JP2008210702A - 荷電粒子ビーム装置及び印加電圧制御方法 - Google Patents

荷電粒子ビーム装置及び印加電圧制御方法 Download PDF

Info

Publication number
JP2008210702A
JP2008210702A JP2007047659A JP2007047659A JP2008210702A JP 2008210702 A JP2008210702 A JP 2008210702A JP 2007047659 A JP2007047659 A JP 2007047659A JP 2007047659 A JP2007047659 A JP 2007047659A JP 2008210702 A JP2008210702 A JP 2008210702A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
applied voltage
auxiliary electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047659A
Other languages
English (en)
Inventor
Keiko Emi
恵子 江見
Takeshi Onishi
毅 大西
Takanori Kabasawa
宇紀 樺沢
Toshihide Agemura
寿英 揚村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007047659A priority Critical patent/JP2008210702A/ja
Publication of JP2008210702A publication Critical patent/JP2008210702A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】信号電子の描く軌道が変化した場合の信号電子の検出効率の低下を抑制することができる荷電粒子ビーム装置及び印加電圧制御方法を提供する。
【解決手段】試料22を搭載可能な試料台21と、荷電粒子ビーム源から発生した荷電粒子ビームを集束磁界により前記試料台上の試料に集束する電子光学系13と、試料22から発生した信号電子5を検出する信号電子検出器1と、信号電子検出器1に設けられた補助電極2−4と、補助電極2−4のそれぞれに電圧を印加する電極電源46と、予め設定された補助電極2−4への印加電圧、試料台21の傾斜角及び対物レンズ11の集束磁界強度の相関関係を基に、試料台21の傾斜角及び対物レンズ11の集束磁界強度に応じて電極電源46による補助電極2−4への印加電圧を制御する制御装置40とを備える。
【選択図】 図2

Description

本発明は、荷電粒子ビーム装置及び印加電圧制御方法に関する。
一般に走査電子顕微鏡に代表される荷電粒子ビーム装置は、電子ビームやイオンビーム等の荷電粒子ビーム(一次ビーム)を試料上に走査し、試料から発生する二次電子や後方散乱電子等の信号電子を検出して走査電子画像を得ている。具体的には、荷電粒子ビームを試料面上に照射することにより発生する信号電子の数を、電気的に増幅した電気信号として計測する。荷電粒子ビームが照射されて試料から発生する信号電子の数には照射場所の形状や組成の情報が反映されるので、信号電子の数に応じた電気信号を荷電粒子ビームの走査座標と同期させ、信号強度を二次元表示させることにより走査電子画像が得られる。
信号電子の検出には、一般にシンチレーション検出器が用いられる。シンチレーション検出器は、荷電粒子ビーム照射箇所で発生した信号電子を電子受光面まで引き寄せ且つシンチレータを充分に発光させるエネルギーを信号電子に与えるために、通常+10kV程度の電圧が印加される(特許文献1等参照)。
特開平5−62634号公報
昨今の加工・分析・観察・解析に用いられる荷電粒子ビーム装置は、多機能化の傾向が強く、用途によって信号電子の描く軌道が変化し易くなってきている。例えば荷電粒子ビームのエネルギーを変更した場合には、荷電粒子ビームを試料観察面上に集束させるためビームエネルギーに応じて対物レンズの集束磁界強度を変えなければならない。また、FIB−SEM等では、試料台を傾斜させて集束イオンビームで試料を加工しながら加工断面を観察したりすることもある。このようにして対物レンズの集束磁界強度や試料面の傾斜角度が変わると、荷電粒子ビーム照射箇所から発生する信号電子が周囲の電界や磁界の影響を受けながら描く軌道も変わるが、どの軌道であっても高い収集効率で信号電子が検出されるようにすることが高精度な観察像を得るためにも必須である。
そこで本発明は、信号電子の描く軌道が変化した場合の信号電子の検出効率の低下を抑制することができる荷電粒子ビーム装置及び印加電圧制御方法を提供することを目的とする。
上記目的を達成するために、本発明は、試料を搭載可能な試料台と、荷電粒子ビーム源から発生した荷電粒子ビームを集束磁界により上記試料台上の試料に集束する電子光学系と、試料から発生した信号電子を検出する信号電子検出器と、上記信号電子検出器に設けられた複数の補助電極と、上記複数の補助電極のそれぞれに電圧を印加する電極電源と、上記電極電源による前記補助電極への印加電圧を制御する制御装置とを備える。
本発明によれば、信号電子の描く軌道が変化した場合の信号電子の検出効率の低下を抑制することができる。
以下に図面を用いて本発明の実施の形態を説明する。
まず本発明の基本原理について説明する。
荷電粒子ビーム装置において、試料に一次ビームである荷電粒子ビーム(電子ビーム、イオンビーム等)を照射すると、試料から信号電子(二次電子、後方散乱電子等)が発生する。荷電粒子ビームのエネルギーや試料に対する照射角度に依存して、入射荷電粒子の数に対して発生する信号電子の数は変化する。例えば、荷電粒子ビーム照射面に直交する線の間に角度θをなす方向に信号電子が出射すると定義したとき、二次電子はcosθの確率角度分布で所定のエネルギー分布(例えば約2eVを最大に約50eVまでのエネルギー分布)で発生し、後方散乱電子は試料面への入射角度が垂直のときはcosθ、斜入射のときは鏡面反射の重なったcosθの確率角度分布で所定のエネルギー分布(例えば一次ビームのエネルギーを最大に約50eV以上のエネルギー分布)で発生する。
発生した信号電子は、周囲の電界と磁界から受ける力で軌道を曲げられながら進行する。したがって、信号電子は、荷電粒子ビームを照射した試料観察面の傾斜角度(言い換えれば試料観察面に直交する方向)を初期値として確率的な重みを伴って任意の方向へ発生し、信号電子検出器が発生させる電界や対物レンズの集束磁界強度で決まる力の作用を受けて所定の軌道を描く。そのため、試料観察面の傾斜角度を変えたり、荷電粒子ビームのエネルギーに応じて対物レンズの集束磁界強度を変えたりすると、信号電子の軌道が変化する。このとき、電界中の信号電子は電界がつくる電気力線に沿った方向の力を受けるので、信号電子を効率良く捕集するには電界の電気力線の向きを改善すれば良い。
なお、本発明は、荷電粒子線を照射することにより試料から発生する信号電子を捉えて観察像を生成する装置、例えば、走査電子顕微鏡(SEM)を含む電子顕微鏡、走査イオン顕微鏡(SIM)を含むイオン顕微鏡、FIB−SEM、電子線検査装置等に代表される加工装置・観察装置等に適用可能である。次に説明する本発明の一実施の形態では、本発明を集束イオンビーム装置と走査電子顕微鏡の複合装置(FIB−SEM)に適用した場合を例示する。
図1は本発明の一実施の形態に係る荷電粒子ビーム装置の要部を抽出して表す概略構成図である。
図1に例示した荷電粒子ビーム装置であるFIB−SEMは、試料22を搭載し保持することができる試料台21、試料台21上の試料22の観察像を走査電子顕微鏡(SEM)30、試料22を加工或いは観察する集束イオンビーム装置(FIB装置)31等を備えている。
SEM30は、図示しない荷電粒子ビーム源(電子ビーム源)から発生した荷電粒子ビーム(電子ビーム)6を対物レンズ11の集束磁界により試料台21上の試料22に集束する電子光学系13、荷電粒子ビーム6の照射により試料22から発生した信号電子5を検出する信号電子検出器1を備えている。電子光学系13は上記FIB装置31と試料22の観察上の実質的に同じ場所に焦点を結ぶ位置関係に設置されている。SEM30とFIB装置31の光軸の試料台21に対する角度は特に限定されないが、図1では、FIB装置31は非傾斜時の試料台21上の試料22に対して光軸が垂直となる姿勢で、SEM30は非傾斜時の試料台21上の試料22に対して斜めから荷電粒子ビーム6を入射させる姿勢で、それぞれ設置されている。
試料台21は、上下動・傾動・水平移動・回転等の動作が可能に構成されている。SEM30の対物レンズ11には、荷電粒子ビーム6が試料22の観察面で焦点を結ぶように荷電粒子ビーム6を集束する磁界を発生させるコイル12が備えられている。コイル12に流す励磁電流は、予め格納されたプログラムに従って、荷電粒子ビーム6のエネルギー(設定)に応じて制御される。
信号電子検出器1にはシンチレーション検出器が採用され、例えば+10kV程度の電圧を印加されたシンチレータを備えている。本実施の形態における信号電子検出器1には、複数の補助電極2−4が備えられている。補助電極2−4は、例えば、円柱状、角柱状、幅狭の板状等を含む棒状に形成されており、中空であっても中実であっても良いし、場合によっては網状の材料で形成されていても良い。補助電極2−4は、信号電子検出器1の電子受光面(試料22を向いた端面)又は側面(外筒部分)に絶縁物を介して取り付けられ、信号電子検出器1から試料22に向かって延在している。補助電極2−4はまた、自重による変形(撓み)が実質的に生じない(又は少ない)程度の強度が確保されている。また、酸化防止のための表面処理が施されているとより好ましい。さらに、本実施の形態では3本の補助電極2−4を設けた場合を例に挙げて説明したが、複数であれば良く、2本又は4本以上であっても良い。
本実施の形態では、補助電極2−4のうちの第一補助電極2は、信号電子検出器1から試料台21の近傍まで延在されている。その長さはFIB装置31やSEM30との位置関係にもよって必ずしも限定されないが、第一補助電極2の先端から試料22上のビームスポットまでの距離は短い方が良い。しかしながら、第一補助電極2の先端から試料22上のビームスポットまでの距離は最短でも試料22上のビームスポットからSEM30の対物下面までの距離程度とする。それ以上第一補助電極2がビームスポットに近付くと、第一補助電極2から発生する電界のSEM30の荷電粒子ビーム6の光軸への影響が大きくなる。
一方、第二補助電極3及び第三補助電極4は、本実施の形態においては第一補助電極2の3分の1程度の長さとしてある。但し、第二及び第三補助電極3,4の長さにも特に限定はなく、設計上可能であれば第一補助電極2と同じ長さとして構わない。また、第二補助電極3と第三補助電極4の長さは同じでも良いが、異なっていても構わず、空間的許容度(他の装置との位置関係)や信号電子5の軌道の偏り(SEM30の光軸の向き等)に応じて設定すれば良い。
また、各第二及び第三補助電極3,4は、試料22に向かうにしたがって第一補助電極2から離間するように配置し、第一補助電極2とともに構成する立体角が拡開するようにすることが好ましい。したがって、ラッパ型の補助電極を複数に分割したような形状とすることも考えられる。但し、他の装置との位置関係によっては必ずしも補助電極2−4を拡開するように配置する必要はなく、補助電極2−4が互いに平行になるように取り付けたり先端に向かって互いに近付くように取り付けたりすることも考えられる。第一補助電極2に関しては、本実施の形態では信号電子検出器1の電子受光面の中心と試料22上のビームスポットを結ぶ線(図示せず)とほぼ平行に配置しているが、先端に向かうにしたがってそのビームスポットに向かう線に近付くようにしても良いし、遠退くようにしても良い。また、第一乃至第三補助電極2−4は、信号電子検出器1の径方向のみならず、周方向に傾斜するように配設しても良い。
また、本実施の形態では、信号電子検出器1の電子受光面の中心に対する第一補助電極2の位置(位相)を0°としたとき、第二補助電極3が135°、第三補助電極4が225°の位置となるように配置した場合を例示している。但し、信号電子検出器1に対する補助電極2−4の取り付け位置についても、設置スペースの空間的許容度や信号電子5の軌道の偏りに応じて調整されるため、他の機器の配置によっては本例のように左右対称とせずに全体に偏った配置とすることが好ましい場合もある。
荷電粒子ビーム6が照射されることにより試料22から発生する信号電子5は、コイル12から発生する磁界と信号電子検出器1及び補助電極2−4のつくる電界から力を受けて図1に示したような軌道を描いて信号電子検出器1に捕捉され検出される。
なお、図1には特に図示していないが、例えばエネルギー分散型X線分光器やイオンビーム加工用デポジションガスノズル等の装置を試料台21の周囲にさらに設ける場合もある。
図2は図1に示した荷電粒子ビーム装置の制御系を表すブロック図である。但し、図2では図1のFIB装置31を省略してある。図2中の図1に対応する箇所には図1と同符号を付してある。
図2に示すように、本実施の形態の荷電粒子ビーム装置は、補助電極2−4のそれぞれに電圧を印加する電極電源46、電極電源46に指令して電極電源46より補助電極2−4への印加電圧を制御する制御装置40、制御装置40との間で信号を授受する操作表示装置41をさらに備えている。特に図示していないが操作表示装置41は、操作者が操作入力するための操作部と制御装置40からの表示信号を基に画像や情報を表示する表示部が備えられている。
制御装置40は、予め設定された補助電極2−4への印加電圧、試料台21の傾斜角及びSEM30の光学条件の関係を基に、試料台21の傾斜角及びSEM30の光学条件の設定に応じて補助電極2−4への印加電圧を制御する。ここで言うSEM30の光学条件とは、例えば電子光学系13の荷電粒子ビームのエネルギー、或いは対物レンズ11の集束磁界強度(つまりコイル12の励磁電流)等を指すが、本実施の形態では荷電粒子ビームのエネルギーを光学条件の制御入力値とする場合を例示して説明する。
制御装置40は、装置制御盤42、記憶装置43、コイル制御装置44、電極電源46、及び試料台制御装置45を備えている。記憶装置43は制御装置40とは別に設けても良い。
記憶装置43には、補助電極2−4への印加電圧、試料台21の傾斜角及び荷電粒子ビーム6のエネルギーの相関関係が記憶されている。この相関関係は、本実施の形態では後述するシミュレーション等によって事前に検討されたものであり、例えば三者の適当な組合せがテーブルとしてまとめられている。例えば試料台21の傾斜角毎に荷電粒子ビームのエネルギーに対して適当な補助電極2−4への印加電圧が事前に設定されている。但し、この三者の相関関係に関しては、後述するように事前に設定されるデータテーブルの他、試料台21の傾斜角毎に実験的又は理論的に求められた荷電粒子ビーム6のエネルギーとそれに対する補助電極2−4の適当な印加電圧の関係式を相関関係として採用することも考えられる。また、荷電粒子ビーム6のエネルギー毎に試料台21の傾斜角と補助電極2−4の印加電圧の組合せ又は関係式を相関関係として持たせることも考えられる。
本実施の形態の荷電粒子ビーム装置において、操作者が荷電粒子ビーム6のエネルギーと試料台21の傾斜角度を操作表示装置41に設定入力すると、その設定入力値は操作表示装置41から装置制御盤42に出力され、さらにコイル制御装置44、試料台制御装置45、記憶装置43及び電子光学系13に出力される。電子光学系13では荷電粒子ビーム6のエネルギーが入力した設定値に調整される。コイル制御装置44は、荷電粒子ビームのエネルギーの設定入力値を基に、対物レンズ11の集束磁界が荷電粒子ビーム6を試料22の観察面上に集束させるのに適当な強度となるように、コイル12の励磁電流を制御する。一方、試料台制御装置45は、試料台21の傾斜角度の設定入力値を基に試料台21に指令して試料台21の傾斜角度を制御する。
このとき、装置制御盤42は、入力された試料台傾斜角とビームエネルギーの設定入力値を基に、記憶装置43に記憶されたデータテーブルから補助電極2−4の印荷電圧の対応の値を読み出し、電極電源46への指令値として電極電源46に指令信号を出力する。電極原電46は、装置制御盤42からの指令に従って補助電極2−4の各印加電圧を制御する。
ここで、補助電極2−4の印加電圧は、例えば次のように事前検討される。
FIB装置31とSEM30の複合装置全体の基準座標3軸のうち水平面内の2軸をX軸、Y軸と定義し、まず試料22の観察面の傾斜角度がφX1,φY1の場合について説明する。
始めに第一補助電極2の印加電圧を決めるにあたって、荷電粒子ビーム6を電界偏向の影響を受け易い低エネルギー、例えば0.5keVにしておき、第二補助電極3と第三補助電極4の印加電圧が0(ゼロ)の状態で、第一補助電極2の印加電圧を0(ゼロ)から正電圧で徐々に上げていき、このときの荷電粒子ビーム6の光軸からの変位量を計算で求める(計算結果の一例を図3に示す)。第一補助電極2の印加電圧は、荷電粒子ビーム6の変位量がSEM30の電子光学系13に搭載された偏向電極(図示せず)で補正できる範囲の値とする。例えば図3の計算結果から第一補助電極2の印加電圧の最大値を決定するなら、荷電粒子ビーム6の光軸からの変位量が電子光学系13の偏向電極で補正できる距離の最大値(10μm)となる印加電圧(+250V)を第一補助電極2の印加電圧の最大値とする。なお、荷電粒子ビーム6の光軸からの変位量をシミュレーションするときの荷電粒子ビームエネルギーは0.5keVに限定されず、またSEM30の荷電粒子ビームエネルギーの全設定範囲に対して行っても良い。荷電粒子ビーム6のエネルギーが高いほど第一補助電極2の印加電圧の最大値は正に高くなる。
続いて第二補助電極3及び第三補助電極4の印加電圧最大値を決める。既に上記で算出された最大値(+250V)を第一補助電極2に印加した状態で、上記同様、第二補助電極3と第三補助電極4の印加電圧を0(ゼロ)から正電圧で徐々に上げた場合の低エネルギー(例えば0.5keV)の荷電粒子ビーム6の光軸からの変位量を計算する。上記のように荷電粒子ビーム6の変位が補正可能な最大距離(例えば10μm)となる補助電極3,4の印加電圧の値として算出された値をV23maxとする。
次に、第二補助電極3及び第三補助電極4の印加電圧の平均値を決める。対物レンズ11の集束磁界強度を0(ゼロ)からSEM30の荷電粒子ビームエネルギーが最大のときにコイル制御装置44から指令される値(例えば30keV)まで変化させ、試料22の観察面からcosθの確率角度分布で信号電子5を発生させる場合を考える。この場合、各補助電極2−4の印加電圧として、第一補助電極2に+250Vを設定し、第二補助電極3と第三補助電極4の印加電圧を0からV23maxまで上げていく。各設定における信号電子5の軌道をシミュレーションし、信号電子検出器1に到達した信号電子5の割合すなわち収集効率をシミュレーションする。
図4は信号電子の集光効率のシミュレーション結果の一例を表したもので、横軸に荷電粒子ビームエネルギーで表現した集束磁界強度、縦軸に信号電子の収集効率を採っている。
図4において、第二補助電極3及び第三補助電極4の印加電圧として0からV23maxの範囲で適当な値V−Vを設定し、磁界強度の各範囲E−Eに対して信号電子5の収集効率が最大となる印加電圧をV−Vの中から採用する。図4において、集束磁界強度Eの範囲(本例の場合、荷電粒子ビーム6のエネルギー換算で2keV未満)では、第二補助電極3及び第三補助電極4の印加電圧の設定値がV(例えば+450V)の場合に、信号電子5の収集効率が最大になることが判る。同様に、集束磁界強度Eの範囲(2keV以上7keV未満)では第二補助電極3及び第三補助電極4の印加電圧の設定値がV(例えば+350V)の場合に信号電子5の収集効率が最大となり、集束磁界強度Eの範囲(7keV以上12keV未満)ではV(例えば+250V)、Eの範囲(12keV以上)ではV(例えば+150V)の場合に、信号電子5の収集効率が最大となることが判る。したがって、集束磁界強度E−Eの各範囲における第二補助電極3と第三補助電極4の印加電圧の平均値をそれぞれV−Vに定める。
次に、第二補助電極3と第三補助電極4の個別の印加電圧を決める。例えば第一補助電極2に+250Vの印加電圧を設定し、第二補助電極3の印加電圧をV2−1=V+V、第三補助電極4の印加電圧をV3−1=V−Vとする。Vは正・負の両方の値を採って絶対値を徐々に大きくしていく。このときの信号電子5の収集効率を図4の例と同じ方法でシミュレーションし、収集効率が一番高くなるときのVNmaxを求め、V=VNmaxのときのV2−1,V3−1を範囲Eにおける補助電極3,4のそれぞれの印加電圧に定める。同じことをV,V,Vに対しても行う。その結果、範囲Eのときの第二補助電極3の印加電圧V2−1(=V+V)と第三補助電極4の印加電圧V3−1(=V+V)、範囲Eのときの第二補助電極3の印加電圧V2−2(=V+V)と第三補助電極4の印加電圧V3−2(=V+V)、範囲Eのときの第二補助電極3の印加電圧V2−3(=V+V)と第三補助電極4の印加電圧V3−3(=V+V)、範囲Eのときの第二補助電極3の印加電圧V2−4(=V+V)と第三補助電極4の印加電圧V3−4(=V+V)が定まる。
図5は上記手順で決定した印加電圧を第一補助電極2のみに印加した場合に得られる収集効率と第1乃至第三補助電極2−4に印加した場合に得られる収集効率とを比較して表したグラフである。
図5において、第一補助電極2のみに印加電圧をかけた場合に比べると、補助電極2−4に印加電圧をかけた場合、特に荷電粒子ビームエネルギーが低いときの集束磁界強度で収集効率が向上することが確認できる。これは対物レンズ11の集束磁界強度の変化に伴って変化した信号電子5の軌道に対し、第二補助電極3及び第三補助電極4の印加電圧の最適化によって信号電子検出器1に信号電子5を誘導するのにより好適な電気力線を発生させる電界が形成されたことによるものである。
同じ方法で、試料台21の傾斜角度がφX1,φY1以外の場合について、第一乃至第三補助電極2−4の印加電圧値を決定する。本実施の形態では、このようにして試料台21の傾斜角度毎に、SEM30の光学条件と試料台21の傾斜角度の組み合わせに対して適当な印加電圧を予め算出しておき、それら三者の組合せのデータテーブルを記憶装置43に記憶させる。
このように本実施の形態によれば、使用者が荷電粒子ビームエネルギーや試料21の観察面の傾斜角度の設定値や対物レンズ11の集束磁界強度の設定値(本例の場合は集束磁界強度が荷電粒子ビーム6のエネルギーに応じて変化するためビームエネルギーの設定値を制御入力値とした)を変更する毎、傾斜角や集束磁界強度の変更後の設定値に対応し、信号電子5を信号電子検出器1に効果的に導き信号電子5の収集効率が良好となる好適な値に補助電極2−4の印加電圧値が自動的に変更される。
したがって、本実施の形態によれば、試料台21の傾斜角やSEM30の光学条件が変更されて信号電子5の描く軌道が変化しても、信号電子5の検出効率の低下を抑制することができ、高画質で信頼性の高い試料観察像を得ることができる。また、信号電子収集時間の短縮による観察像取得時間の短縮効果も期待できる。しかも、試料台21の傾斜角や対物レンズ11の集束磁界強度等の観察条件を変更すれば、制御装置40により自動的に補助電極2−4の印加電圧が変更されるので、観察中において補助電極2−4の印加電圧の設定に特別な操作を必要としない。
ここで、昨今の加工・分析・観察・解析に用いられる荷電粒子ビーム装置は、多機能化の傾向が強く、観測対象となる試料台周辺の狭隘な空間に目的に応じて必要な装置が集中する。そのため、各装置の配置が大きく制約され高効率に信号電子を検出することを重視した位置に信号電子検出器を設置するのが困難となる場合がある。また、あまり装置が密集すると、場合によっては信号電子の軌道に装置が干渉し信号電子の検出効率を低下させる恐れもある。
本実施の形態において、仮に補助電極2−4の代わりにラッパ型の補助電極を信号電子検出器1に取り付けたとすると、補助電極自体の占有空間が大きく、試料22の観察面に補助電極を充分に近付けることも難しい。そのため、信号電子5の軌道に変化が予想される場合、信号電子検出器1又は補助電極の印加電圧を上げて収集電界強度を強めて信号電子5の収集効率を補う必要が生じる。しかし、収集電界強度の過度な増大は荷電粒子ビーム6の偏向を助長し画質を劣化させる要因にもなり得る。
それに対し、本実施の形態では補助電極2−4が棒状に形成されているため、ラッパ型の補助電極に比べて補助電極2−4の先端を試料22の観察面に近づけ易い。したがって、荷電粒子ビーム6の変位量がSEM30の偏向電極によって補正できる程度に補助電極2−4の印加電圧を抑えることができる。また、補助電極2−4が棒状でそれぞれの占有空間が小さいため、ラッパ型の補助電極に比べて補助電極2−4の取り付け角度の自由度も大きく補助電極2−4の立体角を大きくとる上でも有利である。補助電極2−4の立体角を適度に大きく採ることができることは、信号電子5の収集効率を向上する点で大きなメリットである。
また、前述したように本発明は、図1に示したようなFIB−SEMに限らず、荷電粒子ビームの照射により試料から発生する二次電子や後方散乱電子等の信号電子を信号電子検出器で検出する型の荷電粒子ビーム装置全般に適用可能である。例えば、図1ではSEM30でSEM観察像を得るのに補助電極2−4の印加電圧が制御される例を説明したが、FIB装置31でSIM観察像を得る場合にイオンビームのエネルギーと試料台21の傾斜角との相関関係を事前検討し、その相関関係を記憶装置43に記憶しておくことで、FIB装置31でSIM観察像を得る場合に補助電極2−4の印加電圧が制御されるようにすることもできる。
また、図1−図5を用いて説明した上記実施の形態では、試料台傾斜角及び荷電粒子線装置の光学条件を制御入力値として補助電極の印加電圧を制御する場合を例に挙げて説明したが、試料台を傾斜させる機能を持たない荷電粒子ビーム装置では、荷電粒子ビーム装置の光学条件のみを制御入力値にすれば良い。この点について、例えば電子線検査装置に本発明を適用する場合について説明する。
半導体デバイスの欠陥検査装置として電子線検査装置を用いる場合、プロセス工程中のデバイス構造を走査電子画像として取り込み、本来あるべきでない像が確認されれば欠陥として認識される。その信号電子検出器には前述した実施の形態と同様にシンチレータを有する信号電子検出器が一般に用いられ、荷電粒子ビームエネルギーを変えて撮像するが、試料台は水平方向に移動しても傾斜はしない。また、半導体デバイスが比較的大きく、試料台近傍にデバイス表面の高さを測定する光学式センサ等を備えていることから、信号電子検出器を荷電粒子ビーム照射場所に近付けることも難しい。
このような構造の装置に対しては、前述した実施の形態と同様に棒状の複数の補助電極を信号電子検出器に付加し、試料台の傾斜角度は1条件のみで荷電粒子ビームエネルギーに対する最適印加電圧を求める。信号電子の収集効率が向上するのみならず、信号電子は効率よく信号電子検出器に捕捉されるので、収集完了までの時間も短縮される。これにより、信号電子収集効率向上による高画質で信頼性の高い観察像を取得することができ、信号電子収集時間の短縮による走査電子画像取得時間の短縮の効果も期待できる。
また、試料台が対物レンズに入り込んでいるセミ・インレンズ型の荷電粒子ビーム装置は高分解能である反面、漏洩した磁場により対物レンズ内に一部の信号電子が閉じ込められる場合がある。こうしたセミ・インレンズ型の荷電粒子ビーム装置に本発明を適用した場合でも、補助電極が棒状で補助電極を試料観察面に近付け易いため、補助電極がつくる電界による電気力線を信号電子に作用させ易く、信号電子の収集効率の向上に大きく寄与する。
本発明の一実施の形態に係る荷電粒子ビーム装置の要部を抽出して表す概略構成図である。 図1に示した荷電粒子ビーム装置の制御系を表すブロック図である。 補助電極印加電圧と荷電粒子ビームの光軸からの変位の関係を示す図である。 信号電子の集光効率のシミュレーション結果の一例を表した図である。 第一補助電極のみに電圧を印加した場合に得られる収集効率と第1乃至第三補助電極に電圧を印加した場合に得られる収集効率とを比較して表した図である。
符号の説明
1 信号電子検出器
2−4 補助電極
5 信号電子
6 荷電粒子ビーム
11 対物レンズ
13 電子光学系
21 試料台
22 試料
40 制御装置
43 記憶装置
46 電極電源

Claims (9)

  1. 試料を搭載可能な試料台と、
    荷電粒子ビーム源から発生した荷電粒子ビームを集束磁界により前記試料台上の試料に集束する電子光学系と、
    試料から発生した信号電子を検出する信号電子検出器と、
    前記信号電子検出器に設けられた複数の補助電極と、
    前記複数の補助電極のそれぞれに電圧を印加する電極電源と、
    予め設定された前記補助電極への印加電圧及び荷電粒子ビームの光学条件の相関関係を基に、荷電粒子ビームの光学条件に応じて前記電極電源による前記補助電極への印加電圧を制御する制御装置と
    を備えたことを特徴とする荷電粒子ビーム装置。
  2. 試料を搭載可能な試料台と、
    荷電粒子ビーム源から発生した荷電粒子ビームを集束磁界により前記試料台上の試料に集束する電子光学系と、
    試料から発生した信号電子を検出する信号電子検出器と、
    前記信号電子検出器に設けられた複数の補助電極と、
    前記複数の補助電極のそれぞれに電圧を印加する電極電源と、
    予め設定された前記補助電極への印加電圧、前記試料台の傾斜角及び荷電粒子ビームの光学条件の相関関係を基に、前記試料台の傾斜角及び荷電粒子ビームの光学条件に応じて前記電極電源による前記補助電極への印加電圧を制御する制御装置と
    を備えたことを特徴とする荷電粒子ビーム装置。
  3. 請求項1の荷電粒子ビーム装置において、予め設定された前記補助電極への印加電圧、及び前記荷電粒子ビームの光学条件の組合せを前記相関関係として記憶した記憶装置を備え、前記制御装置は、荷電粒子ビームの光学条件の設定値を基に、それら設定値に対応する前記補助電極への印加電圧を前記記憶装置から呼び出し、呼び出された印加電圧の値を基に前記電極電源に指令信号を出力することを特徴とする荷電粒子ビーム装置。
  4. 請求項2の荷電粒子ビーム装置において、予め設定された前記補助電極への印加電圧、前記試料台の傾斜角及び前記荷電粒子ビームの光学条件の組合せを前記相関関係として記憶した記憶装置を備え、前記制御装置は、前記試料台の傾斜角及び荷電粒子ビームの光学条件の設定値を基に、それら設定値に対応する前記補助電極への印加電圧を前記記憶装置から呼び出し、呼び出された印加電圧の値を基に前記電極電源に指令信号を出力することを特徴とする荷電粒子ビーム装置。
  5. 請求項1又は2の荷電粒子ビーム装置において、前記複数の補助電極は、棒状に形成されていて、前記信号電子検出器から前記試料台上の試料に向かって延在していることを特徴とする荷電粒子ビーム装置。
  6. 請求項1又は2の荷電粒子ビーム装置において、荷電粒子ビームの光学条件は、前記荷電粒子ビームのエネルギー又は集束磁界強度であることを特徴とする荷電粒子ビーム装置。
  7. 試料を搭載する試料台と、
    荷電粒子ビーム源から発生した荷電粒子ビームを集束磁界により前記試料台上の試料に集束する電子光学系と、
    試料から発生した信号電子を検出する信号電子検出器と、
    前記信号電子検出器に設けられ、前記信号電子検出器から前記試料台上の試料に向かって延在する棒状の複数の補助電極と、
    前記複数の補助電極のそれぞれに電圧を印加する電極電源と、
    前記電極電源による前記補助電極への印加電圧を制御する制御装置と
    を備えたことを特徴とする荷電粒子ビーム装置。
  8. 試料から発生した信号電子を検出する信号電子検出器に設けられ、信号電子を前記信号電子検出器に誘導する複数の補助電極の印加電圧制御方法であって、
    前記複数の補助電極の印加電圧、及び荷電粒子ビームの光学条件の相関関係を事前に設定しておき、前記相関関係を基に、荷電粒子ビームの光学条件に応じて前記補助電極への印加電圧を制御することを特徴とする印加電圧制御方法。
  9. 試料から発生した信号電子を検出する信号電子検出器に設けられ、信号電子を前記信号電子検出器に誘導する複数の補助電極の印加電圧制御方法であって、
    前記複数の補助電極の印加電圧、試料を搭載可能な試料台の傾斜角、及び荷電粒子ビームの光学条件の相関関係を事前に設定しておき、前記相関関係を基に、前記試料台の傾斜角及び荷電粒子ビームの光学条件に応じて前記補助電極への印加電圧を制御することを特徴とする印加電圧制御方法。
JP2007047659A 2007-02-27 2007-02-27 荷電粒子ビーム装置及び印加電圧制御方法 Pending JP2008210702A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047659A JP2008210702A (ja) 2007-02-27 2007-02-27 荷電粒子ビーム装置及び印加電圧制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047659A JP2008210702A (ja) 2007-02-27 2007-02-27 荷電粒子ビーム装置及び印加電圧制御方法

Publications (1)

Publication Number Publication Date
JP2008210702A true JP2008210702A (ja) 2008-09-11

Family

ID=39786822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047659A Pending JP2008210702A (ja) 2007-02-27 2007-02-27 荷電粒子ビーム装置及び印加電圧制御方法

Country Status (1)

Country Link
JP (1) JP2008210702A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097861A1 (ja) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ 荷電粒子ビーム装置
JP2011159483A (ja) * 2010-01-29 2011-08-18 Sii Nanotechnology Inc 電子顕微鏡及び試料分析方法
WO2012026291A1 (ja) * 2010-08-24 2012-03-01 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および試料観察方法
EP2426695A1 (en) * 2009-04-28 2012-03-07 Hitachi High-Technologies Corporation Composite charged particle radiation device
JP2014222674A (ja) * 2014-08-01 2014-11-27 株式会社日立ハイテクサイエンス 電子顕微鏡
DE112021002456T5 (de) 2020-09-25 2023-03-02 Hitachi High-Tech Corporation Elektronenmikroskop

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252562A (en) * 1975-10-27 1977-04-27 Shimadzu Corp Electron beam scanning type sample image pick-up device
JPH1167137A (ja) * 1997-08-22 1999-03-09 Jeol Ltd 粒子線装置
JPH1196954A (ja) * 1997-09-19 1999-04-09 Hitachi Ltd 走査電子顕微鏡
JP2003115275A (ja) * 2002-09-27 2003-04-18 Hitachi Ltd 走査形電子顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252562A (en) * 1975-10-27 1977-04-27 Shimadzu Corp Electron beam scanning type sample image pick-up device
JPH1167137A (ja) * 1997-08-22 1999-03-09 Jeol Ltd 粒子線装置
JPH1196954A (ja) * 1997-09-19 1999-04-09 Hitachi Ltd 走査電子顕微鏡
JP2003115275A (ja) * 2002-09-27 2003-04-18 Hitachi Ltd 走査形電子顕微鏡

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097861A1 (ja) * 2009-02-27 2010-09-02 株式会社 日立ハイテクノロジーズ 荷電粒子ビーム装置
JP2010199002A (ja) * 2009-02-27 2010-09-09 Hitachi High-Technologies Corp 荷電粒子ビーム装置
US8610060B2 (en) 2009-02-27 2013-12-17 Hitachi High-Technologies Corporation Charged particle beam device
EP2426695A1 (en) * 2009-04-28 2012-03-07 Hitachi High-Technologies Corporation Composite charged particle radiation device
EP2426695A4 (en) * 2009-04-28 2014-01-01 Hitachi High Tech Corp DEVICE FOR RADIATION OF CHARGED COMPOSITE PARTICLES
JP2011159483A (ja) * 2010-01-29 2011-08-18 Sii Nanotechnology Inc 電子顕微鏡及び試料分析方法
US8664598B2 (en) 2010-01-29 2014-03-04 Sii Nanotechnology Inc. Electron microscope and specimen analyzing method
WO2012026291A1 (ja) * 2010-08-24 2012-03-01 株式会社 日立ハイテクノロジーズ 荷電粒子線装置および試料観察方法
JP2012048819A (ja) * 2010-08-24 2012-03-08 Hitachi High-Technologies Corp 荷電粒子線装置および試料観察方法
US8791413B2 (en) 2010-08-24 2014-07-29 Hitachi High-Technologies Corporation Charged particle beam device and sample observation method using a rotating detector
JP2014222674A (ja) * 2014-08-01 2014-11-27 株式会社日立ハイテクサイエンス 電子顕微鏡
DE112021002456T5 (de) 2020-09-25 2023-03-02 Hitachi High-Tech Corporation Elektronenmikroskop

Similar Documents

Publication Publication Date Title
JP6377572B2 (ja) X線発生装置、及びその調整方法
JP3441955B2 (ja) 投射方式の荷電粒子顕微鏡および基板検査システム
US7397031B2 (en) Method of inspecting a circuit pattern and inspecting instrument
JP5592957B2 (ja) 荷電粒子線応用装置、及び照射方法
JP5103033B2 (ja) 荷電粒子線応用装置
TWI794782B (zh) 具有多個偵測器之帶電粒子束裝置及用於成像之方法
US8766185B2 (en) Charged particle beam device
JP2016213078A5 (ja)
US11513087B2 (en) Systems and methods for voltage contrast defect detection
JP6929730B2 (ja) 飛行時間型荷電粒子分光学
JP2001273861A (ja) 荷電ビーム装置およびパターン傾斜観察方法
JP2010055756A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
JP2008210702A (ja) 荷電粒子ビーム装置及び印加電圧制御方法
JP2006032107A (ja) 反射結像型電子顕微鏡及びそれを用いたパターン欠陥検査装置
JP2004342341A (ja) ミラー電子顕微鏡及びそれを用いたパターン欠陥検査装置
US20140246584A1 (en) Scanning electron microscope
JP4382067B2 (ja) 回路パターン検査装置
US11282672B2 (en) Charged particle beam apparatus and sample processing observation method
JP2012230919A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
JP2008198405A (ja) 走査形電子顕微鏡
JP2008262882A (ja) 荷電粒子線装置および荷電粒子線像生成方法
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2005337959A (ja) 基板検査方法および基板検査装置
JP4073149B2 (ja) 電子線装置
JP2006252994A (ja) 走査電子顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018