JP2008177278A - スタティック型半導体記憶装置 - Google Patents

スタティック型半導体記憶装置 Download PDF

Info

Publication number
JP2008177278A
JP2008177278A JP2007008082A JP2007008082A JP2008177278A JP 2008177278 A JP2008177278 A JP 2008177278A JP 2007008082 A JP2007008082 A JP 2007008082A JP 2007008082 A JP2007008082 A JP 2007008082A JP 2008177278 A JP2008177278 A JP 2008177278A
Authority
JP
Japan
Prior art keywords
diffusion layer
transistor
substrate
bit line
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007008082A
Other languages
English (en)
Inventor
Atsushi Kawasumi
篤 川澄
Satoru Morooka
哲 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007008082A priority Critical patent/JP2008177278A/ja
Priority to US12/015,730 priority patent/US7829942B2/en
Publication of JP2008177278A publication Critical patent/JP2008177278A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】セル面積の増大を抑制して書き込み特性の向上とデータ読み出し時における安定性を確保することが可能なスタティック型半導体記憶装置を提供する。
【解決手段】第1の転送トランジスタN1は、第1のビット線に接続された第1の拡散層16bと、第1の記憶ノードに接続された第2の拡散層16aを有し、第1の拡散層16bは基板11に設けられ、第2の拡散層16aは、基板11に設けられた凹部21の底部内に設けられ、第1の転送トランジスタN1のチャネル領域CHは第2の拡散層16aと、第1の記憶ノード方向にオフセットされ、オフセット部が抵抗R1として機能する。
【選択図】 図5

Description

本発明は、スタティック型半導体記憶装置、例えばスタティック・ランダム・アクセス・メモリ(SRAM)に関する。
6つのMOSFETからなる一般的なSRAMセルは、記憶ノードと接地間に接続されたプルダウントランジスタ(駆動トランジスタ)と、記憶ノードと電源間に接続された負荷トランジスタと、記憶ノードとビット線間に接続されたパスゲートトランジスタ(転送トランジスタ)により構成されている。SRAMセルのデータ読み出し時の安定性を高めるためには、プルダウントランジスタの駆動力をパスゲートトランジスタよりも大きくして、記憶ノードの電圧がパスゲートトランジスタの閾値を超えないようにする必要がある。
従来、プルダウントランジスタとパスゲートトランジスタの駆動力に差をつけるため、プルダウントランジスタのLw/Lg比を、パスゲートトランジスタのそれよりも大きくするという方法が用いられていた。しかし、SRAMのセルサイズは世代と共にシュリンクすることが望まれている。このため、これらトランジスタのゲート幅に差をつけることが困難になってきている。
単にSRAMセルの読み出し時の安定性を高めるだけであれば、パスゲートトランジスタの駆動力を劣化させることで可能である。しかし、書き込み時は、パスゲートトランジスタに駆動力が要求されるため、この方法を採用することは得策ではない。
そこで、セル面積の増大を抑えてパスゲートトランジスタと記憶ノードとの間に抵抗を接続し、ワード線を細くしても読み出しデータの破壊を防止する方法が開発されている(例えば特許文献1参照)。
しかし、一層セル面積の増大を抑制して書き込み特性の向上とデータ読み出し時における安定性を確保することが要望されている。
特開平05−304274号公報
本発明は、セル面積の増大を抑制して書き込み特性の向上とデータ読み出し時における安定性を確保することが可能なスタティック型半導体記憶装置を提供しようとするものである。
本発明の第1の態様のスタティック型半導体記憶装置は、相補データを記憶する第1、第2の記憶ノードを有する記憶部と、前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、前記第1、第2の転送トランジスタは、前記第1、第2のビット線に接続されたエクステンション領域を有する第1の拡散層と、前記第1、第2の記憶ノードに接続されたエクステンション領域を有する第2の拡散層をそれぞれ有し、前記第1の拡散層は基板の表面領域内に設けられ、前記第2の拡散層は、前記基板に設けられた凹部の底部内に設けられることを特徴とする。
本発明の第2の態様のスタティック型半導体記憶装置は、相補データを記憶する第1、第2の記憶ノードを有する記憶部と、前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、前記第1、第2の転送トランジスタは、前記第1、第2のビット線に接続されたエクステンション領域を有する第1の拡散層と、前記第1、第2の記憶ノードに接続されたエクステンション領域を有する第2の拡散層をそれぞれ有し、前記第1の拡散層は基板の表面領域内に設けられ、前記第2の拡散層は、前記基板上に設けられた半導体層内に設けられることを特徴とする。
本発明の第3の態様のスタティック型半導体記憶装置は、相補データを記憶する第1、第2の記憶ノードを有する記憶部と、前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、前記第1、第2の転送トランジスタは、ゲート電極に対して対称に第1、第2の拡散層をそれぞれ有し、前記第1、第2のビット線に接続される前記第1の拡散層のみ、それぞれシリサイド層を有し、前記第1、第2の記憶ノードに接続される前記第2の拡散層は前記第1の拡散層より高い抵抗値を有することを特徴とする。
本発明の第4の態様のスタティック型半導体記憶装置は、相補データを記憶する第1、第2の記憶ノードを有する記憶部と、前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、前記第1、第2の転送トランジスタは、フィンと、前記フィンに絶縁膜を介して設けられたゲート電極と、前記ゲート電極の両側に位置する前記フィン内に形成されたソース/ドレイン領域をそれぞれ有し、前記ゲート電極は、前記フィンの長手方向中央部から前記第1、第2のビット線方向にオフセットされて配置され、前記第1、第2の記憶ノードに接続される前記ソース/ドレイン領域は、前記第1、第2のビット線に接続される前記ドレイン/ソース領域より高い抵抗値を有することを特徴とする。
本発明によれば、セル面積の増大を抑制して書き込み特性の向上とデータ読み出し時における安定性を確保することが可能なスタティック型半導体記憶装置を提供できる。
以下、本発明の実施の形態について、図面を参照して説明する。
図2は、本発明の実施形態に適用されるSRAMセルの等価回路を示している。図2において、電源VDDが供給されるノードと接地間にはPチャネルMOSトランジスタ(PMOS)により構成された負荷トランジスタP1とNチャネルMOSトランジスタ(NMOS)により構成されたプルダウントランジスタN3の直列回路と、PMOSにより構成された負荷トランジスタP2とNMOSにより構成されたプルダウントランジスタN4の直列回路が接続されている。負荷トランジスタP2とプルダウントランジスタN4のゲートは、第1の記憶ノードAとしての負荷トランジスタP1とプルダウントランジスタN3の接続ノードに接続されている。負荷トランジスタP1とプルダウントランジスタN3のゲートは、第2の記憶ノードBとしての負荷トランジスタP2とプルダウントランジスタN4の接続ノードに接続されている。これらトランジスタN3,N4,P1,P2は、2つのインバータ回路からなる記憶部を構成している。
また、NMOSにより構成されたパスゲートトランジスタN1の電流通路の一端はビット線BLに接続され、他端は抵抗R1を介して第1の記憶ノードAに接続されている。NMOSにより構成されたパスゲートトランジスタN2の電流通路の一端はビット線/BLに接続され、他端は抵抗R2を介して第2の記憶ノードBに接続されている。パスゲートトランジスタN1、N2のゲートはワード線WLに接続されている。
パスゲートトランジスタN1、N2とプルダウントランジスタN3、N4の間に抵抗R1、R2がそれぞれ設けられている。これら抵抗R1、R2は、SRAMセルの読み出し動作時、パスゲートトランジスタN1、N2のソース側に接続されることとなる。すなわち、例えば記憶ノードAにローレベルが記憶されている場合、読み出し時、記憶ノードAに接続されたパスゲートトランジスタN1には、プリチャージされたビット線BL側からプルダウントランジスタN3に電流が流れる。このため、抵抗R1はパスゲートトランジスタN1のソース側に接続されることとなり、ソースの電圧が高くなる。このため、ゲート・ソース間の電圧がパスゲートトランジスタN1の閾値電圧に近づき、パスゲートトランジスタN1の駆動力が落ちることになる。したがって、記憶ノードAをローレベルに保持して、記憶データの反転を防止でき、SRAMセルの安定性を向上できる。
一方、データの書き込み動作時、これら抵抗R1、R2は、パスゲートトランジスタN1、N2のドレイン側に接続されることとなる。すなわち、例えば記憶ノードAにローレベルを書き込む場合、負荷トランジスタP1からパスゲートトランジスタN1を介してビット線BLに電流が流れる。このため、抵抗R1は、パスゲートトランジスタN1のドレイン側に接続されることとなり、ゲート・ソース間の電圧に影響が殆どない。このため、パスゲートトランジスタの駆動力の低下を抑制でき、記憶ノードAを確実にローレベルとすることができる。したがって、高速且つ確実な書き込みができ、SRAMセルの書き込み特性の劣化を防止できる。
このように、パスゲートトランジスタN1、N2と第1、第2の記憶ノードA、Bの間に抵抗R1、R2を設けることにより、SRAMセルの読み出し時の安定性と書き込み特性のトレードオフマージンを緩和することができる。
しかし、単にパスゲートトランジスタN1、N2と第1、第2の第1の記憶ノードA、Bの間に抵抗R1、R2を設けた場合、上述したように、セルサイズが増大する。そこで、本実施形態は、種々の工夫を講じている。
(第1の実施形態)
図1は、第1の実施形態に係る抵抗を有するSRAMの平面図を示し、図3は、図1のIII−III線に沿った断面図を示している。図1、図3において、図2と同一部分には同一符号を付している。
図1において、N1、N2は、図2に示すパスゲートトランジスタであり、N3、N4は、図2に示すプルダウントランジスタである。図3に示すように、第1の実施形態において、パスゲートトランジスタN1とプルダウントランジスタN3の間の拡散層16aがパスゲートトランジスタN1とプルダウントランジスタN3の外側の拡散層16bと異なる形状とされ、パスゲートトランジスタN1とプルダウントランジスタN3のソース/ドレイン領域がそれぞれ非対称に形成されている。すなわち、パスゲートトランジスタN1とプルダウントランジスタN3のチャネル領域が、パスゲートトランジスタN1とプルダウントランジスタN3の間方向に拡散層16aとオフセットされている。
パスゲートトランジスタN1のビット線BLに接続される拡散層、及びプルダウントランジスタN3の接地される拡散層は、所謂エクステンション領域を有している。すなわち、ゲート電極G1、G3の側面に対応するp型の基板11(又はp型ウェル)内に低不純物濃度のエクステンション領域14が形成され、ゲート電極G1、G3の側壁絶縁膜15に対応した基板11内にエクステンション領域14より不純物濃度が高い拡散層16bが形成されている。
これに対して、パスゲートトランジスタN1とプルダウントランジスタN3の間の領域は、拡散層16bと等しい不純物濃度の拡散層16aのみにより構成され、エクステンション領域は形成されていない。このため、拡散層16aは、ゲート電極G1、G3の下方に形成されるチャネル領域とオフセットされている。この側壁絶縁膜15の下方のエクステンション領域が無い部分が抵抗R1として働く。
パスゲートトランジスタN2、プルダウントランジスタN4の断面形状は図示しないが、パスゲートトランジスタN2、プルダウントランジスタN4の構成も、パスゲートトランジスタN1、プルダウントランジスタN3と同様の構成とされている。すなわち、パスゲートトランジスタN2とプルダウントランジスタN4との間の拡散層がゲート電極G2、G4に対して非対称に形成され、チャネル領域が高濃度の拡散層とオフセットされている。この側壁絶縁膜の下方に位置する部分が抵抗R2として働く。
本実施形態において、パスゲートトランジスタN1(N2)と記憶ノードA(B)との間に設定される抵抗値が、パスゲートトランジスタN1(N2)とビット線BL(/BL)との間に設定される抵抗値より大きいことが必要である。具体的には、抵抗R1、R2の抵抗値は、数kΩ例えば1乃至5kΩ程度であればよい。この抵抗値は、以降の各実施形態においても同様である。
図4(a)(b)(c)は、図3に示す構成の製造方法を示している。図4(a)に示すように、例えばp型基板11の両面領域にゲート絶縁膜GIを介して、例えばポリシリコンによりゲート電極G1、G3が形成される。このゲート電極の側面に絶縁膜により、オフセットスペーサ12が形成される。
この後、図4(b)に示すように、ゲート電極G1、G3間の基板11上及びゲート電極G1、G3上に例えばフォトレジストによりマスク13が形成される。このマスク13を用いて基板11内にn型不純物が導入され、ゲート電極G1、G3の両側にエクステンション領域14が形成される。
次いで、マスク13が除去された後、全面に例えば絶縁膜が形成される。この絶縁膜が例えば反応性イオンエッチング(RIE)により除去され、図4(c)に示すように、ゲート電極G1、G3(ゲートオフセット12)の側壁に側壁絶縁膜15が形成される。この後、側壁絶縁膜15をマスクとして、基板11内にn型不純物が導入され、ソース/ドレイン領域としての拡散層16a,16bが形成される。この拡散層16a,16bの不純物濃度は、エクステンション領域14の不純物濃度より高く設定されている。拡散層16a,16bの不純物濃度は、例えば5×1020 atoms/cmであり、エクステンション領域14の不純物濃度は、例えば1×1020 atoms/cmである。
このようにして、図3に示すゲート電極G1、G3の相互間に、ゲート電極G1、G3の下方に形成されるチャネル領域からオフセットされた拡散層16aが形成される。
上記第1の実施形態によれば、パスゲートトランジスタN1とプルダウントランジスタN3との間に抵抗R1を設け、パスゲートトランジスタN2とプルダウントランジスタN4との間に抵抗R2を設けている。このため、SRAMセルのデータの読み出し時における安定性を向上でき、データ書き込み時における書き込み特性の劣化を防止できる。
しかも、パスゲートトランジスタN1(N2)とプルダウントランジスタN3(N4)との間の拡散層16aにエクステンション領域14を形成しないことにより、パスゲートトランジスタN1(N2)とプルダウントランジスタN3(N4)のソース/ドレイン領域を非対称に形成し、各トランジスタのチャネル領域と拡散層16aをオフセットさせ、このオフセット領域を抵抗R1(R2)として機能させている。このため、セルの占有面積の増大を抑えて抵抗を設けることが可能である。
(第2の実施形態)
図5は、第2の実施形態に係るSRAMの要部を示している。尚、以下の実施形態において、第1の実施形態と同一部分には同一符号を付す。
図5に示す第2の実施形態において、パスゲートトランジスタN1とプルダウントランジスタN3間の基板1に凹部(リセス)21が形成され、基板1の表面が、ゲート絶縁膜GIと基板11の境界より低く設定されている。この凹部21底部としての基板1内に、パスゲートトランジスタN1とプルダウントランジスタN3のソース/ドレイン領域の一方を形成する。このソース/ドレイン領域は、エクステンション領域14と拡散層16aにより形成されている。チャネル領域はオフセットスペーサ12の膜厚分の領域と凹部21の深さ方向にエクステンション領域14とオフセットされ、この領域が抵抗R1として機能する。
図6(a)(b)、図7(a)(b)は、図5に示す構成の製造方法を示している。先ず、図6(a)に示すように、例えば基板11にゲート絶縁膜GIを介してゲート電極G1、G3が形成される。このゲート電極G1、G2の上部には例えば絶縁膜からなるハードマスク22が形成されている。すなわち、基板11上にゲート絶縁膜GI、ポリシリコン層、絶縁膜が順次堆積され、これら絶縁膜、ポリシリコン層、ゲート絶縁膜GIが、例えば図示せぬレジストパターンをマスクとしてエッチングされ、ハードマスク22を有するゲート電極G1、G3が形成される。この後、ゲート電極G1、G3、ハードマスク22の側面に絶縁膜によりオフセットスペーサ12が形成される。
次に、図6(b)に示すように、ゲート電極G1、G3間を除く、基板11の全面に例えばレジストパターン23が形成される。このレジストパターン23及びオフセットスペーサ12をマスクとして基板11の表面が例えばRIEによりエッチングされ、凹部21が形成される。
次いで、図7(a)に示すように、ハードマスク22及びレジストパターン23を除去した後、ゲート電極G1、G3及びオフセットスペーサ12をマスクとして基板11内にn型不純物が導入され、エクステンション領域14が形成される。ここで、ゲート電極G1、G3間に形成されるエクステンション領域14はオフセットスペーサ12の側面間に対応して形成され、ゲート電極G1、G3の外側に位置するエクステンション領域14はゲート電極G1、G3の側面に対応して形成される。
この後、全面に絶縁膜が堆積される。この絶縁膜が例えばRIEによりエッチングされ、図7(b)に示すように、オフセットスペーサ12の側面に側壁絶縁膜15が形成される。ゲート電極G1、G3間に位置する側壁絶縁膜15の底部は、基板11とゲート絶縁膜GIとの境界より下方に位置する凹部21の底面に達している。このため、凹部21の底面の一部は側壁絶縁膜15により覆われている。また、ゲート電極G1、G3の外側に位置する側壁絶縁膜15の底部は、基板11の表面、すなわち、基板11とゲート絶縁膜GIとの境界に位置し、基板11の一部を覆っている。
次に、側壁絶縁膜15をマスクとして基板11内にn型不純物が導入され、図5に示すように、ソース/ドレイン領域としての拡散層16a、16bが形成される。
上記構成において、このエクステンション領域14を有する拡散層16aと、ゲート電極G1、G3の外側に位置するソース/ドレイン領域の他方としてのエクステンション領域14を有する拡散層16bは、ゲート電極G1、G3に対してそれぞれ非対称に形成されている。すなわち、ゲート電極G1、G2の下方に位置するチャネル領域CHがエクステンション領域14を有する拡散層16bに対しゲート電極G1、G3の相互間方向にオフセットスペーサ12の膜厚分オフセットされるとともに、凹部21の深さ方向にもオフセットされている。このため、オフセットスペーサ12の膜厚分の領域と凹部21の深さ方向の領域が抵抗R1として機能する。
第2の実施形態によっても、第1の実施形態と同様に、セルサイズの拡大を抑えて、パスゲートトランジスタN1とプルダウントランジスタN3の間に抵抗を形成することができる。
しかも、第2の実施形態によれば、ゲート電極G1、G3間の基板11に凹部21を形成し、この凹部21の底部に対応する基板11内に、エクステンション領域14を有する拡散層16aを形成している。このため、ゲート電極G1、G3に対してソース/ドレイン領域をより確実に非対称に形成することができる。したがって、セル面積の増大を抑制してパスゲートトランジスタN1とプルダウントランジスタN3の相互間に確実に抵抗R1を形成することができる。
(第3の実施形態)
図8は、第3の実施形態に係るSRAMの要部を示している。第2の実施形態は、パスゲートトランジスタN1とプルダウントランジスタN3間に凹部21を形成し、基板11とゲート絶縁膜GIの境界より下方にソース/ドレイン領域の一方を形成した。これに対して、第3の実施形態は、パスゲートトランジスタN1とプルダウントランジスタN3間に基板11とゲート絶縁膜GIの境界より高い領域を形成し、この領域にソース/ドレイン領域の一方を形成する。すなわち、第3の実施形態は、所謂エレベーテッドソース/ドレイン構造を有している。
図8において、基板11の表面には、ゲート絶縁膜GIを介してパスゲートトランジスタN1のゲート電極G1とプルダウントランジスタN3のゲート電極G3が形成されている。これらゲート電極G1、G3の側壁にはオフセットスペーサ12が形成されると共に、側壁絶縁膜15が形成されている。この側壁絶縁膜15のうち、ゲート電極G1、G3の間に位置する部分の底部は、基板11の表面上に形成された半導体層31の表面に接して形成され、ゲート電極G1、G3の外側に位置する部分の底部は、基板11の表面に接して形成されている。半導体層31の高さは、例えば半導体層31内に形成されるエクステンション領域14aの厚みより高く設定されている。エクステンション領域14aは、側壁絶縁膜15の下部で、オフセットスペーサ12の側面に接して形成されている。さらに、エクステンション領域14aに連続してソース/ドレイン領域の一方としての拡散層16aが形成されている。
また、ゲート電極G1、G3の外側に位置する基板11内で、オフセットスペーサ12と側壁絶縁膜15の下部に対応してエクステンション領域14bが形成されている。このエクステンション領域14bに連続して、ソース/ドレイン領域の他方としての拡散層16bが形成されている。この拡散層16bの表面は、半導体層31の表面と等しい高さとされている。
上記構成において、パスゲートトランジスタN1とプルダウントランジスタN3のチャネル領域CH、及びエクステンション領域14aを有する拡散層16aは、ゲート電極G1,G3の下方に位置するチャネル領域CHに対して、ゲート電極G1、G3の間方向にオフセットされている。このため、オフセットスペーサ12の底部と側面部に位置する部分が抵抗R1として機能する。
図9(a)(b)、図10(a)(b)(c)及び図11は、図8に示す構成の製造方法を示している。
先ず、図9(a)に示すように、第2の実施形態と同様にして、基板11上にゲート絶縁膜GIを介してゲート電極G1、G3が形成され、これらゲート電極G1、G3の上部にハードマスク22が形成される。これらゲート電極G1、G3とハードマスク22の側壁にオフセットスペーサ12が形成され、これらオフセットスペーサ12の上に側壁絶縁膜32が形成される。ここで、オフセットスペーサ12、ハードマスク22は、例えば窒化シリコン膜により形成され、側壁絶縁膜32は、シリコン酸化膜により構成される。オフセットスペーサ12と側壁絶縁膜32の材料はこれに限定されるものではなく、エッチングの選択比が大きい材料であればよい。また、側壁絶縁膜32の材料は単一の材料であるとは限らない。
次いで、図9(b)に示すように、ゲート絶縁膜G1、G3の間の領域に対応して開口が形成された例えばレジストパターン33が形成される。このレジストパターン33は、ゲート電極G1、G3の間の側壁絶縁膜32を露出している。このレジストパターン33をマスクとして、ゲート電極G1、G3の間の側壁絶縁膜32が例えばRIEによりエッチングされ、除去される。
次に、図10(a)に示すように、レジストパターン33が除去された後、基板11上に半導体層31となるエピタキシャル層34が形成される。
この後、図10(b)に示すように、残りの側壁絶縁膜32とハードマスク22が、例えばRIEによりエッチングされ、除去される。
次いで、図10(c)に示すように、ゲート電極G1、G3、オフセットスペーサ12をマスクとして、n型不純物が基板11の全面に導入され、エクステンション領域14a、14bが形成される。このエクステンション領域14aは、エピタキシャル層34の膜厚より浅い領域に形成される。
次に、図11に示すように、オフセットスペーサ12の側面に側壁絶縁膜15が形成される。この後、ゲート電極G1、G3及び側壁絶縁膜15をマスクとして基板11内にn型不純物が導入され、ゲート電極G1、G3の間の領域にソース/ドレイン領域の一方としての拡散層16aが形成され、ゲート電極G1、G3の外側の領域にソース/ドレイン領域の他方としての拡散層16bが形成される。このようにして、図8に示すトランジスタが形成される。
上記第3の実施形態によっても、第1、第2の実施形態と同様に、セルの占有面積の増大を抑制してパスゲートトランジスタN1(N2)とN3(N4)の間に抵抗R1(R2)を形成することができる。
しかも、第3の実施形態によれば、パスゲートトランジスタN1とプルダウントランジスタN3のソース/ドレイン領域の一方を構成するエクステンション領域14aは、基板11上に形成された半導体層31としてのエピタキシャル層34内に形成され、ゲート電極G1,G3の下方に位置するチャネル領域CHに対して、ゲート電極G1、G3の間方向及び上方にオフセットされている。このため、オフセットスペーサ12の底部と側面部に位置する部分を抵抗R1として機能させている。したがって、この構成によっても、セル面積の増大を抑制して、抵抗R1を確実に形成することができる。
(第4の実施形態)
図12は、第4の実施形態に係るSRAMの要部を示している。第3の実施形態は、パスゲートトランジスタN1とプルダウントランジスタN3の両方のチャネル領域及びゲート電極G1、G3間のエクステンション領域14aを有する拡散層16aをオフセットさせ、パスゲートトランジスタN1とプルダウントランジスタN3の両方に抵抗R1を形成した。これに対して、第4の実施形態は、パスゲートトランジスタN1のみオフセットしている。このため、プルダウントランジスタN3の駆動力を防止できる。
すなわち、図12において、図8と相違するのは、プルダウントランジスタN3のエクステンション領域を有するソース/ドレイン領域は、ゲート電極G3に対してオフセットされていない構成とされている。
図13(a)(b)(c)、図14(a)(b)(c)は、図12に示す構成の製造方法を示している。
先ず、図13(a)に示すように、第3の実施形態と同様にして、基板11上にゲート絶縁膜GIを介してゲート電極G1、G3が形成され、これらゲート電極G1、G3の上部にハードマスク22が形成される。これらゲート電極G1、G3とハードマスク22の側壁にオフセットスペーサ12が形成され、これらオフセットスペーサ12の上に側壁絶縁膜32が形成される。ここで、オフセットスペーサ12、ハードマスク22は、例えば窒化シリコン膜により形成され、側壁絶縁膜32は、シリコン酸化膜により構成される。オフセットスペーサ12と側壁絶縁膜32の材料はこれに限定されるものではなく、エッチングの選択比が大きい材料であればよい。また、側壁絶縁膜32の材料は単一の材料であるとは限らない。
次いで、図13(b)に示すように、ゲート絶縁膜G1、G3の間の領域に対応して開口が形成された例えばレジストパターン41を形成する。このレジストパターン41は、ゲート電極G3を全て覆い、ゲート電極G1の側壁絶縁膜32を露出している。このレジストパターン41をマスクとして、ゲート電極G1、G3の間の側壁絶縁膜32が例えばRIEによりエッチングされ、除去される。
次に、図13(c)に示すように、レジストパターン41が除去される。この状態において、パスゲートトランジスタN1のプルダウントランジスタM3側の側壁絶縁膜32が除去されている。この後、基板11上に半導体層31となるエピタキシャル層34が形成される。
この後、図14(a)に示すように、残りの側壁絶縁膜32とハードマスク22が、例えばRIEによりエッチングされ、除去される。
次いで、図14(b)に示すように、ゲート電極G1、G3、オフセットスペーサ12をマスクとして、n型不純物が基板11の全面に導入され、エクステンション領域14a、14bが形成される。このエクステンション領域14aは、エピタキシャル層34の膜厚より浅い領域に形成される。
次に、図14(c)に示すように、オフセットスペーサ12の側面に側壁絶縁膜15が形成される。このパスゲートトランジスタN1のプルダウントランジスタN3側に形成された側壁絶縁膜15の底部は、エピタキシャル層34上に位置し、その他の側壁絶縁膜15は基板11上に位置している。この後、ゲート電極G1、G3及び側壁絶縁膜15をマスクとして基板11内にn型不純物が導入され、ゲート電極G1、G3の間の領域にソース/ドレイン領域の一方としての拡散層16aが形成され、ゲート電極G1、G3の外側の領域にソース/ドレイン領域の他方としての拡散層16bが形成される。このようにして、図12に示すトランジスタが形成される。
上記第4の実施形態によっても第3の実施形態と同様の効果を得ることができる。しかも、上記第4の実施形態によれば、パスゲートトランジスタN1(N2)のプルダウントランジスタN3側のエクステンション領域14aのみが、基板11上に形成された半導体層31としてのエピタキシャル層34内に形成され、ゲート電極G1の下方に位置するチャネル領域CHに対して、ゲート電極G1、G3の間方向及び上方にオフセットされている。このため、パスゲートトランジスタN1(N2)のオフセットスペーサ12の底部と側面部に位置する部分を抵抗R1(R2)として機能させている。したがって、プルダウントランジスタN3(N4)の駆動力の低下を防止できる。
(第5の実施形態)
図15は、第5の実施形態に係るSRAMの要部を示している。上記第1乃至第4の実施形態は、チャネル領域及びエクステンション領域を有するソース/ドレイン領域をゲート電極に対してオフセットさせることにより、トランジスタのソース/ドレイン領域に抵抗を付加した。
これに対して、第5の実施形態は、ソース/ドレイン領域の抵抗値を制御して、トランジスタのソース/ドレイン領域に抵抗を付加している。すなわち、図15に示すように、パスゲートトランジスタN1とプルダウントランジスタN3のゲート電極G1、G3間に位置するソース/ドレイン領域の一方を構成するエクステンション領域14bを有する拡散層16aの上、及びゲート電極G1、G3間に位置するオフセットスペーサ12上には絶縁膜51が形成され、ゲート電極G1、G3の外側に位置し、ソース/ドレイン領域の他方を構成するエクステンション領域14bを有する拡散層16bの表面にはシリサイド層52が形成されている。このシリサイド層52が形成された拡散層16bの抵抗値は、シリサイド層52が形成されていない拡散層16aより抵抗値が低くなっている。したがって、拡散層16aに抵抗R1が付加されたこととなる。
図16(a)(b)、図17(a)(b)(c)は、図15に示す構成の製造方法を示している。
先ず、図16(a)に示すように、基板11上にゲート絶縁膜GIを介してゲート電極G1、G3が形成される。これらゲート電極G1、G3の側壁にオフセットスペーサ12が形成される。このオフセットスペーサ12をマスクとして、基板11内にエクステンション領域14bが形成される。この後、オフセットスペーサ12の上に側壁絶縁膜53が形成される。この側壁絶縁膜53をマスクとして基板11内にソース/ドレイン領域としての拡散層16a,16bが形成される。
次に、図16(b)に示すように、側壁絶縁膜53が例えばRIEによりエッチングされて除去される。
この後、図17(a)に示すように、基板11の表面全面に絶縁膜54が形成される。続いて、ゲート電極G1、G3の間に対応して例えばレジストパターン55が形成される。このレジストパターン55は、ゲート電極G1、G3の間と、ゲート電極G1、G3の間に位置するオフセットスペーサ12を覆っている。次いで、このレジストパターン55をマスクとして、絶縁膜54が例えばRIEによりエッチングされて除去される。
この結果、図17(b)に示すように、ゲート電極G1、G3の間の基板11上、及びオフセットスペーサ12上に絶縁膜54が残される。
この後、図17(c)に示すように、例えばタングステン、チタン、コバルト、ニッケルなどの金属のうちの1つにより金属膜52aが形成される。次いで、この金属膜52aがアニールされ、ゲート電極G1、G3上、及びゲート電極G1、G3の外側に位置する拡散層16bの上にシリサイド層52が形成される。次いで、未反応の金属膜52aが除去され、図15に示す構成が完成される。
上記第5の実施形態によれば、ゲート電極G1、G3に対称にエクステンション領域14bを有する拡散層16a、16bを形成し、これら拡散層のうち、ゲート電極G1、G3の外側に位置する拡散層16b上にシリサイド層52を形成することにより、拡散層16bの抵抗値を拡散層16aの抵抗値より低くすることにより、拡散層16aに抵抗R1を形成している。上記第5の実施形態によっても、セルの占有面積の増大を抑制して、拡散層16aに抵抗R1を設定することができる。
(第6の実施形態)
図18は、第6の実施形態に係るSRAMを示している。第6の実施形態は、図1に示すトランジスタN1、N2、N3、N4、P1、P2を所謂フィン型電界効果トランジスタ(以下、フィントランジスタと称す)により構成した場合を示している。図18において、図1と同一部分には同一符号を付している。
図18において、トランジスタN1、N2はゲート電極G1、G2に対して、ソース/ドレイン領域S/Dがオフセットして配置されている。すなわち、トランジスタN1、N2において、ビット線BL,/BLに接続されるソース/ドレイン領域の長さL1と、記憶ノードA、Bに接続されるドレイン/ソース領域の長さL2は、L1<L2に設定されている。このドレイン/ソース領域の長さL2は、抵抗値が前述した数kΩとなるように設定されている。
図19は、トランジスタN1を取り出して示すものであり、図20は図19のXX−XX線に沿った断面図であり、図21は図19のXXI−XXI線に沿った断面図である。
図19、図20、図21において、基板11上には、埋め込み酸化膜61が形成され、この埋め込み酸化膜61の上にシリコン層(半導体層)により複数のフィン62が形成されている。これらフィン62と直交方向にゲート絶縁膜GIを介してゲート電極G1が形成されている。ゲート絶縁膜GIは、図21に示すように、例えばフィン62の側面及び上面に形成され、ゲート電極G1もフィン62の側面及び上面に形成されている。ゲート電極G1は、フィン62の長さ方向中央からオフセットされた位置に形成され、ビット線BLに接続される例えばn型不純物が導入されたソース/ドレイン領域の長さは、L1に設定され、記憶ノードAに接続されるドレイン/ソース領域の長さは、L1より長いL2に設定されている。
尚、フィントランジスタの形状は、図19、図20、図21に示す形状に限定されるものではなく、種々変形可能である。
上記第6の実施形態によれば、SRAMを構成するnチャネルトランジスタ、pチャネルトランジスタをnチャネルフィントランジスタ、pチャネルフィントランジスタにより構成し、パスゲートトランジスタN1(N2)を構成するソース/ドレイン領域としてのフィンの長さをゲート電極G1(G2)に対して非対称として記憶ノードA(B)に接続されるソース/ドレイン領域の一方に抵抗R1(R2)を付加している。この場合、フィンの長さを一定とし、ゲート電極G1(G2)の形成位置をフィンの長さの中央部からオフセットさせることにより、ソース/ドレイン領域をゲート電極G1(G2)に対して非対称としている。したがって、SRAMセルの占有面積の増大を抑制して抵抗R1(R2)を設けることができ、書き込み特性の向上とデータ読み出し時における安定性を確保することができる。
尚、第1乃至第5の実施形態において、オフセットスペーサ12は、省略可能である。
また、本発明は、各実施形態に限定されるものではなく、発明の要旨を変えない範囲において種々変形実施可能なことは勿論である。
第1の実施形態に係るSRAMを示す平面図。 本発明の実施形態に適用されるSRAMを示す等価回路図。 図1のIII−III線に沿った断面図。 図4(a)(b)(c)は、図3に示す構成の製造方法を示す断面図。 第2の実施形態に係るSRAMの要部を示す断面図。 図6(a)(b)は、図5に示す構成の製造方法を示す断面図。 図7(a)(b)は、図6(b)に続く製造方法を示す断面図。 第3の実施形態に係るSRAMの要部を示す断面図。 図9(a)(b)は、図8に示す構成の製造方法を示す断面図。 図10(a)(b)(c)は、図9(b)に続く製造方法を示す断面図。 図10(c)に続く製造方法を示す断面図。 第4の実施形態に係るSRAMの要部を示す断面図。 図13(a)(b)(c)は、図12に示す構成の製造方法を示す断面図。 図14(a)(b)(c)は、図13(c)に続く製造方法を示す断面図。 第5の実施形態に係るSRAMの要部を示す断面図。 図16(a)(b)は、図15に示す構成の製造方法を示す断面図。 図17(a)(b)(c)は、図16(b)に続く製造方法を示す断面図。 第6の実施形態に係るSRAMを示す平面図。 図18に示すトランジスタN1を取り出して示す平面図。 図19のXX−XX線に沿った断面図。 図19のXXI−XXI線に沿った断面図。
符号の説明
N1、N2…パスゲートトランジスタ、N3、N4…プルダウントランジスタ、G1〜G4…ゲート電極、R1、R2…抵抗、14a、14b…エクステンション領域、16a、16b…拡散層、BL、/BL…ビット線、A、B…記憶ノード、62…フィン。

Claims (5)

  1. 相補データを記憶する第1、第2の記憶ノードを有する記憶部と、
    前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、
    前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、
    前記第1、第2の転送トランジスタは、前記第1、第2のビット線に接続されたエクステンション領域を有する第1の拡散層と、前記第1、第2の記憶ノードに接続されたエクステンション領域を有する第2の拡散層をそれぞれ有し、前記第1の拡散層は基板の表面領域内に設けられ、前記第2の拡散層は、前記基板に設けられた凹部の底部内に設けられることを特徴とするスタティック型半導体記憶装置。
  2. 相補データを記憶する第1、第2の記憶ノードを有する記憶部と、
    前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、
    前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、
    前記第1、第2の転送トランジスタは、前記第1、第2のビット線に接続されたエクステンション領域を有する第1の拡散層と、前記第1、第2の記憶ノードに接続されたエクステンション領域を有する第2の拡散層をそれぞれ有し、前記第1の拡散層は基板の表面領域内に設けられ、前記第2の拡散層は、前記基板上に設けられた半導体層内に設けられることを特徴とするスタティック型半導体記憶装置。
  3. 相補データを記憶する第1、第2の記憶ノードを有する記憶部と、
    前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、
    前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、
    前記第1、第2の転送トランジスタは、ゲート電極に対して対称に第1、第2の拡散層をそれぞれ有し、前記第1、第2のビット線に接続される前記第1の拡散層のみ、それぞれシリサイド層を有し、前記第1、第2の記憶ノードに接続される前記第2の拡散層は前記第1の拡散層より高い抵抗値を有することを特徴とするスタティック型半導体記憶装置。
  4. 相補データを記憶する第1、第2の記憶ノードを有する記憶部と、
    前記第1の記憶ノードと第1のビット線との間に接続された第1の転送トランジスタと、
    前記第2の記憶ノードと第2のビット線との間に接続された第2の転送トランジスタとを有するスタティック型半導体記憶装置であって、
    前記第1、第2の転送トランジスタは、フィンと、前記フィンに絶縁膜を介して設けられたゲート電極と、前記ゲート電極の両側に位置する前記フィン内に形成されたソース/ドレイン領域をそれぞれ有し、前記ゲート電極は、前記フィンの長手方向中央部から前記第1、第2のビット線方向にオフセットされて配置され、前記第1、第2の記憶ノードに接続される前記ソース/ドレイン領域は、前記第1、第2のビット線に接続される前記ドレイン/ソース領域より高い抵抗値を有することを特徴とするスタティック型半導体記憶装置。
  5. 前記第1、第2の転送トランジスタのチャネル領域は、それぞれ前記第1、第2の記憶ノード方向に第2の拡散層とオフセットされ、前記チャネル領域と第2の拡散層の間の領域が抵抗として機能することを特徴とする請求項1又は2記載のスタティック型半導体記憶装置。
JP2007008082A 2007-01-17 2007-01-17 スタティック型半導体記憶装置 Abandoned JP2008177278A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007008082A JP2008177278A (ja) 2007-01-17 2007-01-17 スタティック型半導体記憶装置
US12/015,730 US7829942B2 (en) 2007-01-17 2008-01-17 Static semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008082A JP2008177278A (ja) 2007-01-17 2007-01-17 スタティック型半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2008177278A true JP2008177278A (ja) 2008-07-31

Family

ID=39640415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008082A Abandoned JP2008177278A (ja) 2007-01-17 2007-01-17 スタティック型半導体記憶装置

Country Status (2)

Country Link
US (1) US7829942B2 (ja)
JP (1) JP2008177278A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017535A1 (ja) * 2010-08-05 2012-02-09 ルネサスエレクトロニクス株式会社 半導体装置
JP2012505552A (ja) * 2008-11-06 2012-03-01 クアルコム,インコーポレイテッド フィン電界効果トランジスタ(フィンfet)デバイスの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503103B1 (ko) * 2011-03-25 2015-03-17 엘지디스플레이 주식회사 터치 센서 내장형 표시장치와 그 구동 방법
US9767890B2 (en) * 2011-12-31 2017-09-19 Intel Corporation Operation aware auto-feedback SRAM
US9362128B2 (en) * 2014-04-22 2016-06-07 Globalfoundries Singapore Pte. Ltd. Methods for fabricating integrated circuits and components thereof
CN113327848B (zh) * 2021-05-28 2024-03-08 上海华力微电子有限公司 闪存器件及其制造方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508483A (ja) * 1973-05-21 1975-01-28
JPS63237561A (ja) * 1987-03-26 1988-10-04 Nec Corp 半導体記憶装置およびその製造方法
JPH01266767A (ja) * 1988-04-18 1989-10-24 Fujitsu Ltd Mosfet
JPH02141992A (ja) * 1988-07-01 1990-05-31 Vitesse Semiconductor Corp 高い速度と改善されたセル・スタビリティーを持つスタティックramセル
JPH03238867A (ja) * 1990-02-15 1991-10-24 Nec Corp 絶縁ゲート型電界効果トランジスタ
JPH04186767A (ja) * 1990-11-20 1992-07-03 Sharp Corp 半導体装置の製造方法
JPH05304274A (ja) * 1991-06-19 1993-11-16 Nec Corp スタティック型半導体記憶装置
JPH07142728A (ja) * 1993-09-21 1995-06-02 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH07263677A (ja) * 1994-03-18 1995-10-13 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH10144922A (ja) * 1996-10-17 1998-05-29 Mitsubishi Semiconductor America Inc 電界効果トランジスタ(fet)および半導体電界効果トランジスタを形成する方法
US5981995A (en) * 1997-06-13 1999-11-09 Advanced Micro Devices, Inc. Static random access memory cell having buried sidewall transistors, buried bit lines, and buried vdd and vss nodes
JP2002506575A (ja) * 1997-06-27 2002-02-26 シーメンス アクチエンゲゼルシヤフト Sramセルアセンブリおよびその製造方法
JP2003023112A (ja) * 2001-07-09 2003-01-24 Hitachi Ltd 半導体集積回路装置
JP2004221245A (ja) * 2003-01-14 2004-08-05 Seiko Epson Corp 半導体装置及びその製造方法
JP2006196736A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2008060497A (ja) * 2006-09-04 2008-03-13 Sony Corp 半導体装置および半導体装置の製造方法
JP2009503893A (ja) * 2005-08-03 2009-01-29 インターナショナル・ビジネス・マシーンズ・コーポレーション フィン型電界効果トランジスタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513714A (ja) * 1990-01-25 1993-01-22 Texas Instr Inc <Ti> 溝型トランジスタ使用の双安定論理デバイス

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508483A (ja) * 1973-05-21 1975-01-28
JPS63237561A (ja) * 1987-03-26 1988-10-04 Nec Corp 半導体記憶装置およびその製造方法
US4920397A (en) * 1987-03-26 1990-04-24 Nec Corporation Structure of complementary field effect transistor
JPH01266767A (ja) * 1988-04-18 1989-10-24 Fujitsu Ltd Mosfet
JPH02141992A (ja) * 1988-07-01 1990-05-31 Vitesse Semiconductor Corp 高い速度と改善されたセル・スタビリティーを持つスタティックramセル
JPH03238867A (ja) * 1990-02-15 1991-10-24 Nec Corp 絶縁ゲート型電界効果トランジスタ
JPH04186767A (ja) * 1990-11-20 1992-07-03 Sharp Corp 半導体装置の製造方法
JPH05304274A (ja) * 1991-06-19 1993-11-16 Nec Corp スタティック型半導体記憶装置
JPH07142728A (ja) * 1993-09-21 1995-06-02 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH07263677A (ja) * 1994-03-18 1995-10-13 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH10144922A (ja) * 1996-10-17 1998-05-29 Mitsubishi Semiconductor America Inc 電界効果トランジスタ(fet)および半導体電界効果トランジスタを形成する方法
US5981995A (en) * 1997-06-13 1999-11-09 Advanced Micro Devices, Inc. Static random access memory cell having buried sidewall transistors, buried bit lines, and buried vdd and vss nodes
JP2002506575A (ja) * 1997-06-27 2002-02-26 シーメンス アクチエンゲゼルシヤフト Sramセルアセンブリおよびその製造方法
JP2003023112A (ja) * 2001-07-09 2003-01-24 Hitachi Ltd 半導体集積回路装置
JP2004221245A (ja) * 2003-01-14 2004-08-05 Seiko Epson Corp 半導体装置及びその製造方法
JP2006196736A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2009503893A (ja) * 2005-08-03 2009-01-29 インターナショナル・ビジネス・マシーンズ・コーポレーション フィン型電界効果トランジスタ
JP2008060497A (ja) * 2006-09-04 2008-03-13 Sony Corp 半導体装置および半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505552A (ja) * 2008-11-06 2012-03-01 クアルコム,インコーポレイテッド フィン電界効果トランジスタ(フィンfet)デバイスの製造方法
WO2012017535A1 (ja) * 2010-08-05 2012-02-09 ルネサスエレクトロニクス株式会社 半導体装置
JP5433788B2 (ja) * 2010-08-05 2014-03-05 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
US7829942B2 (en) 2010-11-09
US20080173955A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
KR101553438B1 (ko) Sram 셀의 컨택 플러그 및 이의 형성 방법
JP4855786B2 (ja) 半導体装置
JP5281069B2 (ja) 集積回路
JP4461154B2 (ja) 半導体装置
US7829952B2 (en) Semiconductor memory device and a method of manufacturing the same
JP5057739B2 (ja) 半導体記憶装置
US8124976B2 (en) Semiconductor device and method of manufacturing the same
US20110062523A1 (en) Semiconductor memory device and production method thereof
KR20140062404A (ko) Sram fⅰnfet 트랜지스터들을 위한 셀 레이아웃
JP2007036187A (ja) 一対のチャンネル領域に対応する単一ゲート電極を有する半導体素子及びランダムアクセスメモリ
US20050176193A1 (en) Method of forming a gate of a semiconductor device
JP2008177278A (ja) スタティック型半導体記憶装置
US6812534B2 (en) Static semiconductor memory device
KR100542750B1 (ko) 반도체 장치의 제조 방법.
JP4247163B2 (ja) 半導体装置およびその製造方法
JP2007043158A (ja) 無負荷sram、その動作方法及びその製造方法
US8134213B2 (en) Static random access memory and method for manufacturing the same
JP2009094162A (ja) マスクrom
US20220130975A1 (en) Integrated chip and method of forming thereof
US20070187745A1 (en) NAND-type semiconductor storage device and method for manufacturing same
JP4466732B2 (ja) 半導体記憶装置
JP2005310852A (ja) 半導体集積回路装置およびの製造方法
JP2009152468A (ja) 半導体装置
JP2006140396A (ja) 半導体集積回路装置およびその製造方法
JP2007043081A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120510