JP2008173744A - 搬送システムの搬送位置合わせ方法 - Google Patents

搬送システムの搬送位置合わせ方法 Download PDF

Info

Publication number
JP2008173744A
JP2008173744A JP2007011327A JP2007011327A JP2008173744A JP 2008173744 A JP2008173744 A JP 2008173744A JP 2007011327 A JP2007011327 A JP 2007011327A JP 2007011327 A JP2007011327 A JP 2007011327A JP 2008173744 A JP2008173744 A JP 2008173744A
Authority
JP
Japan
Prior art keywords
transport
pick
transfer
module
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007011327A
Other languages
English (en)
Inventor
Nobuki Kimura
延樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007011327A priority Critical patent/JP2008173744A/ja
Priority to PCT/JP2007/074421 priority patent/WO2008090694A1/ja
Priority to CNA2007800113900A priority patent/CN101410226A/zh
Priority to KR1020097004835A priority patent/KR20090082345A/ko
Priority to US12/441,415 priority patent/US20100008688A1/en
Publication of JP2008173744A publication Critical patent/JP2008173744A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39527Workpiece detector, sensor mounted in, near hand, gripper
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40562Position and orientation of end effector, teach probe, track them

Abstract

【課題】搬送システムの構成モジュールの実装状態に拘わらず,精度の高い搬送位置合わせを効率よく行う。
【解決手段】搬送経路X23,X24を通じてオリエンタ320と第2処理室220Bとの間でダミーウエハWdを搬送する際における,第2処理室での搬送位置の位置ずれの補正が可能な方向に対応するオリエンタでの搬送位置の位置ずれの補正が可能な方向を求めることにより位置ずれ補正用座標系を得る工程と,基準搬送経路X21,X22を通じてオリエンタから第2処理室まで搬送したダミーウエハを,搬送経路X23,X24を通じて第2処理室からオリエンタまで戻して搬送前後のダミーウエハの位置ずれを検出する工程と,位置ずれ補正用座標系に基づいて,検出された位置ずれがなくなるように搬送経路X23,X24による第2処理室での搬送位置を補正する工程とを行う。
【選択図】図19

Description

本発明は,被搬送物を搬送する搬送システムの搬送位置合わせ方法に関する。
基板例えば液晶基板などのFPD基板(フラットパネルディスプレイ基板)や半導体ウエハ(以下,単に「ウエハ」とも称する。)に対して,例えばドライエッチング,スパッタリング,CVD(Chemical
Vapor Deposition)等の所定の処理を施す基板処理装置は,例えばウエハに所定の処理を施すための複数の処理室から成るプロセス処理ユニットと,このプロセス処理ユニットに対してウエハを搬出入する搬送ユニットとを備える。
例えばクラスタツール型の基板処理装置の場合,プロセス処理ユニットは,断面多角形に形成された共通搬送室と,この周囲に気密に接続された複数の処理室とロードロック室などの複数のモジュールから構成される。また,搬送ユニットは,ウエハ収納容器(カセット容器)が設置される導入ポートと,カセット容器と処理ユニットとの間でウエハを搬出入する導入側搬送室を備えている。上記の共通搬送室と導入側搬送室はそれぞれ,処理室間やカセット容器と処理室の間でウエハを自動的に搬送する搬送機構を備えている。
このような基板処理装置において,例えばカセット容器に収納されたウエハに対して所定の処理を施す場合には,先ず導入側搬送室内の搬送機構によってカセット容器から未処理ウエハが搬出される。カセット容器から搬出された未処理ウエハは,ロードロック室へ搬入される前に,導入側搬送室に設けられた位置合わせ機構(例えばオリエンタ,プリアライメントステージ)へ搬入されて位置決めされる。位置決めされた未処理ウエハは,位置合わせ機構から搬出されてロードロック室へ搬入される。
ロードロック室へ搬入された未処理ウエハは,共通搬送室内の搬送機構によりロードロック室から搬出され,処理室へ搬入されて所定の処理が施される。そして,処理室での処理が完了した処理完了ウエハは,例えば元の経路を通ってカセット容器に戻される。
ところで,この種の基板処理装置ではその内部に,単数又は複数の搬送機構を有しており,ウエハの受け渡し及び搬送はこれらの搬送機構により自動的に行われる。これらの搬送機構は,例えば屈伸,旋回,及び昇降自在に構成されたアームを備え,このアーム先端のピックによりウエハを保持した状態で処理室などの所定のモジュールまで移動し,そのモジュール内の所定の搬送位置(例えば載置台上)にウエハを移載するようになっている。
このような搬送機構は,ある一定の場所に置かれているウエハを適正に保持して目的の場所まで搬送し,その場所の搬送位置に精度良く受け渡すことが求められる。また,ウエハやアームが基板処理装置内の部材に接触しないように調整されなければならない。このため,装置の組み立ての際や装置改造を行った際などには,搬送機構のピックの移動経路においてウエハの受け渡しを行う場所や障害物を回避するためにアームが通過すべき場所などの重要な位置を,搬送機構の動作を制御する制御部に例えば搬送位置座標として記憶させる作業,いわゆるティーチング作業が行なわれる。
このティーチング作業は,例えばカセット容器,ロードロック室の載置台,位置合わせ機構の載置台,各処理室のサセプタなど,ピックとの間でウエハの受け渡しが行われる基板処理装置内のすべての場所(モジュール)についてピック毎に行われる。
クラスタツール型の基板処理装置における搬送システムのティーチング方法(搬送位置合わせ方法)では,例えば搬送すべきウエハと直径が同一寸法で厚さも略同じようになされた透明板よりなる位置合わせ用のダミーウエハが用いられる。このダミーウエハには,例えばピックが保持すべき適正な場所に予めピックの輪郭等の目印が形成されており,ピック上にこのダミーウエハを適正な位置で保持させる際には,この目印がピックの輪郭と一致するように載置して保持させるようになっている。
先ず,ダミーウエハを自動搬送してもダミーウエハが内壁等に衝突しない程度の粗い精度(例えば±2mm程度の搬送誤差)で搬送位置座標を仮に決定しておく。次に,上記ダミーウエハを各モジュールの搬送位置(例えばロードロック室内の載置台上,真空処理室のサセプタ上など)にマニュアル操作で位置合わせしつつ高い位置精度で適正な位置に載置する。そして,このダミーウエハをピックにより位置決め機構であるオリエンタに搬送し,このオリエンタにて位置ずれ量を検出する。この位置ずれ量をなくすように仮に決定された搬送位置の座標を補正することで,搬送位置座標を制御部に記憶させてこれを確定させる。
しかしながら,このような方法では,ピックがアクセスする基板処理装置内のすべての場所についてオペレータが目視確認しながら注意深くピックをマニュアル操作して搬送位置合わせを行わなければならないことから,ティーチング作業に長時間を要してしまい,オペレータにとって大きな負担となっていた。
そこで,オペレータがマニュアル操作で搬送位置を合わせなければならない箇所をできる限り少なくすることができる搬送位置合わせ方法も案出されている(例えば特許文献1参照)。例えば,処理モジュールである各処理室にアクセス可能な共通搬送室内搬送機構のピックが2つあって,処理モジュールに搬送する際に中継される中継モジュールであるロードロック室が2つあるクラスタツール型の基板処理装置の場合,最終的に各処理モジュールに搬送されるまでの搬送経路は,共通搬送室内の搬送機構に備えられる2つのピック及び2つの中継モジュールのいずれかを通る4つの搬送経路があるため,ティーチング操作では,上記4つの搬送経路の搬送位置が確定されることになる。この場合,1つの搬送経路についての搬送位置をマニュアル操作で位置合わせしておけば,これを基準搬送経路として他の3つの搬送経路についての搬送位置を基準搬送経路による搬送位置に一致させるように自動で補正することができる。これにより,ティーチング作業にかかる時間を従来よりも短くすることができる。
特開2004−174669号公報
ところで,従来は,処理室やロードロック室などのモジュールでの搬送位置の位置ずれ(例えばウエハの中心位置の位置ずれ量や位置ずれ方向)は,位置合わせ機構での搬送位置の位置ずれと毎回関係が一致するものと考えられていたため,これを前提として位置ずれを補正していた。
しかしながら,実際には,モジュールでの搬送位置の位置ずれが,位置合わせ機構での搬送位置の位置ずれと毎回は一致しない場合があることが,実験により明らかになった。例えば,処理室やロードロック室などのモジュールの実装角度や位置が設計上の実装角度や位置からずれていると,モジュールでの搬送位置の位置ずれ方向は,位置合わせ機構での搬送位置の位置ずれ方向と一致しなくなる。しかも,両者の関係は,各モジュールの取り付け精度などの基板処理装置の組み立て精度に応じて異なるので,基板処理装置ごとに僅かながらもばらつきが生じる。
このため,従来のように,モジュールでの搬送位置の位置ずれが,位置合わせ機構での搬送位置の位置ずれと毎回関係が一致することを前提として補正したのでは,位置ずれを正確に補正できない場合もあるため,位置合わせ精度を高める際のネックになるという問題があった。近年では,搬送位置合わせについて,より高い精度が要求されるプロセス処理も増えきている。したがって,これらのプロセス処理に適合するように,搬送位置合わせの精度を従来以上に向上させることが所望されている。
本発明はこのような問題に鑑みてなされたものであり,その目的は,高い精度が要求されるプロセス処理にも適応させるために,搬送システムの構成モジュールの実装状態に拘わらず,より精度の高い搬送位置合わせを効率よく行うことができる搬送システムの搬送位置合わせ方法を提供することにある。
上記課題を解決するために,本発明のある観点によれば,被搬送物の位置ずれを検出する位置合わせ機構と,前記被搬送物を搬入可能なモジュールとを備え,前記位置合わせ機構及び前記モジュールの所定の搬送位置に複数の搬送経路を通じて前記被搬送物を搬送可能な搬送システムにおいて,前記複数の搬送経路の1つを基準搬送経路としたときに,前記モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,前記基準搬送経路を通じて前記位置合わせ機構から前記モジュールまで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記モジュールから前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,前記モジュールにおける搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらした位置合わせ用被搬送物を,前記他の搬送経路を通じて前記モジュールから前記位置合わせ機構まで搬送して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記モジュールでの搬送位置を補正する工程と,を有することを特徴とする搬送システムの搬送位置合わせ方法が提供される。
この方法によれば,前記他の搬送経路を通じて前記位置合わせ機構と前記モジュールとの間で前記被搬送物を搬送する際における,前記モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得るため,たとえモジュールの取り付け位置や取り付け角度が設計上のものとずれていたとしても,位置ずれ補正用座標系はその取り付け位置などのずれを反映したものとなる。したがって,モジュールの取り付け位置などにずれがあるか否か,またずれの大きさや方向に拘わらず他の搬送経路による前記モジュールでの搬送位置を正確に補正することができる。この結果,前記モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を極めて高い精度で合わせることができる。
前記搬送システムは,前記被搬送物を保持する複数のピックを備える搬送機構を備え,前記複数の搬送経路はそれぞれ,前記搬送機構の異なるピックで搬送した場合の搬送経路とすることができる。これによれば,複数のピックのうちどのピックを用いて被搬送物をモジュールに搬送しても,同じ搬送位置に搬送することができる。
前記モジュールは,搬入された前記被搬送物に対して所定の処理を施す処理モジュール,前記処理モジュールへ前記被搬送物を搬送する際にこの被搬送物を中継するための中継モジュール,前記処理室及び前記中継モジュールにアクセス可能な搬送機構を備える搬送モジュール,又は前記被搬送物を収納する収納モジュールのいずれかとすることができる。
上記課題を解決するために,本発明の他の観点によれば,被搬送物の位置ずれを検出する位置合わせ機構と,前記被搬送物を所定の搬送位置に搬送する際にこの被搬送物を中継するための複数の中継モジュールと,を備える搬送システムにおいて,前記複数の中継モジュールのうちの1つを基準中継モジュールとし,前記基準中継モジュールを通る搬送経路による搬送位置に,他の中継モジュールを通る搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,前記基準中継モジュールを通る搬送経路を通じて前記位置合わせ機構から前記所定の搬送位置まで搬送した位置合わせ用被搬送物を,前記他の中継モジュールを通る搬送経路を通じて前記所定の搬送位置から前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,前記他の中継モジュールを通る搬送経路を通じて前記位置合わせ機構と前記所定の搬送位置との間で前記被搬送物を搬送する際における,前記他の中継モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得る工程と,前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の中継モジュールでの搬送位置を補正する工程と,を有することを特徴とする搬送システムの搬送位置合わせ方法が提供される。
この方法によれば,前記他の中継モジュールを通る搬送経路を通じて前記位置合わせ機構と前記所定の搬送位置との間で前記被搬送物を搬送する際における,前記他の中継モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得るため,たとえ他の中継モジュールの取り付け位置や取り付け角度が設計上のものとずれていたとしても,位置ずれ補正用座標系はその取り付け位置などのずれを反映したものとなる。したがって,他の中継モジュールの取り付け位置などにずれがあるか否か,またずれの大きさや方向に拘わらず他の搬送経路による前記他の中継モジュールでの搬送位置を正確に補正することができる。この結果,基準中継モジュールを通る搬送経路による搬送位置に,他の中継モジュールを通る搬送経路による搬送位置を極めて高い精度で合わせることができる。
上記課題を解決するために,本発明の他の観点によれば,被搬送物の位置ずれを検出する位置合わせ機構と,搬入された前記被搬送物に所定の処理を施す1つ以上の処理モジュールと,前記被搬送物を前記処理モジュールに搬送する際にこの被搬送物を中継するための1つ以上の中継モジュールと,前記被搬送物を保持する1つ以上のピック部を有し,前記位置合わせ機構及び前記中継モジュールにアクセス可能な第1の搬送機構と,前記被搬送物を保持する第1,第2のピック部を有し,前記中継モジュール及び前記処理モジュールにアクセス可能な第2の搬送機構と,を備える搬送システムにおいて,前記位置合わせ機構と前記処理モジュールとの間に構成される前記被搬送物の複数の搬送経路のうち,前記第1の搬送機構のピック部,前記中継モジュール,及び前記第2の搬送機構の第1のピック部を経由する搬送経路を基準搬送経路とし,前記第1の搬送機構のピック部,前記中継モジュール,及び前記第2の搬送機構の第2のピック部を経由する搬送経路を他の搬送経路としたときに,前記処理モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,前記基準搬送経路を通じて前記位置合わせ機構から前記処理モジュールまで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記処理モジュールから前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,前記基準搬送経路を通じて前記位置合わせ機構から前記処理モジュールまで搬送した前記位置合わせ用被搬送物を,前記処理モジュールにおける搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらして前記第2の搬送機構の第2のピック部に受け渡し,前記他の搬送経路を通じて前記位置合わせ機構まで戻して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記処理モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記処理モジュールでの搬送位置を補正する工程と,を有することを特徴とする搬送システムの搬送位置合わせ方法が提供される。
この方法によれば,前記他の搬送経路を通じて前記位置合わせ機構と前記処理モジュールとの間で前記被搬送物を搬送する際における,前記処理モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得るため,たとえ処理モジュールの取り付け位置や取り付け角度が設計上のものとずれていたとしても,位置ずれ補正用座標系はその取り付け位置などのずれを反映したものとなる。したがって,処理モジュールの取り付け位置などにずれがあるか否か,またずれの大きさや方向に拘わらず他の搬送経路による前記処理モジュールでの搬送位置を正確に補正することができる。この結果,前記処理モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を極めて高い精度で合わせることができる。
また,前記処理モジュールに対する前記第2の搬送機構の第2のピック部の位置ずれの補正が可能な方向は,前記処理モジュールへの前記第2の搬送機構の第2のピック部の進入方向と,前記進入方向に直交する方向とすることができる。
また,前記搬送システムが複数の処理モジュールを備える場合,前記搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程,前記位置ずれ補正用座標系を得る工程,及び前記処理モジュールでの搬送位置を補正する工程を,前記複数の処理モジュールそれぞれについて行うことが好ましい。これによれば,すべての処理モジュールについて,前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を極めて高い精度で合わせることができる。
上記課題を解決するために,本発明の他の観点によれば,被搬送物の位置ずれを検出する位置合わせ機構と,搬入された前記被搬送物に所定の処理を施す1つ以上の処理モジュールと,前記被搬送物を前記各処理モジュールに搬送する際にこの被搬送物を中継するための第1,第2の中継モジュールと,前記被搬送物を保持する1つ以上のピック部を有し,前記位置合わせ機構及び前記各中継モジュールにアクセス可能な第1の搬送機構と,前記被搬送物を保持する1つ以上のピック部を有し,前記各中継モジュール及び前記処理モジュールにアクセス可能な第2の搬送機構と,を備える搬送システムにおいて,前記位置合わせ機構と前記第2の搬送機構のピック部との間に構成される前記被搬送物の複数の搬送経路のうち,前記第1の搬送機構のピック部と前記第1の中継モジュールを経由する搬送経路を基準搬送経路とし,前記第1の搬送機構のピック部と前記第2の中継モジュールを経由する搬送経路を他の搬送経路としたときに,前記第2の搬送機構のピック部での前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,前記基準搬送経路を通じて前記位置合わせ機構から前記第2の搬送機構のピック部まで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記第2の搬送機構のピック部から前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,前記基準搬送経路を通じて前記位置合わせ機構から前記第2の搬送機構のピック部まで搬送した前記位置合わせ用被搬送物を,前記第2の搬送機構のピック部における搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらして前記第2の中継モジュールに載置し,前記他の搬送経路を通じて前記第2の中継モジュールから前記位置合わせ機構まで戻して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記第2の搬送機構のピック部での搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記第2の搬送機構のピック部での搬送位置を補正する工程と,を有することを特徴とする搬送システムの搬送位置合わせ方法が提供される。
この方法によれば,前記他の搬送経路を通じて前記位置合わせ機構と前記第2の搬送機構のピック部との間で前記被搬送物を搬送する際における,前記第2の搬送機構のピック部での搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得るため,たとえ第2の中継モジュールの取り付け位置や取り付け角度が設計上のものとずれていたとしても,位置ずれ補正用座標系はその取り付け位置などのずれを反映したものとなる。したがって,第2の中継モジュールの取り付け位置などにずれがあるか否か,またずれの大きさや方向に拘わらず他の搬送経路による前記第2の中継モジュールでの搬送位置を正確に補正することができる。この結果,第1の中継モジュールを通る搬送経路による第2の搬送機構のピック部での搬送位置に,第2の中継モジュールを通る搬送経路による第2の搬送機構のピック部での搬送位置を極めて高い精度で合わせることができる。
また,前記第2の中継モジュールに対する前記第2の搬送機構のピック部の位置ずれの補正が可能な方向は,前記第2の中継モジュールへの前記第2の搬送機構のピック部の進入方向と,前記進入方向に直交する方向とすることができる。
また,前記第2の搬送機構が複数のピック部を備える場合,前記搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程,前記位置ずれ補正用座標系を得る工程,及び前記第2の搬送機構のピック部での搬送位置を補正する工程を,前記第2の搬送機構の前記複数のピック部それぞれについて行うことが好ましい。これによれば,第2の搬送機構のすべてのピックについて,前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を極めて高い精度で合わせることができる。
本発明によれば,搬送システムの構成モジュールの実装状態に拘わらず,より精度の高い搬送位置合わせを効率よく行うことができる。
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
(搬送システムの構成例)
先ず,本発明の実施形態にかかる搬送システムについて図面を参照しながら説明する。ここでは,ウエハなどの基板を搬送する搬送システムとして機能し得る基板処理装置を例に挙げる。図1は本発明の実施形態にかかる基板処理装置100の概略構成を示す図である。この基板処理装置100は,被処理基板例えば半導体ウエハWに対して成膜処理,エッチング処理などの各種の処理を行う処理ユニット200と,この処理ユニット200に対してウエハWを搬出入する搬送ユニット300と,基板処理装置100全体の動作を制御する制御部400を備える。
搬送ユニット300は図1に示すように,基板収納容器例えばカセット容器302(302A〜302C)と処理ユニット200との間でウエハWを搬出入する導入側搬送室310を有している。導入側搬送室310は,断面略多角形(例えば長方形)の箱体状に形成されている。導入側搬送室310の一側面には,カセット容器302A〜302Cを載置可能なように構成された複数の導入ポート304(304A〜304C)が並設されている。なお,導入ポートに設置されたカセット容器は,ウエハWを収納する収納モジュールとして機能する。
各カセット容器302(302A〜302C)は,例えば最大25枚のウエハWを等ピッチで多段に載置して収容できるものであり,内部が例えばNガス雰囲気で満たされた密閉構造となっている。そして,各カセット容器302A〜302Cと導入側搬送室310は,搬入口306A〜306Cによって接続されており,これらの搬入口306A〜306Cを介してウエハWが搬出入できるようになっている。なお,導入ポート304とカセット容器302の数は,図1に示す例に限られない。
導入側搬送室310の端部,すなわち断面略多角形状の短辺を構成する側面には,位置合わせ機構としてのオリエンタ(プリアライメントステージ)320が設けられている。このオリエンタ320は,その内部に,回転載置台322とウエハWの周縁部を光学的に検出する光学センサ324を備えている。回転載置台322は,その上にウエハWが載置されているか否かを検出するためのセンサ(図示せず)を備えている。このオリエンタ320では,例えばウエハWに予め形成されているオリエンテーションフラットやノッチなどが光学センサ324によって検出され,この検出結果に応じてウエハWの回転角度が調整される。また,光学センサ324によってウエハWの中心と回転載置台322の回転中心とのずれの量と方向が検出される。このウエハWの搬送位置情報は制御部400に送信される。
導入側搬送室310内には,ウエハWをその長手方向(図1に示す矢印方向)に沿って搬送する搬送ユニット側搬送機構(第1の搬送機構)312が設けられている。搬送ユニット側搬送機構312が固定される基台314は,導入側搬送室310内の中心部を長手方向に沿って設けられた案内レール316上にスライド移動可能に支持されている。この基台314と案内レール316にはそれぞれ,リニアモータの可動子と固定子とが設けられている。案内レール316の端部には,このリニアモータを駆動するためのリニアモータ駆動機構(図示せず)が設けられている。リニアモータ駆動機構は,制御部400からの制御信号に基づいて制御され,これによって搬送ユニット側搬送機構312が基台314とともに案内レール316に沿って矢印方向へ移動する。
搬送ユニット側搬送機構312は,2つのアーム部を備えたいわゆるダブルアーム構造を採用している。また,各アーム部は,例えば屈伸・昇降・旋回が可能な多関節構造を有している。そして,各アームの先端にはウエハWを保持するためのピックA1,A2が備えられており,搬送ユニット側搬送機構312は一度に2枚のウエハWを取り扱うことができる。このような搬送ユニット側搬送機構312によって,例えばカセット容器302,オリエンタ320,及び後述の第1,第2ロードロック室230M,230Nなどに対して,ウエハWを交換するように搬出入することができる。搬送ユニット側搬送機構312のピックA1,A2はそれぞれ,ウエハWを保持しているか否かを検出するためのセンサ(図示せず)を備えている。なお,搬送ユニット側搬送機構312のアーム部の数は上記のものに限られず,例えば1つのアーム部を有するシングルアーム機構としてもよい。
次に,処理ユニット200の構成例について説明する。本実施形態にかかる基板処理装置100がクラスタツール型であることから,処理ユニット200は図1に示すように,断面多角形(例えば六角形)に形成された共通搬送室210と,その周囲に気密に接続された複数の処理室220(第1〜第4処理室220A〜220D)及び第1,第2ロードロック室230M,230Nから構成されている。これら第1〜第4処理室220A〜220Dはそれぞれ,ウエハWに所定の処理を施す処理モジュールを構成し,第1,第2ロードロック室230M,230Nはそれぞれ,ウエハWを搬送中に中継するための第1,第2中継モジュールを構成する。
第1〜第4処理室220A〜220Dはそれぞれ,ゲートバルブ240A〜240Dを介して共通搬送室210に接続されている。また,第1,第2ロードロック室230M,230Nの先端はそれぞれ,ゲートバルブ(真空側ゲートバルブ)240M,240Nを介して共通搬送室210に接続されており,第1,第2ロードロック室230M,230Nの基端はそれぞれ,ゲートバルブ(大気側ゲートバルブ)242M,242Nを介して導入側搬送室310の他側面に接続されている。
処理室220A〜220Dはそれぞれ,内部に載置台(サセプタ)222A〜222Dを備えており,これに載置されたウエハWに例えば成膜処理(例えばプラズマCVD処理)やエッチング処理(例えばプラズマエッチング処理)などの所定の処理が施される。また,各処理室220A〜220Dには,内部に処理ガスやパージガスなど所定のガスを導入するためのガス導入系(図示せず)及び内部を排気するための排気系(図示せず)が接続されている。なお,処理室220の数は,図1に示す例に限られない。
第1,第2ロードロック室230M,230Nは,ウエハWを一時的に保持して圧力を調整した後に,次段へパスする機能を有している。各第1,第2ロードロック室230M,230Nの内部にはそれぞれ,ウエハWを載置可能な受渡台232M,232Nが設けられている。
共通搬送室210内には,2つのアーム部を備えたいわゆるダブルアーム構造を採用した処理ユニット側搬送機構(第2の搬送機構)212が設けられている。そして,処理ユニット側搬送機構212の各アーム部は,例えば屈伸・昇降・旋回が可能な多関節構造を有しており,各アームの先端にはウエハWを保持するためのピックB1,B2が備えられている。このような処理ユニット側搬送機構212は一度に2枚のウエハWを取り扱うことができ,各ロードロック室230M,230N及び各処理室220A〜220Dとの間でウエハWを搬送することができる。処理ユニット側搬送機構212のピックB1,B2はそれぞれ,ウエハWを保持しているか否かを検出するためのセンサ(図示せず)を備えている。なお,処理ユニット側搬送機構212のアーム部の数は上記のものに限られず,例えば1つのアーム部を有するシングルアーム機構としてもよい。
制御部400は,搬送ユニット側搬送機構312,処理ユニット側搬送機構212,各ゲートバルブ,オリエンタ320の回転載置台322などを含む基板処理装置100全体の動作を制御する。また,制御部400は,例えばオリエンタ320の光学センサ324が検出したウエハWの位置ずれ量や位置ずれ方向を示すデータを受信してこのデータを記憶するとともに,このデータを所定の手順に従って演算する機能を有する。
(処理部の構成例)
続いて,制御部400の具体的な構成例について図面を参照しながら説明する。制御部400は,図2に示すように,制御部本体を構成するCPU(中央処理装置)410,CPU410が各部を制御するデータなどを格納するROM(Read Only memory)420,CPU410が行う各種データ処理のために使用されるメモリエリアなどを設けたRAM(Random Access Memory)430,操作画面や選択画面などを表示する液晶ディスプレイなどで構成される表示手段440,オペレータによる種々のデータの入出力などを行うことができる入出力手段450,例えばブザーのような警報器などで構成される報知手段460,基板処理装置100の各部を制御するための各種コントローラ470,基板処理装置100に適用される各種プログラムデータを格納するプログラムデータ記憶手段480,及びプログラムデータに基づくプログラム処理を実行するときに使用する各種設定情報を記憶する設定情報記憶手段490を備える。プログラムデータ記憶手段480と設定情報記憶手段490は,例えばフラッシュメモリ,ハードディスク,CD−ROMなどの記録媒体で構成され,必要に応じてCPU410によってデータが読み出される。
プログラムデータ記憶手段480には,例えば搬送ユニット側搬送機構312と処理ユニット側搬送機構212の動作を制御するプログラムを記憶する搬送プログラム482と,各処理室220A〜220DにおけるウエハWに対するプロセス処理時に実行されるプログラムを記憶するプロセス処理プログラム484などが記憶されている。
また,設定情報記憶手段490には,例えば搬送ユニット側搬送機構312と処理ユニット側搬送機構212がアクセスしてウエハWを搬送する箇所の搬送位置座標などを記憶する搬送設定情報記憶領域492と,プロセス処理における処理室内圧力,ガス流量,高周波電力などのレシピデータを記憶するプロセス処理設定情報格納領域494が確保されている。搬送設定情報記憶領域492には,各箇所の搬送位置座標をそれぞれ記憶できるようになっている。そして,例えば搬送設定情報記憶領域492に記憶されている搬送位置座標を補正する場合には,その補正後の搬送位置座標に置き換えて記憶する(上書する)ことによって,搬送位置座標を確定する。また,一度確定した搬送位置座標さらに補正する場合には,その補正後の搬送位置座標に置き換えて記憶する(上書する)ことによって,搬送位置座標を確定する。
これらのCPU410,ROM420,RAM430,表示手段440,入出力手段450,報知手段460,各種コントローラ470,プログラムデータ記憶手段480,及び設定情報記憶手段490は,制御バス,システムバス,データバスなどのバスラインによって電気的に接続されている。
(搬送システムの搬送位置合わせ処理の概要)
次に,上記基板処理装置(搬送システム)100を用いて行う搬送位置合わせ処理(ティーチング操作)の概要を図面を参照しながら説明する。この搬送位置合わせ処理では,各処理室220A〜220Dにおいて所定のプロセス処理が施される製品用のウエハWに代えて,搬送位置合わせ用のダミーウエハWdを用いる。このダミーウエハWdは,透明板から形成されたものであり,その直径と厚みは,製品用のウエハWと実質的に同一とされている。また,この表面には例えばピックA1,A2,B1,B2の輪郭に合った目印が描かれており,この目印とピックの輪郭を一致させることによって,各ピックにダミーウエハWdを適正な位置で保持させることができる。
また,この搬送位置合わせ処理では,先ず共通搬送室210とオリエンタ320との間で取り得るすべての搬送経路に関する位置合わせを行った上で(第1搬送位置合わせ処理),各処理室220A〜220Dの各載置台222A〜222Dに対する位置合わせを行う(第2搬送位置合わせ処理)。これにより,どの搬送経路を経由しても各載置台222A〜222D上の同じ搬送位置に搬送できるようになる。
また,同一場所に各搬送機構212,312の相異なるピックでアクセスする場合は,搬送経路は異なるものとする。例えば上記基板処理装置100では,オリエンタ320から第1,第2ロードロック室230M,230NのいずれかへウエハWを搬送するのに,搬送ユニット側搬送機構312のピックA1,A2のいずれかが選択的に用いられるので,2つの搬送経路が存在する。さらに,各処理室220A〜220DへウエハWを搬送するのに,処理ユニット側搬送機構212のピックB1,B2のいずれかが選択的に用いられ,その搬送の際には第1,第2ロードロック室230M,230Nのいずれか一方を経由してウエハWが搬送されるので,4つの搬送経路が存在する。したがって,最終的に各処理室220A〜220DにウエハWを搬送するには,搬送に用いるピックA1,A2,B1,B2とロードロック室230M,230Nの組み合わせにより最大8つの搬送経路がそれぞれ存在することになる。
これらの搬送経路のうち,搬送ユニット側搬送機構312のピックA1又はA2を経由する2つの搬送経路については,ピックA1,A2がオリエンタ320及び第1,第2ロードロック室230M,230Nに直接アクセスすることができるので,それぞれに対して直接アクセスして搬送位置座標を確定する。これに対して,処理ユニット側搬送機構212のピックB1又はB2を経由する4つの搬送経路については,ピックB1,B2はオリエンタ320に直接アクセスできない。このため,搬送ユニット側搬送機構312のピックA1とA2を経由する2つの搬送経路を確定させてから,これらのうちのいずれかの搬送経路を用いて,オリエンタ320により間接的に搬送位置合わせを行って搬送位置座標を確定する。
ここで,処理ユニット側搬送機構212のピックB1又はB2とロードロック室230M又は230Nを経由する4つの搬送経路についての搬送位置合わせ処理について説明する。これらの搬送経路のうちの1つについて搬送位置を確定し,これを基準搬送経路としたときに,この基準搬送経路によってウエハWが搬送される搬送位置に,他の搬送経路による搬送位置を合わせるように補正する。
例えばウエハWを第2処理室220Bの所定の搬送位置(例えば載置台222B上)に搬送するのに処理ユニット側搬送機構212のピックB1を経由する搬送経路XaとピックB2を経由する搬送経路Xbがあった場合を例に挙げて図面を参照しながら説明する。図3は,オリエンタ320と第2処理室220Bとの間の搬送経路を示す図である。図3では,説明を簡単にするために,オリエンタ320と第2処理室220B以外の場所は省略している。
先ず処理ユニット側搬送機構212のピックB1を経由する搬送経路Xaによって第2処理室220Bに搬送されるウエハWの搬送位置を,例えばダミーウエハWdを使った上述のマニュアル操作により確定し,この搬送経路Xaを基準搬送経路とする。次に,オリエンタ320内に適正に置かれたダミーウエハWdを基準搬送経路である搬送経路Xaを経由して第2処理室220Bの所定の搬送位置に一旦搬送し,次いでそのダミーウエハWdを他の搬送経路である搬送経路Xbを経由してオリエンタ320まで搬送して戻す。
そして,オリエンタ320において搬送前後のダミーウエハWdの位置ずれを検出し,検出された位置ずれがなくなるように,他の搬送経路である搬送経路Xbによる搬送位置を補正する。具体的にはオリエンタ320において搬送前後のダミーウエハWdの中心が一致するように,処理ユニット側搬送機構212のピックB2の処理室220Bに対する搬送位置を補正する。
このような他の搬送経路による搬送位置の補正方法の具体例について説明する。上述した搬送前後のダミーウエハWdの中心がオリエンタ320の座標系(XY座標系)でそれぞれP0,P1である場合を図4に示す。なお,オリエンタ320において搬送前後のダミーウエハWdの中心の位置ずれは,例えば位置ずれ量(偏心量)V及び位置ずれ方向(偏心方向)αとして検出されるので,オリエンタ320の座標系におけるX軸には位置ずれ量Vと位置ずれ方向αの余弦関数の積(V×cosα)をとり,Y軸には位置ずれ量Vと位置ずれ方向αの正弦関数の積(V×sinα)をとる。この例では,ダミーウエハWdは,P0とP1とはV1だけ位置ずれしているので,制御部400によって位置ずれV1がなくなるように,ピックB2の第2処理室220B(載置台222B)に対する搬送位置を補正する。
ここで,オリエンタ320の座標系(XY座標系)に,ピックB2の第2処理室220B(載置台222B)に対する搬送位置座標系(Rθ座標系)を重ねると,図5に示すようになる。図5に点線で示す搬送位置座標系は,ダミーウエハWdの中心位置を原点としてピックB2のアームの旋回角度を直線近似したθ軸と伸縮方向Rを表すR軸で示す。なお,本実施形態においては,ピックB1,B2のアームの左旋回方向をθ軸のプラス方向とし,アームの伸びる方向をR軸のプラス方向とする。
図5に示すように,オリエンタ320でのダミーウエハWdの位置ずれを示すベクトルV1は,搬送位置座標系においてR軸方向のベクトルV1R(大きさ|V1R|)とθ軸方向のベクトルV1θ(大きさ|V1θ|)に分解することができる。したがって,ピックB2の第2処理室220Bに対する搬送位置をR軸のマイナス方向へR軸補正量|V1R|,θ軸のマイナス方向へθ軸補正量|V1θ|だけ補正すれば,P1がP0に一致するようになる。この場合,R軸補正量|V1R|は例えば直線θ軸とP0との距離DRより算出し,θ軸補正量|V1θ|は例えば直線R軸とP0との距離Dθより算出する。
これにより,基準搬送経路である搬送経路Xaによる搬送位置と,他の搬送経路である搬送経路Xbによる搬送位置とを一致させることができる。また,1つの搬送経路による搬送位置のみをマニュアル操作で確定するだけで,他の搬送経路については自動で位置合わせすることができるので,マニュアル操作で搬送位置を合わせなければならない箇所を少なくすることができる。
ところで,従来は,処理室220やロードロック室230などのモジュールでの搬送位置の位置ずれ(例えばウエハWの中心位置の位置ずれ量や位置ずれ方向)は,位置合わせ機構であるオリエンタ320での搬送位置の位置ずれと毎回関係が一致するものと考えられていたため,これを前提として位置ずれを補正していた。すなわち,図5においてオリエンタ320の座標系(XY座標系)における位置ずれを示すベクトルV1は,搬送位置座標系(Rθ座標系)における位置ずれを示すベクトルV1と一致するものとして,各モジュールにおける搬送位置座標の補正を行っていた。
しかしながら,実際には,処理室220,ロードロック室230,オリエンタ320の取り付け誤差などの影響を受けて,処理室220の搬送位置の位置ずれが,オリエンタ320での搬送位置の位置ずれと一致しない場合があることが,実験により明らかになった。
例えば図6に示すように,第2処理室220BでダミーウエハWdの中心位置を例えば0.15mmずつR軸方向とθ軸方向にずらしてピックB2を通る搬送経路Xbでオリエンタ320まで搬送して位置ずれを検出し,これをオリエンタ320の座標系にプロットすると,オリエンタ320の座標系における実際のR軸方向とθ軸方向の位置ずれは,第2処理室220Bの搬送位置座標系(Rθ座標系)のR軸方向とθ軸方向に一致していないことがわかった。
このように,処理室220,オリエンタ320などの実装角度や位置が設計上の実装角度や位置からずれていると,処理室220でのダミーウエハWdの搬送位置の位置ずれ方向は,処理室220からオリエンタ320に搬送したときのダミーウエハWdの搬送位置の位置ずれ方向と一致しなくなる。
例えば図7に示すように,第2処理室220Bの搬送位置座標系(R軸,θ軸)とこの第2処理室220Bについての実際のオリエンタ320での座標系(Ra軸,θa軸)とが一致していない場合には,図5に示す座標系で算出されたR軸補正量|V1R|,θ軸補正量|V1θ|だけそれぞれR軸,θ軸のマイナス方向に補正しても,実際にはRa軸のマイナス方向に|V1R|(ベクトルV1Ra),θa軸のマイナス方向に|V1θ|(ベクトルV1θa)だけ補正されることになる。
これにより,オリエンタ320からピックB1を経由する搬送経路Xaを通じて第2処理室220Bまで搬送され,第2処理室220BからピックB2を経由する搬送経路Xbを通じてオリエンタ320に戻されたダミーウエハWdの位置は,P1からP1aに補正されたことになるので,補正前に比して位置ずれが少なくなってはいるものの,未だP0とP1aと距離の分だけ位置ずれが残ってしまうことになる。
このように,処理室220での搬送位置の位置ずれが,その処理室220からオリエンタ320にダミーウエハWdを搬送した際におけるオリエンタ320での搬送位置の位置ずれに一致することを前提として搬送位置座標の補正を行うと,処理室220などの取り付け精度によっては,例えば十分の一ミリメートルオーダの搬送位置の位置ずれが残る場合があった。すなわち,上記の前提の下では,位置ずれを正確に補正できない場合があり,位置合わせ精度をより一層向上させようとしても限界がある。
そこで,本実施形態では,処理室220についての搬送位置座標の位置ずれ補正方向(例えば図6,図7に示すR軸,θ軸)に対応するオリエンタ320での位置ずれの補正が可能な方向(例えば図6,図7に示すRa軸,θa軸)を求めることにより位置ずれ補正用座標系を求め,この位置ずれ補正用座標系に基づいて搬送位置の位置ずれ補正を行う。
例えば上述した図7に示す例では,Ra軸,θa軸による座標系を位置ずれ補正用座標系として,これらRa軸,θa軸についての位置ずれ量を算出する。すなわち,図8に示すように,オリエンタ320でのダミーウエハWdの位置ずれを示すベクトルV1は,位置ずれ補正用座標系におけるRa軸方向のベクトルV1Ra(大きさ|V1Ra|)とθa軸方向のベクトルV1θa(大きさ|V1θa|)に分解できる。
したがって,この位置ずれ補正用座標系に対応するピックB2の第2処理室220Bに対する搬送位置座標の補正量は,R軸のマイナス方向へR軸補正量|V1Ra|,θ軸のマイナス方向へθ軸補正量|V1θa|となる。なお,R軸補正量|V1Ra|は例えば直線θa軸とP0との距離より算出し,θ軸補正量|V1θa|は例えば直線Ra軸とP0との距離より算出することができる。
このように補正することによって,たとえ処理室220の取り付け位置や取り付け角度が設計上のものとずれていたとしても,他の搬送経路による搬送位置P1が基準搬送経路による搬送位置P0に極めて高い精度で一致するように補正することができる。例えば百分の一ミリメートルオーダの高い位置合わせ精度が得られる。
ここで,上述した位置ずれ補正用座標系(Rθ座標系)を作成する手法の具体例について図6を参照しながら説明する。図6において,第2処理室220Bに重ねたプロット(黒点)は,第2処理室220B内のダミーウエハWdをピックB2によって搬出する際のピックB2のアクセス位置を示している。図6に示すように,本実施形態ではピックB2のアクセス位置を第2処理室220Bの搬送位置座標系のR軸方向とθ軸方向に複数回,意図的にずらしながらダミーウエハWdを搬出する。
そして,第2処理室220BからピックB2によって搬出されたダミーウエハWdを,他の搬送経路Xbを通じてオリエンタ320に戻したときに検出されるオリエンタ320でのプロット(黒点)によって,処理室220についての搬送位置座標の位置ずれ補正方向(R軸,θ軸)に対応するオリエンタ320での位置ずれ補正方向(Ra軸,θa軸)を求めることができる。すなわち,図6においてオリエンタ320に重ねて記載したプロット(黒点)は,オリエンタ320で検出されたダミーウエハWdの中心の位置を示しており,これらのプロット(黒点)の分布に基づいて2本の近似直線を算出すると,それらが第2処理室220Bについての搬送位置座標系のR軸,θ軸に対応するオリエンタ320でのRa軸,θa軸となる。
このように本実施形態では,アクセス位置を意図的にずらしたピックB2によって第2処理室220Bから搬出されたダミーウエハWdをオリエンタ320へ搬送し,オリエンタ320でのダミーウエハWdの位置ずれを検出することにより,第2処理室220Bについてのオリエンタ320での位置ずれ補正方向を検出し,これに基づいて位置ずれ補正用座標系を作成する。
なお,第2処理室220BへのピックB2のアクセス位置をずらす方法に代えて,第2処理室220B内でのダミーウエハWdの位置をずらすようにしてもよい。後者の場合,図6の第2処理室220Bに重ねて記載したプロット(黒点)は,ダミーウエハWdの中心位置を示すことになる。どちらの方法を採用しても同様に位置ずれ補正用座標系を作成することができる。
(搬送システムの搬送位置合わせ処理の具体例)
次に,本実施形態にかかる搬送システムの搬送位置合わせ処理の具体例について図面を参照しながら説明する。図9は,搬送位置合わせ処理の具体例を示すフローチャートである。本実施形態では,位置合わせ作業の効率や正確性を考慮して,原則的にオリエンタ320に近い場所から順番に位置合わせを行っていく。具体的には,先ずステップS100にて共通搬送室210とオリエンタ320との間で取り得るすべての搬送経路に関する位置合わせを行った上で,ステップS200にて各処理室220A〜220Dの各載置台222A〜222Dに対する位置合わせを行う。
図9に示すステップS100,ステップS200においてはそれぞれ,ある程度の精度(例えば搬送位置誤差が十分の一ミリメートルオーダの精度)で位置合わせの補正を行う第1段階搬送位置合わせ処理に加えて,第1段階よりもさらに高い精度(例えば搬送位置誤差が百分の一ミリメートルオーダの精度)で位置合わせの補正を行う第2段階搬送位置合わせ処理を実行する。このような2段階の位置合わせを行うことによって,どの搬送経路を経由しても各載置台222A〜222D上の同じ搬送位置により高い精度で搬送できるので,より精度の高い搬送位置合わせが必要なプロセス処理を行う処理室220にも適用できる。
(共通搬送室とオリエンタとの間の搬送位置合わせ処理)
図9に示す共通搬送室210とオリエンタ320との間の搬送位置合わせ処理(ステップS100)は,上述したように,図10に示す第1段階搬送位置合わせ処理(ステップS110)に加えて,第2段階搬送位置合わせ処理(ステップS120)を行う。
なお,ステップS110の第1段階搬送位置合わせ処理を実施する前に,各ピックA1,A2,B1,B2について,自動移動とマニュアル移動を適宜組み合わせながら,僅かずつ動かして,各ピックがアクセスする基板処理装置100内のすべての場所(ポイント)に対して搬送位置座標を仮決定するいわゆるラフティーチングを行うことが好ましい。
このラフティーチングは,ピックに保持されるダミーウエハWdが基板処理装置100内の部材などと接触しないようにすることを目的として実施されるものであり,ここでは,例えば±2mm以内程度の粗い精度で搬送位置座標が仮決定される。この仮の搬送位置座標は,制御部400の設定情報記憶手段490内の所定の搬送設定情報記憶領域492に記憶される。なお,基板処理装置100の組み立て誤差が小さい場合などには,基板処理装置100の設計数値から搬送位置座標を算出し,これを仮の搬送位置座標とすることもできる。
(第1段階搬送位置合わせ処理)
第1段階搬送位置合わせ処理(ステップS110)は,例えば図11に示すフローチャートに基づいて実行される。第1段階搬送位置合わせ処理は,オリエンタ320と共通搬送室210(例えば処理ユニット側搬送機構212の各ピックB1,B2)との間の搬送位置合わせを行うために実施される。なお,図11において,第1ロードロック室230Mを「LLM1」と略記し,第2ロードロック室230Nを「LLM2」と略記する。
第1段階搬送位置合わせ処理では,先ずステップS111にて,ダミーウエハWdをピックA2に適正に位置合わせしつつ保持させ,これを自動でオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量(偏心量)Vと位置ずれ方向(偏心方向)αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定したピックA2のオリエンタ320(回転載置台322)に対する搬送位置座標を補正し,記憶することによって確定する。
同様に,ピックA1についても先のラフティーチングで仮決定したオリエンタ320(回転載置台322)に対する搬送位置座標を補正し,これを記憶することによって確定する。このように搬送位置座標を補正することによって,ピックA2,A1のオリエンタ320に対する搬送位置合わせが完了する。以後,ピックA1,A2によってウエハWをオリエンタ320に自動で搬送すると,ウエハWはその中心が回転載置台322の中心に実質的に一致した状態で移載されることになる。
次のステップS112にて,マニュアル操作によってピックB2の第1ロードロック室230Mに対する位置合わせ,ピックB1の第2ロードロック室230Nに対する位置合わせ,及びピックB1の第1ロードロック室230Mに対する位置合わせを行う。
具体的には,ダミーウエハWdをピックB2に適正に位置合わせしつつ保持させ,これをマニュアルで第1ロードロック室230Mへ搬送して受渡台232Mに移載する。このとき,ダミーウエハWdの中心が受渡台232Mの中心に一致するようにピックB2のアクセス位置を調整する。制御部400は,先のラフティーチングで仮決定したピックB2の第1ロードロック室230M(受渡台232M)に対する搬送位置座標をこのときのピックB2のアクセス位置座標に変更し,これを記憶することによってその搬送位置座標を確定する。
同様に,ダミーウエハWdをピックB1に適正に位置合わせしつつ保持させ,これをマニュアルで第2ロードロック室230Nへ搬送して受渡台232Nに移載する。このとき,ダミーウエハWdの中心が受渡台232Nの中心に一致するようにピックB1のアクセス位置を調整する。制御部400は,先のラフティーチングで仮決定したピックB1の第2ロードロック室230N(受渡台232N)に対する搬送位置座標をこのときのピックB1のアクセス位置座標に変更し,これを記憶することによってその搬送位置座標を確定する。
また,ダミーウエハWdをピックB1に適正に位置合わせしつつ保持させ,これをマニュアルで第1ロードロック室230Mへ搬送して受渡台232Mに移載する。このとき,ダミーウエハWdの中心が受渡台232Mの中心に一致するようにピックB1のアクセス位置を調整する。制御部400は,先のラフティーチングで仮決定したピックB1の第1ロードロック室230M(受渡台232M)に対する搬送位置座標をこのときのピックB1のアクセス位置座標に変更し,これを記憶することによってその搬送位置座標を確定する。
続くステップS113にて,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定したピックA2の第1ロードロック室230M(受渡台232M)に対する搬送位置座標を補正し,これを記憶することによって確定する。
次に,オリエンタ320の回転載置台322に載置されているダミーウエハWdをピックA2によって第1ロードロック室230Mの受渡台232M上に載置する。このとき既にピックA2の第1ロードロック室230Mに対する搬送位置座標が補正されているため,ダミーウエハWdの中心は受渡台232Mの中心に実質的に一致する。
続いて,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックA1によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定したピックA1の第1ロードロック室230M(受渡台232M)に対する搬送位置座標を補正し,これを記憶することによって確定する。
このようにステップS113にて,ピックA2の第1ロードロック室230M(受渡台232M)に対する搬送位置合わせと,ピックA1の第1ロードロック室230M(受渡台232M)に対する搬送位置合わせが完了する。これによって,以後,ピックA1,A2によってウエハWを第1ロードロック室230Mに自動で搬送すると,ウエハWはその中心が受渡台232Mの中心に実質的に一致した状態で移載されることになる。
さらに,ステップS114にて,オリエンタ320の回転載置台322上のダミーウエハWdをピックA2又はピックA1(ここでは,ピックA2)によって第1ロードロック室230Mの受渡台232Mに移載する。そして,この第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックB1によって第2ロードロック室230Nの受渡台232Nに移載する。
次に,第2ロードロック室230Nの受渡台232N上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定し,設定情報記憶手段490内の搬送設定情報記憶領域492に記憶されたピックA2の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正し,これを記憶することによって確定する。
続いて,オリエンタ320の回転載置台322上のダミーウエハWdをピックA2によって第2ロードロック室230Nの受渡台232Nに移載する。次に,この第2ロードロック室230Nの受渡台232N上のダミーウエハWdをピックA1によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定し,設定情報記憶手段490内の搬送設定情報記憶領域492に記憶されたピックA1の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正し,これを記憶することによって確定する。
このようにステップS114にて,ピックA2の第2ロードロック室230N(受渡台232N)に対する搬送位置合わせと,ピックA1の第2ロードロック室230N(受渡台232N)に対する搬送位置合わせが完了する。これによって,以後,ピックA1,A2によってウエハWを第2ロードロック室230Nに自動で搬送すると,ウエハWはその中心が受渡台232Nの中心に実質的に一致した状態で移載されることになる。
次いで,ステップS115にて,オリエンタ320の回転載置台322上のダミーウエハWdをピックA2又はピックA1(ここでは,ピックA2)によって第1ロードロック室230Mの受渡台232Mに移載する。そして,この第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックB2によって第2ロードロック室230Nの受渡台232Nに移載する。
さらに,第2ロードロック室230Nの受渡台232N上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定したピックB2の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正し,記憶することによって確定する。
このようにステップS115にて,ピックB2の第2ロードロック室230N(受渡台232N)に対する搬送位置合わせが行われることによって,以後,ピックB2によってウエハWを第2ロードロック室230Nに自動で搬送すると,ウエハWはその中心が受渡台232Nの中心に実質的に一致した状態で移載されることになる。
以上の共通搬送室210とオリエンタ320との間の搬送位置合わせ処理における第1段階搬送位置合わせ処理(ステップS111〜S115)を行うことによって,ピックA1,A2,B1,B2のオリエンタ320及び第1,第2ロードロック室230M,230Nに対する搬送位置座標がすべて確定されることになる。この結果,ウエハWをオリエンタ320からピックB1,B2に搬送する場合,どのような搬送経路を経由しても,すなわちピックA1,A2と第1,第2ロードロック室230M,230Nの組み合わせに拘わらず,ピックB1,B2の実質的に同じ位置にそのウエハWが保持されることになる。
ところで,ステップS115にてピックB2の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正するにあたり,第2ロードロック室230Nにおける搬送位置座標系(以下,「第2ロードロック室搬送位置座標系」という)を用いる。ところが,第2ロードロック室搬送位置座標系が第2ロードロック室230Nについての実際のオリエンタ320での座標系に一致しない場合がある。これは例えば,第2ロードロック室230Nの組み付けに誤差があると生じうる現象であり,上述した処理室220の搬送位置座標系がこの処理室220についての実際のオリエンタ320での座標系に一致しない場合の原因と同様である。このような場合,正確な搬送位置合わせが実現せず,上記の第1段階搬送位置合わせ処理(ステップS111〜S115)を行ったにも拘わらず,十分の一ミリメートルオーダの搬送位置ずれが生じてしまう可能性がある。
そこで,より精度の高い搬送位置合わせ処理を行うために,本実施形態にかかる共通搬送室210とオリエンタ320との間の搬送位置合わせ処理では,図10に示すように,第1段階搬送位置合わせ処理(ステップS111〜S115)の後に,ダミーウエハWdを実際に搬送することによって第2ロードロック室230Nについての位置ずれ補正用座標系を求め,この位置ずれ補正用座標系に基づいて,ピックB1とピックB2それぞれの第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正する第2段階搬送位置合わせ処理(ステップS120)を実行する。
(第2段階搬送位置合わせ処理の具体例)
以下,共通搬送室210とオリエンタ320との間の搬送位置合わせ処理における第2段階搬送位置合わせ処理について図面を参照しながら説明する。この第2段階搬送位置合わせ処理の目的は,オリエンタ320から搬送先モジュールとしてのピックB1,B2へウエハWを搬送するにあたり,基準中継モジュールとしての第1ロードロック室230Mと他の中継モジュールとしての第2ロードロック室230Nのいずれを経由しても,ピックB1,B2の同じ位置にウエハWの中心が合うようにすることにある。図12は,この第2段階搬送位置合わせ処理において,搬送システムによって搬送されるダミーウエハWdの搬送経路を示している。また図13は,この第2段階搬送位置合わせ処理の内容を示すフローチャートである。なお,図13において,第1ロードロック室230Mを「LLM1」と略記し,第2ロードロック室230Nを「LLM2」と略記する。
先ず,ステップS121にて,オリエンタ320の回転載置台322上のダミーウエハWdをピックA2又はピックA1(ここでは,ピックA2)によって第1ロードロック室230Mの受渡台232Mに移載する(搬送経路X11)。
次に,ステップS122にて,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックB2で受け取る(搬送経路X12)。
次いで,ステップS123にて,ピックB2からダミーウエハWdを第2ロードロック室230Nの受渡台232Nに移載する(搬送経路X13)。このとき,ピックB2は,上記の第1段階搬送位置合わせ処理(ステップS111〜S115)において補正された搬送位置座標にアクセスしてダミーウエハWdを第2ロードロック室230Nの受渡台232Nに受け渡す。
続いて,ステップS124にて,第2ロードロック室230Nの受渡台232N上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する(搬送経路X14)。
そして,ステップS125にて,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置P2を検出する。このとき検出されたダミーウエハWdの位置を示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データを設定情報記憶手段490内の搬送設定情報記憶領域492に記憶する。
さらにステップS126にて,上記のステップS121〜S125を所定回数繰り返す。ただし,ステップS126の中のステップS123では,ピックB2からダミーウエハWdを第2ロードロック室230Nの受渡台232Nに移載する際に,ピックB2の第2ロードロック室230N(受渡台232N)へのアクセス位置を毎回変更する。
具体的には,例えば繰り返し1回目では,ピックB2のアクセス位置を最初のステップS123におけるアクセス位置からθ軸のプラス方向へ0.15mmオフセットさせ,繰り返し2回目では,同方向へ0.30mmオフセットさせる。同様に,θ軸のマイナス方向へもピックB2のアクセス位置を変更し,さらに最初のステップS123におけるアクセス位置からR軸のプラス方向とマイナス方向へもピックB2のアクセス位置を変更する。したがって,本実施形態では繰り返し回数は8回となる。
そして,ステップS126中のステップS125にて毎回,回転載置台322上におけるダミーウエハWdの位置を検出する。各位置を示す搬送位置情報データは,制御部400に送信される。制御部400は,これらの搬送位置情報データを設定情報記憶手段490内の搬送設定情報記憶領域492に記憶する。
本実施形態では,ステップS126にてステップS121〜S125を8回繰り返すため,最初に行われたステップS125にて検出された搬送位置情報データと合わせて,搬送設定情報記憶領域492には9個の搬送位置情報データが記憶される。次のステップS127にて,制御部400は,これらの搬送位置情報データを設定情報記憶手段490から読み出して,θ軸方向とR軸方向それぞれについて各搬送位置情報データの傾向を求める。具体的には例えば図14に示すように,各搬送位置情報データをオリエンタ座標系(XY座標系)上にプロットし,θ軸方向とR軸方向それぞれのプロットポイントについて最小二乗法などを用いて近似直線を算出する。このようにして算出された近似直線をそれぞれθa軸とRa軸とする。そして,このθa軸とRa軸からなる座標系を位置ずれ補正用座標系とする。
続くステップS128にて,制御部400は,ステップS127で作成した位置ずれ補正用座標系に基づいて,第1段階搬送位置合わせ処理(ステップS110)において確定したピックB2の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を次のように確定しなおす。
図15は,ステップS125にて検出されたオリエンタ320でのダミーウエハWdの位置P2と,オリエンタ320の回転載置台322の回転中心位置P0との位置関係を示している。ダミーウエハWdの位置ずれ量と位置ずれ方向を示すベクトルV2は,位置ずれ補正用座標系においてRa軸方向のベクトルV2Ra(大きさ|V2Ra|)とθa軸方向のベクトルV2θa(大きさ|V2θa|)に分解することができる。したがって,ピックB2の第2ロードロック室230Nに対する搬送位置座標をRa軸のマイナス方向へR軸補正量|V2Ra|,θa軸のマイナス方向へθ軸補正量|V2θa|だけ補正すれば,P2がP0に一致するようになる。この場合,Ra軸補正量|V2R|については例えば直線θa軸とP0との距離に基づいて算出し,θa軸補正量|V2θ|については直線Ra軸とP0との距離に基づいて算出することができる。
このように第2段階搬送位置合わせ処理(ステップS120)を行うことによって,ピックB2の第2ロードロック室230Nに対する搬送位置座標が極めて高い精度,例えば百分の一ミリメートルオーダの精度で補正されることになる。この結果,ウエハWをオリエンタ320からピックB2に搬送する場合,基準中継モジュールとしての第1ロードロック室230Mと他の中継モジュールとしての第2ロードロック室230Nのどちらを経由させてもピックB2は,同一の位置にウエハWを保持することができる。
ここまでピックB2の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を補正する第2段階搬送位置合わせ処理について説明した。一方,ピックB1については,第1段階搬送位置合わせ処理(ステップS110)のステップS112において,マニュアル操作によって,第1ロードロック室230Mと第2ロードロック室230Nに対する位置合わせが行われているので,比較的高い精度で搬送位置座標はすでに確定されている。
ところが,ピックB1の第1ロードロック室230Mに対する搬送位置座標と,ピックB1の第2ロードロック室230Nに対する搬送位置座標とはそれぞれ別々にマニュアル操作を行って確定しているので,例えば上記のように第2ロードロック室230Nの組み付けに誤差があると,ウエハWをオリエンタ320からピックB1に搬送する場合,第1ロードロック室230Mを経由させたときと,第2ロードロック室230Nを経由させたときとで,ピックB1におけるウエハWの位置が一致しない可能性がある。したがって,より高い精度が要求されるプロセス処理の場合には,ピックB1についても,ピックB2と同様に,上記の第2段階搬送位置合わせ処理を行うことが好ましい。
図16は,図10の第2段階搬送位置合わせ処理をピックB1について実施したときに作成された位置ずれ補正用座標系を示している。この処理では,ステップS126においてステップS121〜S125を繰り返す毎に,θ軸のプラス方向とマイナス方向,R軸のプラス方向とマイナス方向へ,例えば0.15mm,0.30mm,0.60mm,1.20mmオフセットさせた位置にピックB1をアクセスさせている。したがって,その繰り返し回数は16回となる。このように,繰り返し回数を増やすことによって,作成される位置ずれ補正用座標系の信頼性を高めることができる。
図16に示す位置ずれ補正用座標系が作成された後,これに基づいて第1段階搬送位置合わせ処理(ステップS110)において確定したピックB1の第2ロードロック室230N(受渡台232N)に対する搬送位置座標を確定しなおす。この結果,ウエハWをオリエンタ320からピックB1に搬送する場合,基準中継モジュールとしての第1ロードロック室230Mと他の中継モジュールとしての第2ロードロック室230Nのどちらを経由させてもピックB1は,同一の位置にウエハWを保持することができる。
なお,このようなピックB1についての第2段階搬送位置合わせ処理は,上述のピックB2についての第2段階搬送位置合わせ処理の後に実施してもよく,またピックB2についての第2段階搬送位置合わせ処理に先立って実施してもよい。
(処理室とオリエンタとの間の搬送位置合わせ処理)
以上の共通搬送室210とオリエンタ320との間の搬送位置合わせ処理(ステップS100)を行うことによって,オリエンタ320から処理ユニット側搬送機構212までの搬送位置合わせが完了する。その後,処理室220とオリエンタ320との間の搬送位置合わせ処理(ステップS200)を行う(図9参照)。図17は,この処理室220とオリエンタ320との間の搬送位置合わせ処理の工程を示している。図17に示すように,処理室220とオリエンタ320との間の搬送位置合わせ処理は,第1段階搬送位置合わせ処理(ステップS210)と第2段階搬送位置合わせ処理(ステップS220)を含む。
(第1段階搬送位置合わせ処理)
第1段階搬送位置合わせ処理(ステップS210)は,例えば図18に示すフローチャートに基づいて実行される。なお,図18において,第1〜第4処理室220A〜220Dを「PM1〜PM4」と略記する。
先ず,ステップS211にて,ピック(第1のピック部)B1の第1〜第4処理室220A〜220Dに対する位置合わせを行う。具体的には,ダミーウエハWdをピックB1に適正に位置合わせしつつ保持させ,これをマニュアルで第1処理室220Aへ搬送して載置台222Aに移載する。このとき,ダミーウエハWdの中心が載置台222Aの中心に一致するようにピックB1のアクセス位置を調整する。第2〜4処理室220B〜220Dについても同様に,ダミーウエハWdをマニュアル搬送する。制御部400は,先のラフティーチングで仮決定したピックB1の第1〜第4処理室220A〜220D(載置台222A〜222D)に対する搬送位置座標をこのときのピックB1の各アクセス位置座標に変更し,これを記憶することによって確定する。
次に,ステップS212にて,オリエンタ320の回転載置台322上にダミーウエハWdを載置して,これをピックA2又はピックA1(ここでは,ピックA2)によって第1ロードロック室230Mの受渡台232Mに移載する。そして,この第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックB1によって第1処理室220Aの載置台222Aに移載する。
続いて,第1処理室220Aの載置台222A上のダミーウエハWdをピック(第2のピック部)B2によって第1ロードロック室230Mの受渡台232Mに移載する。さらに,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する。そして,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置ずれ量Vと位置ずれ方向αを検出する。このとき検出された位置ずれ量Vと位置ずれ方向αを示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データに基づいて,回転載置台322に対するダミーウエハWdの位置ずれがなくなるように,先のラフティーチングで仮決定したピックB2の第1処理室220A(載置台222A)に対する搬送位置座標を補正し,記憶することによって確定する。
同様に,オリエンタ320から第2〜4処理室220B〜220DへダミーウエハWdを搬送した後,オリエンタ320に戻してダミーウエハWdの位置ずれを検出する処理を行う。制御部400は,この検出結果に基づいて,先のラフティーチングで仮決定したピックB2の第2〜4処理室220B〜220D(載置台222B〜222D)に対する搬送位置座標を補正し,記憶することによって確定する。
以上の処理室220とオリエンタ320との間の搬送位置合わせ処理における第1段階搬送位置合わせ処理(ステップS211,S212)を行うことによって,ピックB1,B2の第1〜第4処理室220A〜220Dに対する搬送位置座標がすべて確定されることになる。また,共通搬送室210とオリエンタ320との間の搬送位置合わせ処理(ステップS100)が行われていることから,ウエハWをオリエンタ320から第1〜第4処理室220A〜220Dに搬送する場合,どのような搬送経路を経由しても,すなわちピックA1,A2,第1,第2ロードロック室230M,230N,及びピックB1,B2の組み合わせに拘わらず,第1〜第4処理室220A〜220Dの実質的に同じ位置にそのウエハWが載置されるはずである。
ところが,上記の第1段階搬送位置合わせ処理(ステップS211,S212)を行ったにも拘わらず,十分の一ミリメートルオーダの搬送位置ずれが生じる場合がある。既に説明したように,各処理室220における搬送位置座標系が各処理室220についての実際のオリエンタ320での座標系と毎回関係が一致しない場合があり,これが搬送位置ずれの原因となり得る。
そこで,本実施形態にかかる処理室220とオリエンタ320との間の搬送位置合わせ処理でも,図17に示すように,第1段階搬送位置合わせ処理(ステップS210)の後に,ダミーウエハWdを実際に搬送することによって実際の処理室座標系を作成して,この作成した座標系に基づいて,ピックB2の処理室220(載置台222)に対する搬送位置座標を補正する第2段階搬送位置合わせ処理(ステップS220)を実行する。
(第2段階搬送位置合わせ処理の具体例)
以下,処理室220とオリエンタ320との間の搬送位置合わせ処理における第2段階搬送位置合わせ処理について図面を参照しながら説明する。この第2段階搬送位置合わせ処理の目的は,オリエンタ320から搬送先モジュールとしての処理室220へウエハWを搬送するにあたり,ピックB1とピックB2のいずれを経由しても,処理室220の載置台222の同じ位置にウエハWの中心が合うようにすることにある。図19は,この第2段階搬送位置合わせ処理において,搬送システムによって搬送されるダミーウエハWdの搬送経路を示している。また図20は,この第2段階搬送位置合わせ処理の内容を示すフローチャートである。なお,図20において,第1ロードロック室230Mを「LLM1」と略記し,第2ロードロック室230Nを「LLM2」と略記し,第2処理室220Bを「PM2」と略記する。
なお,第2段階搬送位置合わせ処理(ステップS220)は,第1〜第4処理室220A〜220Dすべてについて行うことができるが,ここでは代表的に第2処理室220Bについての第2段階搬送位置合わせ処理について説明する。
先ず,ステップS221にて,オリエンタ320の回転載置台322上のダミーウエハWdをピックA2又はピックA1(ここでは,ピックA2)によって第1ロードロック室230Mの受渡台232Mに移載する(搬送経路X21)。
次に,ステップS222にて,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックB1で受け取り,第2処理室220Bの載置台222Bに移載する(搬送経路X22)。このとき,ピックB1は,上記の第1段階搬送位置合わせ処理(ステップS211,S212)において補正された搬送位置座標にアクセスしてダミーウエハWdを第2処理室220Bの載置台222Bに受け渡す。
次いで,ステップS223にて,第2処理室220Bの載置台222B上のダミーウエハWdをピックB2によって第1ロードロック室230Mの受渡台232Mに移載する(搬送経路X23)。
続いて,ステップS224にて,第1ロードロック室230Mの受渡台232M上のダミーウエハWdをピックA2によってオリエンタ320へ搬送して回転載置台322に移載する(搬送経路X24)。
そして,ステップS225にて,回転載置台322を回転させて光学センサ324でダミーウエハWdの位置P3を検出する。このとき検出されたダミーウエハWdの位置を示す搬送位置情報データは,制御部400に送信される。制御部400は,この搬送位置情報データを設定情報記憶手段490内の搬送設定情報記憶領域492に記憶する。
さらにステップS226にて,上記のステップS221〜S225を所定回数繰り返す。ただし,ステップS223では,第2処理室220Bの載置台222B上のダミーウエハWdをピックB2が受け取る際に,ピックB2の第2処理室220B(載置台222B)へのアクセス位置を毎回変更する。
具体的には,例えば繰り返し1回目では,ピックB2のアクセス位置を最初のステップS223におけるアクセス位置からθ軸のプラス方向へ0.15mmオフセットさせる。その後,ステップS221〜S225を繰り返す毎に,同方向へ例えば0.30mm,0.60mm,1.20mmオフセットさせた位置にピックB2がアクセスするようにする。同様に,θ軸のマイナス方向へもピックB2のアクセス位置を変更し,さらに最初のステップS223におけるアクセス位置からR軸のプラス方向とマイナス方向へもピックB2のアクセス位置を変更する。したがって,本実施形態では繰り返し回数は16回となる。
そして,ステップS226中のステップS225にて毎回,回転載置台322上におけるダミーウエハWdの位置を検出する。各位置を示す搬送位置情報データは,制御部400に送信される。制御部400は,これらの搬送位置情報データを設定情報記憶手段490内の搬送設定情報記憶領域492に記憶する。
本実施形態では,ステップS226にてステップS221〜S225を16回繰り返すため,最初に行われたステップS225にて検出された搬送位置情報データと合わせて,搬送設定情報記憶領域492には17個の搬送位置情報データが記憶される。次のステップS227にて,制御部400は,これらの搬送位置情報データを設定情報記憶手段490から読み出して,θ軸方向とR軸方向それぞれについて各搬送位置情報データの傾向を求める。具体的には例えば図21に示すように,各搬送位置情報データをオリエンタ座標系(XY座標系)上にプロットし,θ軸方向とR軸方向それぞれのプロットポイントについて最小二乗法などを用いて近似直線を算出する。このようにして算出された近似直線をそれぞれθa軸とRa軸とする。このθa軸とRa軸からなる座標系を位置ずれ補正用座標系とする。
続くステップS228にて,制御部400は,ステップS227で作成した位置ずれ補正用座標系に基づいて,第1段階搬送位置合わせ処理(ステップS210)において確定したピックB2の第2処理室220B(載置台222B)に対する搬送位置座標を確定しなおす。
図22は,ステップS225にて検出されたオリエンタ320でのダミーウエハWdの位置P3と,オリエンタ320の回転載置台322の回転中心位置P0との位置関係を示している。ダミーウエハWdの位置ずれ量と位置ずれ方向を示すベクトルV3は,位置ずれ補正用座標系においてRa軸方向のベクトルV3Ra(大きさ|V3Ra|)とθa軸方向のベクトルV3θa(大きさ|V3θa|)に分解することができる。したがって,ピックB2の第2処理室220Bに対する搬送位置座標をRa軸のマイナス方向へR軸補正量|V3Ra|,θa軸のマイナス方向へθ軸補正量|V3θa|だけ補正すれば,P3がP0に一致するようになる。この場合,Ra軸補正量|V3R|については例えば直線θa軸とP0との距離に基づいて算出し,θa軸補正量|V3θ|については例えば直線Ra軸とP0との距離に基づいて算出することができる。
このように第2段階搬送位置合わせ処理(ステップS220)を行うことによって,ピックB2の第2処理室220Bに対する搬送位置座標が極めて高い精度で補正されることになる。この結果,ウエハWをオリエンタ320から第2処理室220Bに搬送する場合,ピックB1(基準搬送経路)とピックB2(他の搬送経路)のどちらを用いても,第2処理室220Bの載置台222Bの同一の位置にウエハWを置くことができる。
なお,ここではピックB2の第2処理室220B(載置台222B)に対する搬送位置座標を補正する第2段階搬送位置合わせ処理について説明したが,ピックB2の第1,第3,第4処理室220A,220C,220D(載置台222A,222C,222D)に対する搬送位置座標を高精度に補正する場合も同様の処理を適用することができる。
以上のように,本実施形態にかかる搬送位置合わせ処理によれば,第2段階搬送位置合わせ処理(ステップS120,S220)において,実際にダミーウエハWdを搬送して得られる搬送位置情報に基づいて位置ずれ補正用座標系が作成されるので,この位置ずれ補正用座標系は基板処理装置100の組み立て状態などを正確に反映したものとなる。そして,第2段階搬送位置合わせ処理では,この作成された位置ずれ補正用座標系に基づいて搬送位置が補正される。これにより,たとえ処理室220の取り付け位置や取り付け角度が設計上のものとずれていたとしても,ピックB2の搬送経路(他の搬送経路)による処理室220での搬送位置がピックB1の搬送経路(基準搬送経路)による搬送位置に極めて高い精度で一致するように補正することができる。例えば百分の一ミリメートルオーダの高い位置合わせ精度が得られる。この結果,いずれの搬送経路を通じても,極めて正確に同じ位置にウエハWを搬送することができる。
なお,各処理室220及び第2ロードロック室230Nでの搬送位置を補正する場合を例に本発明の実施形態を説明した。同様に,共通搬送室210及び各カセット容器302などの搬送位置を高精度に補正する場合にも本発明を適用することができる。
また,本実施形態では,位置ずれ補正用座標系を作成する際に,ダミーウエハWdの搬送を17回繰り返し実行して,オリエンタ320におけるダミーウエハWdの位置ずれ量V及び位置ずれ方向αを検出しているが,繰り返し回数はこれに限定されない。θ方向とR方向にそれぞれ少なくとも2回実行すればθ軸とR軸を算出することができ,繰り返し回数を増やすほど作成される位置ずれ補正用座標系の信頼性が高まる。また,算出する位置ずれ補正用座標系が直交座標系であると仮定すれば,θ軸又はR軸の一方だけ測定によって決定し,他の軸を計算によって決定することも可能である。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例又は修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば上記実施形態では,共通搬送室210の周りに複数の処理室220A〜220Dを接続したいわゆるクラスタツール型の基板処理装置を例に挙げて説明したが,例えば搬送ユニットに複数の処理ユニットを並列に接続したいわゆるタンデム型の基板処理装置などにも本発明を適用することができる。
本発明は,基板処置装置などに設けられる搬送システムの搬送位置合わせ方法に適用可能である。
本発明の実施形態にかかる基板処理装置の構成を示す平面図である。 同実施形態にかかる制御部の構成を示すブロック図である。 同実施形態にかかるオリエンタと第2処理室との間の搬送経路を示す図である。 オリエンタにおけるダミーウエハの中心位置がプロットされたオリエンタ座標系を示す図である。 図4のオリエンタ座標系にピックB2の第2処理室に対する搬送位置座標系(Rθ座標系)を重ねて示す図である。 第2処理室における搬送位置座標系と,第2処理室についてのオリエンタでの座標系との関係を示す図である。 第2処理室の搬送位置座標系(R軸,θ軸)と第2処理室についてのオリエンタでの座標系(Ra軸,θa軸)とが一致していない場合の搬送位置座標の補正方向及び補正量を示す図である。 位置ずれ補正用座標系を用いて搬送位置座標を補正する場合の補正方向及び補正量を示す図である。 本実施形態にかかる搬送位置合わせ処理の具体例を示すフローチャートである。 図9の共通搬送室とオリエンタとの間の搬送位置合わせ処理の具体例を示すフローチャートである。 図10の第1段階搬送位置合わせ処理の具体例を示すフローチャートである。 図10の第2段階搬送位置合わせ処理において,搬送システムによって搬送されるダミーウエハの搬送経路を示す図である。 図10の第2段階搬送位置合わせ処理の具体例を示すフローチャートである。 図13の第2段階搬送位置合わせ処理において作成された位置ずれ補正用座標系を示す図である。 図14の位置ずれ補正用座標系を用いて搬送位置座標を補正する場合の補正方向及び補正量を示す図である。 図10の第2段階搬送位置合わせ処理をピックB1について実施したときに作成された位置ずれ補正用座標系を示す図である。 図9の処理室とオリエンタとの間の搬送位置合わせ処理の具体例を示すフローチャートである。 図17の第1段階位置合わせ処理の具体例を示すフローチャートである。 図17の第2段階搬送位置合わせ処理において,搬送システムによって搬送されるダミーウエハの搬送経路を示す図である。 図17の第2段階搬送位置合わせ処理の具体例を示すフローチャートである。 図20の第2段階搬送位置合わせ処理において作成された位置ずれ補正用座標系を示す図である。 図21の位置ずれ補正用座標系を用いて搬送位置座標を補正する場合の補正方向及び補正量を示す図である。
符号の説明
100 基板処理装置
200 処理ユニット
210 共通搬送室
212 処理ユニット側搬送機構
220A〜220D 第1〜第4処理室
222A〜222D 載置台
230M 第1ロードロック室
230N 第2ロードロック室
232M 受渡台
232N 受渡台
240A〜240D ゲートバルブ
300 搬送ユニット
302A〜302C カセット容器
304A〜304C 導入ポート
306A〜306C 搬入口
310 導入側搬送室
312 搬送ユニット側搬送機構
314 基台
320 オリエンタ
322 回転載置台
324 光学センサ
400 制御部
450 入出力手段
470 各種コントローラ
482 搬送プログラム
484 プロセス処理プログラム
490 設定情報記憶手段
492 搬送設定情報記憶領域
494 プロセス処理設定情報記憶領域
A1,A2,B1,B2 ピック
W ウエハ
Wd ダミーウエハ
Xa,Xb 搬送経路
X11〜X14 搬送経路
X21〜X24 搬送経路

Claims (10)

  1. 被搬送物の位置ずれを検出する位置合わせ機構と,前記被搬送物を搬入可能なモジュールとを備え,前記位置合わせ機構及び前記モジュールの所定の搬送位置に複数の搬送経路を通じて前記被搬送物を搬送可能な搬送システムにおいて,前記複数の搬送経路の1つを基準搬送経路としたときに,前記モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,
    前記基準搬送経路を通じて前記位置合わせ機構から前記モジュールまで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記モジュールから前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,
    前記モジュールにおける搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらした位置合わせ用被搬送物を,前記他の搬送経路を通じて前記モジュールから前記位置合わせ機構まで搬送して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,
    前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記モジュールでの搬送位置を補正する工程と,
    を有することを特徴とする搬送システムの搬送位置合わせ方法。
  2. 前記搬送システムは,前記被搬送物を保持する複数のピックを備える搬送機構を備え,
    前記複数の搬送経路はそれぞれ,前記搬送機構の異なるピックで搬送した場合の搬送経路であることを特徴とする請求項1に記載の搬送システムの搬送位置合わせ方法。
  3. 前記モジュールは,搬入された前記被搬送物に対して所定の処理を施す処理モジュール,前記処理モジュールへ前記被搬送物を搬送する際にこの被搬送物を中継するための中継モジュール,前記処理室及び前記中継モジュールにアクセス可能な搬送機構を備える搬送モジュール,又は前記被搬送物を収納する収納モジュールのいずれかであることを特徴とする請求項1に記載の搬送システムの搬送位置合わせ方法。
  4. 被搬送物の位置ずれを検出する位置合わせ機構と,前記被搬送物を所定の搬送位置に搬送する際にこの被搬送物を中継するための複数の中継モジュールと,を備える搬送システムにおいて,前記複数の中継モジュールのうちの1つを基準中継モジュールとし,前記基準中継モジュールを通る搬送経路による搬送位置に,他の中継モジュールを通る搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,
    前記基準中継モジュールを通る搬送経路を通じて前記位置合わせ機構から前記所定の搬送位置まで搬送した位置合わせ用被搬送物を,前記他の中継モジュールを通る搬送経路を通じて前記所定の搬送位置から前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,
    前記他の中継モジュールを通る搬送経路を通じて前記位置合わせ機構と前記所定の搬送位置との間で前記被搬送物を搬送する際における,前記他の中継モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより位置ずれ補正用座標系を得る工程と,
    前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の中継モジュールでの搬送位置を補正する工程と,
    を有することを特徴とする搬送システムの搬送位置合わせ方法。
  5. 被搬送物の位置ずれを検出する位置合わせ機構と,搬入された前記被搬送物に所定の処理を施す1つ以上の処理モジュールと,前記被搬送物を前記処理モジュールに搬送する際にこの被搬送物を中継するための1つ以上の中継モジュールと,前記被搬送物を保持する1つ以上のピック部を有し,前記位置合わせ機構及び前記中継モジュールにアクセス可能な第1の搬送機構と,前記被搬送物を保持する第1,第2のピック部を有し,前記中継モジュール及び前記処理モジュールにアクセス可能な第2の搬送機構と,を備える搬送システムにおいて,前記位置合わせ機構と前記処理モジュールとの間に構成される前記被搬送物の複数の搬送経路のうち,前記第1の搬送機構のピック部,前記中継モジュール,及び前記第2の搬送機構の第1のピック部を経由する搬送経路を基準搬送経路とし,前記第1の搬送機構のピック部,前記中継モジュール,及び前記第2の搬送機構の第2のピック部を経由する搬送経路を他の搬送経路としたときに,前記処理モジュールでの前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,
    前記基準搬送経路を通じて前記位置合わせ機構から前記処理モジュールまで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記処理モジュールから前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,
    前記基準搬送経路を通じて前記位置合わせ機構から前記処理モジュールまで搬送した前記位置合わせ用被搬送物を,前記処理モジュールにおける搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらして前記第2の搬送機構の第2のピック部に受け渡し,前記他の搬送経路を通じて前記位置合わせ機構まで戻して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記処理モジュールでの搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,
    前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記処理モジュールでの搬送位置を補正する工程と,
    を有することを特徴とする搬送システムの搬送位置合わせ方法。
  6. 前記処理モジュールに対する前記第2の搬送機構の第2のピック部の位置ずれの補正が可能な方向は,前記処理モジュールへの前記第2の搬送機構の第2のピック部の進入方向と,前記進入方向に直交する方向であることを特徴とする請求項5に記載の搬送システムの搬送位置合わせ方法。
  7. 前記搬送システムが複数の処理モジュールを備える場合,前記搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程,前記位置ずれ補正用座標系を得る工程,及び前記処理モジュールでの搬送位置を補正する工程を,前記複数の処理モジュールそれぞれについて行うことを特徴とする請求項5に記載の搬送システムの搬送位置合わせ方法。
  8. 被搬送物の位置ずれを検出する位置合わせ機構と,搬入された前記被搬送物に所定の処理を施す1つ以上の処理モジュールと,前記被搬送物を前記各処理モジュールに搬送する際にこの被搬送物を中継するための第1,第2の中継モジュールと,前記被搬送物を保持する1つ以上のピック部を有し,前記位置合わせ機構及び前記各中継モジュールにアクセス可能な第1の搬送機構と,前記被搬送物を保持する1つ以上のピック部を有し,前記各中継モジュール及び前記処理モジュールにアクセス可能な第2の搬送機構と,を備える搬送システムにおいて,前記位置合わせ機構と前記第2の搬送機構のピック部との間に構成される前記被搬送物の複数の搬送経路のうち,前記第1の搬送機構のピック部と前記第1の中継モジュールを経由する搬送経路を基準搬送経路とし,前記第1の搬送機構のピック部と前記第2の中継モジュールを経由する搬送経路を他の搬送経路としたときに,前記第2の搬送機構のピック部での前記基準搬送経路による搬送位置に,他の搬送経路による搬送位置を合わせるための搬送位置合わせ方法であって,
    前記基準搬送経路を通じて前記位置合わせ機構から前記第2の搬送機構のピック部まで搬送した位置合わせ用被搬送物を,前記他の搬送経路を通じて前記第2の搬送機構のピック部から前記位置合わせ機構まで戻して搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程と,
    前記基準搬送経路を通じて前記位置合わせ機構から前記第2の搬送機構のピック部まで搬送した前記位置合わせ用被搬送物を,前記第2の搬送機構のピック部における搬送位置から位置ずれの補正が可能な方向に所定のずらし量だけずらして前記第2の中継モジュールに載置し,前記他の搬送経路を通じて前記第2の中継モジュールから前記位置合わせ機構まで戻して前記位置合わせ用被搬送物の位置ずれを検出し,さらに前記ずらし量を変えながら,前記位置ずれ検出を複数回繰り返すことによって得られた複数の位置ずれの検出結果に基づいて,前記第2の搬送機構のピック部での搬送位置の位置ずれの補正が可能な方向に対応する前記位置合わせ機構での搬送位置の位置ずれ方向を求めることにより前記位置ずれ補正用座標系を算出する工程と,
    前記位置ずれ補正用座標系に基づいて,前記検出された位置ずれがなくなるように前記他の搬送経路による前記第2の搬送機構のピック部での搬送位置を補正する工程と,
    を有することを特徴とする搬送システムの搬送位置合わせ方法。
  9. 前記第2の中継モジュールに対する前記第2の搬送機構のピック部の位置ずれの補正が可能な方向は,前記第2の中継モジュールへの前記第2の搬送機構のピック部の進入方向と,前記進入方向に直交する方向であることを特徴とする請求項8に記載の搬送システムの搬送位置合わせ方法。
  10. 前記第2の搬送機構が複数のピック部を備える場合,前記搬送前後の前記位置合わせ用被搬送物の位置ずれを検出する工程,前記位置ずれ補正用座標系を得る工程,及び前記第2の搬送機構のピック部での搬送位置を補正する工程を,前記第2の搬送機構の前記複数のピック部それぞれについて行うことを特徴とする請求項8に記載の搬送システムの搬送位置合わせ方法。
JP2007011327A 2007-01-22 2007-01-22 搬送システムの搬送位置合わせ方法 Pending JP2008173744A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007011327A JP2008173744A (ja) 2007-01-22 2007-01-22 搬送システムの搬送位置合わせ方法
PCT/JP2007/074421 WO2008090694A1 (ja) 2007-01-22 2007-12-19 搬送システムの搬送位置合わせ方法
CNA2007800113900A CN101410226A (zh) 2007-01-22 2007-12-19 输送系统的输送位置对准方法
KR1020097004835A KR20090082345A (ko) 2007-01-22 2007-12-19 반송 시스템의 반송 위치 조정 방법
US12/441,415 US20100008688A1 (en) 2007-01-22 2007-12-19 Method for aligning transfer position of transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007011327A JP2008173744A (ja) 2007-01-22 2007-01-22 搬送システムの搬送位置合わせ方法

Publications (1)

Publication Number Publication Date
JP2008173744A true JP2008173744A (ja) 2008-07-31

Family

ID=39644272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011327A Pending JP2008173744A (ja) 2007-01-22 2007-01-22 搬送システムの搬送位置合わせ方法

Country Status (5)

Country Link
US (1) US20100008688A1 (ja)
JP (1) JP2008173744A (ja)
KR (1) KR20090082345A (ja)
CN (1) CN101410226A (ja)
WO (1) WO2008090694A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074039A (ja) * 2013-10-08 2015-04-20 シンフォニアテクノロジー株式会社 搬送装置
WO2016178420A1 (ja) * 2015-05-05 2016-11-10 川崎重工業株式会社 搬送システム、搬送ロボット、およびその教示方法
JP6029250B2 (ja) * 2013-03-28 2016-11-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
CN115052472A (zh) * 2021-03-09 2022-09-13 先进装配系统有限责任两合公司 利用拾取装置校正元件位置的方法及拾取装置
WO2022202626A1 (ja) * 2021-03-24 2022-09-29 東京エレクトロン株式会社 基板搬送方法
JP2022546251A (ja) * 2019-08-19 2022-11-04 アプライド マテリアルズ インコーポレイテッド 処理システムのアライナステーションの較正
JP2023517255A (ja) * 2020-03-17 2023-04-24 アプライド マテリアルズ インコーポレイテッド 電子処理システムの較正

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449239B2 (ja) * 2010-05-12 2014-03-19 東京エレクトロン株式会社 基板処理装置、基板処理方法及びプログラムを記録した記憶媒体
JP5572575B2 (ja) * 2010-05-12 2014-08-13 東京エレクトロン株式会社 基板位置決め装置、基板処理装置、基板位置決め方法及びプログラムを記録した記憶媒体
JP5516482B2 (ja) * 2011-04-11 2014-06-11 東京エレクトロン株式会社 基板搬送方法、基板搬送装置、及び塗布現像装置
JP5573861B2 (ja) * 2012-02-16 2014-08-20 株式会社安川電機 搬送システム
JP5600703B2 (ja) * 2012-03-30 2014-10-01 東京エレクトロン株式会社 搬送装置及び搬送方法
CN104626151B (zh) * 2013-11-13 2016-06-29 沈阳新松机器人自动化股份有限公司 一种机械手晶圆定心装置及方法
KR102238649B1 (ko) * 2014-09-16 2021-04-09 삼성전자주식회사 반도체 칩 본딩 장치
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
CN105514011B (zh) * 2015-12-31 2018-06-22 北京北方华创微电子装备有限公司 安全传输硅片的机械手及方法
JP6298109B2 (ja) * 2016-07-08 2018-03-20 キヤノントッキ株式会社 基板処理装置及びアライメント方法
CN109767998B (zh) * 2017-11-09 2021-11-23 台湾积体电路制造股份有限公司 处理腔室、半导体制造设备以及其校正方法
JP6516132B1 (ja) * 2018-02-09 2019-05-22 上野精機株式会社 電子部品の処理装置
JP7008573B2 (ja) * 2018-05-16 2022-01-25 東京エレクトロン株式会社 搬送方法および搬送装置
US11094571B2 (en) * 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
JP7008609B2 (ja) * 2018-10-18 2022-01-25 東京エレクトロン株式会社 基板処理装置、及び搬送位置補正方法
JP7246256B2 (ja) * 2019-05-29 2023-03-27 東京エレクトロン株式会社 搬送方法及び搬送システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845286A (en) * 1973-02-05 1974-10-29 Ibm Manufacturing control system for processing workpieces
US5153841A (en) * 1990-11-21 1992-10-06 Advanced Micro Devices Method of and apparatus for semi-conductor wafer selection
TW276353B (ja) * 1993-07-15 1996-05-21 Hitachi Seisakusyo Kk
US6225012B1 (en) * 1994-02-22 2001-05-01 Nikon Corporation Method for positioning substrate
US5963449A (en) * 1996-08-08 1999-10-05 Tokyo Electron Limited Interlock apparatus for a transfer machine
US6157866A (en) * 1997-06-19 2000-12-05 Advanced Micro Devices, Inc. Automated material handling system for a manufacturing facility divided into separate fabrication areas
US6838051B2 (en) * 1999-05-03 2005-01-04 Ljl Biosystems, Inc. Integrated sample-processing system
US6902703B2 (en) * 1999-05-03 2005-06-07 Ljl Biosystems, Inc. Integrated sample-processing system
US6146077A (en) * 1998-01-13 2000-11-14 Samsung Electronics Co., Ltd. Wafer transfer system of semiconductor fabricating equipment using a serial number detecting device
US6401008B1 (en) * 1998-11-18 2002-06-04 Advanced Micro Devices, Inc. Semiconductor wafer review system and method
JP2002158155A (ja) * 2000-11-17 2002-05-31 Canon Inc 露光装置および露光方法
US20050142885A1 (en) * 2002-08-30 2005-06-30 Tokyo Electron Limited Method of etching and etching apparatus
JP4239572B2 (ja) * 2002-11-27 2009-03-18 東京エレクトロン株式会社 搬送システムの搬送位置合わせ方法及び処理システム
WO2004109793A1 (ja) * 2003-05-30 2004-12-16 Ebara Corporation 試料検査装置及び方法並びに該試料検査装置及び方法を用いたデバイス製造方法
US7218983B2 (en) * 2003-11-06 2007-05-15 Applied Materials, Inc. Method and apparatus for integrating large and small lot electronic device fabrication facilities
KR101942136B1 (ko) * 2004-02-04 2019-01-24 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
JP2005249745A (ja) * 2004-03-08 2005-09-15 Ebara Corp 試料表面検査方法および検査装置
JP2005262367A (ja) * 2004-03-18 2005-09-29 Tokyo Electron Ltd 搬送ロボットの搬送ズレ確認方法及び処理装置
JP4353903B2 (ja) * 2005-01-07 2009-10-28 東京エレクトロン株式会社 クラスタツールの処理システム
JP4790324B2 (ja) * 2005-06-15 2011-10-12 株式会社日立ハイテクノロジーズ パターン欠陥検査方法および装置
US20070010906A1 (en) * 2005-07-11 2007-01-11 Tokyo Electron Limited Apparatus and system for monitoring a substrate processing, program for monitoring the processing and storage medium storing same
TW200716466A (en) * 2005-09-14 2007-05-01 Applied Materials Inc Methods and apparatus for a transport lift assembly
JP4892225B2 (ja) * 2005-10-28 2012-03-07 株式会社日立ハイテクノロジーズ 真空処理方法、真空搬送装置および半導体処理装置
US7619731B2 (en) * 2006-03-30 2009-11-17 Tokyo Electron Limited Measuring a damaged structure formed on a wafer using optical metrology
US7623978B2 (en) * 2006-03-30 2009-11-24 Tokyo Electron Limited Damage assessment of a wafer using optical metrology
US7976263B2 (en) * 2007-09-22 2011-07-12 David Barker Integrated wafer transfer mechanism

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029250B2 (ja) * 2013-03-28 2016-11-24 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
US9842754B2 (en) 2013-03-28 2017-12-12 Hitachi Kokusai Electric, Inc. Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP2015074039A (ja) * 2013-10-08 2015-04-20 シンフォニアテクノロジー株式会社 搬送装置
WO2016178420A1 (ja) * 2015-05-05 2016-11-10 川崎重工業株式会社 搬送システム、搬送ロボット、およびその教示方法
US9824908B2 (en) 2015-05-05 2017-11-21 Kawasaki Jukogyo Kabushiki Kaisha Conveying system, conveying robot and teaching method of the same
JPWO2016178420A1 (ja) * 2015-05-05 2018-04-26 川崎重工業株式会社 搬送システム、搬送ロボット、およびその教示方法
JP2022546251A (ja) * 2019-08-19 2022-11-04 アプライド マテリアルズ インコーポレイテッド 処理システムのアライナステーションの較正
US11823937B2 (en) 2019-08-19 2023-11-21 Applied Materials, Inc. Calibration of an aligner station of a processing system
JP7412534B2 (ja) 2019-08-19 2024-01-12 アプライド マテリアルズ インコーポレイテッド 処理システムのアライナステーションの較正
JP2023517255A (ja) * 2020-03-17 2023-04-24 アプライド マテリアルズ インコーポレイテッド 電子処理システムの較正
CN115052472A (zh) * 2021-03-09 2022-09-13 先进装配系统有限责任两合公司 利用拾取装置校正元件位置的方法及拾取装置
WO2022202626A1 (ja) * 2021-03-24 2022-09-29 東京エレクトロン株式会社 基板搬送方法

Also Published As

Publication number Publication date
WO2008090694A1 (ja) 2008-07-31
KR20090082345A (ko) 2009-07-30
CN101410226A (zh) 2009-04-15
US20100008688A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP2008173744A (ja) 搬送システムの搬送位置合わせ方法
JP4674705B2 (ja) 搬送システムの搬送位置合わせ方法及び搬送システム
US11037810B2 (en) Teaching method
US7129147B2 (en) Delivery position aligning method for use in a transfer system and a processing system employing the method
JP4402811B2 (ja) 被処理体の搬送システムおよび被処理体の位置ずれ量の検出方法
KR101745045B1 (ko) 반송 기구의 위치 결정 방법, 피처리체의 위치 어긋남량 산출 방법 및 반송 기구의 티칭 데이터의 수정 방법
KR101446413B1 (ko) 반송 시스템
JP5185054B2 (ja) 基板搬送方法、制御プログラム及び記憶媒体
JP2000127069A5 (ja) 搬送システムの搬送位置合わせ方法及び搬送システム
JP2001110873A (ja) 処理装置
US9908236B2 (en) Transfer system and transfer method
KR100779774B1 (ko) 반송기구의 기준위치 보정장치 및 보정방법
JP4576694B2 (ja) 被処理体の処理システムの搬送位置合わせ方法及び被処理体の処理システム
WO2005091355A1 (ja) 搬送機構の搬送ズレを割り出す方法及び半導体処理装置
JP2007123556A (ja) 真空処理方法または真空処理装置
US7532940B2 (en) Transfer mechanism and semiconductor processing system
JP2007251090A (ja) 真空処理装置の搬送位置合わせ方法、真空処理装置及びコンピュータ記憶媒体
JP2002043394A (ja) 位置ずれ検出装置及び処理システム
CN110303505B (zh) 机器人的位置信息恢复方法
KR102471809B1 (ko) 티칭 방법
JP2005093807A (ja) 半導体製造装置
JP4468159B2 (ja) 基板処理装置及びその搬送位置合わせ方法
JP3383956B2 (ja) 液晶用基板の位置決め装置
JP2010062215A (ja) 真空処理方法及び真空搬送装置
CN110153993B (zh) 工业用机器人的修正值计算方法