JP2008066707A - 静電吸着電極、基板処理装置および静電吸着電極の製造方法 - Google Patents

静電吸着電極、基板処理装置および静電吸着電極の製造方法 Download PDF

Info

Publication number
JP2008066707A
JP2008066707A JP2007153792A JP2007153792A JP2008066707A JP 2008066707 A JP2008066707 A JP 2008066707A JP 2007153792 A JP2007153792 A JP 2007153792A JP 2007153792 A JP2007153792 A JP 2007153792A JP 2008066707 A JP2008066707 A JP 2008066707A
Authority
JP
Japan
Prior art keywords
insulating layer
expansion coefficient
linear expansion
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007153792A
Other languages
English (en)
Other versions
JP4994121B2 (ja
Inventor
Masahito Minami
雅人 南
Tsutomu Satoyoshi
務 里吉
Yoshihiko Sasaki
芳彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007153792A priority Critical patent/JP4994121B2/ja
Priority to TW096129451A priority patent/TWI423380B/zh
Priority to KR1020070080311A priority patent/KR100921836B1/ko
Priority to CN2007101403902A priority patent/CN101188207B/zh
Publication of JP2008066707A publication Critical patent/JP2008066707A/ja
Application granted granted Critical
Publication of JP4994121B2 publication Critical patent/JP4994121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】絶縁層のクラックの発生が抑制された静電吸着電極を提供すること。
【解決手段】 静電チャック40bにおいて、基材41とアルミナ溶射膜である第2の絶縁層44bとの間に基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成された第1の絶縁層42bを介在させた。第1の絶縁層42bは緩衝層として機能することから、静電チャック40bの熱耐性が改善され、クラックの発生が抑制される。
【選択図】 図3

Description

本発明は、静電吸着電極、基板処理装置および静電吸着電極の製造方法に関し、詳細には、例えばフラットパネルディスプレイ(FPD)等の製造過程において、ガラス基板等の基板を吸着保持する為に使用される静電吸着電極、該静電吸着電極を備えた基板処理装置および静電吸着電極の製造方法に関する。
FPDの製造過程では、被処理体であるガラス基板に対してドライエッチングやスパッタリング、CVD(Chemical Vapor
Deposition)等のプラズマ処理が行なわれる。例えば、チャンバー内に一対の平行平板電極(上部および下部電極)を配置し、下部電極として機能するサセプタ(基板載置台)にガラス基板を載置した後、処理ガスをチャンバー内に導入するとともに、電極の少なくとも一方に高周波電力を印加して電極間に高周波電界を形成し、この高周波電界により処理ガスのプラズマを形成してガラス基板に対してプラズマ処理を施す。この際、ガラス基板は、サセプタ上に設けられた静電吸着電極によって、例えばクーロン力を利用して吸着固定されるようになっている。
このような静電吸着電極としては、例えばアルミニウムなどの金属などの導電性材料により形成された基材の上に、絶縁層、電極および絶縁層を順に積層した構造を有するものが知られており、該電極に電圧を印加することによりクーロン力を発生させてガラス基板を吸着固定できるようになっている。そして、前記基材上に形成される絶縁層の材質としては、アルミナ(Al)を用いることが知られている(例えば、特許文献1)。
特開2005−136350号公報(特許請求の範囲など)
従来技術の静電吸着電極における絶縁層として一般的なアルミナ溶射膜は、その線膨張係数が6.4×10−6[/℃]程度であり、基材の材質として多用されているアルミニウムの線膨張係数23.8×10−6[/℃]との間に大きな差があり、電極温度が上昇するとその熱膨張率の違いによって絶縁層に大きなストレスが加わり、クラックを発生させる。また、近年のFPDの製造過程においては、基板の大型化が急速に進行しており、長辺の長さが2mを超える大型のガラス基板を吸着保持する必要が生じていることから、静電吸着電極も大型化している。このような静電吸着電極の大型化に伴って、絶縁層のストレスも増幅され、クラックが発生しやすい状況になっている。
本発明は、かかる事情に鑑みてなされたものであり、絶縁層のクラックの発生が抑制された静電吸着電極およびそれを用いた基板処理装置を提供することを目的とする。
上記課題を解決するため、本発明の第1の観点では、基板処理装置において基板を吸着保持する基板保持面を備えた静電吸着電極であって、
基材と、
該基材上に設けられた絶縁層と、
前記絶縁層中に配設された電極と、
を備え、
前記絶縁層の一部または全部を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、静電吸着電極を提供する。
上記第1の観点において、前記基板保持面をなす前記絶縁層表面の一部または全部に、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成する構成とすることができる。特に、前記基板保持面の周縁部に、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成することが好ましい。
また、前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層とを含んで構成されており、少なくとも前記第1の絶縁層または前記第2の絶縁層のいずれかを、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成してもよい。
さらに、前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層と、該第2の絶縁層より上層の表面層とを含んで構成されており、前記表面層を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成してもよい。この場合に、前記表面層の膜厚は50〜250μmとすることが好ましい。
さらにまた、前記基板保持面の周縁部および側部を前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成してもよい。
さらにまた、前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部を前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成することもできる。
さらにまた、前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部の頂面を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって被覆してもよい。この場合に、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜の膜厚が50〜250μmであることが好ましい。
さらにまた、前記基材がアルミニウムであり、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜は、YF(フッ化イットリウム)、MgO(酸化マグネシウム)、2MgO・SiO(フォルステライト)のいずれかであることが好ましい。この場合、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成された部分以外の絶縁層をAl(アルミナ)の溶射膜によって形成することができる。
さらにまた、前記基材がステンレス鋼またはチタンであり、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜は、Al(アルミナ)、Y(イットリア)、YF(フッ化イットリウム)、MgO(酸化マグネシウム)または2MgO・SiO(フォルステライト)のいずれかであることが好ましい。
本発明の第2の観点では、基板処理装置において基板を静電力により吸着保持する基板保持面を備えた静電吸着電極であって、
基材と、
該基材上に設けられた絶縁層と、
前記絶縁層中に配設された電極と、
を備え、
前記絶縁層の一部または全部が、セラミックス溶射膜によって形成され、
前記基材は、前記絶縁層と隣接する上部部材と、該上部部材を支持する下部部材とを有し、
前記上部部材と、前記セラミックス溶射膜とは、線膨張係数の差の絶対値が14×10−6[/℃]以下であることを特徴とする、静電吸着電極を提供する。
上記第2の観点において、前記基板保持面をなす前記絶縁層表面の一部または全部に、前記セラミックス溶射膜を形成する構成とすることができる。特に、前記基板保持面の周縁部に、前記セラミックス溶射膜を形成することが好ましい。
また、前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層とを含んで構成されており、少なくとも前記第1の絶縁層または前記第2の絶縁層のいずれかを、前記セラミックス溶射膜によって形成してもよい。
さらに、前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層と、該第2の絶縁層より上層の表面層とを含んで構成されており、前記表面層を、前記セラミックス溶射膜によって形成してもよい。この場合に、前記表面層の膜厚は50〜250μmとすることが好ましい。
さらにまた、前記基板保持面の周縁部および側部を前記セラミックス溶射膜によって形成してもよい。
前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部を前記セラミックス溶射膜によって形成することもできる。
さらにまた、前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部の頂面を、前記セラミックス溶射膜によって被覆してもよい。この場合に、前記セラミックス溶射膜の膜厚が50〜250μmであることが好ましい。
さらにまた、上記第2の観点において、前記基材はその上面の中央に凸状部を有し、該凸状部の外周側がフランジ部を形成しており、前記絶縁層は前記凸状部の頂面および側面に形成され、前記絶縁層の前記頂面部分の表面が前記基板保持面を構成するようにしてもよい。この場合に、前記基材の前記上部部材は、前記凸状部と、その外周部の前記フランジ部の一部を含む構成とすることができる。また、前記上部部材と前記下部部材とはねじ止めされた構成とすることができる。
さらにまた、前記基材の前記上部部材がステンレス鋼またはチタンであり、前記セラミックス溶射膜は、Al(アルミナ)、Y(イットリア)、YF(フッ化イットリウム)、MgO(酸化マグネシウム)および2MgO・SiO(フォルステライト)のいずれかであることが好ましい。特に、前記上部部材がステンレス鋼であり、前記下部部材がアルミニウムであり、前記セラミックス溶射膜はAl(アルミナ)であることが好ましい。この場合に、アルミニウムで構成された前記下部部材の表面に陽極酸化被膜が形成されていることが好ましい。
上記第1または第2の観点において、前記基板保持面は、最長部寸法が450mm以上の面積を有することが好ましい。
本発明の第3の観点では、基板を収容するチャンバーと、上記第1または第2の観点の静電吸着電極と、前記静電吸着電極に保持された基板に対して所定の処理を施す処理機構とを具備することを特徴とする基板処理装置を提供する。この基板処理装置としては、フラットパネルディスプレイの製造に用いられるものが例示され、また、前記処理機構は、基板に対し、プラズマエッチング処理を行なうものが例示される。
本発明の第4の観点は、基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
基材の表面に第1の絶縁層を形成する工程と、
前記第1の絶縁層の上に電極を形成する工程と、
前記電極を覆うように第2の絶縁層を形成する工程と、
を含み、
前記第1の絶縁層を形成する工程および/または前記第2の絶縁層を形成する工程では、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成することを特徴とする、静電吸着電極の製造方法を提供する。
本発明の第5の観点は、基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
基材の表面に第1の絶縁層を形成する工程と、
前記第1の絶縁層の上に電極を形成する工程と、
前記電極を覆うように第2の絶縁層を形成する工程と、
前記第2の絶縁層の基板保持面の一部または全部に、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜からなる被覆層を形成する工程と、
を含むことを特徴とする、静電吸着電極の製造方法を提供する。
本発明の第6の観点は、基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
基材の表面に第1の絶縁層を形成する工程と、
前記第1の絶縁層の上に電極を形成する工程と、
前記電極を覆うように第2の絶縁層を形成する工程と、
前記第1の絶縁層および前記第2の絶縁層の側部に、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜からなる被覆層を形成する工程と、
を含むことを特徴とする、静電吸着電極の製造方法を提供する。
本発明によれば、静電吸着電極の絶縁層の一部または全部を、基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したので、基材との間の熱応力が緩和され、クラックの発生を抑制することができる。したがって、基材の熱膨張への追随性が高く、吸着能に優れた静電吸着電極を提供できる。
また、基材を上部部材と下部部材との分割構造とし、上部部材を絶縁層と隣接するように設け、絶縁層の一部または全部を、セラミックス溶射膜によって形成するとともに、上部部材と、セラミック溶射膜との線膨張係数の差の絶対値を14×10−6[/℃]以下とすることにより、基材と絶縁層との熱応力を緩和してクラックの発生を抑制することができる。また、このような構成にすることにより、溶射皮膜にアルミナを用い、基材の下部部材としてアルミニウムを用いることができ、従来の静電吸着電極とほぼ同等の形状および機能を持たせることができる。
以下、図面を参照しながら、本発明の好ましい実施形態について説明する。図1は、本発明の第1の実施形態に係る静電吸着電極としての静電チャックを備えた基板処理装置の一例であるプラズマエッチング装置を示す断面図である。図1に示すように、プラズマエッチング装置1は、矩形をした被処理体であるFPD用ガラス基板などの基板Gに対してエッチングを行なう容量結合型平行平板プラズマエッチング装置として構成されている。ここで、FPDとしては、液晶ディスプレイ(LCD)、エレクトロルミネセンス(Electro Luminescence;EL)ディスプレイ、プラズマディスプレイパネル(PDP)等が例示される。なお、本発明の基板処理装置は、プラズマエッチング装置にのみ限定されるものではない。
このプラズマエッチング装置1は、例えば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる角筒形状に成形されたチャンバー2を有している。このチャンバー2内の底部には絶縁材からなる角柱状の絶縁板3が設けられており、この絶縁板3の上には、基板Gを載置するためのサセプタ4が設けられている。基板載置台であるサセプタ4は、サセプタ基材4aと、サセプタ基材4aの上に設けられた静電チャック40と、を有している。なお、サセプタ基材4aの外周には、絶縁膜5aが形成されて絶縁被覆されており、さらにその外側には絶縁材5bが設けられている。
静電チャック40は、平面視矩形をなしており、例えばアルミニウム、ステンレス、金属基複合材(MMC;Metal Matrix Composites)などの導電性材料からなる基材41を有している。この基材41の上面には、下から順に、第1の絶縁層42、電極43および第2の絶縁層44が積層されている。静電チャック40は、第1の絶縁層42と第2の絶縁層44との間の電極43に、直流電源26から給電線27を介して直流電圧を印加することにより、例えばクーロン力によって基板Gを静電吸着する。静電チャック40の上面(第2の絶縁層44の上面)には、基板Gを吸着保持する基板保持面50が形成されている(図2〜図7参照)。この基板保持面50のサイズは、長辺(最長部寸法)の長さが450mm以上、例えば450mm〜3500mmとすることができる。なお、静電チャック40の詳細な構造については後述する。
前記絶縁板3およびサセプタ基材4a、さらには静電チャック40には、これらを貫通するガス通路9が形成されている。このガス通路9を介して伝熱ガス、例えばHeガスなどが被処理体である基板Gの裏面に供給される。
すなわち、ガス通路9に供給された伝熱ガスは、サセプタ基材4aと静電チャック40の基材41との境界に形成されたガス溜り9aを介して一旦水平方向に拡散した後、静電チャック40内に形成されたガス供給連通穴9bを通り、静電チャック40の表面から基板Gの裏側に噴出する。このようにして、サセプタ4の冷熱が基板Gに伝達され、基板Gが所定の温度に維持される。
サセプタ基材4aの内部には、冷媒室10が設けられている。この冷媒室10には、例えばフッ素系液体などの冷媒が冷媒導入管10aを介して導入され、かつ冷媒排出管10bを介して排出されて循環することにより、その冷熱がサセプタ基材4aから前記伝熱ガスを介して基板Gに対して伝熱される。
前記サセプタ4の上方には、このサセプタ4と平行に対向して上部電極として機能するシャワーヘッド11が設けられている。シャワーヘッド11はチャンバー2の上部に支持されており、内部に内部空間12を有するとともに、サセプタ4との対向面に処理ガスを吐出する複数の吐出孔13が形成されている。このシャワーヘッド11は接地されており、サセプタ4とともに一対の平行平板電極を構成している。
シャワーヘッド11の上面にはガス導入口14が設けられ、このガス導入口14には、処理ガス供給管15が接続されており、この処理ガス供給管15には、バルブ16およびマスフローコントローラ17を介して、処理ガス供給源18が接続されている。処理ガス供給源18からは、エッチングのための処理ガスが供給される。処理ガスとしては、例えばハロゲン系のガス、Oガス、Arガス等、通常この分野で用いられるガスを用いることができる。
前記チャンバー2の側壁下部には排気管19が接続されており、この排気管19には排気装置20が接続されている。排気装置20はターボ分子ポンプなどの真空ポンプを備えており、これによりチャンバー2内を所定の減圧雰囲気まで真空引き可能なように構成されている。また、チャンバー2の側壁には基板搬入出口21と、この基板搬入出口21を開閉するゲートバルブ22とが設けられており、このゲートバルブ22を開にした状態で基板Gが隣接するロードロック室(図示せず)との間で搬送されるようになっている。
サセプタ4には、高周波電力を供給するための給電線23が接続されており、この給電線23には整合器24および高周波電源25が接続されている。高周波電源25からは例えば13.56MHzの高周波電力がサセプタ4に供給される。
次に、このように構成されるプラズマエッチング装置1における処理動作について説明する。
まず、被処理体である基板Gは、ゲートバルブ22が開放された後、図示しないロードロック室から基板搬入出口21を介してチャンバー2内へと搬入され、サセプタ4上に形成された静電チャック40上に載置される。この場合に、基板Gの受け渡しはサセプタ4の内部を挿通しサセプタ4から突出可能に設けられたリフターピン(図示せず)を介して行われる。その後、ゲートバルブ22が閉じられ、排気装置20によって、チャンバー2内が所定の真空度まで真空引きされる。
その後、バルブ16が開放されて、処理ガス供給源18から処理ガスがマスフローコントローラ17によってその流量が調整されつつ、処理ガス供給管15、ガス導入口14を通ってシャワーヘッド11の内部空間12へ導入され、さらに吐出孔13を通って基板Gに対して均一に吐出され、チャンバー2内の圧力が所定の値に維持される。
この状態で高周波電源25から高周波電力が整合器24を介してサセプタ4に印加され、これにより、下部電極としてのサセプタ4と上部電極としてのシャワーヘッド11との間に高周波電界が生じ、処理ガスが解離してプラズマ化し、これにより基板Gにエッチング処理が施される。この際、直流電源26から、静電チャック40の電極43に所定の電圧を印加することにより、基板Gが例えばクーロン力によって静電チャック40に吸着保持される。また、ガス通路9を介して伝熱ガスを基板Gの裏面側に供給することより、効率良く温度調節が行なわれる。
このようにしてエッチング処理を施した後、高周波電源25からの高周波電力の印加を停止し、ガス導入を停止した後、チャンバー2内の圧力を所定の圧力まで減圧する。そして、ゲートバルブ22が開放され、基板Gが基板搬入出口21を介してチャンバー2内から図示しないロードロック室へ搬出されることにより基板Gのエッチング処理が終了する。このように、静電チャック40により基板Gを静電吸着するとともに、温度調節しながら、基板Gのエッチング処理を行うことができる。
次に、図2〜図7を参照しながら、上記第1の実施形態に係る静電吸着電極としての静電チャック40の構成例について説明する。
<第1の例>
まず、第1の実施形態の第1の例に係る静電チャック40aについて説明する。図2は、静電チャック40aの断面図である。この静電チャック40aは、基材41の上に第1の絶縁層42aが設けられ、この第1の絶縁層42aの上に電極43が設けられ、この電極43の上に第2の絶縁層44aが設けられている。基材41の材質としてはアルミニウムが例示される。また、電極43の材質はタングステン、モリブデンなどの金属材料が好ましい。なお、図2において符号50は基板保持面であり、符号50aは、基板保持面50に形成された複数の凸部を示す(図3〜図7において同様である)。これらの凸部50aは、その頂面で基板Gを支持するとともに、凸部50aどうしの間隙(基板Gの裏面側空間)にガス通路9(図1参照)を介してHeガスなどの伝熱ガスが供給されるようになっている。
上記静電チャック40aにおいて、第1の絶縁層42aおよび第2の絶縁層44aは、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成されている。このようなセラミックス溶射膜としては、基材41の材質がアルミニウム(線膨張係数23.8×10−6[/℃])である場合には、例えばフッ化イットリウム溶射膜(YF;線膨張係数13×10−6[/℃])、酸化マグネシウム溶射膜(MgO;線膨張係数11×10−6〜15×10−6[/℃])、フォルステライト溶射膜(2MgO・SiO;線膨張係数10.2×10−6[/℃])などを用いることができる。
このように、第1の絶縁層42aおよび第2の絶縁層44aとして、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を用いることにより、熱応力を緩和し、静電チャック40aの熱耐性を向上させ、クラックの発生を抑制することができる。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40aにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42aの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44aの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。
静電チャック40aは、まず基材41の表面に溶射によって第1の絶縁層42aを形成した後、その上に電極43を配設し、さらにこの電極43を覆うように溶射によって第2の絶縁層44aを形成することにより製造できる。なお、電極43は溶射により形成することもできる。また、適宜切削加工などによる形状加工工程を含めることができる。
なお、この第1の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
<第2の例>
次に、第1の実施形態の第2の例に係る静電チャック40bについて詳細に説明する。図3は、静電チャック40bの断面図である。この静電チャック40bは、基材41の上に第1の絶縁層42bが設けられ、この第1の絶縁層42bの上に電極43が設けられ、この電極43の上に第2の絶縁層44bが設けられている。基材41の材質としてはアルミニウムが例示される。また、電極43の材質はタングステン、モリブデンなどの金属材料が好ましい。
上記静電チャック40bにおいて、第1の絶縁層42bは、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成されている。このようなセラミックス溶射膜の材質としては、上記第1の例と同様のもの例えば基材41の材質がアルミニウムである場合には、YF、MgO、2MgO・SiO等の溶射膜を用いることができる。
一方、第2の絶縁層44bは、アルミナ(Al)溶射膜により構成されている。アルミナ溶射膜の線膨張係数は、6.4×10−6[/℃]であり、基材41の材質が線膨張係数23.8×10−6[/℃]のアルミニウムである場合には、両者の線膨張係数に大きな差異があるため、基材41に直接アルミナ溶射膜を形成すると熱応力によってクラックが発生しやすくなる。そこで本例では、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成された第1の絶縁層42bを介在させる構成とした。このようにして、第1の絶縁層42bを緩衝層として機能させることにより、静電チャック40bの熱耐性を改善し、クラックの発生を抑制している。また、第2の絶縁層44bの材質であるアルミナ(Al)は、体積抵抗率が高く絶縁耐性に優れ、かつ硬度および熱伝導率が高いことから、このアルミナ(Al)により基板保持面50を形成することによって、静電チャック40bに優れた吸着性能を付与することができる。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40bにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42bの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44bの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。
静電チャック40bは、まず基材41の表面に溶射によって第1の絶縁層42bを形成した後、その上に電極43を配設し、さらにこの電極43を覆うように溶射によって第2の絶縁層44bを形成することにより製造することができる。なお、電極43は溶射により形成することもできる。また、適宜切削加工などによる形状加工工程を含めることができる。
なお、この第2の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、第1の絶縁層42bとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
<第3の例>
次に、第1の実施形態の第3の例に係る静電チャック40cについて詳細に説明する。図4は、静電チャック40cの断面図である。この静電チャック40cは、基材41の上に第1の絶縁層42cが設けられ、この第1の絶縁層42cの上に電極43が設けられ、この電極43の上に第2の絶縁層44cが設けられている。基材41の材質としてはアルミニウムが例示される。また、電極43の材質はタングステン、モリブデンなどの金属材料が好ましい。
上記静電チャック40cにおいて、第1の絶縁層42cは、アルミナ(Al)溶射膜により構成されている。一方、第2の絶縁層44cは、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成されている。このようなセラミックス溶射膜としては、第1の例と同様のもの例えば基材41の材質がアルミニウムである場合には、YF、MgO、2MgO・SiO等の溶射膜を用いることができる。
本実施形態では、クラックの起点となりやすい表面層である第2の絶縁層44cを基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成することにより、静電チャック40cの熱耐性を改善し、クラックの発生を抑制している。また、第1の絶縁層42cとして、体積抵抗率の大きなアルミナ(Al)溶射膜を用いることにより、十分な耐電圧性能を確保している。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40cにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42cの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44cの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。
静電チャック40cは、まず基材41の表面に溶射によって第1の絶縁層42cを形成した後、その上に電極43を配設し、さらにこの電極43を覆うように溶射によって第2の絶縁層44cを形成することにより製造することができる。なお、電極43は溶射により形成することもできる。また、適宜切削加工などによる形状加工工程を含めることができる。
なお、この第3の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、第2の絶縁層44cとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
<第4の例>
次に、第1の実施形態の第4の例に係る静電チャック40dについて詳細に説明する。図5は、静電チャック40dの断面図である。この静電チャック40dは、基材41の上に第1の絶縁層42dが設けられ、この第1の絶縁層42dの上に電極43が設けられ、この電極43の上に第2の絶縁層44dが設けられ、さらに、第2の絶縁層44dの上に表面層としての第3の絶縁層45が設けられている。基材41の材質としてはアルミニウムが例示される。また、電極43の材質はタングステン、モリブデンなどの金属材料が好ましい。
上記静電チャック40dにおいて、第1の絶縁層42dおよび第2の絶縁層44dは、アルミナ(Al)溶射膜により構成されている。一方、第3の絶縁層45は、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって薄膜形成されている。このようなセラミックス溶射膜の材質としては、基材41がアルミニウムの場合に、第1の例と同様のもの例えばYF、MgO、2MgO・SiO等を用いることができる。本実施形態では、クラックの起点となりやすい表面層を、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜(第3の絶縁層45)によって薄膜形成したことにより、第3実施形態の静電チャック40cに比べて静電チャック40dの熱耐性をさらに改善してクラックの抑制効果をより高めることが可能になる。この際、第1の絶縁層42dおよび第2の絶縁層44dとして、体積抵抗率の大きなアルミナ(Al)溶射膜を用いることによって、十分な耐電圧性能を確保できるので、第3の絶縁層45を薄膜化しても異常放電などが生じにくく、静電チャック40dの信頼性を確保することができる。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40dにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42dの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44dの膜厚は、150〜500μmとすることが好ましく、200〜450μmとすることがより好ましい。さらに、第3の絶縁層45の膜厚は、50〜250μmとすることが好ましく、75〜225μmとすることがより好ましい。
静電チャック40dは、まず基材41の表面に溶射によって第1の絶縁層42dを形成した後、その上に電極43を配設し、次にこの電極43を覆うように溶射によって第2の絶縁層44dを形成し、さらに第2の絶縁層44dを覆うように溶射によって第3の絶縁層45を形成することにより製造することができる。なお、電極43は溶射により形成することもできる。また、適宜切削加工などによる形状加工工程を含めることができる。
なお、この第4の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、第3の絶縁層45として、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
<第5の例>
次に、第1の実施形態の第5の例に係る静電チャック40eについて詳細に説明する。図6は、静電チャック40eの断面図である。この静電チャック40eは、基材41の上に第1の絶縁層42eが設けられ、この第1の絶縁層42eの上に電極43が設けられ、この電極43の上に第2の絶縁層44eが設けられ、さらに、第1の絶縁層42eおよび第2の絶縁層44eを囲むように、周縁部被覆層46が設けられている。周縁部被覆層46の上部には、周縁台形状部47が形成されている。この周縁台形状部47は、基板保持面50の最も外側の領域をなし、その頂部で基板Gの下面の周縁部を支持するとともに、基板Gの裏面側に空間を形成し、この空間にガス通路9を介してHeガスなどの伝熱ガスが供給され、基板Gが温度調節される。周縁台形状部47の高さは、例えば50〜250μmとすることができる。基材41の材質としてはアルミニウムが例示される。また、電極43の材質は例えばタングステン、モリブデンなどの金属材料が好ましい。
上記静電チャック40eにおいて、第1の絶縁層42eおよび第2の絶縁層44eは、アルミナ(Al)溶射膜により構成されている。一方、周縁部被覆層46は、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成されている。このようなセラミックス溶射膜の材質としては、基材41がアルミニウムの場合に、第1実施形態と同様のもの例えば基材41の材質がアルミニウムである場合には、YF、MgO、2MgO・SiO等を用いることができる。
基板保持面50の周縁部に設けられた周縁台形状部47はクラックの起点になりやすい。このため、本実施形態の静電チャック40eでは、基板保持面50の周縁部に設けられた周縁台形状部47を含む周縁部を基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜(周縁部被覆層46)で被覆することにより、静電チャック40eの熱耐性を改善し、周縁台形状部47を起点とするクラックの発生を抑制している。また、電極43周囲の第1の絶縁層42eおよび第2の絶縁層44eに、体積抵抗率の大きなアルミナ(Al)溶射膜を用いることによって、十分な耐電圧性能を確保できる。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40eにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42eの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44eの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。
静電チャック40eは、まず基材41の表面に溶射によって第1の絶縁層42eを形成した後、その上に電極43を配設し、次にこの電極43を覆うように溶射によって第2の絶縁層44eを形成し、さらに第1の絶縁層42eおよび第2の絶縁層44eの側部を覆うように溶射によって周縁部被覆層46を形成することにより製造することができる。なお、電極43は溶射により形成することもできる。また、適宜切削加工による周縁台形状部47の成形などによる形状加工工程を含めることができる。
なお、この第5の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、周縁部被覆層46として、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
<第6の例>
次に、第1の実施形態の第6の例に係る静電チャック40fについて詳細に説明する。図7は、静電チャック40fの断面図である。この静電チャック40fは、基材41の上に第1の絶縁層42fが設けられ、この第1の絶縁層42fの上に電極43が設けられ、この電極43の上に第2の絶縁層44fが設けられ、さらに、第2の絶縁層44fに形成された周縁台形状部47の頂部を被覆する台形状部被覆層48が設けられている。この周縁台形状部47は、基板保持面50の最も外側の領域をなし、その頂部で基板Gの下面の周縁部を支持するとともに、基板Gの裏面側に空間を形成し、この空間にガス通路9を介してHeガスなどの伝熱ガスが供給され、基板Gが温度調節される。周縁台形状部47の高さは、例えば50〜250μmとすることができる。基材41の材質としてはアルミニウムが例示される。また、電極43の材質は例えばタングステン、モリブデンなどの金属材料が好ましい。
上記静電チャック40fにおいて、第1の絶縁層42fおよび第2の絶縁層44fは、アルミナ(Al)溶射膜により構成されている。一方、静電チャック40fの基板保持面50の周縁に形成された周縁台形状部47の頂部の表面層として形成された台形状部被覆層48は、基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成されている。このようなセラミックス溶射膜の材質としては、基材41がアルミニウムの場合に、第1の例と同様のもの例えばYF、MgO、2MgO・SiO等を用いることができる。
基板保持面50の周縁部に設けられた周縁台形状部47はクラックが発生しやすいことから、本実施形態では、基板保持面50の周縁部に設けられた周縁台形状部47を基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜の薄膜(台形状部被覆層48)で被覆することにより、静電チャック40fの熱耐性を改善し、当該周縁台形状部47を起点とするクラックの発生を抑制している。また、電極43周囲の第1の絶縁層42fおよび第2の絶縁層44fに、体積抵抗率の大きなアルミナ(Al)溶射膜を用いることによって、十分な耐電圧性能を確保できる。
基板保持面50のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック40fにおいて熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層42fの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層44fの膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。さらに、台形状部被覆層48の膜厚は、50〜250μmとすることが好ましく、75〜225μmとすることがより好ましい。本実施形態では、このように台形状部被覆層48を薄膜形成できることから、静電チャック40fの熱耐性を優れたものにすることができる。
静電チャック40fは、まず基材41の表面に溶射によって第1の絶縁層42fを形成した後、その上に電極43を配設し、次にこの電極43を覆うように溶射によって第2の絶縁層44fを形成し、さらに第2の絶縁層44fの基板保持面50の周縁に周縁台形状部47を形成する。そして、この周縁台形状部47の頂部を覆うように溶射によって台形状部被覆層48を形成することにより、静電チャック40fを製造することができる。この場合、第2の絶縁層44fに直接溶射をすることにより周縁台形状部47の全部を基材41の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成してもよい。なお、電極43は溶射により形成することもできる。また、適宜切削加工による周縁台形状部47の成形などの形状加工工程を含めることができる。
なお、この第6の例において、基材41の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼を用いる場合には、台形状部被覆層48として、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が10.9×10−6[/℃]であるAl溶射膜などを用いることができる。また、線膨張係数が8.9×10−6[/℃]であるチタンを用いる場合には、第1の絶縁層42aおよび第2の絶縁層44aとして、例えば線膨張係数が6.4×10−6[/℃]であり、基材41の線膨張係数との差が2.5×10−6[/℃]であるAl溶射膜などを用いることができる。
次に、図1に示すものと同様の構成のプラズマエッチング装置1の静電チャック40について、以下の方法で耐熱性試験を実施した。
表1に示す材質の基材41と溶射膜(第1の絶縁層42および第2の絶縁層44)とを組合せて作製した静電チャックA〜Cに対して、昇温→降温の温度サイクルを5回繰り返し、クラックの発生の有無を確認した。溶射膜は、第1の絶縁層42および第2の絶縁層44ともに同じ材質とした。本耐熱試験におけるチラー設定温度、温度サイクル条件および静電チャック40の表面温度の実測値は表1に示す通りである。また、クラック発生の有無はカラーチェック法(溶剤除去性染色浸透深傷検査法)に基づき判定した。その結果を併せて表1に示した。
Figure 2008066707
この試験結果より、アルミニウム基材とアルミナ溶射膜との組合せでは、電極サイズに関わらずクラックが発生したが、ステンレス基材にアルミナ溶射膜の組合せの場合には、クラックの発生は観られなかった。この結果より、基材の材質として線膨張係数が17.3×10−6[/℃]であるステンレス鋼に対して、線膨張係数が10.9×10−6[/℃]であり、基材の線膨張係数との差の絶対値が14×10−6[/℃]以下であるAl溶射膜を用いることにより、クラックの発生を防止できることが確認できた。
次に、本発明の第2の実施形態に係る静電吸着電極としての静電チャックを備えた基板処理装置の一例であるプラズマエッチングについて説明する。図8は、そのようなプラズマエッチング装置を示す断面図である。
ここでは、上記第1の実施形態の静電チャック40とは、主に基材の構造が異なる静電チャック140を搭載したプラズマエッチング装置101について示し、他の構成は基本的に同じであるため、図1と同じものには同じ符号を付して説明を省略する。
本実施形態の静電チャック140は、導電性材料からなる基材141を有しており、この基材141は上部部材141aと下部部材141bとを有する分割構造をなしている。この基材141の上面には、下から順に、第1の絶縁層142、電極143および第2の絶縁層144が積層されている。静電チャック140は、第1の絶縁層142と第2の絶縁層144との間の電極143に、直流電源26から給電線27を介して直流電圧を印加することにより、例えばクーロン力によって基板Gを静電吸着する。静電チャック140の上面(第2の絶縁層144の上面)には、第1の実施形態と同様、基板Gを吸着保持する基板保持面150が形成されている(図9参照)。この基板保持面150のサイズは、長辺(最長部寸法)の長さが450mm以上、例えば450mm〜3500mmとすることができる。
次に、本実施形態に係る静電チャック140について詳細に説明する。図9は、静電チャック140を拡大して示す断面図である。図9に示すように、この静電チャック140は、基材141の上面の中央に凸状部141cを有し、凸状部141cの外周がサセプタ基材4aに対して静電チャック140をねじ止めするためのフランジ部141dを形成している(ねじは図示略)。そして、凸状部141cの上面に第1の絶縁層142、第2の絶縁層144およびこれらの間の電極143が形成されている。また、第2の絶縁層144の上には基板保持面150が形成される。第1の絶縁層142は、凸状部141cの側面にも形成されている。電極143の材質は、第1の実施形態の電極43と同様、タングステン、モリブデンなどが例示される。また、図9に示すように、基板保持面150には複数の凸部150aが形成されており、これらの凸部150aは、その頂面で基板Gを支持し、隣接する凸部150aの間にガス通路9を介してHeガスなどの伝熱ガスが供給される。
本実施形態においても、基板保持面150のサイズが長辺の寸法で、450mm以上例えば450mm〜3500mmである静電チャック140において熱耐性を向上させるためには膜厚も重要な要素であり、第1の絶縁層142の膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。また、第2の絶縁層144の膜厚は、250〜600μmとすることが好ましく、300〜550μmとすることがより好ましい。
基材141は、上述したように、上部部材141aと下部部材141bとに分割されており、上部部材141aは、凸状部141cと、フランジ部141dの一部を含んでいる。下部部材141bは、上部部材141aの下に設けられ、その中央上部に上部部材141aが嵌め込まれる凹部141eが形成されている。そして、下部部材141bの凹部141eよりも外側の部分は、上記フランジ部141dの残部を構成している。上部部材141aと下部部材141bとは、ねじ161により機械的に締結されており、これらの間には、シール部材162が介在されている。
上部部材141aと下部部材141bとの間には、He等の伝熱ガスを一旦溜めるガス溜まり109aが形成されている。このガス溜まり109aには、上記第1の実施形態と同様、絶縁板3およびサセプタ基材4aを貫通して静電チャック140に延びるガス通路9が接続されている。また、ガス溜まり109aから上方に向けて多数のガス供給連通穴109bが形成され、基板Gの裏面にHeガス等の伝熱ガスが供給されるようになっている。この場合に、上部部材141aがフランジ部141dを含むため、ガス溜まり109aを凸部基板保持面150の外周付近まで延ばすことができ、伝熱用ガスである、Heガス等を基板Gの裏面の周縁部まで供給することができる。
このような静電チャック140において、第1の絶縁層142および第2の絶縁層144はセラミックス溶射皮膜で形成されている。また、基材141の凸状部141cの側面もこれら絶縁層142,144に連続するように、セラミックス溶射皮膜からなる側面絶縁層142aが形成されている。そして、基材141の上部部材141aと、第1の絶縁層142および第2の絶縁層144を形成するセラミックス溶射皮膜とは、絶縁層へのクラックを防止する観点から、線膨張係数の差の絶対値が14×10−6[/℃]以下となるようにする。具体的には、上部部材141aとして、従来の基材141の材料であるアルミニウム(線膨張係数23.8×10−6[/℃])よりも低熱膨張材料であるステンレス鋼(線膨張係数17.3×10−6[/℃])またはチタン(線膨張係数8.9×10−6[/℃])を用い、絶縁層142,144を構成するセラミックス溶射皮膜として、フッ化イットリウム溶射膜(YF;線膨張係数13×10−6[/℃])、酸化マグネシウム溶射膜(MgO;線膨張係数11×10−6〜15×10−6[/℃])、フォルステライト溶射膜(2MgO・SiO;線膨張係数10.2×10−6[/℃])、イットリア溶射膜(Y(;線膨張係数8.2×10−6[/℃])、アルミナ溶射膜(Al;線膨張係数6.4×10−6[/℃])を用いることができる。
このように、絶縁層142,144を構成するセラミックス溶射皮膜と、それに隣接する基材141の上部部材141aとの線膨張係数の差の絶対値を14×10−6[/℃]以下とすることにより、熱応力を緩和し、静電チャック140の耐熱性を向上させ、絶縁層のクラックの発生を抑制することができる。
ここで、上述したように、第1の絶縁層142は、基材141の凸状部141cの側面に形成されており、上部部材141aのフランジ部141dに対応する部分まで延びている。一方、下部部材141bにはセラミックス溶射皮膜は形成されていない。これにより、セラミックス溶射皮膜の剥離再処理を、上部部材141aのみ取り外して行うことができる。
このように、本実施形態では、セラミックス溶射皮膜からなる絶縁層142,144に隣接する上部部材141aを従来よりも低熱膨張材料であるステンレス鋼またはチタンとし、両者間の線膨張係数の差の絶対値が14×10−6[/℃]以下として絶縁層のクラックを抑制するので、下部部材141bの熱膨張係数は大きくてもよく、従来から基材として用いられているアルミニウムを用いることができる。アルミニウムは比重が小さいので、全てをステンレス鋼やチタンとする場合よりも有利である。
下部部材141bをアルミニウムとしては、従来の基材と同様、表面に陽極酸化処理(アルマイト処理)を施していることが好ましい。これにより、溶射皮膜が形成されていなくても高い耐食性を維持することができる。従来は、基材をこのような陽極酸化処理を施したアルミニウムで構成した場合、セラミックス溶射皮膜の剥離再処理時に基材の陽極酸化処理皮膜も剥離されて再処理が必要になることがあったが、本実施形態では上述のように陽極酸化皮膜が形成される下部部材141bにセラミックス溶射皮膜が形成されないので、このような陽極酸化処理皮膜の剥離再処理が不要である。
本実施形態において、特に好ましいのは、セラミックス溶射皮膜からなる絶縁層142,144をAl溶射膜で形成し、基材141の上部部材141aをステンレス鋼またはチタンで形成し、下部部材141bを陽極酸化処理されたアルミニウムで形成することである。このような構成により、上部部材141aをステンレス鋼またはチタンに変更するだけでよく、他は、従来の静電チャックとほぼ同等の形状および機能を持たせることができ、大幅な設計変更等が不要となる。
本実施形態においても、上記第1の実施形態の第2の例および第3の例と同様、第1の絶縁層142および第2の絶縁層144として、互いに線膨張係数の異なる材料からなるセラミックス溶射膜を用いることができる。また、上記第1の実施形態の第4の例と同様、第2の絶縁層144の上に表面層として上部部材141aとの線膨張係数の差の絶対値が14×10−6[/℃]以下のセラミックス皮膜からなる第3の絶縁層を設けてもよい。さらに、第1の実施形態の第5の例のように、上部部材141aとの線膨張係数の差の絶対値が14×10−6[/℃]以下のセラミックス皮膜からなる周縁部被覆層および周縁台形状部を設けてもよい。さらにまた、第1の実施形態の第6の例のように、上部部材141aとの線膨張係数の差の絶対値が14×10−6[/℃]以下のセラミックス皮膜からなる台形状部被覆層を設けてもよい。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に制約されることはなく、種々の変形が可能である。
例えば、本発明の処理装置については、下部電極に高周波電力を印加するRIEタイプの容量結合型平行平板プラズマエッチング装置を例示して説明したが、エッチング装置に限らず、アッシング、CVD成膜等を行なう他の種類のプラズマ処理装置に適用することができるし、上部電極に高周波電力を供給するタイプであっても、また容量結合型に限らず誘導結合型であってもよく、被処理基板は、FPD用ガラス基板Gに限られず半導体ウエハであってもよい。
なお、上記実施形態では、静電吸着電極における基材41とそれを被覆するセラミックス溶射膜との線膨張係数について規定したが、静電吸着電極に限らず、基板処理装置のチャンバー内で使用される他の部材にも応用できる。
本発明の第1の実施形態に係る静電吸着電極としての静電チャックを備えた基板処理装置の一例であるプラズマエッチング装置を示す断面図。 第1の実施形態の第1の例に係る静電チャックを示す断面図。 第1の実施形態の第2の例に係る静電チャックを示す断面図。 第1の実施形態の第3の例に係る静電チャックを示す断面図。 第1の実施形態の第4の例に係る静電チャックを示す断面図。 第1の実施形態の第5の例に係る静電チャックを示す断面図。 第1の実施形態の第6の例に係る静電チャックを示す断面図。 本発明の第2の実施形態に係る静電吸着電極としての静電チャックを備えた基板処理装置の一例であるプラズマエッチング装置を示す断面図。 第2の実施形態に係る静電チャックを拡大して示す断面図。
符号の説明
1 プラズマエッチング装置
2 チャンバー
3 絶縁板
4 サセプタ
5a 絶縁膜
11 シャワーヘッド
20 排気装置
25 高周波電源
26 直流電源
40,140 静電チャック
41,141 基材
42,142 第1の絶縁層
43,143 電極
44,144 第2の絶縁層
45 第3の絶縁層
46 周縁部被覆層
47 周縁台形状部
48 台形状部被覆層
50,150 基板保持面
141a 上部部材
141b 下部部材
141c 凸状部
141d フランジ部
161 ねじ

Claims (36)

  1. 基板処理装置において基板を静電力により吸着保持する基板保持面を備えた静電吸着電極であって、
    基材と、
    該基材上に設けられた絶縁層と、
    前記絶縁層中に配設された電極と、
    を備え、
    前記絶縁層の一部または全部を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、静電吸着電極。
  2. 前記基板保持面をなす前記絶縁層表面の一部または全部に、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成したことを特徴とする、請求項1に記載の静電吸着電極。
  3. 前記基板保持面の周縁部に、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成したことを特徴とする、請求項2に記載の静電吸着電極。
  4. 前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層とを含んで構成されており、
    少なくとも前記第1の絶縁層または前記第2の絶縁層のいずれかを、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、請求項1に記載の静電吸着電極。
  5. 前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層と、該第2の絶縁層より上層の表面層とを含んで構成されており、
    前記表面層を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、請求項1に記載の静電吸着電極。
  6. 前記表面層の膜厚は50〜250μmである、請求項5に記載の静電吸着電極。
  7. 前記基板保持面の周縁部および側部を前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、請求項1に記載の静電吸着電極。
  8. 前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部を前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成したことを特徴とする、請求項1に記載の静電吸着電極。
  9. 前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部の頂面を、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって被覆したことを特徴とする、請求項1に記載の静電吸着電極。
  10. 前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜の膜厚が50〜250μmであることを特徴とする、請求項9に記載の静電吸着電極。
  11. 前記基材がアルミニウムであり、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜は、YF(フッ化イットリウム)、MgO(酸化マグネシウム)、および2MgO・SiO(フォルステライト)のいずれかであることを特徴とする、請求項1から請求項10のいずれか1項に記載の静電吸着電極。
  12. 前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜によって形成された部分以外の絶縁層をAl(アルミナ)の溶射膜によって形成したことを特徴とする、請求項11に記載の静電吸着電極。
  13. 前記基材がステンレス鋼またはチタンであり、前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜は、Al(アルミナ)、Y(イットリア)、YF(フッ化イットリウム)、MgO(酸化マグネシウム)、および2MgO・SiO(フォルステライト)のいずれかであることを特徴とする、請求項1から請求項10のいずれか1項に記載の静電吸着電極。
  14. 基板処理装置において基板を静電力により吸着保持する基板保持面を備えた静電吸着電極であって、
    基材と、
    該基材上に設けられた絶縁層と、
    前記絶縁層中に配設された電極と、
    を備え、
    前記絶縁層の一部または全部が、セラミックス溶射膜によって形成され、
    前記基材は、前記絶縁層と隣接する上部部材と、該上部部材を支持する下部部材とを有し、
    前記上部部材と、前記セラミック溶射膜とは、線膨張係数の差の絶対値が14×10−6[/℃]以下であることを特徴とする、静電吸着電極。
  15. 前記基板保持面をなす前記絶縁層表面の一部または全部に、前記セラミックス溶射膜を形成したことを特徴とする、請求項14に記載の静電吸着電極。
  16. 前記基板保持面の周縁部に、前記セラミックス溶射膜を形成したことを特徴とする、請求項14に記載の静電吸着電極。
  17. 前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層とを含んで構成されており、
    少なくとも前記第1の絶縁層または前記第2の絶縁層のいずれかを、前記セラミックス溶射膜によって形成したことを特徴とする、請求項14に記載の静電吸着電極。
  18. 前記絶縁層は、前記電極より下層の第1の絶縁層と、前記電極より上層の第2の絶縁層と、該第2の絶縁層より上層の表面層とを含んで構成されており、
    前記表面層を、前記セラミックス溶射膜によって形成したことを特徴とする、請求項14に記載の静電吸着電極。
  19. 前記表面層の膜厚は50〜250μmである、請求項18に記載の静電吸着電極。
  20. 前記基板保持面の周縁部および側部を前記セラミックス溶射膜によって形成したことを特徴とする、請求項14に記載の静電吸着電極。
  21. 前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部を前記セラミックス溶射膜によって形成したことを特徴とする、請求項14に記載の静電吸着電極。
  22. 前記基板保持面の周縁部には段差が設けられて周縁台形状部を形成しており、該周縁台形状部の頂面を、前記セラミックス溶射膜によって被覆したことを特徴とする、請求項14に記載の静電吸着電極。
  23. 前記セラミックス溶射膜の膜厚が50〜250μmであることを特徴とする、請求項22に記載の静電吸着電極。
  24. 前記基材はその上面の中央に凸状部を有し、該凸状部の外周側がフランジ部を形成しており、前記絶縁層は前記凸状部の頂面および側面に形成され、前記絶縁層の前記頂面部分の表面が前記基板保持面を構成することを特徴とする、請求項14に記載の静電吸着電極。
  25. 前記基材の前記上部部材は、前記凸状部と、その外周部の前記フランジ部の一部を含むことを特徴とする、請求項24に記載の静電吸着電極。
  26. 前記上部部材と前記下部部材とはねじ止めされていることを特徴とする、請求項14から請求項25に記載の静電吸着電極。
  27. 前記基材の前記上部部材がステンレス鋼またはチタンであり、前記セラミックス溶射膜は、Al(アルミナ)、Y(イットリア)、YF(フッ化イットリウム)、MgO(酸化マグネシウム)および2MgO・SiO(フォルステライト)のいずれかであることを特徴とする、請求項14から請求項26に記載の静電吸着電極。
  28. 前記上部部材がステンレス鋼であり、前記下部部材がアルミニウムであり、前記セラミックス溶射膜はAl(アルミナ)であることを特徴とする、請求項27に記載の静電吸着電極。
  29. 前記下部部材の表面に陽極酸化被膜が形成されていることを特徴とする請求項28に記載の静電吸着電極。
  30. 前記基板保持面は、最長部寸法が450mm以上であることを特徴とする、請求項1から請求項29のいずれか1項に記載の静電吸着電極。
  31. 基板を収容するチャンバーと、
    請求項1から請求項30のいずれか1項に記載された静電吸着電極と、
    前記静電吸着電極に保持された基板に対して所定の処理を施す処理機構と
    を具備することを特徴とする基板処理装置。
  32. フラットパネルディスプレイの製造に用いられるものである、請求項31に記載の基板処理装置。
  33. 前記処理機構は、基板に対し、プラズマエッチング処理を行なうものであることを特徴とする、請求項31または請求項32に記載の基板処理装置。
  34. 基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
    基材の表面に第1の絶縁層を形成する工程と、
    前記第1の絶縁層の上に電極を形成する工程と、
    前記電極を覆うように第2の絶縁層を形成する工程と、
    を含み、
    前記第1の絶縁層を形成する工程および/または前記第2の絶縁層を形成する工程では、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜を形成することを特徴とする、静電吸着電極の製造方法。
  35. 基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
    基材の表面に第1の絶縁層を形成する工程と、
    前記第1の絶縁層の上に電極を形成する工程と、
    前記電極を覆うように第2の絶縁層を形成する工程と、
    前記第2の絶縁層の基板保持面の一部または全部に、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜からなる被覆層を形成する工程と、
    を含むことを特徴とする、静電吸着電極の製造方法。
  36. 基板処理装置において基板を吸着保持するための静電吸着電極の製造方法であって、
    基材の表面に第1の絶縁層を形成する工程と、
    前記第1の絶縁層の上に電極を形成する工程と、
    前記電極を覆うように第2の絶縁層を形成する工程と、
    前記第1の絶縁層および前記第2の絶縁層の側部に、溶射によって前記基材の線膨張係数との差の絶対値が14×10−6[/℃]以下である線膨張係数を有するセラミックス溶射膜からなる被覆層を形成する工程と、
    を含むことを特徴とする、静電吸着電極の製造方法。
JP2007153792A 2006-08-10 2007-06-11 静電吸着電極、基板処理装置および静電吸着電極の製造方法 Active JP4994121B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007153792A JP4994121B2 (ja) 2006-08-10 2007-06-11 静電吸着電極、基板処理装置および静電吸着電極の製造方法
TW096129451A TWI423380B (zh) 2006-08-10 2007-08-09 An electrostatic adsorption electrode, a substrate processing device, and an electrostatic adsorption electrode
KR1020070080311A KR100921836B1 (ko) 2006-08-10 2007-08-09 정전 흡착 전극, 기판 처리 장치 및 정전 흡착 전극의 제조방법
CN2007101403902A CN101188207B (zh) 2006-08-10 2007-08-10 静电吸附电极、基板处理装置和静电吸附电极的制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006218457 2006-08-10
JP2006218457 2006-08-10
JP2007153792A JP4994121B2 (ja) 2006-08-10 2007-06-11 静電吸着電極、基板処理装置および静電吸着電極の製造方法

Publications (2)

Publication Number Publication Date
JP2008066707A true JP2008066707A (ja) 2008-03-21
JP4994121B2 JP4994121B2 (ja) 2012-08-08

Family

ID=39289092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153792A Active JP4994121B2 (ja) 2006-08-10 2007-06-11 静電吸着電極、基板処理装置および静電吸着電極の製造方法

Country Status (4)

Country Link
JP (1) JP4994121B2 (ja)
KR (1) KR100921836B1 (ja)
CN (1) CN101188207B (ja)
TW (1) TWI423380B (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302347A (ja) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd 静電チャック及び基板温調固定装置
KR20110020269A (ko) * 2008-05-19 2011-03-02 엔테그리스, 아이엔씨. 정전 척
JP2011119326A (ja) * 2009-12-01 2011-06-16 Tokyo Electron Ltd 基板載置台、その製造方法及び基板処理装置
JP2013529390A (ja) * 2010-05-28 2013-07-18 アクセリス テクノロジーズ, インコーポレイテッド 静電チャックに適した熱膨張係数
JP2015106667A (ja) * 2013-11-29 2015-06-08 太平洋セメント株式会社 基板載置装置
JP2015211120A (ja) * 2014-04-25 2015-11-24 株式会社ディスコ 切削装置
JP2016065302A (ja) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 プラズマ処理装置用の部品、及び部品の製造方法
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
JP2017147278A (ja) * 2016-02-15 2017-08-24 東京エレクトロン株式会社 基板載置台および基板処理装置
KR20180021329A (ko) * 2016-08-19 2018-03-02 삼성전자주식회사 기판 처리 장치
CN108140542A (zh) * 2015-10-04 2018-06-08 应用材料公司 小热质量的加压腔室
KR20190056973A (ko) 2017-11-17 2019-05-27 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치
KR20210040379A (ko) 2018-08-10 2021-04-13 치호우 도쿠리츠 교우세이 호우진 야마구치켄 산교기쥬츠센터 양극 산화티탄재 및 그 제조 방법

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010296B2 (ja) * 2010-12-28 2016-10-19 東京エレクトロン株式会社 静電チャック
KR101353157B1 (ko) * 2010-12-28 2014-01-22 도쿄엘렉트론가부시키가이샤 정전 척
CN104752118B (zh) * 2013-12-25 2017-02-15 中微半导体设备(上海)有限公司 等离子体处理腔室及其静电夹盘的制造方法
CN104752119B (zh) * 2013-12-25 2017-08-25 中微半导体设备(上海)有限公司 等离子体处理腔室及其静电夹盘的制造方法
CN104576490A (zh) * 2014-12-31 2015-04-29 上海卡贝尼精密陶瓷有限公司 一种静电吸盘及其制造方法
KR102632725B1 (ko) * 2016-03-17 2024-02-05 에이에스엠 아이피 홀딩 비.브이. 기판 지지 플레이트 및 이를 포함하는 박막 증착 장치 및 박막 증착 방법
JP6854600B2 (ja) * 2016-07-15 2021-04-07 東京エレクトロン株式会社 プラズマエッチング方法、プラズマエッチング装置、および基板載置台
CN110997972B (zh) 2017-07-31 2022-07-26 京瓷株式会社 部件及半导体制造装置
WO2019044850A1 (ja) 2017-09-01 2019-03-07 学校法人 芝浦工業大学 部品および半導体製造装置
JP7241519B2 (ja) 2018-12-04 2023-03-17 東京エレクトロン株式会社 基板載置台、基板処理装置及び基板載置台の製造方法
CN111613563B (zh) * 2019-02-26 2024-02-27 芯恩(青岛)集成电路有限公司 一种静电吸盘及晶圆测试方法
KR102635168B1 (ko) * 2021-04-26 2024-02-13 주식회사 이에스티 코팅 타입 고온 정전척
US20230009692A1 (en) * 2021-07-07 2023-01-12 Applied Materials, Inc Coated substrate support assembly for substrate processing
CN114457300B (zh) * 2022-02-10 2022-12-20 重庆臻宝实业有限公司 一种具有交叉回路下部电极的制备工艺
WO2023163472A1 (ko) * 2022-02-28 2023-08-31 주식회사 이에스티 저온 정전척

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148420A (ja) * 1995-09-20 1997-06-06 Hitachi Ltd 静電吸着電極およびその製作方法
JPH09213777A (ja) * 1996-01-31 1997-08-15 Kyocera Corp 静電チャック
JP2000021962A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 静電吸着装置
JP2003060019A (ja) * 2001-08-13 2003-02-28 Hitachi Ltd ウエハステージ
JP2005136350A (ja) * 2003-10-31 2005-05-26 Tokyo Electron Ltd 静電吸着装置、プラズマ処理装置及びプラズマ処理方法
JP2006049483A (ja) * 2004-08-03 2006-02-16 Canon Inc 静電吸着装置および電子源の製造装置
JP2006060040A (ja) * 2004-08-20 2006-03-02 Rasa Ind Ltd 静電チャックプレート及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11157953A (ja) * 1997-12-02 1999-06-15 Nhk Spring Co Ltd セラミックスと金属との構造体及びそれを用いた静電チャック装置
JPH11168134A (ja) * 1997-12-03 1999-06-22 Shin Etsu Chem Co Ltd 静電吸着装置およびその製造方法
JPH11176919A (ja) * 1997-12-08 1999-07-02 Sony Corp 静電チャック
KR100476845B1 (ko) * 1999-04-06 2005-03-17 동경 엘렉트론 주식회사 전극, 적재대, 플라즈마 처리 장치 및 전극과 적재대의제조 방법
TW541586B (en) * 2001-05-25 2003-07-11 Tokyo Electron Ltd Substrate table, production method therefor and plasma treating device
US7175737B2 (en) * 2002-04-16 2007-02-13 Canon Anelva Corporation Electrostatic chucking stage and substrate processing apparatus
JP2004247387A (ja) * 2003-02-12 2004-09-02 Sumitomo Electric Ind Ltd 半導体製造装置用ウェハ保持体およびそれを搭載した半導体製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148420A (ja) * 1995-09-20 1997-06-06 Hitachi Ltd 静電吸着電極およびその製作方法
JPH09213777A (ja) * 1996-01-31 1997-08-15 Kyocera Corp 静電チャック
JP2000021962A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 静電吸着装置
JP2003060019A (ja) * 2001-08-13 2003-02-28 Hitachi Ltd ウエハステージ
JP2005136350A (ja) * 2003-10-31 2005-05-26 Tokyo Electron Ltd 静電吸着装置、プラズマ処理装置及びプラズマ処理方法
JP2006049483A (ja) * 2004-08-03 2006-02-16 Canon Inc 静電吸着装置および電子源の製造装置
JP2006060040A (ja) * 2004-08-20 2006-03-02 Rasa Ind Ltd 静電チャックプレート及びその製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110020269A (ko) * 2008-05-19 2011-03-02 엔테그리스, 아이엔씨. 정전 척
US10395963B2 (en) 2008-05-19 2019-08-27 Entegris, Inc. Electrostatic chuck
KR101673039B1 (ko) * 2008-05-19 2016-11-04 엔테그리스, 아이엔씨. 정전 척
US9543187B2 (en) 2008-05-19 2017-01-10 Entegris, Inc. Electrostatic chuck
JP2009302347A (ja) * 2008-06-13 2009-12-24 Shinko Electric Ind Co Ltd 静電チャック及び基板温調固定装置
US9721821B2 (en) 2009-05-15 2017-08-01 Entegris, Inc. Electrostatic chuck with photo-patternable soft protrusion contact surface
JP2011119326A (ja) * 2009-12-01 2011-06-16 Tokyo Electron Ltd 基板載置台、その製造方法及び基板処理装置
JP2013529390A (ja) * 2010-05-28 2013-07-18 アクセリス テクノロジーズ, インコーポレイテッド 静電チャックに適した熱膨張係数
JP2015106667A (ja) * 2013-11-29 2015-06-08 太平洋セメント株式会社 基板載置装置
JP2015211120A (ja) * 2014-04-25 2015-11-24 株式会社ディスコ 切削装置
JP2018193616A (ja) * 2014-09-17 2018-12-06 東京エレクトロン株式会社 プラズマ処理装置用の部品の製造方法
JP2017150085A (ja) * 2014-09-17 2017-08-31 東京エレクトロン株式会社 プラズマ処理装置用の部品の製造方法
JP2018168474A (ja) * 2014-09-17 2018-11-01 東京エレクトロン株式会社 プラズマ処理装置用の部品の製造方法
JP2016065302A (ja) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 プラズマ処理装置用の部品、及び部品の製造方法
CN108140542A (zh) * 2015-10-04 2018-06-08 应用材料公司 小热质量的加压腔室
US11424137B2 (en) 2015-10-04 2022-08-23 Applied Materials, Inc. Drying process for high aspect ratio features
CN108140542B (zh) * 2015-10-04 2022-10-18 应用材料公司 小热质量的加压腔室
JP2017147278A (ja) * 2016-02-15 2017-08-24 東京エレクトロン株式会社 基板載置台および基板処理装置
KR20180021329A (ko) * 2016-08-19 2018-03-02 삼성전자주식회사 기판 처리 장치
KR102630782B1 (ko) 2016-08-19 2024-01-31 삼성전자주식회사 기판 처리 장치
KR20190056973A (ko) 2017-11-17 2019-05-27 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치
KR20210040379A (ko) 2018-08-10 2021-04-13 치호우 도쿠리츠 교우세이 호우진 야마구치켄 산교기쥬츠센터 양극 산화티탄재 및 그 제조 방법

Also Published As

Publication number Publication date
KR100921836B1 (ko) 2009-10-13
CN101188207A (zh) 2008-05-28
JP4994121B2 (ja) 2012-08-08
CN101188207B (zh) 2011-01-12
KR20080014673A (ko) 2008-02-14
TW200826226A (en) 2008-06-16
TWI423380B (zh) 2014-01-11

Similar Documents

Publication Publication Date Title
JP4994121B2 (ja) 静電吸着電極、基板処理装置および静電吸着電極の製造方法
TWI559357B (zh) Electrode generation electrode and plasma processing device
TWI413205B (zh) A substrate mounting table, a substrate processing apparatus, and a substrate mounting table
KR101261706B1 (ko) 기판 탑재대, 그 제조 방법 및 기판 처리 장치
JP5004436B2 (ja) 静電吸着電極および処理装置
JP5248038B2 (ja) 載置台およびそれを用いたプラズマ処理装置
JP5281811B2 (ja) プラズマ処理用環状部品、プラズマ処理装置、及び外側環状部材
JP2008028052A (ja) 静電吸着電極の補修方法
TWI723031B (zh) 電漿處理裝置及噴頭
TWI532118B (zh) Electrostatic adsorption electrode and manufacturing method thereof, and substrate processing device
KR20070009448A (ko) 정전 흡착 전극, 기판 처리 장치 및 정전 흡착 전극의 제조방법
CN101207061B (zh) 基板载置台及其制造方法、基板处理装置、流体供给机构
JP2003224077A (ja) プラズマ処理装置、電極部材、バッフル板の製造方法、処理装置、および、表面処理方法
JP2002222799A (ja) プラズマ処理装置およびそのクリーニング方法および静電チャックの除電方法
KR100996018B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP2009253161A (ja) プラズマ処理容器およびプラズマ処理装置
JP2004071791A (ja) 基板載置部材およびそれを用いた基板処理装置
JP7097758B2 (ja) シャワーヘッドおよびプラズマ処理装置
TW202126120A (zh) 基板處理設備
JP2006339678A (ja) プラズマ処理装置及び電極部材
JP7507663B2 (ja) 締結構造と締結方法、及びプラズマ処理装置
JP5377781B2 (ja) 載置台およびそれを用いたプラズマ処理装置
JP2004039935A (ja) プラズマ処理装置の汚染物の除去方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250