JP2008090387A - 適応制御装置、画像形成装置、およびプログラム - Google Patents

適応制御装置、画像形成装置、およびプログラム Download PDF

Info

Publication number
JP2008090387A
JP2008090387A JP2006267759A JP2006267759A JP2008090387A JP 2008090387 A JP2008090387 A JP 2008090387A JP 2006267759 A JP2006267759 A JP 2006267759A JP 2006267759 A JP2006267759 A JP 2006267759A JP 2008090387 A JP2008090387 A JP 2008090387A
Authority
JP
Japan
Prior art keywords
transfer function
model
identification
discrete
function model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006267759A
Other languages
English (en)
Other versions
JP4207076B2 (ja
Inventor
Kenichi Yasaki
健一 家▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2006267759A priority Critical patent/JP4207076B2/ja
Priority to US11/862,745 priority patent/US7603187B2/en
Publication of JP2008090387A publication Critical patent/JP2008090387A/ja
Application granted granted Critical
Publication of JP4207076B2 publication Critical patent/JP4207076B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/60Apparatus which relate to the handling of originals
    • G03G15/602Apparatus which relate to the handling of originals for transporting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Feedback Control In General (AREA)

Abstract

【課題】 不安定零点を有しない離散時間系の伝達関数モデルで表される制御対象を同定するにあたり、同定により得られるモデルにも不安定零点が生じないようにする。
【解決手段】 用紙搬送を制御する制御部57では、適応制御手法が適用された2自由度系の制御系が構築されている。適応パラメータ演算部88は、制御対象の離散時間系伝達関数モデルP(z)を同定し、同定モデルP^(z)を得る。フィードフォワード制御部87は同定モデルP^(z)の逆モデル1/P^(z)を伝達関数としてフィードフォワード操作量を生成する。離散時間系伝達関数モデルP(z)は、分子がb(z+1)4で表されるものであるが、適応パラメータ演算部88は、このP(z)の各係数を同定(推定)するにあたり、分子を多項式展開して各次数毎に係数を推定せず、分子をそのままの形、即ち、零点(ここでは−1)を固定したまま、一つの未知の係数bを推定する。
【選択図】図4

Description

本発明は、制御対象の離散時間系伝達関数モデルP(z)を同定してその逆モデルを用いてフィードフォワード操作量を生成するよう構成された適応制御装置、この適応制御装置が搭載された画像形成装置、及びプログラムに関する。
従来より、入力される目標値に従って制御対象を制御する方法として、図9に示すような、フィードフォワード制御とフィードバック制御を組み合わせることで追従性、即応性を向上させる方法が知られている。
図9に示す制御系は、伝達関数モデルCFFのフィードフォワード制御器101と伝達関数モデルCFBのフィードバック制御器102を備えた2自由度系の構成となっている。目標値rに対し、フィードフォワード制御器101ではフィードフォワード操作量uFFが生成、出力される。一方、目標値rと制御出力値(制御量)yとの差を演算する減算器104を備え、その演算結果eがフィードバック制御器102に入力される。これにより、フィードバック制御器102ではフィードバック操作量uFBが生成、出力される。そして、各操作量uFF、uFBは加算器105にて加算され、操作量uとして制御対象103へ入力される。
このように構成された制御系において、フィードフォワード制御器101の伝達関数モデルCFFは、制御対象103の逆モデル1/Pで表される。そのため、この制御系が有効に働くためには、フィードフォワード制御器101の伝達関数モデルCFFが制御対象103のモデルを充分に再現できていなければならない。
しかし、仮に設計時に制御対象103の実際の特性を充分に再現したモデルを用いてフィードフォワード制御器101を設計し、制御系全体を構築したとしても、例えば経年変化や使用環境などの種々の要因によって、制御対象103の特性は設計時から変動してしまうおそれがある。この変動が大きいほど、即ちフィードフォワード制御器101で再現されている制御対象103の特性と実際の制御対象103の特性とのずれが大きいほど、そのずれ分を補うためにフィードバック制御器102からのフィードバック操作量uFBが大きくなり、フィードフォワード制御の利点である追従性・即応性が損なわれ、制御性能の劣化を招く。
そこで、上記問題を解決する手法として、適応的に制御対象のモデル同定を行う適応同定器を付加し、オンラインでモデル同定を行ってその同定結果をフィードフォワード制御系に反映させる、適応制御手法が知られている(例えば、特許文献1参照)。
図9の制御系に適応制御を組み合わせた適応制御系を、図10に示す。図10の適応制御系は、図9の制御系に対し、適応同定器107が付加されたものである。そして、フィードフォワード制御器110は、適応同定器107による同定結果に基づいて伝達関数モデルCFFが更新される構成となっている。このように適応制御手法を用いることで、制御対象103の実際の特性が変動したとしても、その変動がフィードフォワード制御器110に反映されるため、常に最適な制御性能を維持することが可能となる。
適応同定器107は、制御対象103の伝達関数モデルPの各パラメータ(係数)を推定することにより制御対象103を同定するものであり、その概略構成を図11に示す。図11に示すように、適応同定器107は、モデル同定部111と、減算器112とを備
える。図11において、制御対象103の伝達関数モデルP(z)およびモデル同定部111の伝達関数モデルP^(z)(以下「同定モデル」ともいう)はいずれも離散時間系の伝達関数であることを示す。また、kは時刻(タイミング)を示すものである。
適応同定器107では、モデル同定部111にて、制御対象103の同定が行われ、同定モデルP^(z)が得られる。即ち、モデル同定部111は、あるタイミングkにおける制御対象103に入力される操作量u(k)とその操作量u(k)に対する実際の制御量y(k)とに基づき、制御対象103の伝達関数モデルP(z)の各パラメータを推定し、同定モデルP^(z)を得る。各パラメータの推定は、操作量u(k)に対するモデル同定部111からの出力(即ち操作量u(k)に対する同定モデルP^(z)の制御量)y^(k)と実際の制御量y(k)との差e〜(k)が予め設定した値(0近傍の値)以下となるまで繰り返し行われる。
適応同定器107における具体的な同定(推定)演算は、次に説明する、離散時間系伝達関数モデルに対する周知の適応更新則を用いて行われる。
まず、制御対象103の離散時間系伝達関数モデルP(z)が式(4)で表されるとき、あるタイミングkにおける実際の制御量y(k)は式(5)のように表される。
Figure 2008090387
ここで、y(k)が式(5)で表されることについて、n=4の場合を例に挙げて具体的に説明する。n=4の場合、式(4)は次式(6)のように表せる。
Figure 2008090387
また、制御対象103に対する操作量u(k)と制御量y(k)との間には次式(7)が成り立つ。
Figure 2008090387
よって、式(7)に式(6)を代入すると、次式(8)が成り立つ。
Figure 2008090387
ここで、「z」は周知の遅延演算子であり、「z-n」は時刻(タイミング)をnタイミングだけ遅らせることを意味する。そのため、上記式(8)を整理すると、y(k)は次式(9)のように表せる。
Figure 2008090387
上記式(6)〜(9)はn=4の例であり、式(9)を一般化すると、既述の式(5)で表せるのである。
そして、これから推定しようとする各パラメータである同定パラメータθ^(k)(即ち上記θの推定値)を次式(10)のように表すと、この同定パラメータθ^(k)の推定演算は、次式(11)で表される適応更新則に従って行われる。なお、式(11)中のLは適応ゲインである。
Figure 2008090387
式(11)の適応更新則は、具体的には、既述の通りe〜(k)が予め設定した値以下となるまで繰り返し行われる。換言すれば、前回推定した同定パラメータθ^(k−1)と今回推定した同定パラメータθ^(k)がほぼ等しくなるまで(理想的には全く等しくなるまで)上記の適応更新則による演算を行い、θ^(k)を真値に収束させていくのである。
このように、適応制御法にて制御対象の伝達関数モデルを同定する際には、当該適応制御法による制御系が実際に各種機器・装置等へ搭載されることを考慮して、モデルを離散時間系の伝達関数で表現し、その分子・分母の各係数(パラメータ)を推定する。
特開2005−267296号公報
しかしながら、制御対象のモデルによっては、同定により得られた同定モデルP^(z)に不安定零点が出現し、この逆モデル1/P^(z)を用いてフィードフォワード制御器を構築すると不安定なシステムとなる場合がある。
具体的には、制御対象が例えば次式(12)のような0次/n次の連続時間系伝達関数
モデルP(s)で表される場合、このP(s)に式(13)を代入するいわゆる双一次変換によって離散時間系の伝達関数モデルP(z)に変換すると、式(14)に示す通り、分子には必ず(z+1)が含まれることになる。即ち、安定限界の零点が存在することになる。
Figure 2008090387
そのため、式(11)に示した一般的な適応更新則に従って上記式(14)をzについて展開し、その各係数を推定することにより同定を行う手法をとると、同定の精度が充分に得られなかったり、演算を行うプロセッサ等における数値誤差などによって、同定モデルP^(z)に不安定零点が生じてしまうのである。
このことをより具体的な数値例を用いて説明すると、例えばn=4の場合、上記式(14)は次式(15)のように表せる。
Figure 2008090387
この式(15)について式(11)の適応更新則を適用し、分子・分母の各係数の推定値である同定パラメータθ^(k)を求めたときの結果の一例を、表1に示す
Figure 2008090387
表1には、式(15)の分子・分母の各係数のうち、分子の係数のみを示している。表中、bαは予め設定した制御対象モデルのシミュレーション値であり、b^αは適応更新則による推定結果である。表1を見る限り、推定された分子の各係数b^αはシミュレーション値bαとほぼ一致しており、一見、同定はほぼ正常に行われたかのようにみえる。
しかし、ほぼ一致しているものの、完全には一致していない。つまり、制御対象の実際の係数が完全に再現されるわけではない。これは、同定のための演算を行うプロセッサの数値誤差、演算性能等に起因するものであり、ある意味防ぎようのないものである。そのため、同定により得られた同定モデルP^(z)には、図12の極・零点マップに示すように、不安定零点が生じてしまう。なお、図12中の4つの丸印(実軸−1,虚軸0の近傍)が同定モデルP^(z)の零点である。
つまり、伝達関数の分子がb'(z+1)4で表される場合、理論的には零点は安定限界である実軸−1,虚軸0に重解として存在するだけであるが、この分子をzの多項式に展開して適応更新則を適用し、各係数(パラメータ)を推定すると、表1に示したように推定結果にはわずかながら誤差が生じる。この誤差のために、推定された各係数b^αからなる分子多項式は、元のb'(z+1)4の形に戻すことができず、図12に示したように不安定零点を含む4つの零点を有することとなってしまうのである。
そのため、その不安定零点を有する同定モデルP^(z)の逆モデルをフィードフォワード制御器110に適用すると、フィードフォワード制御器110からのフィードフォワード操作量UFFは、図13に示すように発散してしまう。この問題は、制御対象の伝達関数モデルP(z)の分子に安定限界の零点が存在している場合に限るものではない。P(z)の零点が安定領域に存在していたとしても、同定の際の演算精度や数値誤差の程度によっては、やはり同定モデルP^(z)に不安定零点が存在するようになるおそれがある。
本発明は上記課題に鑑みなされたものであり、不安定零点を有しない離散時間系の伝達関数モデルで表される制御対象のモデルを同定するにあたり、同定により得られるモデルにも不安定零点が生じないようにすることを目的とする。
上記課題を解決するためになされた請求項1記載の発明は、離散時間系伝達関数モデルP(z)(但しzは遅延演算子)で表される制御対象に入力される操作量と該操作量に対する制御対象の制御量に基づいて離散時間系伝達関数モデルP(z)における未知の係数を推定することにより該離散時間系伝達関数モデルP(z)を同定する同定手段と、この同定手段による同定結果である同定モデルP^(z)の逆モデル1/P^(z)を用いた離散時間系伝達関数モデルで表され、入力される制御目標値に対して上記操作量の一部又は全てとしてのフィードフォワード操作量を生成するフィードフォワード制御手段とを備えた適応制御装置である。
そして、制御対象の離散時間系伝達関数モデルP(z)は、次式(1)で表されると共に不安定零点を有しない構成であり、同定手段は、式(1)の離散時間系伝達関数モデルP(z)の各係数b,a1,・・・,anを推定する際、分子を多項式展開せずに該分子における一つの未知の係数bを直接推定する。
Figure 2008090387
不安定零点を有しない離散時間系伝達関数P(z)で表せる制御対象モデルを同定する
にあたり、従来は、既述の通り式(1)を分子、分母ともにzの多項式に展開し、展開後のP(z)に対して既述の適応更新則を適用して分子、分母の各係数を推定していた。つまり、上記式(1)の分子を多項式展開すると、その分子は次式(16)のように表すことができる。そして、各係数b,bn,・・・,b2,b1を各々未知の係数として個々に推定していた。
Figure 2008090387
そのため、分子の各係数b,bn,・・・,b2,b1の推定結果と実際の制御対象モデルの係数との間には、上述したように、同定の精度や同定の際の演算誤差(数値誤差)等に起因して誤差が生じていた。
そこで本発明では、同定手段が式(1)の伝達関数P(z)を同定するにあたり、分子については、従来のように多項式展開せず(つまり零点を固定させた状態で)、一つの未知の係数bをそのまま推定するようにした。このように一つの分子係数bをそのまま推定することにより、得られる同定モデルP^(z)の零点は上記式(1)の制御対象のモデルP(z)の零点から不変である。
従って、請求項1記載の適応制御装置によれば、同定手段による同定結果に誤差が生じたとしても、誤差の大小に関係なく同定モデルP^(z)に不安定零点が生じることはない。そのため、フィードフォワード制御手段は安定したフィードフォワード操作量を生成することができ、当該適応制御装置の制御性能を良好に維持できる。しかも、P(z)の分子については、zの次数に関係なく推定すべき係数は一つであるため、同定に要する時間の短縮化も実現できる。
上記の適応制御装置は、離散時間系伝達関数モデルP(z)が式(1)で表される種々の制御対象に対して適用できるが、例えば請求項2に記載のように、式(1)の分子がb(z±1)n又はb(z±1)mg(z)(但しg(z)はzのn−m次式)で表されるものである場合に、特に効果的である。
離散時間系伝達関数モデルP(z)の分子がb(z±1)n又はb(z±1)mg(z)(但しg(z)はzのn−m次式)の場合、零点が安定限界に存在しているため、同定のやり方や精度次第では、従来のように同定結果に不安定零点が生じるおそれが非常に大きい。しかし、このように安定限界に零点が存在するような制御対象モデルP(z)であっても、分子を展開せずに(つまり零点を固定して)一つの未知の係数bをそのまま推定するようにすれば、同定モデルP^(z)の零点が不安定零点となることはない。
ここで、上記式(1)の離散時間系伝達関数モデルP(z)は、例えば請求項3記載のように、制御対象に対して物理法則を適用することにより導かれる該制御対象の連続時間系伝達関数モデルP(s)(但しsは微分演算子)を離散時間系の伝達関数に変換することで得たものであってもよい。物理法則としては、例えばニュートンの運動方程式、キルヒホッフの法則など、種々のものがある。物理法則から伝達関数を導くことで、制御対象のモデルを過不足なく忠実に再現することがきる。
このとき特に、連続時間系伝達関数モデルP(s)が、sの0次式/sのn次式、で表
される場合に、この連続時間系伝達関数モデルP(s)を双一次変換にって連続時間系に変換することで離散時間系伝達関数モデルP(z)を得ると、請求項4記載のように、その得られた離散時間系伝達関数モデルP(z)の分子はb(z+1)nで表されるものとなる。
このように、sの0次式/sのn次式、で表される連続時間系伝達関数モデルP(s)を双一次変換することで得られた離散時間系伝達関数モデルP(z)は、安定限界に零点が存在することになるが、このような場合でも、同定手段による同定は零点が固定されたまま行われるため、同定モデルP^(z)の零点も不変であり、不安定零点が生じることはない。
同定手段は、具体的には例えば請求項5に記載のように構成することができる。即ち、同定手段は、次式(2)で表される適応更新則に従う演算を繰り返し行うことによって各係数b,a1,・・・,anの推定値である同定係数θ^(k)を更新していく係数更新演算手段と、式(2)におけるe〜(k)が予め設定した更新完了判定値以下となったときに同定が完了したものと判断する同定完了判断手段とを備えたものである。
Figure 2008090387
上記式(2)についてより具体的に説明すると、式(1)で表される制御対象の伝達関数モデルP(z)は、既述の式(6)と同じ要領で次式(17)のように表せる。
Figure 2008090387
また、P(z)、u(k)、y(k)の間には既述の式(7)と同様の関係が成り立つため、上記式(17)を式(7)に適用すると、次式(18)が成り立つ。
Figure 2008090387
そして、この式(18)を整理すると、次式(19)が得られる。
Figure 2008090387
そのため、制御対象の伝達関数モデルP(z)の各係数をまとめてθ=[b,an,・・・a1]とおくと、式(19)は次式(20)のように表せる。
Figure 2008090387
よって、同定モデルP^(z)からの出力y^(k)は、上記式(2)における但し書きに記載の通り、次式(21)のように表せるのである。
Figure 2008090387
係数更新演算手段が式(2)の演算を繰り返し行うことで、同定係数θ^(k)は制御対象の伝達関数モデルP(z)の実際の係数に近づいていき、θ^(k)とθ^(k−1)との差が徐々に小さくなっていく。換言すれば、制御対象モデルP(z)の制御量y(k)と同定モデルP^(z)の制御量y^(k)との差が徐々に小さくなってe〜(k)が徐々に0に近づいていく。
そして、係数更新演算手段による今回の演算結果θ^(k)と前回の演算結果θ^(k−1)とがほぼ一致することによりe〜(k)が更新完了判定値以下となったときに、同定が完了する。
従って、請求項5記載の適応制御装置によれば、式(2)で表される適応更新則に従う演算を行うことで、制御対象モデルP(z)の分子係数bを推定でき、確実且つ短時間で同定を行うことができる。
なお、更新完了判定値は、0に近いほどよいが、少なくとも所望の制御性能を維持、発揮できる程度に各係数を推定できればよいため、要求される制御性能等に応じて適宜決めることができる。また、制御対象モデルP(z)の分子が請求項4記載のようにb(z+1)nで表される場合は、上記式(2)中のν(k)は次式(22)のように表せる。
Figure 2008090387
上記構成の適応制御装置(請求項1〜4)は、さらに、例えば請求項6記載のように、フィードバック制御系を備えたいわゆる2自由度系の構成にすることができる。即ち、制御目標値と制御対象の実際の制御量とを比較して両者の誤差が小さくなるようにその誤差に応じた操作量であるフィードバック操作量を生成するフィードバック制御手段と、このフィードバック制御手段からのフィードバック操作量とフィードフォワード制御手段からのフィードフォワード操作量とを加算して該加算結果を操作量として制御対象へ入力する操作量合成手段とを備える。
このように、適応制御装置を2自由度系の制御系として構成することで、安定性に優れた2自由度系の制御系を構築することが可能となる。
そして、請求項1〜6いずれかに記載の適応制御装置が、請求項7記載のように、モータ及び該モータにより駆動される駆動機構を制御対象として制御するものである場合は、適応制御法によるモータの制御、ひいてはこのモータにより駆動される駆動機構の制御をより安定的に行うことが可能となる。
請求項8記載の発明は、請求項7記載の適応制御装置と、この適応制御装置により制御される上記制御対象としての、記録媒体を所定の搬送路に沿って搬送させるための搬送手段と、記録媒体が搬送手段によって搬送されつつ該記録媒体へインクを吐出して該記録媒体上への画像形成を行う画像形成手段とを備えた画像形成装置である。つまり、搬送手段はモータを備え、モータの回転駆動力によって記録媒体を搬送させるよう構成されたものである。
このように構成された画像形成装置によれば、請求項7記載の適応制御装置を用いて搬送手段が制御されるため、記録媒体の搬送を安定して行うことができる。そのため、結果として画像形成手段による画像の形成も安定して行うことができ、品質の良い画像形成結果を得ることができる。
請求項9記載の発明は、コンピュータを同定手段として機能させるためのプログラムであり、同定手段は、離散時間系伝達関数モデルP(z)が不安定零点を有しない次式(3)で表される制御対象に対して入力される操作量と該操作量に対する制御対象の制御量に基づいて離散時間系伝達関数モデルP(z)における未知の係数b,a1,・・・,anを推定することにより該離散時間系伝達関数モデルP(z)を同定し、該同定の際には分子を多項式展開せずに該分子における一つの未知の係数bを直接推定する。
Figure 2008090387
このように構成されたプログラムによれば、コンピュータを同定手段として機能させる
ことができ、その結果、不安定零点を有しない安定した同定モデルを得ることができる。
以下に、本発明の好適な実施形態を図面に基づいて説明する。
(1)多機能装置の全体構成
図1は、本発明の適応制御装置が適用された実施形態の多機能装置(MFD:Multi FunctionDevice )1の斜視図であり、図2は、その側断面図である。
本実施形態の多機能装置1は、プリンタ機能、コピー機能、スキャナ機能、及び、ファクシミリ機能を備えるものであり、合成樹脂製のハウジング2の底部に、その前側の開口部2aから差込み可能な給紙カセット3を備える。給紙カセット3は、例えばA4サイズやリーガルサイズ等にカットされた用紙Pを複数枚収納可能な構成にされており、その後側には、用紙分離用の土手部5が配置されている。
多機能装置1は、金属板製の箱型メインフレーム7の底板に、給紙部9を構成する給紙アーム9aの基端部が上下方向に回動可能に装着された構成にされており、この給紙アーム9aの下端に設けられた給紙ローラ9bと、土手部5とにより、給紙カセット3に積層(堆積)された用紙Pを一枚ずつ分離して搬送する。分離された用紙Pは、U字状の搬送路を構成するUターンパス11を介して給紙カセット3より上側(高い位置)に設けられた画像形成部13に搬送される。
画像形成部13は、インクジェット式の記録ヘッド15が搭載されて主走査方向に往復動可能なキャリッジ17等からなる。キャリッジ17は、後述するCPU51により制御されて、主走査方向に記録ヘッド15を走査する。記録ヘッド15は、走査時に、インクを吐出して、自身下で停止配置されている用紙Pに、画像を形成する。画像形成部13により画像形成された用紙Pが排出される排紙部21は、給紙カセット3の上側に形成されており、排紙部21に連通する排紙口21aは、ハウジング2の前面の開口部2aと共通に開口されている。
また、ハウジング2の上部には、原稿読取の際に使用される画像読取装置23が配置されている。この画像読取装置23は、その底壁23aが上カバー体25の上方からほぼ隙間なく重畳されるように配置され、図示しない枢軸部を介して、ハウジング2の一側端に対し上下開閉回動可能にされている。また、画像読取装置23の上面を覆う原稿カバー体27の後端は、画像読取装置23の後端に対して枢軸23bを中心に上下回動可能に装着されている。
その他、この画像読取装置23の前方には、各種操作ボタンや液晶表示部等を備えた操作パネル部29が設けられている。また、画像読取装置23により被覆されるハウジング2の前部には、上方に向かって開放された図示しないインク貯蔵部が設けられている。このインク貯蔵部には、フルカラー記録のための4色(ブラック、シアン、マゼンタ、イエロー)のインクを各々収容したインクカートリッジが、上方から着脱可能に装着される。尚、本実施形態の多機能装置1において、インクカートリッジに収容されたインクは、各インクカートリッジと記録ヘッド15とを結ぶ複数本のインク供給管37を介して記録ヘッド15に供給される。
(2)用紙搬送システムの構成
続いて、多機能装置1が備える用紙搬送システムについて説明する。図3は、多機能装置1の用紙搬送システムを構成する搬送部40及び搬送制御部50の概略構成を示した説明図であり、図1,2で説明した多機能装置1における各部を、用紙搬送の観点から模式的に示したものである。そのため、図1,2で説明した構成要素と同じものについては、同符号を付す。
図3に示すように、当該多機能装置1の搬送部40は、給紙カセット3と、この給紙カセット3に収容された用紙Pを一枚ずつ分離して送出する給紙部9と、給紙部9の給紙ローラ9bにて送出されてきた用紙Pを、記録ヘッド15下に搬送するための搬送ローラ41と、この搬送ローラ41に圧接された状態で対向配置されたピンチローラ42と、画像形成処理時の用紙搬送を補助しつつ、画像形成後の用紙Pを排紙部21に排出する排紙ローラ43と、この排紙ローラ43に圧接された状態で対向配置されたピンチローラ(拍車ローラ)44と、用紙Pの搬送路を構成する土手部5及びUターンパス11及びプラテン19と、搬送ローラ41及び排紙ローラ43の駆動源であるLF(Line Feed )モータ(以下単に「モータ」という)10と、モータ10により発生した力を伝達するためのベルトBL1,BL2と、ASIC52から入力される各種指令(制御信号)に基づいてモータ10を駆動する駆動回路53とを備える。
土手部5及びUターンパス11から構成される搬送路の上流部は、給紙ローラ9bにより送出される用紙Pの移動を規制して、用紙Pを、搬送ローラ41とピンチローラ42との接点に誘導するためのものであり、Uターンパス11における用紙Pの搬送方向下流側には、その下方に、用紙Pの下方向への移動を規制して、用紙Pを搬送ローラ41とピンチローラ42との接点に誘導するための補助部11aが設けられている。
よって、給紙カセット3から送出されてくる用紙Pは、土手部5及びUターンパス11並びに補助部11aにより、搬送ローラ41及びピンチローラ42の接点に誘導される。この状態で、搬送ローラ41が搬送方向に正回転(図3では反時計回りの回転)すると、用紙Pは、搬送ローラ41及びピンチローラ42の間に引き込まれ、搬送ローラ41及びピンチローラ42に挟持される。その後、用紙Pは、搬送ローラ41の回転と共に、搬送ローラ41の回転量に相当する距離、搬送方向である排紙ローラ43側に搬送される。
一方、プラテン19は、搬送ローラ41と排紙ローラ43とを結ぶ搬送路の下流部を構成するものであり、搬送ローラ41と排紙ローラ43と間に、それらを結ぶ線に沿って設けられている。このプラテン19は、搬送ローラ41から送りだされる用紙Pを、記録ヘッド15によって画像が形成される領域に誘導すると共に、記録ヘッド15により画像が形成された用紙Pを、排紙ローラ43とピンチローラ44との接点に誘導する。
また、モータ10は、DCモータにて構成されており、駆動回路53によって駆動され、その回転力を、モータ10と搬送ローラ41との間に架け渡されたベルトBL1を介して搬送ローラ41に伝達する。これにより、搬送ローラ41は回転する。更に、搬送ローラ41に伝達された回転力は、搬送ローラ41と排紙ローラ43との間に架け渡されたベルトBL2を介して排紙ローラ43に伝達され、これにより排紙ローラ43は、搬送ローラ41と共に同方向に回転する。その他、モータ10から発生する回転力は、図示しない伝達機構を介して給紙ローラ9bに伝達され、これにより給紙ローラ9bは回転する。
但し、給紙ローラ9bは、給紙処理時のみ用紙Pの搬送方向に回転して用紙Pを搬送ローラ41側に送出し、画像形成処理時には、モータ10からの回転力を受けずに空転する。即ち、給紙ローラ9bとモータ10とを結ぶ伝達機構は、給紙時のみ給紙ローラ9bに回転力を伝達し、画像形成処理時には、内蔵するギアを切り離して、給紙ローラ9bに回転力を伝達しない構成にされている。尚、ここでいう給紙処理とは、給紙ローラ9bを、給紙カセット3上に積層載置された用紙Pのうち最上位の用紙Pに圧接させた状態で、給紙ローラ9bを回転させ、用紙Pの先端を、搬送ローラ41とピンチローラ42との接点であるレジスト位置まで搬送する処理を示す。
また、搬送部40には、搬送ローラ41が所定量回転する度にパルス信号を出力するロ
ータリエンコーダ49が設けられており、このロータリエンコーダ49の出力信号は、搬送制御部50のASIC52に入力される。このため、当該多機能装置1においては、エンコーダ49からのパルス信号を検出・カウントすることにより、モータ10、搬送ローラ41、及び排紙ローラ43の回転量や、各ローラ41,43により搬送される用紙Pの移動距離(搬送距離)を検出することができる。
画像形成処理時の用紙搬送は、用紙Pが副走査方向(用紙搬送方向)に所定量ずつ順次紙送りされることにより実現される。具体的には、往復移動可能な記録ヘッド15によって主走査方向に一パス分の記録がなされると、次パスを記録するために用紙Pが副走査方向に所定量紙送りされて停止し、そのパスにおいて記録ヘッド15による主走査方向の記録がなされる。それが終了すると、更に次パスを記録するために再び用紙Pが副走査方向に所定量紙送りされて停止し、記録ヘッド15による主走査方向への記録がなされる。つまり、副走査方向への所定量の紙送りが、用紙Pへの記録が完了するまで順次繰り返されるのである。
(3)搬送制御部の構成
ところで、搬送部40の駆動回路53に接続された搬送制御部50は、駆動回路53にモータ10に対する指令(例えばPWM信号)を入力して、搬送部40を構成するモータ10の回転を制御し、間接的に、搬送ローラ41等による用紙搬送の制御を実現する。この搬送制御部50は、主に、当該多機能装置1を統括制御するCPU51と、モータ10の回転速度や回転方向等を制御するASIC(Application Specific Integrated Circuit )52とからなる。
図4は、この搬送制御部50の構成を示した説明図である。以下では、画像形成処理時に用紙Pを搬送する際の制御、及び、その制御において用いられるパラメータの設定や演算(特に、後述する制御対象の伝達関数モデルの同定)に絞って説明する。そのため、図4では、画像形成処理時のモータ制御(用紙搬送制御)、及び、上記パラメータの演算に必要な構成要素のみを示す。
搬送制御部50は、モータ10の回転速度や回転方向等を制御するためのPWM信号を生成して駆動回路53へ出力する。駆動回路53は、4つのスイッチング素子(例えば、FET:電界効果型トランジスタなどからなる素子)と、各スイッチング素子に並列接続されたフライホイールダイオードとで構成された周知のHブリッジ回路からなり、これらスイッチング素子を外部からの駆動信号(PWM信号)を受けてON/OFFすることにより、モータ10への通電を制御する回路である。
一方、ASIC52の内部には、CPU51の動作によってモータ10の駆動制御に必要な各種パラメータ等が格納される動作モード設定レジスタ群55が備えられている。
この動作モード設定レジスタ群55には、モータ10を起動するための起動設定レジスタ71、モータ10を制御するための操作量uを制御部57が演算する演算タイミングを設定するための演算タイミング設定レジスタ73、制御部57内のフィードバック(FB)制御部89が後述するフィードバック制御量uFBを生成する際に用いる各種制御パラメータを設定するためのフィードバック制御部パラメータ設定レジスタ75、制御部57内の目標軌道生成部86が制御目標値(詳細には位置軌道及び速度軌道;以下単に「目標値」という)rを生成する際に用いる定速駆動時速度を設定するための定速駆動時速度設定レジスタ76、目標軌道生成部86が目標値rを生成する際に用いる駆動時間を設定するための駆動時間設定レジスタ78、目標軌道生成部86が上記定速時駆動速度及び駆動時間に基づいて目標値rを生成する際に用いる関数のパラメータを設定するための目標軌道生成部パラメータ設定レジスタ77、制御部57にて演算される操作量uの上限値及び下限値を設定するための操作量範囲設定レジスタ79、制御部57内の適応パラメータ演算
部88が制御対象のモデルの同定(即ち制御対象の離散時間系伝達関数モデルP(z)の各パラメータ(係数)を推定)を実行するタイミングを設定するための適応パラメータ演算実行タイミング設定レジスタ81等が設けられている。これら各設定レジスタには、CPU51側から上記各設定値が書き込まれる。
なお、定速時駆動速度は、用紙Pを1パスずつ搬送させる際の搬送動作における定速駆動時の速度を表す。本実施形態の搬送動作では、停止状態のモータ10を徐々に加速させて、ある一定速度(上記の定速時駆動速度)まで上昇すると一定期間はその速度にて定速駆動させ、その後徐々に減速させて、所定の目標到達位置で停止させる。これが用紙搬送の1パス毎に繰り返される。また、駆動時間設定レジスタ78にて設定される駆動時間は、詳細には、加速駆動時間、定速駆動時間、減速駆動時間の各駆動時間を表す。従って、駆動時間設定レジスタ78には、これら各駆動時間が設定される。
次に、ASIC52には、上述した動作モード設定レジスタ群55に加えて、ロータリエンコーダ49からのエンコーダ信号よりも十分に周期が短いクロック信号を生成してASIC52内部の各部に供給するクロック生成部60と、ロータリエンコーダ49からのエンコーダ信号に基づき搬送ローラ41の位置や移動速度(延いては用紙Pの位置や移動速度)を検出するためのエンコーダエッジ検出部61、位置カウンタ62、周期カウンタ63、及び速度演算部64と、位置カウンタ62及び速度演算部64による検出結果と動作モード設定レジスタ群55に設定された各種パラメータ等とに基づきモータ10の操作量u(PWMデューティ比)を演算するための制御部57と、制御部57にて演算された操作量uに基づいてモータ10をデューティ駆動するためのPWM信号を生成し、駆動回路53に出力する駆動用信号生成部59と、ASIC52内で生成された各種信号を処理してCPU51に出力する各種信号処理部65とが備えられている。
ここで、ロータリエンコーダ49は、既述の通り、モータ10によって駆動される搬送ローラ41の回転を検出するためのものであり、用紙Pの搬送動作に応じて、互いに一定周期(例えば1/4周期)ズレた2種類のパルス信号(A相信号、B相信号)を出力する。そして、A,B各相の信号は、搬送ローラ41の回転方向が用紙Pを搬送させるための方向である場合は、A相信号がB相信号に対して位相が一定周期進み、それとは反対方向である場合は、A相信号がB相信号に対して位相が一定周期遅れるようにされている。
エンコーダエッジ検出部61は、A,B各相のエンコーダ信号を取り込み、A相信号の各周期の開始/終了を表すエッジ及びモータ10の回転方向を検出するものであり、エンコーダエッジ検出信号(enc_trg)を、位置カウンタ62及び周期カウンタ63に出力する。
また、位置カウンタ62は、エンコーダエッジ検出部61が検出したモータ10の回転方向(つまり用紙Pの搬送方向)に応じて、エッジ検出信号(enc_trg)にてカウント値(enc_count)をカウントアップまたはカウントダウンすることにより、1パス毎の用紙Pの搬送量(位置)を検出するものであり、そのカウント値(enc_count)は制御部57及び各種信号処理部65に出力される。
また、周期カウンタ63は、エンコーダエッジ検出部61からエッジ検出信号(enc_trg)が入力される度に初期化されて、エッジ検出信号入力後の経過時間を、クロック信号をカウントすることにより計時するものである。その計時結果を表すエッジ間隔時間(enc_period)は、速度演算部64及び各種信号処理部65に出力される。
そして、速度演算部64では、エッジ検出信号(enc_trg)に同期して、ロータリエンコーダ49の物理解像度と、A相信号の前回の一周期内に周期カウンタ63がカウ
ント(計測)したエッジ間隔時間(enc_period)とに基づき、搬送ローラ41の回転速度(enc_velocity)が算出される。
位置カウンタ62からのカウント値(enc_count)及び速度演算部64からの回転速度(enc_velocity)は、操作量uに対する制御対象(モータ10等)の実際の制御量yとして、フィードバック制御部89にフィードバックされる。また、制御量yは、適応パラメータ演算部88にも入力され、制御対象の伝達関数モデルを同定する際の演算に用いられる。
制御部57は、各種目標軌道(目標値r)を生成する目標軌道生成部86と、フィードフォワード制御による操作量としてのフィードフォワード操作量uFFを生成するフィードフォワード制御部87と、制御対象の離散時間系伝達関数モデルP(z)を同定し、得られた同定モデルP^(z)の各パラメータをフィードフォワード制御部87へ出力する適応パラメータ演算部88と、フィードバック制御による操作量としてのフィードバック操作量uFBを生成するフィードバック制御部89と、上記各操作量uFF、uFBを合成(加算)して駆動用信号生成部59へ入力する操作量uを生成する操作量合成部90とを備える。
目標軌道生成部86は、定速時駆動速度設定レジスタ76に設定された定速時駆動速度と、駆動時間設定レジスタ78に設定された駆動時間とに基づいて、目標値r(目標速度軌道、目標位置軌道)を生成する。
フィードバック制御部89は、制御対象の実位置(enc_count)及び実速度(enc_velocity)、即ち、制御対象の制御量yを取り込み、この制御量yと目標軌道生成部86からの目標値rとを比較する。そして、その比較結果に従い、両者の差が小さくなるようなフィードバック操作量uFBを演算し、操作量合成部90へ出力する。
適応パラメータ演算部88は、制御対象の離散時間系伝達関数モデルP(z)の各パラメータを推定して同定モデルP^(z)を導出するための演算を行うものであり、得られた同定モデルP^(z)はフィードフォワード制御部87で用いられる。
フィードフォワード制御部87は、適応パラメータ演算部88で得られた同定モデルP^(z)の逆モデル1/P^(z)を伝達関数として有し、入力される目標値rに対してフィードフォワード操作量uFFを生成する。本実施形態では、所定のタイミング(詳細は後述)で適応パラメータ演算部88による制御対象の同定が行われ、その結果得られた同定モデルP^(z)がフィードフォワード制御部87に反映される。
このように構成された制御部57においては、図10に示した適応制御系と同様、適応制御手法が適用された2自由度系の制御系が構築されている。即ち、制御部57において、フィードフォワード制御部87は図10のフィードフォワード制御器110に対応するものであり、適応パラメータ演算部88は図10の適応同定器107に対応するものであり、フィードバック制御部89は図10の減算器104及びフィードバック制御器102に対応するものであり、操作量合成部90は図10の加算器105に対応するものである。また、制御対象としての、モータ10から搬送ローラ41に至る駆動系は、図10の制御対象103に対応するものである。そして、本実施形態の制御部57が図10の適応制御系と大きく異なるのが、適応パラメータ演算部88による制御対象の同定演算である。
図10の適応同定器107では、制御対象の離散時間系伝達関数モデルP(z)を既述の式(4)のように表し、これに式(11)の適応更新則を用いて分子、分母の各係数を推定していたが、本実施形態の適応パラメータ演算部88では、離散時間系伝達関数モデ
ルP(z)の分子がb(z+1)4で表される制御対象について、この分子を従来のように展開せず、一つの未知の係数bをそのまま推定する。以下、具体的に説明する。
(4)制御対象の同定
まず、制御対象の伝達関数モデルを、制御対象に運動方程式を適用することにより導く。本実施形態の制御対象は、おおよそ、図5に示すような簡易モデルに置き換えることができる。このようなモデルにおいて、モータ10周りの運動方程式は次式(23)のように表せる。
Figure 2008090387
また、搬送ローラ41周りの運動方程式は、次式(24)のように表せる。
Figure 2008090387
上記2つの式(23),(24)をラプラス変換して、制御対象の特性をモータ電流〜搬送ローラ角変位とすると、次式(25)のような、制御対象の連続時間系伝達関数モデルP(s)が得られる。
Figure 2008090387
上記式(25)を次式(26)のように置き換え、これについて双一次変換を用いて離散時間系伝達関数モデルP(z)に変換すると、次式(27)が得られる。
Figure 2008090387
式(27)の離散時間系伝達関数モデルP(z)をさらに整理すると、次式(28)のように表せる。
Figure 2008090387
適応パラメータ演算部88は、上記式(28)で表される制御対象の離散時間系伝達関数モデルP(z)について、分子、分母の各係数(パラメータ)を推定し、同定モデルP^(z)を得る。その際、分子については従来の式(6)のように多項式展開せず、一つの未知の係数bを直接推定する。具体的には、次式(29)で表される適応更新則に従う演算を繰り返し行うことによって、各係数b,a4,a3,a2,a1の推定値である同定係数θ^(k)を更新していく。
Figure 2008090387
なお、上記式(29)は一般式であり、本実施形態の場合は、式(29)においてn=4として演算を行えばよい。これにより同定係数θ^(k)は制御対象の離散時間系伝達関数モデルP(z)の実際の係数に近づいていき、θ^(k)とθ^(k−1)との差が徐々に小さくなっていく。換言すれば、制御対象モデルP(z)の制御量y(k)と同定モデルP^(z)の制御量y^(k)との差が徐々に小さくなってe〜(k)が徐々に0に近づいていく。そして、係数更新演算手段による今回の演算結果θ^(k)と前回の演算結果θ^(k−1)とがほぼ一致してe〜(k)が更新完了判定値以下になると、演算が終了し、その時点での同定係数θ^(k)に基づいて同定モデルP^(z)が確定される。
このようにして得られた同定モデルP^(z)はフィードフォワード制御部87に反映される。つまり、得られた同定モデルP^(z)の逆モデル1/P^(z)がフィードフ
ォワード制御部87の伝達関数として用いられることになる。
なお、上記式(29)の適応更新則についてより具体的に説明すると、式(28)で表される制御対象の離散時間系伝達関数モデルP(z)は、既述の式(6)と同じ要領で次式(30)のように表せる。
Figure 2008090387
また、P(z)、u(k)、y(k)の間には既述の式(7)と同様の関係が成り立つため、上記式(30)を式(7)に適用すると、次式(31)が成り立つ。
Figure 2008090387
そして、この式(31)を整理すると、次式(32)が得られる。
Figure 2008090387
そのため、制御対象の伝達関数モデルP(z)の各係数をまとめてθ=[b,a4,a3,a2,a1]とおくと、式(32)は次式(33)のように表せる。
Figure 2008090387
よって、同定モデルP^(z)からの出力y^(k)は、上記式(29)における但し書きに記載の通り、次式(34)のように表せるのである。
Figure 2008090387
図6に、適応パラメータ演算部88により得られた同定モデルP^(z)の極・零点マップを示す。図6から明らかなように、零点は固定されたままであり、不安定零点は出現していない。これは、式(30)で表される制御対象の離散時間系伝達関数モデルP(z)について、分子を多項式展開せずに(つまり零点を固定したまま)同定が行われたためである。
また、表2に、本実施形態の適応パラメータ演算部88による同定演算結果の一例を示す。
Figure 2008090387
表2には、上記式(30)の分子・分母の各係数のうち、分子の係数のみを示している。表中、bは予め設定したシミュレーション値であり、b^は本実施形態による推定(同定)結果である。表2に示すように、係数の推定自体も良好に実現され、係数の推定精度も従来と同等或いは従来以上であることがわかる。
このように、同定モデルP^(z)に不安定零点が存在せず、しかも各係数の同定が良好に行われるめ、その同定モデルP^(z)の逆モデルがフィードフォワード制御部87で用いられてもシステム全体が不安定とならない。そのため、フィードフォワード制御部87からのフィードフォワード操作量uFFも、図7に示すように安定したものとなる。
ここで、適応パラメータ演算部88にて行われる同定演算処理について、図8に基づいて説明する。適応パラメータ演算部88は、いわゆるハードウェア回路として同定のための各種演算を行うように構成されたものであるが、ここでは理解を容易にするために、ハードウェア回路としての同定演算シーケンスをフローチャートに置き換えて説明する。
図8の同定演算処理は、製品出荷時のパラメータ調整時、多機能装置1の電源投入時、多機能装置1の各部動作等に関するメンテナンスが行われるメンテナンスメンテナンスモード時、インクの交換時、用紙Pのジャム時などに行われる。また、周囲温度による特性変動を考慮して、例えば温度センサを設置して規定温度に達したら同定を行うようにしてもよいし、経年変化による特性変動を考慮して、クロックにより一定時間が経過したら同定を行うようにしてもよい。ただし、これらはあくまでも一例であり、どのタイミングで同定を実行するかは適宜決めることができる。
図8の同定演算処理が開始されると、まずS110にて、上記式(34)による演算、即ち同定モデルP^(z)の制御量y^(k)の演算が行われ、続くS120にて、e〜(k)の演算が行われる。そして、得られたy^(k)およびe〜(k)をもとに、S130にて、上記式(29)の適応更新則による同定係数θ^(k)が演算される。そして、S140にて、更新(つまり同定)が終了したか否か、即ち、演算されたθ^(k)が前回演算したθ^(k−1)にほぼ一致してe〜(k)が予め設定した更新完了判定値以下となったか否か判断され、更新が終了したならばこの同定演算処理を終了する。一方、まだ更新が終了していない場合は、更新が終了するまでS110以下の処理(演算)を繰り返す。
なお、図8の同定演算処理が実行されるための前提として、式(29)の但し書きに示したν(k)から明らかなように、予め、少なくともn回分の制御量であるy(k−1),y(k−2),・・・,y(k−n)を取得しておく必要がある。
(5)実施形態の効果
以上詳述したように、本実施形態の多機能装置1では、制御部57(図4参照)において、フィードバック制御およびフィードフォワード制御による2自由度制御系が構築されている。しかも、適応制御装置が搭載(即ち適応パラメータ演算部88による同定結果がフィードフォワード制御部87に反映されるよう構成)されている。そして、適応パラメータ演算部88は、制御対象の離散時間系伝達関数モデルP(z)の分子については、多項式展開せずに零点を固定したままの形で一つの未知の係数bを推定する。
よって、推定結果に誤差が生じたとしても、誤差の大小に関係なく同定モデルP^(z)に不安定零点が生じることはない。そのため、フィードフォワード制御部87は安定したフィードフォワード操作量uFFを生成することができ、用紙搬送の制御性能を良好に維持できる。しかも、P(z)の分子については、zの次数に関係なく推定すべき係数はb一つであるため、同定に要する時間の短縮化も実現できる。
特に、本実施形態における用紙搬送制御の制御対象は、上記式(25)のように0次/n次の連続時間系伝達関数モデルP(s)で表され、これを離散時間系伝達関数モデルP(z)に変換すると上記式(28)のように表される。つまり、制御対象のモデルの零点が安定限界に存在している。そのため、従来の同定手法を用いると、既述の通り同定モデルP^(z)に不安定零点が生じてしまうおそれが大きい。しかし、本実施形態では上記のように零点を固定して分子係数bを推定しているため、同定モデルP^(z)に不安定零点が生じることはない。
(6)変形例
本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
例えば、上記実施形態では、連続時間系伝達関数P(s)が0次/n次であって離散時間系伝達関数モデルP(z)に変換するとその分子がb(z+1)4となるような制御対象について同定が行われる例を示したが、これはあくまでも一例であって、分子がb(z±1)n又はb(z±1)mg(z)(但しg(z)はzのn−m次式)で表されるもの、更には離散時間系伝達関数モデルP(z)が、次式(1)で表されると共に不安定零点を有しない制御対象であれば、本発明を適用可能である。
上述した、分子がb(z±1)n又はb(z±1)mg(z)(但しg(z)はzのn−m次式)で表される場合も、結果的には式(1)の形に帰着される。
Figure 2008090387
この場合、適応パラメータ演算部88は、次式(2)の適応更新則に従う演算を上記実施形態と同様の要領で行えばよい。
Figure 2008090387
なお、上記式(2)と本実施形態における式(29)との違いは、ν(k)だけである。
また、上記実施形態では、2自由度系の制御系に適応制御手法が適用されてなる制御系に対して本実施形態を適用した場合について説明したが、2自由度系の制御系に限らず、制御対象の伝達関数モデルを同定してその同定結果を各種制御器等に反映させるよう構成されたあらゆる適応制御装置に適用可能である。
更に、上記実施形態では、制御対象の離散時間系伝達関数モデルP(z)の同定を、ハードウェア回路としての適応パラメータ演算部88が実行するものとして説明したが、コンピュータに上記図8の同定演算処理を実行させるためのプログラムを用意し、このプログラムをコンピュータに実行させることで同定を行うようにしてもよい。つまり、同定演算処理はハードウェア、ソフトウェアのいずれでも実現できる。
本実施形態の多機能装置の斜視図である。 本実施形態の多機能装置の側断面図である。 多機能装置が備える用紙搬送システムを構成する搬送部及び搬送制御部の説明図である。 搬送制御部の構成を表すブロック図である。 制御対象の簡易モデルを表す図である。 本実施形態の適応パラメータ演算部により同定されたモデルの極・零点マップを示す説明図である。 本実施形態のフィードフォワード制御部にて生成されるフィードフォワード操作量の一例を表す説明図である。 本実施形態の同定演算処理を示すフローチャートである。 従来の2自由度系の制御系の概略構成を示すブロック図である。 従来の2自由度系の制御系に適応制御を組み合わせた適応制御系の概略構成を示すブロック図である。 適応同定器の概略構成を示すブロック図である。 従来の適応更新則により同定されたモデルの極・零点マップを示す説明図である。 不安定零点を有するモデルの逆モデルを用いたフィードフォワード制御器にて生成されるフィードフォワード操作量の一例を表す説明図である。
符号の説明
1…多機能装置、3…給紙カセット、5…土手部、9…給紙部、9b…給紙ローラ、10
…モータ、13…画像形成部、15…記録ヘッド、17…キャリッジ、19…プラテン、21…排紙部、23…画像読取装置、40…搬送部、41…搬送ローラ、49…ロータリエンコーダ、50…搬送制御部、53…駆動回路、55…動作モード設定レジスタ群、57…制御部、59…駆動用信号生成部、60…クロック生成部、61…エンコーダエッジ検出部、62…位置カウンタ、63…周期カウンタ、64…速度演算部、71…起動設定レジスタ、73…演算タイミング設定レジスタ、75…フィードバック制御部パラメータ設定レジスタ、76…定速駆動時速度設定レジスタ、77…目標軌道生成部パラメータ設定レジスタ、78…駆動時間設定レジスタ、79…操作量範囲設定レジスタ、86…目標軌道生成部、87…フィードフォワード制御部、88…適応パラメータ演算部、89…フィードバック制御部、90…操作量合成部、101,110…フィードフォワード制御器、102…フィードバック制御器、103…制御対象、104,112…減算器、105…加算器、107…適応同定器、111…モデル同定部

Claims (9)

  1. 離散時間系伝達関数モデルP(z)(但しzは遅延演算子)で表される制御対象に入力される操作量と該操作量に対する前記制御対象の制御量に基づいて前記離散時間系伝達関数モデルP(z)における未知の係数を推定することにより該離散時間系伝達関数モデルP(z)を同定する同定手段と、
    前記同定手段による同定結果である同定モデルP^(z)の逆モデル1/P^(z)を用いた離散時間系伝達関数モデルで表され、入力される制御目標値に対して前記操作量の一部又は全てとしてのフィードフォワード操作量を生成するフィードフォワード制御手段と、
    を備えた適応制御装置において、
    前記制御対象の離散時間系伝達関数モデルP(z)は、次式(1)で表されると共に不安定零点を有しない構成であり、
    Figure 2008090387
    前記同定手段は、前記式(1)の離散時間系伝達関数モデルP(z)の各係数b,a1,・・・,anを推定する際、分子を多項式展開せずに該分子における一つの未知の係数bを直接推定する
    ことを特徴とする適応制御装置。
  2. 請求項1記載の適応制御装置であって、
    前記制御対象の離散時間系伝達関数モデルP(z)は、前記式(1)の分子が、b(z±1)n又はb(z±1)mg(z)(但しg(z)はzのn−m次式)で表されるものである
    ことを特徴とする適応制御装置。
  3. 請求項1又は2記載の適応制御装置であって、
    前記離散時間系伝達関数モデルP(z)は、前記制御対象に対して物理法則を適用することにより導かれる該制御対象の連続時間系伝達関数モデルP(s)(但しsは微分演算子)を離散時間系の伝達関数に変換することで得られたものである
    ことを特徴とする適応制御装置。
  4. 請求項3記載の適応制御装置であって、
    前記連続時間系伝達関数モデルP(s)は、sの0次式/sのn次式、で表され、
    前記離散時間系伝達関数モデルP(z)は、前記連続時間系伝達関数モデルP(s)を双一次変換により連続時間系に変換することで得られたものであって、該離散時間系伝達関数モデルP(z)の分子はb(z+1)nで表される
    ことを特徴とする適応制御装置。
  5. 請求項1〜4いずれかに記載の適応制御装置であって、
    前記同定手段は、
    次式(2)で表される適応更新則に従う演算を繰り返し行うことによって前記各係数b,a1,・・・,anの推定値である同定係数θ^(k)を更新していく係数更新演算手段と、
    Figure 2008090387
    前記式(2)におけるe〜(k)が予め設定した更新完了判定値以下となったときに前記同定が完了したものと判断する同定完了判断手段と
    を備えたことを特徴とする適応制御装置。
  6. 請求項1〜5いずれかに記載の適応制御装置であって、
    前記制御目標値と前記制御対象の実際の制御量とを比較し、両者の誤差が小さくなるようにその誤差に応じた操作量であるフィードバック操作量を生成するフィードバック制御手段と、
    前記フィードバック制御手段からの前記フィードバック操作量と前記フィードフォワード制御手段からの前記フィードフォワード操作量とを加算して該加算結果を前記操作量として前記制御対象へ入力する操作量合成手段と、
    を備えたことを特徴とする適応制御装置。
  7. 請求項1〜6いずれかに記載の適応制御装置であって、
    前記制御対象は、モータ及び該モータにより駆動される駆動機構である
    ことを特徴とする適応制御装置。
  8. 請求項7記載の適応制御装置と、
    前記適応制御装置により制御される前記制御対象としての、記録媒体を所定の搬送路に沿って搬送させるための搬送手段と、
    前記記録媒体が前記搬送手段によって搬送されつつ該記録媒体へインクを吐出して該記録媒体上への画像形成を行う画像形成手段と
    を備えたことを特徴とする画像形成装置。
  9. コンピュータを、
    離散時間系伝達関数モデルP(z)が不安定零点を有しない次式(3)で表される制御対象に対して入力される操作量と該操作量に対する前記制御対象の制御量に基づいて前記離散時間系伝達関数モデルP(z)における未知の係数b,a1,・・・,anを推定することにより該離散時間系伝達関数モデルP(z)を同定し、該同定の際には分子を多項式展開せずに該分子における一つの未知の係数bを直接推定する同定手段、
    として機能させるためのプログラム。
    Figure 2008090387
JP2006267759A 2006-09-29 2006-09-29 適応制御装置、画像形成装置、およびプログラム Expired - Fee Related JP4207076B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006267759A JP4207076B2 (ja) 2006-09-29 2006-09-29 適応制御装置、画像形成装置、およびプログラム
US11/862,745 US7603187B2 (en) 2006-09-29 2007-09-27 Adapative control device, image forming apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267759A JP4207076B2 (ja) 2006-09-29 2006-09-29 適応制御装置、画像形成装置、およびプログラム

Publications (2)

Publication Number Publication Date
JP2008090387A true JP2008090387A (ja) 2008-04-17
JP4207076B2 JP4207076B2 (ja) 2009-01-14

Family

ID=39262005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267759A Expired - Fee Related JP4207076B2 (ja) 2006-09-29 2006-09-29 適応制御装置、画像形成装置、およびプログラム

Country Status (2)

Country Link
US (1) US7603187B2 (ja)
JP (1) JP4207076B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558090B (zh) * 2015-07-24 2016-11-11 茂達電子股份有限公司 用於消除直流馬達內轉子之充磁誤差的控制裝置及其方法
EP3138692A1 (en) * 2015-08-06 2017-03-08 OCE-Technologies B.V. Imaging system for processing a media

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541833A (en) * 1987-03-30 1996-07-30 The Foxboro Company Multivariable feedforward adaptive controller
JP2840139B2 (ja) * 1991-04-24 1998-12-24 ファナック株式会社 予見繰り返し制御装置
US5342037A (en) * 1993-12-17 1994-08-30 Xerox Corporation Feed roll wear compensation scheme
US5436705A (en) * 1994-04-18 1995-07-25 Xerox Corporation Adaptive process controller for electrophotographic printing
KR100251924B1 (ko) * 1996-09-02 2000-04-15 윤종용 탐색시 소음을 줄이기 위한 적응피이드포워드 제어방법
JP4488569B2 (ja) * 1999-12-22 2010-06-23 日本テキサス・インスツルメンツ株式会社 最短時間pll回路
US6684115B1 (en) * 2000-04-11 2004-01-27 George Shu-Xing Cheng Model-free adaptive control of quality variables
US7113834B2 (en) * 2000-06-20 2006-09-26 Fisher-Rosemount Systems, Inc. State based adaptive feedback feedforward PID controller
JP2002312004A (ja) 2001-04-18 2002-10-25 Nagoya Industrial Science Research Inst サーボ制御システム
US7035695B2 (en) * 2002-01-22 2006-04-25 Imb Controls Inc. Method and apparatus for tuning a PID controller
JP2005174082A (ja) 2003-12-12 2005-06-30 Yaskawa Electric Corp 位置決め制御装置
JP2005267296A (ja) 2004-03-19 2005-09-29 Yaskawa Electric Corp サーボ制御装置
JP2005286459A (ja) 2004-03-29 2005-10-13 Nippon Dengyo Kosaku Co Ltd アレイアンテナ
US7451004B2 (en) * 2005-09-30 2008-11-11 Fisher-Rosemount Systems, Inc. On-line adaptive model predictive control in a process control system

Also Published As

Publication number Publication date
US20080082182A1 (en) 2008-04-03
JP4207076B2 (ja) 2009-01-14
US7603187B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
US7641329B2 (en) Conveyance control device, conveyance system and image forming system
JP2007094952A (ja) 駆動制御装置
JP4775222B2 (ja) 逓倍パルス生成装置、逓倍パルス生成方法、画像形成装置、及び画像読取装置
JP4207076B2 (ja) 適応制御装置、画像形成装置、およびプログラム
US7463000B2 (en) Motor controlling method, motor controlling apparatus, and recording apparatus
JP2019188778A (ja) 電子機器及びその制御方法
JP2003189655A (ja) モータ制御方法及び装置
JP4760090B2 (ja) 搬送装置及び画像形成装置
JP2006036463A (ja) 制御装置、搬送制御装置、搬送システム及び画像形成システム
JP2012135073A (ja) プリンタの制御装置
JP2006036490A (ja) 搬送装置、記録装置及び記録装置の搬送制御方法
JP4582041B2 (ja) 搬送装置及び画像形成装置
JP2007181379A (ja) モータ制御方法及びモータ制御装置
JP2009183132A (ja) モータ制御装置、媒体搬送装置、および画像処理装置
JP4822984B2 (ja) 記録媒体の搬送装置、搬送方法、および記録装置
JP7105602B2 (ja) 記録装置、その制御方法およびスキャナ装置
JP2021045891A (ja) 電子機器及びその制御方法
JP2006224559A (ja) インクジェットプリンタ
JP5125370B2 (ja) 駆動制御装置、及び駆動制御方法
JP4501751B2 (ja) 搬送装置及び画像形成装置
JP7008569B2 (ja) 電子機器及びその制御方法
JP2007148648A (ja) 位置決め制御方法、位置決め制御装置及び画像形成装置
JP5963492B2 (ja) 搬送装置及び記録装置
JP2009119792A (ja) 記録装置および該装置の搬送モータ制御方法
JP2021115835A (ja) 電子機器及びその制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4207076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees