JP2008244161A - Iii族窒化物系化合物半導体発光素子の電極形成方法 - Google Patents

Iii族窒化物系化合物半導体発光素子の電極形成方法 Download PDF

Info

Publication number
JP2008244161A
JP2008244161A JP2007082810A JP2007082810A JP2008244161A JP 2008244161 A JP2008244161 A JP 2008244161A JP 2007082810 A JP2007082810 A JP 2007082810A JP 2007082810 A JP2007082810 A JP 2007082810A JP 2008244161 A JP2008244161 A JP 2008244161A
Authority
JP
Japan
Prior art keywords
electrode
layer
group iii
iii nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007082810A
Other languages
English (en)
Inventor
Jitsuki Moriyama
実希 守山
Koichi Goshonoo
浩一 五所野尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2007082810A priority Critical patent/JP2008244161A/ja
Priority to CN2008100840795A priority patent/CN101276872B/zh
Priority to US12/078,066 priority patent/US7947521B2/en
Publication of JP2008244161A publication Critical patent/JP2008244161A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Abstract

【課題】反射率が高く、窒化ガリウム層との接合強度を低下させない電極を提供する。
【解決手段】III族窒化物系化合物半導体発光素子100は、サファイア基板10、n型GaN層11、n型AlGaN層12、GaN/InGaN多重量子井戸構造の発光層13、p型AlGaN層14、p型GaN層15、p+型GaN層16を有する。p+型GaN層16には、ITOから成る透光性電極21がほぼ全面に形成され、透光性電極21上の一部に金から成るパッド電極22が形成されている。n型GaN層11には、Ti層31とAl層32とから成るn電極30が形成されている。III族窒化物系化合物半導体発光素子100は、n電極30が光反射電極層であり、透光性電極21を通過した光の取り出しを行うフェイスアップ型LEDである。Ti層31の厚さが1nm未満であり、Ti層31で光吸収が生じない。
【選択図】図3

Description

本発明はIII族窒化物系化合物半導体発光素子の製造方法に関する。本願においてIII族窒化物系化合物半導体とは、AlxGayIn1-x-yN(x、y、x+yはいずれも0以上1以下)で示される半導体、及び、n型化/p型化等のために任意の元素を添加したものを含む。更には、III族元素及びV族元素の組成の一部を、B、Tl;P、As、Sb、Biで置換したものをも含むものとする。
III族窒化物系化合物半導体発光素子は素子外部への光取り出し効率が小さい。そこで、電極を形成する金属として可視光の反射率が大きいものを用いる様々な工夫が提案されている(特許文献1乃至4)。
特開2003−086843号公報 特開2004−179347号公報 特開2005−011857号公報 特開2004−140052号公報
ここで、いわゆるフェイスアップタイプのIII族窒化物系化合物半導体発光素子(発光ダイオード)の構成例を説明する。図8は従来例に係るIII族窒化物系化合物半導体発光素子900の構成を示す断面図である。III族窒化物系化合物半導体発光素子900は、サファイア基板10に図示しない窒化アルミニウム(AlN)から成るバッファ層を形成した後、Siをドープしたn型GaN層11、Siをドープしたn型AlGaNクラッド層12、GaN/InGaN多重量子井戸構造の発光層13、Mgをドープしたp型AlGaNクラッド層14、Mgをドープしたp型GaN層15及びp+型GaN層16をMOCVD(MOVPE)で順に積層したものである。
+型GaN層16には、ITOから成る透光性電極21がほぼ全面に形成され、透光性電極21上の一部に金から成るパッド電極22が形成されている。n型GaN層11には、バナジウム(V)層91とアルミニウム(Al)層92とから成るn電極90が形成されている。III族窒化物系化合物半導体発光素子900は、透光性電極21を通過した光の取り出しを行うフェイスアップ型LEDである。
n電極は安価である点でアルミニウムが多用される。また、アルミニウムは近紫外及び可視光領域における反射率が高く、この点で発光素子の電極に向く。しかし、アルミニウムは窒化ガリウム等との接合度が必ずしも強くないため、アルミニウムを直接窒化ガリウム上に形成するのではなく、他の金属等から成るコンタクト電極層を介して形成する必要がある。
ここにおいて、例えば図8のような構成において、バナジウム(V)層91の厚さは20nm(200Å)程度とすることが多い。しかし本発明者らの測定によれば、図8のような構成において、わずか20nm(200Å)程度の厚さのバナジウム(V)層91の存在により、n電極90とn型GaN層11の界面における反射率が40%程度となり、大きく光吸収が生じていることがわかった。一般にn電極は、発光素子の水平面の占有領域の1割程度を占めており、このような大きな面積での6割近い吸収が素子の光取り出し効率に及ぼす影響は決して無視できるものではない。
本発明は上記の課題を解決するために成されたものであり、その目的は、反射率が高く、窒化ガリウム層との接合強度を低下させないようなオーミック電極を提供することである。
請求項1に係る発明は、III族窒化物系化合物半導体発光素子に電極を形成する方法において、III族窒化物系化合物半導体層上に、当該層との接合度が強い、又は当該層との接触抵抗が低い材料から成る第1電極層を平均厚さ1nm未満に形成し、第1電極層の上に、高反射性の金属から成る第2電極層を形成することを特徴とするIII族窒化物系化合物半導体発光素子の電極形成方法である。
請求項2に係る発明は、第1電極層を、0.2nm/秒以下の速度で形成することを特徴とする。
請求項3に係る発明は、第1電極層は、チタン(Ti)、バナジウム(V)、クロム(Cr)、ニッケル(Ni)、インジウム(In)、コバルト(Co)、銅(Cu)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、マンガン(Mn)、マグネシウム(Mg)、若しくはそれらの合金、或いはそれらの少なくとも1種を主成分とする合金、又は、れらの窒化物若しくは炭化物から成ることを特徴とする。
請求項4に係る発明は、第2電極層は、銀(Ag)、アルミニウム(Al)、ロジウム(Rh)、白金(Pt)又はそれらの合金、或いはそれらの少なくとも1種を主成分とする合金から成り、膜厚が0.03〜5μmであることを特徴とする。
請求項5に係る発明は、電極は、n型のIII族窒化物系化合物半導体層上に形成されるn電極であることを特徴とする。
一般に、アルミニウムに代表される高反射性電極のみではIII族窒化物系化合物半導体層との接合強度が十分でないので、チタン(Ti)その他の材料から成る第1電極層を形成した後にアルミニウム(Al)等の材料から成る第2電極層を形成する。この際、チタン(Ti)その他の材料から成る第1電極層の厚さを1nm未満とする。また、当該超薄膜を制御良く形成するため、厚さ方向の形成速度は0.2nm/秒(2Å/秒)以下とすると尚良い。
これにより、チタン(Ti)その他の材料から成る第1電極層を形成する時間が短時間であり、当該形成中には平坦化が十分おこなわれず、起伏(凹凸)の多い表面となる。詳細は後に示すが、第1電極層の平均膜厚乃至その1/2程度の起伏(凹凸)が生じるようにする。これにより、チタン(Ti)その他の材料から成る第1電極層のIII族窒化物系化合物半導体層との接合強度を確保しながら、アルミニウム(Al)等の材料から成る第2電極層との接触面積を多くとることで、チタン(Ti)その他の材料から成る第1電極層を超薄膜とすることが可能となる。第1電極層を超薄膜とすることで、第1電極層における光吸収を十分に抑制し、且つ電極全体としてのIII族窒化物系化合物半導体層との接合強度を確保できる。即ち、電極としての接合強度を確保しながら、光取り出し効率の良いIII族窒化物系化合物半導体発光素子を実現できる。
尚、接合強度は、例えば20nm(200Å)程度に蒸着したものと比較して3/4程度であって、実用上の問題を生じる1/2以下には減少しない。
本発明はn型のIII族窒化物系化合物半導体層に形成する電極として特に好適に用いることができる。尚、以下の実施例に示す通り、当該電極を正電極として用いることも可能である。また、電極構成によってはp型のIII族窒化物系化合物半導体層に形成する電極とすることもできる。
第1電極層及び第2電極層の形成方法は、スパッタリング、蒸着、その他任意の公知の方法を採用しうる。本発明は極めて薄い第1電極層を形成するものであるので、そのような平均膜厚の制御が可能であることが必要である。
第1電極層を形成した際に表面に生ずる起伏(凹凸)は、仮想的な平均厚さ面に対して、5Å以上高い凸部を有する様に形成すると良い。第1電極層の平均膜厚は、実質的には0.3nm(3Å)を下回らないことが望ましい。
第2電極層の膜厚は、0.03〜5μmとすると良い。0.03μm未満では光反射の効果が十分でない。5μm以上とすることには特に利点が無いが、設計上、安価なアルミニウム等を厚膜に形成する必要がある場合は所望の厚さに形成して良い。第2電極層の膜厚は、0.05〜3μmとすると良く、0.1〜2.5μmで十分な光反射効果を得られる。
尚、素子の実装性その他を考慮して、第2電極層の上に更に電極層を積層しても良い。
第1電極層と第2電極層を形成する際に、例えばフォトレジストによりマスクを形成して電極形成の不必要な部分を覆い、第1電極層と第2電極層を形成後、マスクをリフトオフして不必要な電極層部分を除くと良い。この後、熱処理(アニーリング)を行うと良いが、当該熱処理は100〜650℃の範囲で所望の温度にて実行して良い。
本発明を用いてIII族窒化物系化合物半導体発光素子を好適に製造できる。この際、発光素子としては、任意の構成を取ることができる。また、発光素子は発光ダイオード(LED)、レーザダイオード(LD)、フォトカプラその他の任意の発光素子として良い。発光素子の製造方法としては任意の製造方法を用いることができる。
具体的には、結晶成長させる基板としては、サファイヤ、スピネル、Si、SiC、ZnO、MgO或いは、III族窒化物系化合物単結晶等を用いることができる。III族窒化物系化合物半導体層を結晶成長させる方法としては、分子線気相成長法(MBE)、有機金属気相成長法(MOVPE)、ハイドライド気相成長法(HVPE)等が有効である。
n型のIII族窒化物系化合物半導体層を形成する場合には、n型不純物として、Si、Ge、Se、Te、C等を添加し、p型不純物としては、Zn、Mg、Be、Ca、Sr、Ba等を添加することができる。
発光層は単層、単一量子井戸構造(SQW)、多重量子井戸構造(MQW)その他任意の構成をとることができる。
高反射性の第2電極層の材料としては、緑色乃至青色、更には近紫外波長領域での反射性が良好なものが好ましい。単体の金属としては、アルミニウム、ロジウム、白金や銀を用いることが好ましい。或いはこれらを主成分とする合金や、これらの積層構造を第2電極層として採用することもできる。
以下、本発明者らの実験結果に従い、本発明の効果を示す。
まず、本発明の電極について、n−GaNに対する接触抵抗率を次のように測定した。
図1.Aは測定に用いた電極の形状を示す平面図、図1.Bは電極を形成する下部構造を示す断面図である。図1.Bのように、サファイア基板10に図示しない窒化アルミニウム(AlN)から成るバッファ層を介して、MOVPEにより厚さ約4μm、Siを4×1018/cm3ドープしたGaN層1を形成し、電極C及びRを、n−GaN層1の表面に真空蒸着(EB)で形成した。尚、スパッタリング法で形成しても良い。
図1.Aの電極Cは、直径400μmの円板状であり、電極Rは、電極Cと間隔24μmを隔てて環状に形成されている。
電極C及びRは、厚さ0.5nm(5Å)のチタン(Ti)と、厚さ2μmのアルミニウム(Al)を順に積層したものを用いた(実施例1)。
比較のため、電極C及びRとして厚さ17.5nm(175Å)のバナジウム(V)と、厚さ2μmのアルミニウム(Al)を順に積層した他は、実施例1と同様の構成のものを用意した(比較例1)。
570℃の熱処理を施した場合の実施例1と比較例1のVI曲線を図1.Cに示す。どちらの場合も電圧−電流の関係は直線的であり、n型GaNに対して良好なオーミック電極が得られていることが分かる。また、実施例1(図中、プロットが△)のほうが、比較例1(図中、プロットが○)よりも同じ印加電圧に対してより多くの電流が流れている。即ち、実施例1のTi/Al電極のn−GaN層1に対する接触抵抗の方が、比較例1のV/Al電極のn−GaN層1に対する接触抵抗よりも小さいことが分かる。
電極CとRの間隔を変化させて同様の測定を行い、TLM法により実施例1のTi/Al電極のn−GaNに対する接触抵抗は1.9×10-5Ω/cm2と算出された。同様に、比較例1のV/Al電極のn−GaNに対する接触抵抗は6.5×10-5Ω/cm2と算出された。即ち、本発明によれば、従来のn電極よりも、n−GaNに対する接触抵抗を1/3未満に低減したn電極を提供できることが示された。
本発明の電極の反射率を、以下の測定法により評価した。
厚さ400μmのサファイア基板に、厚さ0.5nm(5Å)のチタン(Ti)と、厚さ2μmのアルミニウム(Al)を順に積層したものを用いた(実施例2)。
比較のため、厚さ400μmのサファイア基板に、厚さ17.5nm(175Å)のバナジウム(V)と、厚さ2μmのアルミニウム(Al)を順に積層したものを用意した(比較例2)。
更に、サファイア基板に、厚さ2μmのアルミニウム(Al)のみを蒸着したものも用意した。
これらについて波長350nm〜600nmの範囲で、サファイア基板を介して金属層に光を照射し、反射された光量を測定して反射率を算定した。測定された反射率は、厳密には電極の反射率そのものではないが、サファイア基板と大気界面における反射等の影響は十分に小さいため、これらの値を基板/電極界面の反射率の評価に用いた。
このうち、実施例2と比較例2については、570℃のアニールの前後でそれぞれ波長350nm〜600nmの範囲で反射率を測定した。この結果を図2.Aに示す。
図2.Aの結果から、次のことが言える。
まず、サファイア基板にアルミニウムのみを蒸着させた場合、波長350nm〜600nmの範囲において反射率は87〜89%であった。
次に、実施例2の場合、加熱処理前は波長350nm〜600nmの範囲において反射率は82〜84%であった。この後、加熱処理によりチタンとアルミニウムの界面における合金化を行うと、波長350nm〜600nmの範囲において反射率は85〜86%と若干向上した。即ち、実施例2の厚さ0.5nm(5Å)のチタン(Ti)と、厚さ2μmのアルミニウム(Al)を順に積層し、加熱処理した構成においては、厚さ2μmのアルミニウム(Al)のみを形成した場合と比して反射率がほとんど低下しなかった。
一方、比較例2については、加熱処理前は波長350nm〜600nmの範囲において反射率は38〜48%と極めて低かった。この後、加熱処理によりバナジウム(V)とアルミニウム(Al)の界面における合金化を行うと、波長350nm〜600nmの範囲において反射率は55〜60%と大きく向上したが、上記実施例2の反射率には全く及ばなかった。
図2.Aに示された結果から、本発明によれば、アルミニウムのような高反射性金属層とn−GaNとを仲立ちして接着性を向上させるチタンのような金属層を、厚さ1nm(10Å)未満の極めて薄い膜とすることで、当該接着性を向上させる金属層における光の吸収を低減し、n電極全体として高反射性電極とすることが可能であることが導かれる。更に本発明によれば、加熱による合金化を施さないか、或いは比較的低温での加熱により合金化が特に促進されなくても、十分に高い反射率が得られるという利点もある。
次に、図8のIII族窒化物系化合物半導体発光素子900を形成する際のエピタキシャル基板、即ち、サファイア基板10に、窒化アルミニウム(AlN)から成るバッファ層、Siをドープしたn型GaN層11、Siをドープしたn型AlGaNクラッド層12、GaN/InGaN多重量子井戸構造の発光層13、Mgをドープしたp型AlGaNクラッド層14、Mgをドープしたp型GaN層15及びp+型GaN層16をMOCVD(MOVPE)で順に積層した状態のエピタキシャル基板を用意した。このp+型GaN層16の上に、上記の、厚さ0.5nm(5Å)のチタン(Ti)と厚さ2μmのアルミニウム(Al)を順に積層したもの(実施例2)と厚さ17.5nm(175Å)のバナジウム(V)と厚さ2μmのアルミニウム(Al)を順に積層したもの(比較例2)を用意し、同様に反射率を測定した。これを図2.Bに示す。エピタキシャル層が400nm以下の光を吸収することと、エピタキシャル層の厚さと光の波長の関係によって干渉が生ずるため、波長が変化すると反射率が波打つ結果となっている。
図2.Bの結果から、次のことが言える。
実施例2の厚さ0.5nm(5Å)のチタン(Ti)と、厚さ2μmのアルミニウム(Al)を順にエピタキシャル層上に積層し、加熱処理した構成においては、波長380nm以上で反射率50%以上、波長430nm以上で反射率70%以上であり、波長が変化すると反射率が上下するものの、概ね75%程度(71〜82%)の反射率であるといえる。
一方、比較例2の厚さ17.5nm(175Å)のバナジウム(V)と、厚さ2μmのアルミニウム(Al)を順にエピタキシャル層上に積層し、加熱処理した構成においては、波長380nm以上600nmの範囲において反射率46%を上回らず、エピタキシャル層の厚さにより大きく干渉が生じる場合が生じている。つまり、LED構造のエピタキシャル層上に電極を設けた場合、実施例2が比較例2の1.8倍〜2.4倍の反射率を有する結果が得られた。このように、本発明により、高反射性電極である第2電極層の光反射の効果を十分に引き出す電極が得られる。
次に、本発明を適用したLEDを製造して、特性を評価した。
図3は本実施例に係るIII族窒化物系化合物半導体発光素子100の構成を示す断面図である。III族窒化物系化合物半導体発光素子100は、サファイア基板10に図示しない窒化アルミニウム(AlN)から成るバッファ層を形成した後、Siをドープしたn型GaN層11、Siをドープしたn型AlGaNクラッド層12、GaN/InGaN多重量子井戸構造の発光層13、Mgをドープしたp型AlGaNクラッド層14、Mgをドープしたp型GaN層15及びp+型GaN層16をMOCVD(MOVPE)で順に積層したものである。
+型GaN層16には、ITOから成る透光性電極21がほぼ全面に形成され、透光性電極21上の一部に金から成るパッド電極22が形成されている。n型GaN層11には、Ti層31とAl層32とから成るn電極30が形成されている。III族窒化物系化合物半導体発光素子100は、n電極30が光反射電極層であり、透光性電極21を通過した光の取り出しを行うフェイスアップ型LEDである。
次に、この発光素子100の製造方法について説明する。用いられたガスは、アンモニア(NH3)、キャリアガス(H2,N2)、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)、シラン(SiH4)とシクロペンタジエニルマグネシウム(Cp2Mg)である。
まず、有機洗浄及び熱処理により洗浄したa面を主面とした単結晶のサファイア基板10をMOCVD装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2L/分(Lはliter)で約30分間反応室に流しながら温度1100℃でサファイア基板10をベーキングした。
次に、温度を400℃まで低下させて、H2を20L/分、NH3を10L/分、TMAを1.8×10-5モル/分で約1分間供給してAlNバッファ層を約25nmの厚さに形成した。
次に、サファイア基板10の温度を1150℃に保持し、H2を20L/分、NH3を10L/分、TMGを1.7×10-4モル/分、H2ガスにより0.86ppmに希釈されたシランを20×10-8モル/分で40分間供給し、膜厚約4.0μm、電子濃度2×1018/cm3、シリコン濃度4×1018/cm3のn型GaN層11を形成した。
次に、サファイア基板10の温度を1150℃に保持し、N2又はH2を10L/分、NH3を10L/分、TMGを1.12×10-4モル/分、TMAを0.47×10-4モル/分、H2ガスにより0.86ppmに希釈されたシランを5×10-9モル/分で60分間供給して、膜厚約0.5μm、電子濃度1×1018/cm3、シリコン濃度2×1018/cm3のAl0.08Ga0.92Nから成るnクラッド層12を形成した。
上記のnクラッド層12を形成した後、続いて、N2又はH2を20L/分、NH3を10L/分、TMGを2.0×10-4モル/分で1分間供給して、膜厚約35ÅのGaNから成るバリア層を形成した。次に、N2又はH2、NH3の供給量を一定として、TMGを7.2×10-5モル/分、TMIを0.19×10-4モル/分で1分間供給して、膜厚約35ÅのIn0.20Ga0.80Nから成る井戸層を形成した。さらに、バリア層と井戸層を同一条件で5周期形成し、その上にGaNから成るバリア層を形成した。このようにして5周期のMQW構造の発光層13を形成した。
次に、サファイア基板10の温度を1100℃に保持し、N2又はH2を10L/分、NH3を10L/分、TMGを1.0×10-4モル/分、TMAを1.0×10-4モル/分、Cp2Mgを2×10-5モル/分で3分間供給して、膜厚約50nm、マグネシウム(Mg)濃度5×1019/cm3のマグネシウム(Mg)をドープしたp型Al0.15Ga0.85Nから成るpクラッド層14を形成した。
次に、サファイア基板10の温度を1100℃に保持し、N2又はH2を20L/分、NH3を10L/分、TMGを1.12×10-4モル/分、Cp2Mgを2×10-5モル/分で30秒間供給して、膜厚約100nm、マグネシウム(Mg)濃度5×1019/cm3のマグネシウム(Mg)をドープしたp型GaN層15を形成した。更に、p型GaN層15の上にマグネシウム(Mg)濃度1×1020/cm3のマグネシウム(Mg)をドープした膜厚約10nmのp+型GaN層16を形成した。
次に、p+型GaN層16の上にレジストから成るエッチングマスクを形成し、所定領域のマスクを除去して、マスクで覆われていない部分のp+型GaN層16、p型GaN層15、pクラッド層14、発光層13、nクラッド層12、n型GaN層11の一部を塩素を含むガスによる反応性イオンエッチングによりエッチングして、n型GaN層11の表面を露出させた。次に、p+型GaN層16上に真空蒸着(EB)により300nm厚のITO膜を形成し、窒素雰囲気下700℃の熱処理を施した後、フォトレジストマスクを利用したウエットエッチングにより不要部分を除去して透光性電極21を形成した。
以下、各々必要部分に窓を有するフォトレジストマスクを形成して、電極材料を形成し、当該フォトレジストマスクをリフトオフして不要部分の電極材料を除去し、各電極層を成形した。
透光性電極21の上にはリフトオフの技術により金から成るパッド電極22を形成した。次に、真空蒸着(EB)により、形成速度6.0nm/分(60Å/分)でチタン(Ti)から成る第1電極層31を0.5nm(5Å)形成し、続けて厚さ2μm(20000Å)のアルミニウム(Al)から成る第2電極層32を形成した後、リフトオフの技術によりn型電極30を成形した。この後、570℃で5分熱処理して、各電極のアロイ化を行った。
比較のため、図8の構成のIII族窒化物系化合物半導体発光素子900を製造した(比較例3)。この際、上記の図3のIII族窒化物系化合物半導体発光素子100の製造方法のうち、厚さ0.5nm(5Å)のチタン(Ti)から成る第1電極層31に替えて、厚さ17.5nm(175Å)のバナジウム(V)層91を設ける他は、ほぼ同様とした。尚、これらの素子の大きさは、水平面において240μm×480μmであり、いずれも、n電極が占める面積は水平面において素子の面積の約10%とした。
実施例3の、図3のIII族窒化物系化合物半導体発光素子100と、比較例3の、図8のIII族窒化物系化合物半導体発光素子900の素子特性を比較すると次のようであった。
比較例3のIII族窒化物系化合物半導体発光素子900の全放射束に比較して、実施例3のIII族窒化物系化合物半導体発光素子100の全放射束は1.07倍であり、7%の光取り出し効率の向上が見られた。
20mA通電時の駆動電圧は、比較例3のIII族窒化物系化合物半導体発光素子900に対し、実施例3のIII族窒化物系化合物半導体発光素子100は同等以下となった。
次に、金ワイヤをn電極30及び90にそれぞれボンディングして電極の引き剥がし試験(シェア強度試験)を行った。この際、シェア速度は200μm/秒とした。比較例3のIII族窒化物系化合物半導体発光素子900の強度に比較して、実施例3のIII族窒化物系化合物半導体発光素子100の強度は0.76倍であり、若干の強度低下が認められたが、最低基準である0.4倍を大きく上回るものであって、十分に実用に耐えるものであった。
実施例3の引き剥がし試験で、強度が低下しない理由を検討するため、次のようにして薄膜チタン層の膜厚分布を原子間力顕微鏡(AFM)により測定した。この際、サファイア基板上に形成速度2.4nm/分(24Å/分)で40秒(平均膜厚16Åのチタン層)と20秒(平均膜厚8Åのチタン層)のチタン層を形成したものを各々用意して膜厚分布を原子間力顕微鏡(AFM)により測定した。この結果を図4に示す。16Å厚のチタン層と、8Å厚のチタン層とではそのAFMプロファイルが大きく異なるものとなった。
即ち、図4の上段に示す通り、16Å厚のチタン層においては、表面の平坦化が進み、起伏(凹凸)が小さく、例えばAFMプロファイルで示した範囲の底部(グラフで0Åの位置)から最高6Åまでしか高低差が無かった。今、仮想的な平均膜厚が底部(グラフで0Åの位置)から約2.5Åの高さであるとすると、凸部(山の頂)はそこから約3.5Å高くなっているのみである。また、平均膜厚(底部から約2.5Å)を越える部分は、3ヶ所しかなく、いずれも低い凸部(山)であった。
一方、図4の下段に示す通り、8Å厚のチタン層においては、表面の平坦化がほとんど生じていない。即ち、起伏(凹凸)が大きく、例えばAFMプロファイルで示した範囲の底部(グラフで0Åの位置)からは最高10Åもの高低差が生じていた。今、仮想的な平均膜厚が底部(グラフで0Åの位置)から約4Åの高さであるとすると、そこから約6Å高くなっている凸部(山の頂)が3ヶ所残っている。また、平均膜厚(底部から約4Å)を越える部分は、5ヶ所あり、いずれも高い凸部(山)であった。
図4に示されたように、1nm(10Å)を境に、形成したチタン層のAFMプロファイルが大きく異なる。1nm(10Å)未満のチタン層は起伏(凹凸)が激しく、上層との接触面積が増加し、且つ界面での凹凸によるアンカー効果により密着性が高まるものと考えられる。また、このような超薄膜(微細な島状)構造では膜の体積に対する表面積の割合が大きいため、膜表面での原子拡散により容易に歪を緩和できるという効果も期待できる。成膜後の真性歪(又は応力)が大きく、膜厚が増加するに従い接合が懸念されるタングステン等の材料であっても、本発明の超薄膜構造として表面積を増大させることにより真性歪が緩和され、結果として十分な密着性を得ることができると考えられる。即ち、III族窒化物系化合物半導体層との接触抵抗が低いが、従来の層状構造では接合性の懸念があった材料であっても、本発明の超薄膜構造とすれば第1電極層に選択することができる。これらの複数の効果が、超薄膜の第1電極層を用いた場合にも十分な接合強度を保てる理由であると考えられる。
図5は本発明の他の実施例に係るIII族窒化物系化合物半導体発光素子200の構成を示す断面図である。実施例3の、図3のIII族窒化物系化合物半導体発光素子100の構成との違いは、p+型GaN層16に形成する電極を、ロジウム(Rh)から成る高反射性電極25とパッド電極26の構成とし、n電極であるアルミニウム(Al)から成る第2電極層32の頂上(図5で下方向)がパッド電極26の頂上と同程度となるように厚さを調整した点である。その他は実施例3の、図3のIII族窒化物系化合物半導体発光素子100の製造方法と同様に、公知の技術を用いて容易に作成できる。図5のIII族窒化物系化合物半導体発光素子200は、n電極とp電極を共に反射率の高い電極とし、サファイア基板10裏面側に(図5で上方向に)光を取り出すフリップチップタイプの発光ダイオードである。本発明のn電極を採用したことで、光取り出し効率が向上する。
図6は本発明の他の実施例に係るIII族窒化物系化合物半導体発光素子300の構成を示す断面図である。実施例3の、図3のIII族窒化物系化合物半導体発光素子100の構成との違いは、導電性のn型GaN基板110を用い、その裏面にn電極を設けた点である。その他は実施例3の、図3のIII族窒化物系化合物半導体発光素子100の製造方法と同様に、公知の技術を用いて容易に作成できる。図6のIII族窒化物系化合物半導体発光素子300は、素子の上下にp型及びn型電極を持つ縦型構造のフェイスアップタイプの発光ダイオードであり、n電極を反射率の高い電極とした。本発明のn電極を採用したことで、光取り出し効率が向上する。また、同様に、導電性のn型GaN基板110を用いた発光ダイオードにおいて、p型電極をロジウム(Rh)などから成る高反射性電極とし、素子形成側のn型GaN基板面を一部露出させてワイヤーボンディングのためのn型パッド電極を設けるフリップチップタイプとした場合にも、n型パッド電極に本発明の高反射電極を採用することにより、やはり光取り出し効率が向上する。
図7は本発明の他の実施例に係るIII族窒化物系化合物半導体発光素子400の構成を示す断面図である。実施例3の、図3のIII族窒化物系化合物半導体発光素子100の構成との違いは、p+型GaN層16の上に高ドナー濃度n+型GaN層19を設け、その上に本発明を適用した第1電極層31'と第2電極層32'を設けたことである。第1電極層31'と第2電極層32'はIII族窒化物系化合物半導体発光素子400の正電極として働く。尚、高ドナー濃度n+型GaN層19とp+型GaN層16の界面は、トンネル伝導により電流注入が可能である。その他は実施例3の、図3のIII族窒化物系化合物半導体発光素子100の製造方法と同様に、公知の技術を用いて容易に作成できる。図7のIII族窒化物系化合物半導体発光素子400は、正電極と負電極を共に本発明に係る反射率の高い電極とし、サファイア基板10裏面側に(図5で上方向に)光を取り出すフリップチップタイプの発光ダイオードである。正電極と負電極に本発明のn電極を採用したことで、光取り出し効率が向上する。また、正電極と負電極を同時に形成することができるため、工程を簡易化することができ、製造コストを低減することができる。
上記実施例において、発光素子100の発光層13はMQW構造としたが、SQWやIn0.2Ga0.8N等から成る単層、その他、任意の混晶の4元、3元系のAlInGaNとしても良い。又、p型不純物としてMgを用いたがベリリウム(Be)、亜鉛(Zn)等のII族元素(2族又は12族元素)を用いても良い。
上記実施例においては、n型GaN層に第1電極層として厚さ1nm未満のチタン(Ti)層を設ける例を示したが、任意の組成のIII族窒化物系化合物半導体層に第1電極層として厚さ1nm未満のチタン(Ti)、バナジウム(V)、クロム(Cr)、ニッケル(Ni)、インジウム(In)、コバルト(Co)、銅(Cu)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、マンガン(Mn)、マグネシウム(Mg)、若しくはそれらの合金、或いはそれらの少なくとも1種を主成分とする合金、又は、それらの窒化物若しくは炭化物から成る第1電極層を形成するものも同様の効果を有する。尚、n型のIII族窒化物系化合物半導体層に設ける第1電極層としては、例えばチタン(Ti)や窒化チタン(TiN)がより好ましい。また、p型のIII族窒化物系化合物半導体層に設ける第1電極層としては例えばニッケル(Ni)がより好ましい。この場合、第2電極層としては特にロジウム(Rh)を好適に用いることができる。
また、上記実施例においては、n型GaN層に第1電極層として厚さ1nm未満のチタン(Ti)層を、第2電極層としてアルミニウム(Al)層を設ける例を示したが、第2電極層としては任意の高反射性材料を用いて良い。金属単体であれば銀(Ag)、白金(Pt)、ロジウム(Rh)が特に好適に用いることが可能であり、それらの合金やそれらの積層構造を用いるものでも良い。高反射性材料から成る第2電極層の膜厚も、所望の薄膜又は厚膜として良く、30nm以下の厚さで用いる場合や5μm以上の厚さで用いる場合も本願発明に包含される。
本発明に係る電極の、接触抵抗を測定するための構成の電極の平面図(1.A)、断面図(1.B)、VI特性(1.C)。 本発明に係る電極の、反射率の結果を示すグラフ図。 本発明の具体的な一実施例に係るIII族窒化物系化合物半導体発光素子100の構成を示す断面図。 本発明に係る電極の、AFMプロファイル。 本発明の具体的な他の実施例に係るIII族窒化物系化合物半導体発光素子200の構成を示す断面図。 本発明の具体的な他の実施例に係るIII族窒化物系化合物半導体発光素子300の構成を示す断面図。 本発明の具体的な他の実施例に係るIII族窒化物系化合物半導体発光素子400の構成を示す断面図。 従来例に係るIII族窒化物系化合物半導体発光素子900の構成を示す断面図。
符号の説明
100、200、300、400:III族窒化物系化合物半導体発光素子
10:サファイア基板
11:n型GaN層
12:n型Al0.08Ga0.92Nから成るnクラッド層
13:MQWから成る発光層
14:p型Al0.15Ga0.85Nから成るpクラッド層
15:p型GaN層
16:p+型GaN層
19:高ドナー濃度n+型GaN層
21:ITOから成る透光性電極
22:Auパッド電極
25:Rhから成る高反射性電極
26:パッド電極
31、31’:第1電極層(Ti)
32、32’:第2電極層(Al)

Claims (5)

  1. III族窒化物系化合物半導体発光素子に電極を形成する方法において、
    III族窒化物系化合物半導体層上に、当該層との接合度が強い、又は当該層との接触抵抗が低い材料から成る第1電極層を平均厚さ1nm未満に形成し、
    前記第1電極層の上に、高反射性の金属から成る第2電極層を形成することを特徴とするIII族窒化物系化合物半導体発光素子の電極形成方法。
  2. 前記第1電極層を、0.2nm/秒以下の速度で形成することを特徴とする請求項1に記載のIII族窒化物系化合物半導体発光素子の電極形成方法。
  3. 前記第1電極層は、チタン(Ti)、バナジウム(V)、クロム(Cr)、ニッケル(Ni)、インジウム(In)、コバルト(Co)、銅(Cu)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)、マンガン(Mn)、マグネシウム(Mg)、若しくはそれらの合金、或いはそれらの少なくとも1種を主成分とする合金、又は、それらの窒化物若しくは炭化物から成ることを特徴とする請求項1又は請求項2に記載のIII族窒化物系化合物半導体発光素子の電極形成方法。
  4. 前記第2電極層は、銀(Ag)、アルミニウム(Al)、ロジウム(Rh)、白金(Pt)又はそれらの合金、或いはそれらの少なくとも1種を主成分とする合金から成り、膜厚が0.03〜5μmであることを特徴とする請求項1乃至請求項3のいずれか1項に記載のIII族窒化物系化合物半導体発光素子の電極形成方法。
  5. 前記電極は、n型のIII族窒化物系化合物半導体層上に形成されるn電極であることを特徴とする請求項1乃至請求項4のいずれか1項に記載のIII族窒化物系化合物半導体発光素子の電極形成方法。
JP2007082810A 2007-03-27 2007-03-27 Iii族窒化物系化合物半導体発光素子の電極形成方法 Withdrawn JP2008244161A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007082810A JP2008244161A (ja) 2007-03-27 2007-03-27 Iii族窒化物系化合物半導体発光素子の電極形成方法
CN2008100840795A CN101276872B (zh) 2007-03-27 2008-03-26 形成第ⅲ族氮化物化合物半导体发光器件用的电极的方法
US12/078,066 US7947521B2 (en) 2007-03-27 2008-03-26 Method for forming electrode for group-III nitride compound semiconductor light-emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082810A JP2008244161A (ja) 2007-03-27 2007-03-27 Iii族窒化物系化合物半導体発光素子の電極形成方法

Publications (1)

Publication Number Publication Date
JP2008244161A true JP2008244161A (ja) 2008-10-09

Family

ID=39915132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082810A Withdrawn JP2008244161A (ja) 2007-03-27 2007-03-27 Iii族窒化物系化合物半導体発光素子の電極形成方法

Country Status (3)

Country Link
US (1) US7947521B2 (ja)
JP (1) JP2008244161A (ja)
CN (1) CN101276872B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147097A (ja) * 2008-12-16 2010-07-01 Showa Denko Kk 半導体素子および半導体素子の製造方法
US8829555B2 (en) 2008-12-15 2014-09-09 Toyoda Gosei Co., Ltd. Semiconductor light emission element
JP2015103768A (ja) * 2013-11-28 2015-06-04 株式会社トクヤマ n型負電極の形成方法、およびIII族窒化物半導体発光素子
US9608167B2 (en) 2013-07-24 2017-03-28 Nichia Corporation Light emitting device
JP2019098398A (ja) * 2017-11-29 2019-06-24 パナソニックIpマネジメント株式会社 接合材、該接合材を用いた半導体装置の製造方法、及び、半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605295A3 (en) * 2011-12-13 2015-11-11 LG Innotek Co., Ltd. Ultraviolet light emitting device
US8716743B2 (en) * 2012-02-02 2014-05-06 Epistar Corporation Optoelectronic semiconductor device and the manufacturing method thereof
US11476399B2 (en) * 2017-11-29 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. Jointing material, fabrication method for semiconductor device using the jointing material, and semiconductor device
CN108428770B (zh) * 2018-04-19 2021-03-23 北京大学 一种共面波导结构微米led的制备方法
CN116914558B (zh) * 2023-09-13 2023-12-19 苏州长光华芯光电技术股份有限公司 一种半导体激光器接触电极及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513793A (ja) * 1991-06-28 1993-01-22 Canon Inc 光起電力素子
WO1998052235A1 (fr) * 1997-05-13 1998-11-19 Mitsubishi Denki Kabushiki Kaisha Element dielectrique a film mince et procede de fabrication de cet element
JP2002246647A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子
JP2002246648A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子
JP2003060236A (ja) * 2001-05-30 2003-02-28 Shogen Koden Kofun Yugenkoshi 絶縁基板を有する発光ダイオード
JP2006114813A (ja) * 2004-10-18 2006-04-27 Sanken Electric Co Ltd 半導体発光素子およびその製造方法
JP2006156590A (ja) * 2004-11-26 2006-06-15 Mitsubishi Cable Ind Ltd 発光ダイオード
JP2006303542A (ja) * 1998-12-28 2006-11-02 Sanyo Electric Co Ltd 半導体素子およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462720B2 (ja) * 1997-07-16 2003-11-05 三洋電機株式会社 n型窒化物半導体の電極及び前記電極を有する半導体素子並びにその製造方法
JP3625377B2 (ja) * 1998-05-25 2005-03-02 ローム株式会社 半導体発光素子
JP2000252230A (ja) * 1998-12-28 2000-09-14 Sanyo Electric Co Ltd 半導体素子およびその製造方法
US7067849B2 (en) * 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
JP2003086843A (ja) 2001-09-14 2003-03-20 Sharp Corp 半導体発光素子及び半導体発光装置
JP2003142732A (ja) 2001-10-31 2003-05-16 Sharp Corp オーミック電極、n型電極、窒化物系化合物半導体発光素子およびその製造方法
US8294172B2 (en) * 2002-04-09 2012-10-23 Lg Electronics Inc. Method of fabricating vertical devices using a metal support film
JP2004140052A (ja) 2002-10-16 2004-05-13 Sanyo Electric Co Ltd 電極構造およびその製造方法
JP2004179347A (ja) 2002-11-26 2004-06-24 Matsushita Electric Works Ltd 半導体発光素子
JP4411871B2 (ja) 2003-06-17 2010-02-10 日亜化学工業株式会社 窒化物半導体発光素子
JP4232585B2 (ja) * 2003-09-17 2009-03-04 豊田合成株式会社 発光装置
KR100506741B1 (ko) * 2003-12-24 2005-08-08 삼성전기주식회사 플립칩용 질화물 반도체 발광소자 및 그 제조방법
WO2006013867A1 (en) * 2004-08-05 2006-02-09 Showa Denko K.K. Transparent electrode for semiconductor light-emitting device
JP5138873B2 (ja) * 2005-05-19 2013-02-06 日亜化学工業株式会社 窒化物半導体素子
KR101041843B1 (ko) * 2005-07-30 2011-06-17 삼성엘이디 주식회사 질화물계 화합물 반도체 발광소자 및 그 제조방법
KR100820546B1 (ko) * 2006-09-07 2008-04-07 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513793A (ja) * 1991-06-28 1993-01-22 Canon Inc 光起電力素子
WO1998052235A1 (fr) * 1997-05-13 1998-11-19 Mitsubishi Denki Kabushiki Kaisha Element dielectrique a film mince et procede de fabrication de cet element
JP2006303542A (ja) * 1998-12-28 2006-11-02 Sanyo Electric Co Ltd 半導体素子およびその製造方法
JP2002246647A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子
JP2002246648A (ja) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd 波長変換型半導体素子
JP2003060236A (ja) * 2001-05-30 2003-02-28 Shogen Koden Kofun Yugenkoshi 絶縁基板を有する発光ダイオード
JP2006114813A (ja) * 2004-10-18 2006-04-27 Sanken Electric Co Ltd 半導体発光素子およびその製造方法
JP2006156590A (ja) * 2004-11-26 2006-06-15 Mitsubishi Cable Ind Ltd 発光ダイオード

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829555B2 (en) 2008-12-15 2014-09-09 Toyoda Gosei Co., Ltd. Semiconductor light emission element
JP2010147097A (ja) * 2008-12-16 2010-07-01 Showa Denko Kk 半導体素子および半導体素子の製造方法
US9608167B2 (en) 2013-07-24 2017-03-28 Nichia Corporation Light emitting device
JP2015103768A (ja) * 2013-11-28 2015-06-04 株式会社トクヤマ n型負電極の形成方法、およびIII族窒化物半導体発光素子
JP2019098398A (ja) * 2017-11-29 2019-06-24 パナソニックIpマネジメント株式会社 接合材、該接合材を用いた半導体装置の製造方法、及び、半導体装置
JP7108907B2 (ja) 2017-11-29 2022-07-29 パナソニックIpマネジメント株式会社 接合材、該接合材を用いた半導体装置の製造方法、及び、半導体装置

Also Published As

Publication number Publication date
CN101276872B (zh) 2012-10-24
US20080293231A1 (en) 2008-11-27
CN101276872A (zh) 2008-10-01
US7947521B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
KR100594534B1 (ko) Ⅲ족 질화물계 화합물 반도체 발광 소자 및 발광 장치
JP2008244161A (ja) Iii族窒化物系化合物半導体発光素子の電極形成方法
TWI501425B (zh) Nitride semiconductor device and manufacturing method thereof
JP4507532B2 (ja) 窒化物半導体素子
JP3920315B2 (ja) 窒化物系半導体発光素子
EP1734592B1 (en) Method for manufacturing light emitting diodes
KR101493321B1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
US8552455B2 (en) Semiconductor light-emitting diode and a production method therefor
KR101147705B1 (ko) GaN계 반도체 발광소자 및 그것의 제조방법
US8884329B2 (en) Semiconductor light-emitting element, electrode structure and light-emitting device
WO2005050748A1 (ja) 半導体素子及びその製造方法
TWI545801B (zh) 半導體發光元件及其製造方法
US11335830B2 (en) Photo-emission semiconductor device and method of manufacturing same
JP2008288548A (ja) 半導体発光素子
WO2007108532A1 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法、窒化ガリウム系化合物半導体発光素子及びそれを用いたランプ
US9437778B2 (en) Semiconductor light-emitting element and method for producing the same
JP5077068B2 (ja) 窒化物半導体素子及びその製造方法
JP2008294188A (ja) 半導体発光素子及びその製造方法
JP2005259970A (ja) 半導体発光素子
JP2005354049A (ja) 半導体レーザ素子
JP5353809B2 (ja) 半導体発光素子及び発光装置
JP4868821B2 (ja) 窒化ガリウム系化合物半導体及び発光素子
JPH118410A (ja) n型窒化物半導体の電極
JP5630276B2 (ja) 半導体発光素子、半導体発光装置
JP4635458B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120530