない。
好ましい実施形態によれば、本発明は炭化水素をアルケンに変換するプロセスを提供するものであり、該プロセスは、
a.合成ガス反応装置内で炭化水素を酸化炭素と水素との混合物に変換する工程、
b.温度200〜400℃、圧力50〜200バールの反応装置内における粒子状触媒の存在下において実施された工程aで得られる酸化炭素と水素との前記混合物を、2〜3個の炭素原子アルコールを有する少なくとも1つの一価脂肪族パラフィン系アルコールを含有する供給原料に変換する工程、
c.C3+アルコールおよび/または該C3+アルコールのメタノールを除去するために工程bで得られた前記供給原料を処理する工程、そして
d.工程cの処理供給原料を脱水して対応する同じ炭素数のアルケンとする工程を含む。
本発明の好ましい実施形態によれば、前記脱水工程は蒸気相または液相反応装置(例えばバッチ、フロー、半連続バッチ反応装置)、高圧、高温の反応蒸留塔で実施され、対応する同じ炭素数のアルケンおよび、必要に応じてエーテルを生成する。
本発明の一実施形態によれば、脱水工程がなされるときの圧力は0.5MPaを超えてしかし4.0MPa未満、そして好ましくは1.8MPaを超えてしかし2.7MPa未満である。この脱水工程中に採用される温度は、特定の原料の任意の圧力における沸点により規制され、そしてこの温度は好ましくは300℃未満、より好ましくは250℃未満である。前述の限度の範囲外の温度および圧力は除外されないが、本発明の好ましい実施形態には該当しない。
本発明によれば、アルコールからアルケンを生成する方法はC2およびC2+アルコールの脱水を介して開始される。このことが起こるためには、一つ以上のアルファ水素、例えばフェノール、ネオペンチルグリコールが存在しなければならず、例えばこのメカニズムを介して、エタノール、n−プロパノールおよびt−ブタノールが脱水されるのに対して、2,2,ジメチル−プロパン−1−olは脱水されない。これらの脱水反応が前記のMTOプロセスと区別される点は、脱水プロセスにおいては炭素断片の結合は必要ではないが、水の除去中にC−Cの二重結合が形成され、その結果、非常に高い選択性が達成される点である。概して、MTOプロセスにおいて用いられる条件は、アルコール脱水において用いられる条件と比較してはるかに厳格である。有利なことに、本発明の好ましい実施形態によれば、本発明のプロセス、すなわち供給原料のアルケンおよび必要に応じてエーテルへの変換は、単一の反応蒸留塔で行われるため、資本コストおよびエネルギーコストが削減される。
供給原料の脱水はアルケンおよび水のいずれかへの直接脱水により開始されると考えられている;
反応式1
Figure 2008545005
またはエーテル中間体を介して;
反応式2
Figure 2008545005
反応式3
Figure 2008545005
ここでRおよびR’はエチル基、プロピル基、ブチル基またはペンチル基である。
前記の脱水槽内で起こる主反応はすべて、酸触媒により触媒される。反応式1は、アルコールのアルケンおよび水への吸熱直接除去を示している。反応式1に匹敵するのは反応式2および3であり;発熱エーテル化反応(反応式2)、およびエーテルを吸熱除去してアルケンおよびアルコールを生成する(反応式3)。しかし、アルコールを全般的脱水してアルケンとすることは、吸熱プロセスである。
反応式1、2および3はすべて平衡制限の状態である。しかし、本発明の一実施形態によれば、これら3つの反応はすべて反応蒸留塔で行われるため、また蒸留を介した生成物の連続的除去の結果として、平衡制限状態の反応のための変換が増加する。この利点はルシャトリエの原理に基づいていると考えられており、該原理によれば、平衡状態のシステムに何らかの障害が発生した場合、該システムは自動調節を行って平衡状態を回復する。したがって、本実施形態によれば、平衡制限状態の反応の変換は、生成物が蒸留を介して連続除去されるためその熱力学的限度を超えて増加し、またその結果として、反応体の濃度が上昇する。このため、オレフィン生成物はエーテルとともに反応蒸留塔の頂部で濃縮され、これは頂部生成物と呼ばれ、また水は反応蒸留塔の基底部で濃縮され、これは基底部生成物として知られている。水共沸混合物を有するアルコールおよびエーテルは、沸点が中程度であり、また反応蒸留塔の反応ゾーンにおいて濃縮される。
蒸気相で不均一系触媒を用いる際にエタノールがそのより強力な触媒相互作用によってジエチルエーテルの除去を阻害することは周知である。これによって一連の反応を引き起こすことができる。例えば、エタノールを脱水触媒とともにフロー反応装置に投入する場合、エーテルが効果的に触媒部位を争うことのできるレベルにエタノール濃度が低下するまでは、反応式1および2が優位である。2つの反応体が1つの活性部位をめぐって競合する様子は、Langmuir Hinschelwoodメカニズム(例えばChemical Kinetics 3rd edition author K,J.Laidler P249−251,Harper and Row publishers New York)により説明できる。バッチ反応装置またはフロー反応装置に対するこの相互作用の効果は、エタノールが大部分消費されるまではエチレンの生成率を低下させることが判明している(例えばCollection of czechoslavak chemical comms 1986 51 (4) p763−73 V.Moravek and M.Kraus)。
しかし、この好ましい実施形態によれば、本発明は、反応と蒸留のある組合せによってこの限界を克服することができる。例えば、反応蒸留塔内において、エーテルおよびアルコールは自らの共沸混合物によって、また自らの沸点によって、そのように分離される。このため、エーテルはアルコールと異なる触媒位置にある触媒上で濃縮され、したがってこの結果、反応のアルコール阻害が減少することになる。
このプロセスが好適に実施される反応蒸留塔とは、蒸留塔と反応装置との組合せのことを指す。反応蒸留塔の内部構造は、生成物の反応体からの分離を補助する複数の「理論段」を提供するように構成されている。通常、前記塔の内部構造は従来型の蒸留において用いられているものであり、例えばシーブプレート、非構造化および構造化充填物、バブルキャップおよびこれらの混合物である。この特殊な装置は蒸気と液体の接触を促進させる際に非常に有効であり、したがって反応体からの生成物の分別蒸留を促進する。使用される触媒は均一系、不均一系のどちらでも良いが、均一系触媒の方が好ましい選択肢である。
本発明によれば、不均一系触媒を用いた場合、該触媒は反応体および反応中間物との相互作用が最大となる位置に置かれる;このことは触媒を塔の内部構造上で支持することにより実現でき、例えばメチルターシャリーブチルエーテル(MTBE)反応蒸留プラントにおいて、イオン交換樹脂は、クロスベール内で、シーブプレート上で、ファイバーグラスバッグ上で、支持されてきた。触媒はカラムパッキングも可能とし、例えば、該触媒はコーティング、押出し成形、鋳型成形されてラシヒリングまたは他の型式のカラムパッキングとされ得る。触媒は、未処理のカラムパッキングによっても分散される。不均一系触媒は、反応体と生成物の分離が普通に行われる点、すなわちこの分離が例えば濾過のような物理的分離によって行われる点で、さらなる利点を有している。
本発明によれば、適切な不均一系触媒としては、不溶性ヘテロポリ酸、スルホン化担体(例えばNafionおよびイオン交換樹脂)ゼオライト、金属変性ゼオライト、モルデン弗石およびこれらの混合物;好ましくはヘテロポリ酸およびイオン交換樹脂;さらに好ましくはヘテロポリ酸;最も好ましくは12−タングストケイ酸および18−タングストリン酸の塩などが挙げられるが、これに限られない。
本発明のヘテロポリ酸は、酸素が結合した多価金属原子を含む複雑で高分子量のアニオンである。通常、各アニオンは12〜18個の、酸素が結合した多価金属原子を含む。末梢原子として知られる多価金属原子は、一つ以上の中心原子を対称的に包囲している。末梢原子はモリブデン、タングステン、バナジウム、ニオビウム、タンタル、または他の多価金属のうちの一つ以上であってもよい。中心原子は、シリコンまたはリンであることが好ましいが、あるいは元素周期表における第1〜8族に属する多くのさまざまな原子のいずれかの一つであってもよい。これらには、銅、ベリリウム、亜鉛、コバルト、ニッケル、ホウ素、アルミニウム、ガリウム、鉄、セリウム、砒素、アンチモン、ビスマス、クロム、ロジウム、シリコン、ゲルマニウム、錫、チタン、ジルコニウム、バナジウム、硫黄、テルル、マンガンニッケル、プラチナ、トリウム、ハフニウム、セリウム、砒素、バナジウム、アンチモンイオン、テルルおよびヨウ素が含まれる。適切なヘテロポリ酸は、Keggin,Wells−Dawson and Anderson−Evans−Perloff ヘテロポリ酸を含む。適切なヘテロポリ酸の具体例は以下の通りである:
18−タングストリン酸 − H6[PW18O62].xH2O
12−タングストリン酸 − H3[PW12O40].xH2O
12−モリブドリン酸 − H3[PMo12O40].xH2O
12−タングストケイ酸 − H4[SiW12O40].xH2O
12−モリブドケイ酸 − H4[SiMo12O40].xH2O
セシウム水素タングストケイ酸塩 − Cs3H[SiW12O40].xH2O
および以下のヘテロポリ酸の遊離酸または部分塩:
カリウムタングストリン酸塩 − K6[P2W18O62].xH2O
モリブドリン酸ナトリウム − Na3[PMo12O40].xH2O
モリブド二リン酸アンモニウム − (NH4)6[P2Mo18O62].xH2O
モリブド二バナジウムリン酸塩カリウム − K5[PMoV2O40].xH2O
本発明で用いるヘテロポリ酸は、分子量が700を超えて8500未満、好ましくは2800を超えて6000未満であってもよい。このようなヘテロポリ酸は二量体錯体も含んでいる。
本発明において有利に使用できる触媒を調製するため、触媒担体をヘテロポリ酸の非水溶液に含浸し、低溶解性の塩をその場で調製することによって触媒を沈殿させる。このような溶液は非水溶媒中でヘテロポリ酸を溶解させることによって調製される。適切な溶媒としては、アルコール、ケトンおよびアルデヒドのような極性溶媒が挙げられる。適切なアルコールとしては、C〜Cアルコール、好ましくはC〜Cアルコール、最も好ましくはメタノールおよびエタノールが挙げられる。適切なケトンはC〜Cケトン、例えばアセトンである。溶液中のヘテロポリ酸濃度は、10〜80重量%が好ましく、さらに好ましくは20〜60重量%、最も好ましくは30〜50重量%である。
含浸は初期湿潤法を用いて行ってもよく、部分中和段階を経て不溶性触媒が調製される。いかなる適切な乾燥法を用いてもよいが、標準的なベンチトップ型ロータリーエバポレータによる蒸発が好ましい。
あるいは、触媒担体を水溶液に浸漬させて浸したまま放置しておき、その後、対イオン溶液を加えて該担体上にHPAを沈殿させてもよい。含浸された担体はその後洗浄して乾燥させてもよい。これは、例えばデカンテーションおよび/または濾過を含む通常の分離法を用いても実現できる。回収後、含浸担体は乾燥させてもよく、該担体を炉に入れて乾燥させるのが好ましい。あるいは、または追加的に、乾燥器を使用してもよい。該担体上で含浸されたヘテロポリ酸の量は、ヘテロポリ酸と担体の総重量を基準として、10重量%〜60重量%、好ましくは30重量%〜50重量%の範囲内であるのが適切である。
適切な触媒担体としては、シリカゲル担体および、SiCl4のフレーム加水分解により生成される担体等のシリカ担体が挙げられる。好適な担体は、システムの触媒作用に悪影響を与えかねない外来の金属または元素を実質的に含まない。このため、適切なシリカ担体の純度は少なくとも99%w/wである。不純物は1%w/w未満、好ましくは0.60%w/w未満、さらに好ましくは0.30%w/w未満である。担体の細孔容積は0.3〜1.2ml/g、好ましくは0.6〜1.0ml/gである。細孔の平均半径(使用前)は10〜500Å(オングストローム)、好ましくは30〜100Åである。担体の圧縮強度は少なくとも2Kg重、適切には少なくとも5Kg重、好ましくは少なくとも6Kg、より好ましくは少なくとも7Kgである。担体のかさ密度は少なくとも380g/l、好ましくは少なくとも440g/lである。
適切なシリカゲル担体としてはGrace57および1371があるが、Grace No.1371の方が好ましい。Grace No.1371の平均粒度は0.1〜3.5mmである。しかし、これらの粒子は、必要であれば砕いて篩にかけ、例えば0.5〜2mmのより細かいサイズにしてもよい。
SiCl4のフレーム加水分解により生成される適切な担体は、AEROSIL(登録商標) 200 (ex Degussa)のペレット化によって生成してもよい。このような担体の一例はSupport 350である。適切なペレット化方法は米国特許第5,086,031号明細書、特に実施例において説明されている。ペレットの平均粒子径は2〜10mm、好ましくは4〜6mmである。
前記発明の他の実施形態では、本発明においても用いられている触媒担体をまずフッ素化剤で処理している。フッ素が強い電気陰性を持つことから、その結果として、触媒担体の電子性質が変化すると考えられており、またこのことにより以下の利点がもたらされると考えられている:担体の不活性および/または酸性度の改善、これによる触媒の総合選択度および/または活性度の改善。
担体の処理に使用できるフッ素化剤は、フッ化水素、フッ化水素酸水溶液、フッ化水素酸とそれよりも少ない量の他の酸(例えば塩化水素酸もしくは酢酸、または一定のアルミニウム塩を加えた酸性溶液、またはアルミニウム塩を含有するフッ化水素酸の希釈液)との混合物を含むことができるが、これに限られない。前記触媒担体の水性フッ化水素酸による処理は、触媒粒子を1〜8%の酸性溶液に1〜24時間浸漬することにより行うこともできる。その後、フッ素化担体を最適な触媒に含浸させてもよい。
本発明によれば、供給原料の脱水によるアルコールの生成に、均一系触媒を用いてもよい。
本発明の一実施形態によれば、均一系触媒を反応蒸留塔で使用することもできる。好ましい均一系触媒は、反応体および生成物よりも沸点が高く、その結果、塔の液相に優勢的に留まり、最終的には反応釜で濃縮される。これらの前記触媒と反応ゾーン内の反応体との相互作用は、反応蒸留塔に再循環される触媒の量を変えることにより、また塔の内部構造を変更して液体滞留量を増加させることにより制御できる。均一系触媒とリボイラー中に蓄積した水との分離は、リボイラーの上方で、極めて純粋な水からの蒸気流を濃縮させることによって実現できる。均一系触媒を使用することの利点は、触媒の濃度を自由に変えられることである。また非活性化触媒はシステムから容易に除去でき、新しい触媒と置換することができる。リボイラーから回収した均一系触媒溶液は、その後、塔に再循環される。触媒の濃縮のため、必要に応じて一つ以上の添加点を用いてもよい。
適切な均一系触媒としては、メタンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸、硫酸、ヘテロポリ酸およびリン酸等のスルホン酸が挙げられるが、これには限られず、リン酸および有機スルホン酸が好ましい。
反応蒸留塔を使用する場合、生成される前記エーテルは本質的にC2〜C3アルコール由来のエーテルであり、これらはジエチルエーテル、n−プロピルエーテル、イソプロピルエーテル、およびエチルイソプロピルエーテル等の混成エーテルである。
本発明によって、エタノールとプロパノールとの混合物の脱水による対応アルケンの生成が、はるかに高い選択性と予想外の高変換を伴って実施され得ることは、熱力学の諸研究から明らかである。副生成物が存在せず、MTOプロセスのように副生成物と生成物との高コストな分離を行う必要がもはやないことから、この前述の高変換はプロセスの経済性を劇的に向上させる。
脱水されてアルケンとなる粗製酸素化合物供給原料は、少なくとも1種のC〜Cアルコール(例えばエタノール、n−プロパノール、イソプロパノールおよびこれらの混合物であってもよい)からなり、該酸素化合物供給原料は、これらのアルコールの単一エーテルおよび混成エーテルから構成され得る。典型的には、2〜3個の炭素原子を有する一価脂肪族パラフィン系アルコールから選択される少なくとも2つのアルコールの混合物が用いられ、好ましくは、2〜3個の炭素原子を有する一価脂肪族パラフィン系アルコールから選択される少なくとも2つのアルコールの混合物が用いられ、最も好ましくは、エタノールとn−プロパノールとの混合物が用いられる。
本発明に係る特徴は、脱水される供給原料がC3+アルコールを含有しないことである。本発明および添付の請求項の目的のために、「C3+アルコールを含有しない」とは、C3+アルコールの全体、すなわち3個を超える炭素原子を有するアルコール(例えばn−ブタノール、イソブタノール、ペンタノール)、脱水される供給原料の含有量が1重量%未満、好ましくは0.1重量%未満であることを意味する。
事実、出願者は、C3+アルコールの存在が本発明に係るアルケン生成プロセスに支障を来たすことを偶然発見している。本発明によれば、アルコール供給原料からC3+アルコールを減少させ/除去するために従来の蒸留を用いることができる。
本発明に係るその他の好ましい実施形態では、アルコール供給原料はメタノールを含有しない。本発明および添付の請求項の目的のため、「メタノールを含有しない」とは、アルコール供給原料におけるメタノール含有量が5重量%未満、好ましくは1重量%未満、そして最も好ましくは0.1重量%未満であることを示す。
本発明によれば、アルコール供給原料からメタノールを減少させ/除去するために従来の蒸留を用いることができる。
本発明によれば、粗製酸素化合物供給原料において水分は許容され;好ましい動作モードにおいては該粗製酸素化合物供給原料は最大で50重量%の水分を含んでいてもよい。水分を効果的に分離させる反応蒸留塔の能力を活用する別のモードにおいては、粗製バイオエタノールおよび、その大部分が水分から構成され得る他のバイオアルコールを用いてもよい。
本発明の最も好ましい実施形態によれば、C2〜C3アルコールおよび水は、反応蒸留塔に投入される粗製酸素化合物供給原料の少なくとも90重量%を占める。
好ましい実施形態においては、反応蒸留は共供給物として、前記で定義されたエーテルのストリームを有していてもよい。

Claims (14)

  1. 2〜3個の炭素原子を有する少なくとも1つの一価脂肪族パラフィン系アルコールを含有する供給原料からアルケンを生成するプロセスであって、2〜3個の炭素原子を有する前記一価脂肪族パラフィン系アルコールは脱水されて対応する同じ炭素数のアルケンとなり、供給原料中に存在するアルコールはエタノールおよびプロパノールから構成されることを特徴とするプロセス。
  2. 炭化水素をアルケンに変換するプロセスであって、
    a.合成ガス反応装置内で炭化水素を酸化炭素と水素との混合物に変換する工程、
    b.温度200〜400℃、圧力50〜200バールの反応装置内における粒子状触媒の存在下において実施された工程aで得られる酸化炭素と水素との前記混合物を、2〜3個の炭素原子アルコールを有する少なくとも1つの一価脂肪族パラフィン系アルコールを含有する供給原料に変換する工程、
    c.C3+アルコールおよび/または該C3+アルコールのメタノールを除去するために工程bで得られた前記供給原料を処理する工程、そして
    d.工程cの処理供給原料を脱水して対応する同じ炭素数のアルケンとする工程を含むプロセス。
  3. メタノールとC3+アルコールの双方が工程bの供給原料から除去される請求項2記載のプロセス。
  4. アルコールを脱水してアルケンとするために用いられる触媒は不均一系触媒であり、該不均一系触媒は、不溶性ヘテロポリ酸、スルホン化担体(例えばNafionおよびイオン交換樹脂)ゼオライト、金属変性ゼオライト、モルデン弗石およびこれらの混合物;好ましくはヘテロポリ酸およびイオン交換樹脂;さらに好ましくはヘテロポリ酸;最も好ましくは12−タングストケイ酸および18−タングストリン酸の塩から選択される請求項1〜3のいずれか1項に記載のプロセス。
  5. アルコールを脱水してアルケンとするために用いられる触媒は均一系触媒であり、好ましくは反応体および生成物よりも沸点が高い触媒である請求項1〜3のいずれか1項に記載のプロセス。
  6. 触媒はメタンスルホン酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸、硫酸、ヘテロポリ酸およびリン酸等のスルホン酸ならびにリン酸および有機スルホン酸から選択される請求項5記載のプロセス。
  7. 脱水されてアルケンとなる供給原料中に存在するアルコールはエタノールおよびプロパノール、エタノールおよびn−プロパノール、またはエタノールおよびイソプロパノールから構成される請求項1〜6のいずれか1項に記載のプロセス。
  8. 脱水されてアルケンとなる供給原料はまた、エタノールおよび/またはプロパノールの単一エーテルおよび/または混成エーテルからも構成される請求項1〜7のいずれか1項に記載のプロセス。
  9. アルコールはエタノールとn−プロパノールとの混合物から構成される請求項7または8のいずれか1項に記載のプロセス。
  10. 脱水されてアルケンとなる供給原料は1重量%未満、最も好ましくは0.1重量%未満のメタノールを含有する請求項1〜9のいずれか1項に記載のプロセス。
  11. 脱水されてアルケンとなる供給原料は1重量%未満、好ましくは0.1重量%未満のC3+アルコールを含有する請求項1〜10のいずれか1項に記載のプロセス。
  12. 脱水されるアルコール供給原料に対して追加的なエーテル供給原料が加えられる請求項1〜11のいずれか1項に記載のプロセス。
  13. 脱水工程がなされるときの圧力は0.5MPaを超えてしかし4.0MPa未満、そして好ましくは1.8MPaを超えてしかし2.7MPa未満である請求項1〜12のいずれか1項に記載のプロセス。
  14. 脱水工程中に採用される温度は300℃未満、好ましくは250℃未満である請求項1〜13のいずれか1項に記載のプロセス。
JP2008519986A 2005-07-06 2006-06-29 混合アルコールの脱水素化 Active JP5867977B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05254237.0 2005-07-06
EP05254237 2005-07-06
PCT/GB2006/002430 WO2007003910A1 (en) 2005-07-06 2006-06-29 The dehydrogenation of mixed alcohols

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013268277A Division JP2014122219A (ja) 2005-07-06 2013-12-26 混合アルコールの脱水素化

Publications (3)

Publication Number Publication Date
JP2008545005A true JP2008545005A (ja) 2008-12-11
JP2008545005A5 JP2008545005A5 (ja) 2015-11-05
JP5867977B2 JP5867977B2 (ja) 2016-02-24

Family

ID=35478855

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008519986A Active JP5867977B2 (ja) 2005-07-06 2006-06-29 混合アルコールの脱水素化
JP2013268277A Pending JP2014122219A (ja) 2005-07-06 2013-12-26 混合アルコールの脱水素化

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013268277A Pending JP2014122219A (ja) 2005-07-06 2013-12-26 混合アルコールの脱水素化

Country Status (11)

Country Link
US (1) US8053619B2 (ja)
EP (1) EP1902006B1 (ja)
JP (2) JP5867977B2 (ja)
CN (1) CN101218193B (ja)
AR (1) AR057440A1 (ja)
BR (1) BRPI0612769B1 (ja)
ES (1) ES2500141T3 (ja)
MY (1) MY147463A (ja)
RU (1) RU2412141C2 (ja)
TW (1) TWI378911B (ja)
WO (1) WO2007003910A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173113A (ja) * 2010-01-28 2011-09-08 Osaka Gas Co Ltd 燃料ガスを製造するための触媒および同触媒を用いる燃料ガスの製造方法
JP2011174055A (ja) * 2010-01-28 2011-09-08 Osaka Gas Co Ltd 高発熱量燃料ガスの製造方法
JP2012211097A (ja) * 2011-03-31 2012-11-01 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790627A1 (en) 2005-11-29 2007-05-30 BP Chemicals Limited Process for producing olefins
EP1992601A1 (en) 2007-05-11 2008-11-19 Ineos Europe Limited Dehydration of alcohols over supported heteropolyacids
EP2050730A1 (en) * 2007-10-17 2009-04-22 BP Chemicals Limited Process for preparing ethene
JP5136151B2 (ja) * 2008-03-27 2013-02-06 東ソー株式会社 エチレンの製造方法
WO2009127889A1 (en) * 2008-04-16 2009-10-22 Arkema France Process for manufacturing acrolein from glycerol
US20120165589A1 (en) * 2009-06-19 2012-06-28 Bp P.L.C. A process for the dehydration of ethanol to produce ethene
EP2287145A1 (en) 2009-08-12 2011-02-23 BP p.l.c. Process for purifying ethylene
KR101161845B1 (ko) * 2010-04-26 2012-07-03 송원산업 주식회사 알켄 화합물의 제조 방법
DE102012200996B4 (de) 2012-01-24 2017-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Ethylen und anderen Olefinen aus wässrigen Lösungen der korrespondierenden Alkohole
US8722005B1 (en) 2013-07-26 2014-05-13 Boulder Ionics Corporation Synthesis of hydrogen bis(fluorosulfonyl)imide
RU2605427C1 (ru) * 2015-10-20 2016-12-20 Акционерное общество "Газпромнефть-Московский НПЗ" (АО "Газпромнефть-МНПЗ") Способ восстановления разветвленных кетонов

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128723A (en) * 1980-02-14 1981-10-08 Sued Chemie Ag Olefin manufacture
JPS5838220A (ja) * 1981-03-13 1983-03-05 ペトロレオ・ブラシレイロ・ソシエダ・アノニマ−ペトロブラス 低分子量アルコ−ルの脱水法
JPH01163137A (ja) * 1987-12-21 1989-06-27 Jgc Corp エタノールの脱水反応方法
JPH02172925A (ja) * 1988-12-26 1990-07-04 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH02174737A (ja) * 1988-09-30 1990-07-06 Mitsui Petrochem Ind Ltd フェノールの製造方法およびその製造時の副生アセトンからプロピレンを得る方法
JPH03127745A (ja) * 1989-10-13 1991-05-30 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH03133937A (ja) * 1989-10-19 1991-06-07 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH03188032A (ja) * 1989-12-15 1991-08-16 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH04300840A (ja) * 1991-03-29 1992-10-23 Mitsui Petrochem Ind Ltd 低級オレフィン類の製造方法
JPH11514337A (ja) * 1995-07-21 1999-12-07 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 第1級アルコールの脱水
JP2003511484A (ja) * 1999-09-29 2003-03-25 エクソンモービル・ケミカル・パテンツ・インク オキシジェネートからのオレフィン生成物の生成
JP2006116439A (ja) * 2004-10-21 2006-05-11 National Institute Of Advanced Industrial & Technology エチレン製造用触媒およびこの触媒を用いるエチレンの製造方法
JP2007512941A (ja) * 2003-10-02 2007-05-24 エクソンモービル・ケミカル・パテンツ・インク モレキュラーシーブ触媒組成物、その生成及び変換方法における使用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3005551A1 (de) * 1980-02-14 1981-08-20 Süd-Chemie AG, 8000 München Katalysator zur synthese von methanol und hoehere alkohole enthaltenden alkoholgemischen
US5227563A (en) * 1988-12-26 1993-07-13 Mitsui Petrochemical Industries, Ltd. Preparation of propylene by dehydration of isopropanol in the presence of a pseudo-boehmite derived gamma alumina catalyst
US6441262B1 (en) * 2001-02-16 2002-08-27 Exxonmobil Chemical Patents, Inc. Method for converting an oxygenate feed to an olefin product

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128723A (en) * 1980-02-14 1981-10-08 Sued Chemie Ag Olefin manufacture
JPS5838220A (ja) * 1981-03-13 1983-03-05 ペトロレオ・ブラシレイロ・ソシエダ・アノニマ−ペトロブラス 低分子量アルコ−ルの脱水法
JPH01163137A (ja) * 1987-12-21 1989-06-27 Jgc Corp エタノールの脱水反応方法
JPH02174737A (ja) * 1988-09-30 1990-07-06 Mitsui Petrochem Ind Ltd フェノールの製造方法およびその製造時の副生アセトンからプロピレンを得る方法
JPH02172925A (ja) * 1988-12-26 1990-07-04 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH03127745A (ja) * 1989-10-13 1991-05-30 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH03133937A (ja) * 1989-10-19 1991-06-07 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH03188032A (ja) * 1989-12-15 1991-08-16 Mitsui Petrochem Ind Ltd プロピレンの製造方法
JPH04300840A (ja) * 1991-03-29 1992-10-23 Mitsui Petrochem Ind Ltd 低級オレフィン類の製造方法
JPH11514337A (ja) * 1995-07-21 1999-12-07 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 第1級アルコールの脱水
JP2003511484A (ja) * 1999-09-29 2003-03-25 エクソンモービル・ケミカル・パテンツ・インク オキシジェネートからのオレフィン生成物の生成
JP2007512941A (ja) * 2003-10-02 2007-05-24 エクソンモービル・ケミカル・パテンツ・インク モレキュラーシーブ触媒組成物、その生成及び変換方法における使用
JP2006116439A (ja) * 2004-10-21 2006-05-11 National Institute Of Advanced Industrial & Technology エチレン製造用触媒およびこの触媒を用いるエチレンの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173113A (ja) * 2010-01-28 2011-09-08 Osaka Gas Co Ltd 燃料ガスを製造するための触媒および同触媒を用いる燃料ガスの製造方法
JP2011174055A (ja) * 2010-01-28 2011-09-08 Osaka Gas Co Ltd 高発熱量燃料ガスの製造方法
JP2012211097A (ja) * 2011-03-31 2012-11-01 Sekisui Chem Co Ltd 塩化ビニルモノマーの製造方法

Also Published As

Publication number Publication date
BRPI0612769A2 (pt) 2010-11-30
JP2014122219A (ja) 2014-07-03
EP1902006B1 (en) 2014-08-13
AR057440A1 (es) 2007-12-05
TWI378911B (en) 2012-12-11
US8053619B2 (en) 2011-11-08
JP5867977B2 (ja) 2016-02-24
RU2008103612A (ru) 2009-08-20
TW200706518A (en) 2007-02-16
BRPI0612769B1 (pt) 2016-03-22
CN101218193A (zh) 2008-07-09
ES2500141T3 (es) 2014-09-30
CN101218193B (zh) 2013-04-24
US20090043143A1 (en) 2009-02-12
MY147463A (en) 2012-12-14
RU2412141C2 (ru) 2011-02-20
EP1902006A1 (en) 2008-03-26
WO2007003910A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5867977B2 (ja) 混合アルコールの脱水素化
JP5339904B2 (ja) 混合アルコールの脱水のための反応性蒸留
JP5368791B2 (ja) オレフィンリサイクルでの反応性蒸留
TWI382009B (zh) 製造乙烯之方法
RU2419596C2 (ru) Способ получения олефинов
RU2415832C2 (ru) Способ получения пропилена
MX2008006876A (en) Process for producing ethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120403

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120409

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150821

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20150916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5867977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250