JP2008275791A - 走査型共焦点顕微鏡 - Google Patents

走査型共焦点顕微鏡 Download PDF

Info

Publication number
JP2008275791A
JP2008275791A JP2007117585A JP2007117585A JP2008275791A JP 2008275791 A JP2008275791 A JP 2008275791A JP 2007117585 A JP2007117585 A JP 2007117585A JP 2007117585 A JP2007117585 A JP 2007117585A JP 2008275791 A JP2008275791 A JP 2008275791A
Authority
JP
Japan
Prior art keywords
light
confocal microscope
scanning
photodetector
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007117585A
Other languages
English (en)
Inventor
Hisafumi Okada
尚史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007117585A priority Critical patent/JP2008275791A/ja
Publication of JP2008275791A publication Critical patent/JP2008275791A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】光学系の小型化を実現できるとともに高い観察性能を得ることができること。
【解決手段】走査型共焦点顕微鏡100は、標本1の共役面上に配置され、標本1上の異なる領域から発する複数の観察光を選択的に反射させるとともに観察光ごとに反射領域を所定領域に制限するマイクロミラーアレイ4と、マイクロミラーアレイ4が反射させた複数の観察光を1以上の観察光ごとに光検出器18へ向けて順次偏向させて光検出器18に入射させるガルバノミラー16とを備える。
【選択図】 図1

Description

本発明は、走査型共焦点顕微鏡に関するものである。
近年、細胞や組織等の標本観察に用いる走査型共焦点顕微鏡の開発が精力的に進められている。走査型共焦点顕微鏡では、標本内の所望の深さに焦点を合わせることで、その深さの断層画像を得ることができる。また、焦点位置を順次変化させ、異なる深さの断層画像を複数取得することで、3次元的な観察画像を構築することができ、標本を立体的に観察することができる。このような走査型共焦点顕微鏡においては、高い解像力とともに高速動作性が求められる。これに対し、例えば特許文献1に開示された走査型共焦点顕微鏡がある。
特開2004-199063号公報
しかしながら、特許文献1に開示された走査型共焦点顕微鏡では、標本と共焦点ピンホールとしてのDMD(Digital Micromirror Device)との間に、標本上で照明光を走査させる走査機構としてのガルバノミラーを標本に対して瞳空間に設けるためのリレー光学系を備える必要があるため、光学系を小型化することが困難であるという問題があった。また、標本とDMDとの間に、対物レンズおよび結像レンズからなる結像光学系とは別にリレー光学系を備えることで、解像度等の観察性能を悪化させる恐れがあるという問題があった。
本発明は上記に鑑みてなされたものであって、光学系の小型化を実現できるとともに高い観察性能を得ることができる走査型共焦点顕微鏡を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる走査型共焦点顕微鏡は、標本上の異なる領域から発する複数の観察光を個別に検出する光検出器を備え、該光検出器の検出結果をもとに前記標本の観察画像を生成する走査型共焦点顕微鏡において、前記標本の共役面上に配置され、前記複数の観察光を選択的に反射/透過させるとともに該観察光ごとに反射領域/透過領域を所定領域に制限する光変調素子と、前記光変調素子が反射/透過させた前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させて該光検出器に入射させる偏向走査手段と、を備えたことを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、光源を有し、該光源が発した光を、線状の光束断面を有する線状光に整形して前記光変調素子上に照射する照明手段と、前記照明手段内に設けられ、前記光源が発した光を順次異なる角度で偏向させて、前記光変調素子上で前記線状光をその線状方向に対して略垂直な走査方向に走査させる光走査手段と、を備え、前記光変調素子は、前記線状光の一部を選択的に反射/透過させて前記標本上に照射させるとともに、この照射させた光に基づいて前記標本上から発する前記複数の観察光を選択的に反射/透過させ、前記偏向走査手段は、前記光走査手段に同期して前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させて該光検出器に入射させることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光検出器は、線状に配列された複数の受光部を有し、該複数の受光部を前記線状光に対して略平行にして配置され、前記偏向走査手段は、前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させ、各観察光を前記複数の受光部へ個別に入射させることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記偏向走査手段および前記光走査手段は、一体形成されることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記偏向走査手段および前記光走査手段は、前記複数の観察光を一方の面で反射させるとともに前記光源が発した光を他方の面で反射させる両面反射鏡を用いて形成されることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、光源を有し、該光源が発した光を前記光変調素子上の所定範囲に照射する照明手段を備え、前記光変調素子は、前記照明手段によって照射された光の一部を選択的に反射させて前記標本上に照射させるとともに、この照射させた光に基づいて前記標本上から発した前記複数の観察光を選択的に反射/透過させることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光検出器は、線状に配列された複数の受光部を有し、前記偏向走査手段は、前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させ、各観察光を前記複数の受光部へ個別に入射させることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光検出器と交換自在に配置される撮像素子を備え、前記偏向走査手段は、前記撮像素子が配置された場合、前記複数の観察光を前記撮像素子へ向けて一括して偏向させて該撮像素子に入射させることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記偏向走査手段と前記光検出器との間で前記光変調素子の共役面上に設けられ、前記偏向走査手段が前記複数の観察光の偏向方向を順次変化させる偏向走査方向について前記複数の観察光の通過範囲を所定範囲に制限する光制限素子を備え、前記光変調素子は、前記複数の観察光を少なくとも前記偏向走査方向に対して略垂直な方向に前記反射領域/透過領域を所定領域に制限し、前記光検出器は、前記光制限素子を通過した前記複数の観察光を個別に検出することを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光変調素子は、傾斜角が個別に切換可能な複数の微小ミラーを2次元配列して備えるマイクロミラーアレイであることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光変調素子は、入射する光に対する透過率を個別に切換可能な複数の微小透過部を2次元配列して備えるマトリクス型透過素子であることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記偏向走査手段は、ガルバノミラーを用いて構成されることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記偏向走査手段または前記光走査手段の少なくとも一方は、ガルバノミラーを用いて構成されることを特徴とする。
また、本発明にかかる走査型共焦点顕微鏡は、上記の発明において、前記光検出器は、フォトマルチプライヤまたはフォトマルチプライヤアレイであることを特徴とする。
本発明にかかる走査型共焦点顕微鏡によれば、光学系の小型化を実現できるとともに高い観察性能を得ることができる。
以下、添付図面を参照し、本発明にかかる走査型共焦点顕微鏡の好適な実施の形態を詳細に説明する。なお、この実施の形態によって、この発明が限定されるものではない。また、図面の記載において、同一部分には同一符号を付して示している。
(実施の形態1)
まず、本発明の実施の形態1にかかる走査型共焦点顕微鏡について説明する。図1は、本実施の形態1にかかる走査型共焦点顕微鏡100の要部構成を示す図である。この図に示すように走査型共焦点顕微鏡100は、蛍光顕微鏡として構成されており、図示しないステージ等に保持された標本1に対向して設けられた対物レンズ2と、この対物レンズ2と協働して標本1の共役像を結像する結像レンズ3と、結像光学系としての対物レンズ2および結像レンズ3による標本1の共役面上に配置された光変調素子としてのマイクロミラーアレイ4とを備える。
マイクロミラーアレイ4は、個別に傾斜角を切換可能な複数の微小ミラーを2次元配列して備える反射素子であって、例えばDMDが用いられる。DMDは、半導体基板上に形成された数十万個の微小ミラーを有し、各微小ミラーの傾斜角を制御回路からのオン/オフ信号に応じて個別に切り換えることで、入射した光の一部を微小ミラーごとに選択的に反射させることができる。このようなDMDを用いたマイクロミラーアレイ4は、各微小ミラーの傾斜角駆動がオフされた状態で、その各反射面が標本1の共役面と一致するように設けられている。また、マイクロミラーアレイ4上の各微小ミラーは、傾斜角駆動がオンされた場合、後述のように標本1上から発する観察光としての蛍光のうち各々対応する共役領域から発する蛍光を選択的に反射させるとともに、その反射領域を所定領域に制限することで、共焦点ピンホールとして機能する。なお、マイクロミラーアレイ4が標本1の共役面上に配置されるとは、厳密に共役面上に配置されることを意味するものではなく、共役面近傍に配置される場合も含んでいる。
また、走査型共焦点顕微鏡100は、マイクロミラーアレイ4、結像レンズ3および対物レンズ2を介して標本1を照明する照明光学系として、レーザ光源5、ビームエキスパンダ6、ガルバノミラー7、平面ミラー8〜10、シリンドリカルレンズ11、励起フィルタ12およびダイクロイックミラー13を備える。
レーザ光源5は、所定波長域のレーザ光を射出する。ビームエキスパンダ6は、レーザ光源5が射出した平行光であるレーザ光のビーム径を拡大整形する。シリンドリカルレンズ11は、ビームエキスパンダ6が射出させ、ガルバノミラー7および平面ミラー8が反射させたレーザ光を、所定方向(図1では紙面に平行な方向)に集光させることで、その集光面上で線状の光束断面を有する線状ビーム(図1では紙面に垂直な線状ビーム)に整形する。
励起フィルタ12は、シリンドリカルレンズ11が射出させ、平面ミラー9が反射させたレーザ光のうち、標本1を励起する励起光として所定波長を有したレーザ光を選択的に透過させる。ダイクロイックミラー13は、励起フィルタ12を透過したレーザ光を反射させ、平面ミラー10を介してマイクロミラーアレイ4上に入射させる。マイクロミラーアレイ4は、シリンドリカルレンズ11による集光面上あるいはその近傍に設けられており、励起光としてのレーザ光は、マイクロミラーアレイ4上で線状に集光される。
光走査手段としてのガルバノミラー7は、シリンドリカルレンズ11の入射瞳上に設けられており、ビームエキスパンダ6が射出させたレーザ光を反射させて平面ミラー8へ向けて偏向させる。このとき、ガルバノミラー7は、レーザ光の偏向角(反射角)を所定平面(図1では紙面)に沿って所定角度範囲内で連続的に繰り返し変化させる。これによって、ガルバノミラー7は、マイクロミラーアレイ4上に照射される線状ビームを、その線状方向に対してほぼ垂直な走査方向に繰り返し走査させる。
ガルバノミラー7によって走査される線状ビームのうち傾斜角駆動がオン状態の微小ミラー上に照射されたレーザ光は、そのオン状態の微小ミラーによって反射された後、結像レンズ3および対物レンズ2を介して標本1上に照射される。すなわち、マイクロミラーアレイ4は、マイクロミラーアレイ4上の所望する微小ミラーの傾斜角駆動を適宜オン状態とすることで、線状ビームの一部を選択的に反射させ、励起光として標本1上に照射させる。このとき、各微小ミラーが反射させた線状ビームの一部は、結像レンズ3および対物レンズ2による標本1上の対応する共役領域に照射される。
また、走査型共焦点顕微鏡100は、このように励起光として線状ビームの一部が照射された標本1上の各領域から発する観察光としての蛍光を、対物レンズ2、結像レンズ3、マイクロミラーアレイ4、平面ミラー10およびダイクロイックミラー13を介して検出する検出光学系として、吸収フィルタ14、リレーレンズ15、ガルバノミラー16、撮像レンズ17および光検出器18を備える。
標本1上から発した蛍光は、対物レンズ2および結像レンズ3により、その励起光として線状ビームの一部を反射させた微小ミラー上に結像されるとともに、その微小ミラーによって反射され、平面ミラー10を介してダイクロイックミラー13に入射される。ダイクロイックミラー13は、この入射した蛍光を透過させ、吸収フィルタ14は、ダイクロイックミラー13が透過させた蛍光のうち所定波長域の蛍光を選択的に透過させる。なお、ダイクロイックミラー13および吸収フィルタ14の分光特性は、蛍光体としての標本1の発光特性に応じてあらかじめ設定される。
リレーレンズ15は、マイクロミラーアレイ4上の各微小ミラーが反射させ、吸収フィルタ14を透過した各蛍光を、ほぼ平行光に変換して射出させる。撮像レンズ17は、リレーレンズ15が射出させ、ガルバノミラー16が反射させた各蛍光をそれぞれ集光させる。
光検出器18は、例えばフォトマルチプライヤからなる複数の受光部を線状に配列して備えたフォトマルチプライヤアレイが用いられる。光検出器18は、その複数の受光部がマイクロミラーアレイ4上の線状ビームに対してほぼ平行に配列され、撮像レンズ17による蛍光の集光面上に配置されている。光検出器18は、マイクロミラーアレイ4上の各微小ミラーが反射させ、撮像レンズ17が集光させた各蛍光を複数の受光部で個別に光電検出する。なお、光検出器18の複数の受光部が線状ビームに対してほぼ平行に配列されるとは、マイクロミラーアレイ4から光検出器18に至る光路中の折り曲げ方向等を考慮し、光学的に実質ほぼ平行である場合を含むものである。
偏向走査手段としてのガルバノミラー16は、撮像レンズ17の入射瞳上に設けられており、リレーレンズ15が射出させた蛍光を反射させ、撮像レンズ17へ向けて偏向させる。このとき、ガルバノミラー16は、マイクロミラーアレイ4上の線状ビーム内に位置する各微小ミラーが反射させてリレーレンズ15が射出させた蛍光を、光検出器18へ向けて偏向させることで、撮像レンズ17を介して光検出器18に入射させる。また、ガルバノミラー16は、ガルバノミラー7に同期して駆動されることで、マイクロミラーアレイ4上の線状ビームの走査にともない異なる微小ミラーが順次反射させる各蛍光を、その蛍光ごとに光検出器18へ向けて偏向させて光検出器18に入射させる。なお、光検出器18へ向けて偏向させるとは、途中経由する撮像レンズ17の屈折作用を考慮した上で光検出器18へ向かう方向へ偏向させることを意味する。
これは言い換えると、ガルバノミラー16は、ガルバノミラー7によってマイクロミラーアレイ4上で走査される線状ビームの走査位置の変化を打ち消すように、マイクロミラーアレイ4上の各微小ミラーが反射させた蛍光をガルバノミラー7に同期して順次偏向させている。これによって、ガルバノミラー16は、線状ビームの走査位置によらず、線状ビーム内の各微小ミラーが反射させた蛍光を常に光検出器18に入射させている。
また、走査型共焦点顕微鏡100は、光検出器18による検出信号を記録する記録装置19と、記録装置19が記録した各検出信号をもとに標本1の観察画像を構築する演算装置20と、演算装置20が構築した観察画像を表示する表示装置21と、走査型共焦点顕微鏡100内にあって電気的に駆動される各部の処理および動作を制御する制御装置22とを備える。制御装置22は、特にガルバノミラー7,16およびマイクロミラーアレイ4を駆動し、光検出器18の検出結果をもとに標本1の観察画像を生成する制御を行う。
つづいて、走査型共焦点顕微鏡100における標本1の観察画像の生成手順について説明する。図示しない焦準機構によって標本1が所望の位置(深さ)に焦点合わせされた後、制御装置22は、まずマイクロミラーアレイ4の各微小ミラーを所定パターンで傾斜駆動させる。具体的には、例えば図2に示すように、マイクロミラーアレイ4上に照射される線状ビーム23の線状方向(図2における上下方向)と走査方向(図2における左右方向)とにおいて、それぞれ所定間隔(図2では両方向3個間隔)で配置された複数の微小ミラー4aの傾斜駆動をオン状態とする。
つぎに、制御装置22は、ガルバノミラー7を駆動し、図2(a)〜(c)に示すように線状ビーム23をマイクロミラーアレイ4上で走査させる。これに応じて、各微小ミラー4aは、線状ビーム23が通過するごとにその一部を選択的に反射させ、結像レンズ3および対物レンズ2を介して標本1上の共役領域に励起光として照射する。この各微小ミラー4aの共役領域は、線状ビーム23の走査にともない順次励起され、励起されるごとに所定波長域の蛍光を発する。標本1上の各領域から発する蛍光は、対物レンズ2および結像レンズ3により、それぞれマイクロミラーアレイ4上の共役位置にある微小ミラー4aに入射される。この微小ミラー4aは、励起光として線状ビーム23の一部を反射させた微小ミラーであり、それぞれ線状ビーム23を反射させた後、傾斜駆動がオン状態とされたまま、標本1上から発した蛍光を検出光学系へ向けて選択的に反射させている。
つづいて、制御装置22は、ガルバノミラー7に同期させてガルバノミラー16を駆動する。これに応じて、ガルバノミラー16は、線状ビーム23の走査に連動し、その走査方向に配列された微小ミラー4aが順次反射させる各蛍光を、その蛍光ごとに光検出器18へ向けて順次偏向させて光検出器18に入射させる。また、線状ビーム23の線状方向に配列された微小ミラー4aが反射させた各蛍光を、それぞれ光検出器18の異なる受光部に入射させる。なお、ここでは制御装置22がガルバノミラー7,16を順次駆動するものとして説明したが、同時に駆動させて構わない。
その後、制御装置22は、線状ビーム23の走査に同期して光検出器18によって順次検出される検出信号を記録装置19に逐次記録する。このとき、制御装置22は、各検出信号を、それぞれ対応する微小ミラー4aのマイクロミラーアレイ4上での配置位置に対応付けて記録する。あるいは、対応する微小ミラー4aの標本1上での共役位置に対応付けて記録する。
そして、制御装置22は、マイクロミラーアレイ4上で傾斜駆動をオンさせる微小ミラー4aの配置パターンを他の所定パターンに切り換え、同様の走査および検出処理を繰り返す。具体的には、例えば図2に示した各微小ミラー4aの配置位置を線状ビーム23の線状方向に微小ミラー1つ分シフトさせた配置パターンとして同様の処理を繰り返す。
さらに、制御装置22は、各微小ミラー4aの配置位置を線状方向または走査方向に順次シフトさせ、走査および検出処理を繰り返すことで、マイクロミラーアレイ4上の各微小ミラーに対する標本1上のすべての共役点から発した蛍光を検出し、記録装置19に記録する。そして、標本1上のすべての共役点に対応する検出信号を記録した際、制御装置22は、その各検出信号をもとに演算装置20に観察画像を構築させ、構築された観察画像を表示装置21に表示させる。
以上説明したように、本実施の形態1にかかる走査型共焦点顕微鏡100は、標本1の共役面上に配置され、標本1上の異なる点から発した複数の観察光を選択的に反射させるとともに観察光ごとに反射領域を所定領域に制限する光変調素子としてのマイクロミラーアレイ4と、マイクロミラーアレイ4が反射させた複数の観察光を1以上の観察光ごとに光検出器18へ向けて順次偏向させて光検出器18に入射させる偏向走査手段としてのガルバノミラー16とを備えている。このため、走査型共焦点顕微鏡100では、標本1と共焦点ピンホールとしてのマイクロミラーアレイ4との間に、標本1上で励起光としての照明光を走査させるガルバノミラーを標本1に対して瞳空間内に設けるためのリレー光学系を備える必要がなく、光学系の簡素化および小型化を実現することができる。また、標本1とマイクロミラーアレイ4との間に、ガルバノミラーおよびリレー光学系など、対物レンズ2と結像レンズ3とからなる結像光学系以外に結像に寄与する光学部材を設ける必要がなく、収差要因となる光学部材を削減することができるため、高い観察性能を得ることができる。
(変形例)
つぎに、本実施の形態1にかかる走査型共焦点顕微鏡の変形例について説明する。図3は、その変形例としての走査型共焦点顕微鏡200の要部構成を示す図である。この図に示すように、走査型共焦点顕微鏡200は、走査型共焦点顕微鏡100の構成をもとに、ガルバノミラー7,16に替えてガルバノミラー31を備える。その他の構成は、走査型共焦点顕微鏡100と同じであり、同一部分には同一符号を付して示している。
ガルバノミラー31は、走査型共焦点顕微鏡100におけるガルバノミラー7とガルバノミラー16とを一体形成した素子であって、表裏面をともに反射面とした両面ミラーを用いて構成されている。ガルバノミラー31は、制御装置22からの制御信号に基づき、ビームエキスパンダ6が射出させたレーザ光を一方の面で反射させて平面ミラー8へ向けて偏向させるとともに、リレーレンズ15が射出させた蛍光を他方の面で反射させて撮像レンズ17へ向けて偏向させる。
これによって、ガルバノミラー31は、ガルバノミラー7と同様にマイクロミラーアレイ4上で線状ビーム23を走査させるとともに、この走査に同期して各微小ミラー4aが反射させた蛍光をガルバノミラー16と同様に光検出器18へ順次入射させる。このため、走査型共焦点顕微鏡200では、走査型共焦点顕微鏡100と同様に標本1の観察画像を得ることができる。
走査型共焦点顕微鏡200では、走査型共焦点顕微鏡100における2つのガルバノミラー7,16の機能を1つのガルバノミラー31によって実現することで、光学系の簡素化および小型化を一層促進させている。
(実施の形態2)
つぎに、本発明の実施の形態2にかかる走査型共焦点顕微鏡について説明する。図4は、本実施の形態2にかかる走査型共焦点顕微鏡300の要部構成を示す図である。この図に示すように、走査型共焦点顕微鏡300は、走査型共焦点顕微鏡100の構成をもとに、光検出器18と交換自在に撮像素子41を備えるとともに、照明光学系からガルバノミラー7および平面ミラー8,9が取り除かれている。ここで、撮像素子41は、CCDカメラ等が用いられる。その他の構成は走査型共焦点顕微鏡100と同じであり、同一部分には同一符号を付して示している。
ビームエキスパンダ6が射出させたレーザ光は、励起フィルタ12、ダイクロイックミラー13および平面ミラー10を経由した後、図5に示すように、マイクロミラーアレイ4上の全面に面状ビーム42として照射される。なお、面状ビーム42は、矩形開口を有した図示しない絞り等によって光束断面が矩形に整形されている。ただし、面状ビーム42の光束断面は、矩形に限定されるものではなく、マイクロミラーアレイ4上の全面に一括照射されるものであれば円状等、任意形状でよい。
マイクロミラーアレイ4上で傾斜駆動がオン状態とされた各微小ミラー4aは、それぞれ面状ビーム42の一部を選択的に反射させ、結像レンズ3および対物レンズ2を介して標本1上の共役領域に励起光として照射する。励起光が照射された標本1上の各領域は、一括して励起され、それぞれ所定波長域の蛍光を発する。そして、標本1上の各領域から発する蛍光は、対物レンズ2および結像レンズ3により、それぞれマイクロミラーアレイ4上の共役位置にある微小ミラー4aに入射される。この微小ミラー4aは、励起光として面状ビーム42の一部を反射させた微小ミラーであり、それぞれ面状ビーム42を反射させた後、傾斜駆動がオン状態とされたまま、標本1上から発した蛍光を検出光学系へ向けて選択的に反射させている。
制御装置22は、撮像レンズ17の集光面上に光検出器18が配置されている場合、ガルバノミラー16を駆動する。これによって、ガルバノミラー16は、その駆動方向(回転方向)に対して光学的にほぼ平行な方向に配列された各微小ミラー4aが反射させる各蛍光を、その蛍光ごとに光検出器18へ向けて順次偏向させて光検出器18に入射させる。また、ガルバノミラー16の駆動方向に対して光学的にほぼ垂直な方向に配列された微小ミラー4aが反射させる各蛍光を、それぞれ光検出器18の異なる受光部に個別に入射させる。
その後、制御装置22は、光検出器18によって順次検出される各検出信号を、各々対応する微小ミラー4aのマイクロミラーアレイ4上での配置位置もしくは標本1上での共役位置に対応付けて記録装置19に逐次記録する。さらに、制御装置22は、実施の形態1と同様に、マイクロミラーアレイ4上で傾斜駆動をオン状態とさせる微小ミラー4aの配置パターンを他の所定パターンに順次切り換えながら検出を繰り返すことで、マイクロミラーアレイ4上の各微小ミラーに対する標本1上のすべての共役領域から発した蛍光を検出し、記録装置19に記録する。そして、標本1上のすべての共役領域に対応する検出信号を記録した際、制御装置22は、その各検出信号をもとに演算装置20に観察画像を構築させ、構築された観察画像を表示装置21に表示させる。
一方、撮像レンズ17の集光面上に撮像素子41が配置されている場合、制御装置22は、ガルバノミラー16の動きを停止させるとともに、マイクロミラーアレイ4上のすべての微小ミラーの傾斜駆動をオン状態とする。これによって、ガルバノミラー16は、標本1上の各領域から発しマイクロミラーアレイ4上が反射させる蛍光を、撮像素子41へ向けて一括して偏向させて撮像素子41に入射させる。また、撮像レンズ17は、リレーレンズ15と協働し、各微小ミラー4aの観察像としての共役像を撮像素子41の撮像面上に結像させ、撮像素子41は、その観察画像を撮像する。そして、制御装置22は、撮像素子41が撮像した観察画像を記録装置19に記録するとともに、表示装置21に表示させる。
以上説明したように、本実施の形態2にかかる走査型共焦点顕微鏡300では、走査型共焦点顕微鏡100と同様に、マイクロミラーアレイ4およびガルバノミラー16を備えているため、標本1と共焦点ピンホールとしてのマイクロミラーアレイ4との間に、ガルバノミラーを標本1に対して瞳空間内に設けるためのリレー光学系を備える必要がなく、光学系の簡素化および小型化を実現することができるとともに、高い観察性能を得ることができる。
また、走査型共焦点顕微鏡300では、フォトマルチプライヤ等を用いた高感度な光検出器18と、撮像素子41とを交換自在に備えるとともに、光検出器18と撮像素子41との配置切換に対応させてガルバノミラー16の駆動および停止を切換可能としているため、光検出器18による高感度な共焦点観察と、撮像素子41による簡易的かつ高速な観察とを切換自在に行うことができる。これによって観察者は、例えば撮像素子41によって準備段階における簡易観察を行い、光検出器18によって高感度な観察を行うことができる。
(実施の形態3)
つぎに、本発明の実施の形態3にかかる走査型共焦点顕微鏡について説明する。図6は、本実施の形態3にかかる走査型共焦点顕微鏡400の部分構成を示す図である。この走査型共焦点顕微鏡400は、上述した走査型共焦点顕微鏡100,200,300のいずれかの構成をもとに、撮像レンズ17と光検出器18との間に共焦点スリット51をさらに備えている。図6では、撮像レンズ17、光検出器18および共焦点スリット51の構成のみを便宜的に示している。
光制限素子としての共焦点スリット51は、図6に示すように、撮像レンズ17による蛍光の集光面上、つまりリレーレンズ15と撮像レンズ17とによるマイクロミラーアレイ4の共役面上に設けられている。共焦点スリット51は、所定幅のスリット開口部51aを有しており、このスリット開口部51aがガルバノミラー16の駆動方向に対して光学的にほぼ垂直になるように配置されている。すなわち、スリット開口部51aは、ガルバノミラー16がリレーレンズ15からの蛍光の偏向方向を順次変化させる偏向走査方向に対して光学的にほぼ垂直に設けられている。これによって、共焦点スリット51は、ガルバノミラー16による偏向走査方向について、撮像レンズ17が集光させる蛍光の通過範囲をスリット開口部51aのスリット幅に制限している。なお、ガルバノミラー16による偏向走査方向は、共焦点スリット51が走査型共焦点顕微鏡100または200の構成をもとに設けられる場合、線状ビーム23の走査方向に対して光学的にほぼ平行な方向である。
光検出器18は、撮像レンズ17に対して共焦点スリット51の背後に配置されており、撮像レンズ17がスリット開口部51a内に集光させて通過させた蛍光を検出する。なお、走査型共焦点顕微鏡300の構成をもとに共焦点スリット51を設ける場合には、撮像素子41に対して共焦点スリット51および光検出器18を一体にして交換自在にするとよい。
走査型共焦点顕微鏡400では、共焦点スリット51を設けたことで、マイクロミラーアレイ4上で傾斜駆動をオン状態とさせる微小ミラー4aの配列を、図7−1に示すように、線状ビーム23の走査方向に連続的に配列することができる。図7−1では、白抜き四角形の配列が微小ミラー4aの配列を示している。
上述した走査型共焦点顕微鏡100,200,300のように、共焦点スリット51が設けられていない場合には、微小ミラー4aは、共焦点ピンホールとしての機能を持たせる必要があり、このため図2に示したように、線状ビーム23の走査方向について微小ミラー4aを不連続に配列しなければならなかった。これに対して、共焦点スリット51を設けた場合には、線状ビーム23の走査方向における共焦点効果をスリット開口部51aによって得ることができるため、マイクロミラーアレイ4上では、線状ビーム23の走査方向に共焦点効果を得る必要がなく、微小ミラー4aを連続的に配列することができる。この場合、微小ミラー4aは、線状ビーム23の線状方向についてのみ共焦点効果を発揮することとなる。
このようにマイクロミラーアレイ4上で微小ミラー4aを連続的に配列することによって、走査型共焦点顕微鏡400では、観察画像を構築するために必要な検出信号を得るため、つまりマイクロミラーアレイ4上のすべての微小ミラーに対応する検出信号を得るために必要な線状ビーム23の走査回数を減少させることができ、観察画像を生成する一連の処理を高速化することができる。
具体的には、共焦点スリット51を用いる場合、例えば図7−1に示した微小ミラー4aの配列パターンに対して線状ビーム23を走査させた後、その配列パターンを図7−2に示すように切り換えて再び走査を行うことで、マイクロミラーアレイ4上のすべての微小ミラーに対応する検出信号を得ることができる。これに対して、共焦点スリット51を用いない場合には、線状ビーム23の走査方向に微小ミラー4aを少なくとも1つおきに配列する必要があるため、4回以上の走査を行わなければすべての微小ミラーに対応する検出信号を得ることができない。したがって、この場合、共焦点スリット51を用いることで、観察画像を生成する一連の処理時間を概ね1/4倍に短縮することができる。
なお、ここではマイクロミラーアレイ4上の各微小ミラー4aについて検出信号を得るものとして説明したが、必ずしも微小ミラー4aと検出信号とを1対1に対応させる必要はなく、例えば図8−1および図8−2に示すように、4つの微小ミラー4aに対して1つの検出信号を得るものとして構わない。この場合、線状ビーム23内で隣接する4つの微小ミラー4aが反射させる蛍光を光検出器18における同一の受光部で検出することで、この4つの微小ミラー4aを単位とした検出信号を得ることができる。なお、光検出器18上の同一の受光部に対応させる微小ミラー4aの数は、4つに限定されず、任意数で構わない。
ここまで、本発明を実施する最良の形態を実施の形態1〜3として説明したが、本発明は、上述した実施の形態1〜3に限定されず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。
例えば、上述した実施の形態1〜3では、走査型共焦点顕微鏡100,200,300,400は、光変調素子としてマイクロミラーアレイ4を備えるものとしたが、反射素子に限定されず、透過素子を用いることもできる。その場合、入射する光に対する透過率を個別に切換可能な複数の微小透過部、特に入射した光の透過と遮断とを個別かつ自在に切換可能な複数の微小透過部を2次元配列して備えるマトリクス型透過素子を用いることができ、例えばマトリクス液晶を用いることができる。走査型共焦点顕微鏡100,200,300または400の構成をもとに、マイクロミラーアレイ4に替えてかかるマトリクス型透過素子を備え、マトリクス型透過素子に対して線状ビーム23または面状ビーム42を透過照明するとともに、標本1から発した蛍光をマトリクス型透過素子を透過させた後に検出することで、マイクロミラーアレイ4を用いた場合と同様の機能および効果を得ることができる。
また、上述した実施の形態1〜3では、走査型共焦点顕微鏡100,200,300,400は、蛍光顕微鏡であるものとして説明したが、蛍光に限定されず、例えば白色光による観察に用いることもできる。その場合、励起フィルタ12、吸収フィルタ14を取り除き、ダイクロイックミラー13をハーフミラー等に置き換えるとよい。
また、上述した実施の形態1〜3では、走査型共焦点顕微鏡100,200,300,400は、標本1に対し、マイクロミラーアレイ4を介して落射照明を行うものとしたが、透過照明を行うようにすることもできる。また、自発光する標本を標本1として観察を行う場合には、照明光学系を省略することもできる。
また、上述した実施の形態1〜3では、偏向走査手段および光走査手段として所定方向に回転駆動するガルバノミラー7,16を用い、それぞれ1次元的にレーザ光または蛍光の偏向角を変化させるものとしたが、2次元的に偏向角を変化させるようにしても構わない。その場合、例えば回転軸を光学的に直交させた2つのガルバノミラーを組み合わせて1つの偏向走査手段もしくは光走査手段とすればよい。
本発明の実施の形態1にかかる走査型共焦点顕微鏡の要部構成を示す図である。 マイクロミラーアレイと線状ビームとの関係を示す図である。 実施の形態1にかかる走査型共焦点顕微鏡の変形例の要部構成を示す図である。 本発明の実施の形態2にかかる走査型共焦点顕微鏡の要部構成を示す図である。 マイクロミラーアレイと面状ビームとの関係を示す図である。 本発明の実施の形態3にかかる走査型共焦点顕微鏡の部分構成を示す図である。 共焦点スリットを設けた場合のマイクロミラーアレイの駆動パターンを示す図である。 共焦点スリットを設けた場合のマイクロミラーアレイの駆動パターンを示す図である。 共焦点スリットを設けた場合のマイクロミラーアレイの駆動パターンを示す図である。 共焦点スリットを設けた場合のマイクロミラーアレイの駆動パターンを示す図である。
符号の説明
1 標本
2 対物レンズ
3 結像レンズ
4 マイクロミラーアレイ
4a 微小ミラー
5 レーザ光源
6 ビームエキスパンダ
7,16 ガルバノミラー
8〜10 平面ミラー
11 シリンドリカルレンズ
12 励起フィルタ
13 ダイクロイックミラー
14 吸収フィルタ
15 リレーレンズ
17 撮像レンズ
18 光検出器
19 記録装置
20 演算装置
21 表示装置
22 制御装置
23 線状ビーム
31 ガルバノミラー
41 撮像素子
42 面状ビーム
51 共焦点スリット
51a スリット開口部
100,200,300,400 走査型共焦点顕微鏡

Claims (14)

  1. 標本上の異なる領域から発する複数の観察光を個別に検出する光検出器を備え、該光検出器の検出結果をもとに前記標本の観察画像を生成する走査型共焦点顕微鏡において、
    前記標本の共役面上に配置され、前記複数の観察光を選択的に反射/透過させるとともに該観察光ごとに反射領域/透過領域を所定領域に制限する光変調素子と、
    前記光変調素子が反射/透過させた前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させて該光検出器に入射させる偏向走査手段と、
    を備えたことを特徴とする走査型共焦点顕微鏡。
  2. 光源を有し、該光源が発した光を、線状の光束断面を有する線状光に整形して前記光変調素子上に照射する照明手段と、
    前記照明手段内に設けられ、前記光源が発した光を順次異なる角度で偏向させて、前記光変調素子上で前記線状光をその線状方向に対して略垂直な走査方向に走査させる光走査手段と、を備え、
    前記光変調素子は、前記線状光の一部を選択的に反射/透過させて前記標本上に照射させるとともに、この照射させた光に基づいて前記標本上から発する前記複数の観察光を選択的に反射/透過させ、
    前記偏向走査手段は、前記光走査手段に同期して前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させて該光検出器に入射させることを特徴とする請求項1に記載の走査型共焦点顕微鏡。
  3. 前記光検出器は、線状に配列された複数の受光部を有し、該複数の受光部を前記線状光に対して略平行にして配置され、
    前記偏向走査手段は、前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させ、各観察光を前記複数の受光部へ個別に入射させることを特徴とする請求項2に記載の走査型共焦点顕微鏡。
  4. 前記偏向走査手段および前記光走査手段は、一体形成されることを特徴とする請求項2または3に記載の走査型共焦点顕微鏡。
  5. 前記偏向走査手段および前記光走査手段は、前記複数の観察光を一方の面で反射させるとともに前記光源が発した光を他方の面で反射させる両面反射鏡を用いて形成されることを特徴とする請求項4に記載の走査型共焦点顕微鏡。
  6. 光源を有し、該光源が発した光を前記光変調素子上の所定範囲に照射する照明手段を備え、
    前記光変調素子は、前記照明手段によって照射された光の一部を選択的に反射/透過させて前記標本上に照射させるとともに、この照射させた光に基づいて前記標本上から発した前記複数の観察光を選択的に反射/透過させることを特徴とする請求項1に記載の走査型共焦点顕微鏡。
  7. 前記光検出器は、線状に配列された複数の受光部を有し、
    前記偏向走査手段は、前記複数の観察光を1以上の該観察光ごとに前記光検出器へ向けて順次偏向させ、各観察光を前記複数の受光部へ個別に入射させることを特徴とする請求項6に記載の走査型共焦点顕微鏡。
  8. 前記光検出器と交換自在に配置される撮像素子を備え、
    前記偏向走査手段は、前記撮像素子が配置された場合、前記複数の観察光を前記撮像素子へ向けて一括して偏向させて該撮像素子に入射させることを特徴とする請求項6または7に記載の走査型共焦点顕微鏡。
  9. 前記偏向走査手段と前記光検出器との間で前記光変調素子の共役面上に設けられ、前記偏向走査手段が前記複数の観察光の偏向方向を順次変化させる偏向走査方向について前記複数の観察光の通過範囲を所定範囲に制限する光制限素子を備え、
    前記光変調素子は、前記複数の観察光を少なくとも前記偏向走査方向に対して略垂直な方向に前記反射領域/透過領域を所定領域に制限し、
    前記光検出器は、前記光制限素子を通過した前記複数の観察光を個別に検出することを特徴とする請求項1〜8のいずれか一つに記載の走査型共焦点顕微鏡。
  10. 前記光変調素子は、傾斜角が個別に切換可能な複数の微小ミラーを2次元配列して備えるマイクロミラーアレイであることを特徴とする請求項1〜9のいずれか一つに記載の走査型共焦点顕微鏡。
  11. 前記光変調素子は、入射する光に対する透過率を個別に切換可能な複数の微小透過部を2次元配列して備えるマトリクス型透過素子であることを特徴とする請求項1〜9のいずれか一つに記載の走査型共焦点顕微鏡。
  12. 前記偏向走査手段は、ガルバノミラーを用いて構成されることを特徴とする請求項1〜11のいずれか一つに記載の走査型共焦点顕微鏡。
  13. 前記偏向走査手段または前記光走査手段の少なくとも一方は、ガルバノミラーを用いて構成されることを特徴とする請求項2〜5のいずれか一つに記載の走査型共焦点顕微鏡。
  14. 前記光検出器は、フォトマルチプライヤまたはフォトマルチプライヤアレイであることを特徴とする請求項1〜13のいずれか一つに記載の走査型共焦点顕微鏡。
JP2007117585A 2007-04-26 2007-04-26 走査型共焦点顕微鏡 Pending JP2008275791A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117585A JP2008275791A (ja) 2007-04-26 2007-04-26 走査型共焦点顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117585A JP2008275791A (ja) 2007-04-26 2007-04-26 走査型共焦点顕微鏡

Publications (1)

Publication Number Publication Date
JP2008275791A true JP2008275791A (ja) 2008-11-13

Family

ID=40053839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117585A Pending JP2008275791A (ja) 2007-04-26 2007-04-26 走査型共焦点顕微鏡

Country Status (1)

Country Link
JP (1) JP2008275791A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262176A (ja) * 2009-05-08 2010-11-18 Olympus Corp レーザ走査型顕微鏡
CN107260136A (zh) * 2017-07-20 2017-10-20 南京亘瑞医疗科技有限公司 双轴组织分子成像装置
CN107456210A (zh) * 2017-07-20 2017-12-12 南京亘瑞医疗科技有限公司 双轴组织分子成像装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244934A (ja) * 1988-03-28 1989-09-29 Nissan Motor Co Ltd 車両用前照灯装置
JP2005062421A (ja) * 2003-08-11 2005-03-10 Ohkura Industry Co ライン状光ビーム発生装置及びレーザ顕微鏡
JP2005274783A (ja) * 2004-03-23 2005-10-06 Olympus Corp 顕微鏡画像撮影装置
JP2005275206A (ja) * 2004-03-26 2005-10-06 Olympus Corp 光走査型観察装置
JP2006510926A (ja) * 2002-12-05 2006-03-30 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 共焦点スリットスキャナを備える、対象物を結像するための走査型顕微鏡
JP2006106378A (ja) * 2004-10-06 2006-04-20 Yokogawa Electric Corp 共焦点顕微鏡
JP2006317544A (ja) * 2005-05-10 2006-11-24 Nikon Corp 共焦点顕微鏡
JP2008203813A (ja) * 2007-01-24 2008-09-04 Olympus Corp 走査型顕微鏡

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244934A (ja) * 1988-03-28 1989-09-29 Nissan Motor Co Ltd 車両用前照灯装置
JP2006510926A (ja) * 2002-12-05 2006-03-30 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 共焦点スリットスキャナを備える、対象物を結像するための走査型顕微鏡
JP2005062421A (ja) * 2003-08-11 2005-03-10 Ohkura Industry Co ライン状光ビーム発生装置及びレーザ顕微鏡
JP2005274783A (ja) * 2004-03-23 2005-10-06 Olympus Corp 顕微鏡画像撮影装置
JP2005275206A (ja) * 2004-03-26 2005-10-06 Olympus Corp 光走査型観察装置
JP2006106378A (ja) * 2004-10-06 2006-04-20 Yokogawa Electric Corp 共焦点顕微鏡
JP2006317544A (ja) * 2005-05-10 2006-11-24 Nikon Corp 共焦点顕微鏡
JP2008203813A (ja) * 2007-01-24 2008-09-04 Olympus Corp 走査型顕微鏡

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262176A (ja) * 2009-05-08 2010-11-18 Olympus Corp レーザ走査型顕微鏡
CN107260136A (zh) * 2017-07-20 2017-10-20 南京亘瑞医疗科技有限公司 双轴组织分子成像装置
CN107456210A (zh) * 2017-07-20 2017-12-12 南京亘瑞医疗科技有限公司 双轴组织分子成像装置
CN107260136B (zh) * 2017-07-20 2023-05-12 苏州微景医学科技有限公司 双轴组织分子成像装置
CN107456210B (zh) * 2017-07-20 2023-05-12 苏州微景医学科技有限公司 双轴组织分子成像装置

Similar Documents

Publication Publication Date Title
JP5340799B2 (ja) レーザ走査型顕微鏡
EP1580586B1 (en) Scanning confocal microscope
JP5259154B2 (ja) 走査型レーザ顕微鏡
JP5642301B2 (ja) 走査型顕微鏡、および試料の光学検鏡画像形成のための方法
JP4894161B2 (ja) 共焦点顕微鏡
JP5541907B2 (ja) レーザ走査型顕微鏡
JP4414722B2 (ja) レーザー顕微鏡
JP2008507719A (ja) 共焦点蛍光顕微鏡法及び装置
EP1860480B1 (en) Confocal microscope and multiphoton excitation microscope
JP2007506955A (ja) エバネッセント波照明を備えた走査顕微鏡
JP2008203813A (ja) 走査型顕微鏡
JP2019529999A (ja) 光学顕微鏡
JP4867354B2 (ja) 共焦点顕微鏡
JP2008275791A (ja) 走査型共焦点顕微鏡
JP2006220818A (ja) 共焦点顕微鏡
JP4593141B2 (ja) 光走査型観察装置
JP4898588B2 (ja) 走査型顕微鏡
JP2008180851A (ja) 走査型顕微鏡
JP4869749B2 (ja) 走査型顕微鏡
JP4793626B2 (ja) 共焦点顕微鏡
JP6284372B2 (ja) 走査型レーザ顕微鏡および超解像画像生成方法
JP2011013483A (ja) コンフォーカル顕微鏡
JP2007171598A (ja) 共焦点顕微鏡
JP2009015218A (ja) 走査型共焦点顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515