JP2008066208A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2008066208A
JP2008066208A JP2006244942A JP2006244942A JP2008066208A JP 2008066208 A JP2008066208 A JP 2008066208A JP 2006244942 A JP2006244942 A JP 2006244942A JP 2006244942 A JP2006244942 A JP 2006244942A JP 2008066208 A JP2008066208 A JP 2008066208A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
separator
fuel cell
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244942A
Other languages
English (en)
Other versions
JP5113360B2 (ja
Inventor
Naoki Mitsuda
直樹 満田
Shintaro Tanaka
慎太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006244942A priority Critical patent/JP5113360B2/ja
Publication of JP2008066208A publication Critical patent/JP2008066208A/ja
Application granted granted Critical
Publication of JP5113360B2 publication Critical patent/JP5113360B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】本発明は、ガス拡散層の排水性能を向上させることができるとともに、セパレータに対するガス拡散層の接触面積を大きく確保しつつ、セパレータに対する膜電極構造体の位置ズレを確実に防止することできる燃料電池を提供することを課題とする。
【解決手段】本発明は、固体高分子電解質膜20と、電極触媒層12,13と、ガス拡散層21,22と、セパレータ14,15とを備える燃料電池FCにおいて、セパレータ15は、ガス拡散層22のベース面Bと接触する複数の接触部Tを有するとともに、接触部T同士の間には、反応ガスの流路15sとなる凹部23aが形成されており、ガス拡散層22は、ベース面Bから突出してセパレータ15の凹部23aに接する凸部23bを有するとともに、ガス拡散層22には反応ガスの流路15sに臨むように形成された貫通孔24を備えることを特徴とする。
【選択図】図3

Description

本発明は、燃料電池に関する。
従来、燃料電池としては、固体高分子電解質膜の両面のそれぞれに電極触媒層およびガス拡散層をこの順番で配置した膜電極構造体(MEA:Membrane Electrode Assembly)を、一対のセパレータで挟持した単セルにおいて、セパレータに対向する側のガス拡散層の表面に反応ガス(水素や空気)の流路を形成したものが知られている(例えば、特許文献1参照)。このような燃料電池によれば、セパレータよりも加工が容易なガス拡散層に反応ガスの流路が形成されるので、反応ガスの流路の設計においてその自由度が増す。
特開2002−164058号公報(段落0012、図1)
しかしながら、このような燃料電池では、セパレータの平坦面にガス拡散層の表面の凸部が接触し、凹部に反応ガスの流路が形成されるが、セパレータおよびガス拡散層の平坦度が高くなければ、微小な凸部同士で接触するため、セパレータに対するガス拡散層の接触面積が小さくなり、セパレータとガス拡散層との間の接触抵抗が増大する。そのため、この燃料電池では、発電性能が損なわれるという問題がある。また、この燃料電池では、セパレータの平坦面とMEAのガス拡散層の凸部とで接触し合うために、セパレータでMEAを挟み込んだ単セルをスタックした際に、凸部に応力が集中する。そのため燃料電池の耐久性が不充分となる恐れもある。また、セパレータに対するガス拡散層の接触面積が小さくなることから、セパレータでMEAを挟み込んだ単セルをスタックしていく際に、セパレータ間に配置されたMEAが位置ズレをおこす場合がある。そして、このような位置ズレは、燃料電池の使用時にも生じる恐れがあり、セパレータとMEAとの間のシール性を損なうこととなる。
また、一般に、燃料電池は、発電時に生じた水や、反応ガスの加湿に使用した水によってフラッディングという現象が発生する場合がある。この現象は、水がガス拡散層における反応ガスの拡散を阻害して燃料電池の発電性能を低下させる。したがって、従来の燃料電池(例えば、特許文献1参照)では、ガス拡散層における排水性能の向上が望まれている。
本発明は、ガス拡散層の排水性能を向上させることができるとともに、セパレータに対するガス拡散層の接触面積を大きく確保しつつ、セパレータに対するMEAの位置ズレを確実に防止することできる燃料電池を提供することを課題とする。
前記課題を解決する本発明の燃料電池は、プロトン伝導膜と、前記プロトン伝導膜に積層される電極触媒層と、前記電極触媒層に積層されるガス拡散層と、前記ガス拡散層に重ねて配置されるセパレータとを備える燃料電池において、前記セパレータは、前記ガス拡散層のベース面と接触する複数の接触部を有するとともに、隣接する前記接触部同士の間には、反応ガスの流路となる凹部が形成されており、前記ガス拡散層は、前記ベース面から突出して前記セパレータの前記凹部に接する凸部を有するとともに、前記ガス拡散層の厚さ方向に貫かれてその一端が前記反応ガスの流路に臨むように形成された内径0.1〜2mmの貫通孔を備えることを特徴とする。
このような燃料電池では、電極触媒層で生成した水がガス拡散層に移行した際に、この水は、内径0.1〜2mmの貫通孔を介して反応ガスの流路内に効率よく排出される。その結果、この燃料電池によれば、ガス拡散層の排水性能を向上させることができるので、ガス拡散層での反応ガスの拡散が良好に維持されて、セル電圧等の発電性能を良好に維持することができる。
また、この燃料電池では、ガス拡散層の凸部がセパレータの凹部に接しているので、セパレータに対するガス拡散層の位置ズレを確実に防止することできる。その結果、この燃料電池によれば、セパレータでガス拡散層等を挟み込んだ単セルをスタックしていく際に、およびこの燃料電池を使用する際に、セパレータとガス拡散層との間のシール性を良好に維持することができる。また、セパレータと貫通孔との位置ズレが防止されるため、貫通孔が位置ズレを起こすことによる排水性能の低下を抑制することができる。
また、この燃料電池では、セパレータがガス拡散層に接触部で接触するとともに、ガス拡散層の凸部がセパレータの凹部に接しているので、セパレータに対するガス拡散層の接触面積が大きくなってセパレータとガス拡散層との間の接触抵抗を小さくすることができる。そして、電極触媒層側では、貫通孔の他端側が接することとなるが、貫通孔の内径が0.1〜2mmと比較的に小さいので、ガス拡散層と電極触媒層との間の接触抵抗はわずかとなる。以上のことから、この燃料電池は、接触抵抗が小さくなるので優れた発電性能を発揮することができる。
また、この燃料電池では、セパレータがガス拡散層に接触部で接触するとともに、ガス拡散層の凸部がセパレータの凹部に接しているので、従来の燃料電池(例えば、特許文献1参照)で凸部に応力が集中するといったおそれが低減される。その結果、この燃料電池は、従来の燃料電池と比較して優れた耐久性を発揮することができる。
また、このような燃料電池においては、前記セパレータの前記凹部と前記ガス拡散層の前記凸部とが接触している部分のうち、前記ガス拡散層の前記ベース面から垂直距離で最大となる位置までの長さが、45μm〜980μmであることが望ましい。
このような燃料電池によれば、より優れたセル電圧を発揮することができるとともに、セパレータに対するガス拡散層の位置ズレをさらに確実に防止し、排水性を確保することできる。
本発明の燃料電池によれば、ガス拡散層の排水性能を向上させることができるとともに、セパレータに対するガス拡散層の接触面積を大きく確保しつつ、セパレータに対するMEAの位置ズレを確実に防止することできる。
次に、本発明の燃料電池の実施形態について適宜図面を参照しながら詳細に説明する。参照する図面において、図1は、実施形態に係る燃料電池の斜視図である。図2は、単セルの積層構造を示す分解斜視図である。図3は、図1のA−A断面における単セルの部分拡大図である。
図1に示すように、本実施形態に係る燃料電池FCは、内部マニホールド型のものであって、複数の単セル1が積層された積層体2を備えている。
図2に示すように、単セル1は、一対の導電性のセパレータ14およびセパレータ15で挟み込まれる膜電極構造体(MEA:Membrane Electrode Assembly)10を備えている。
セパレータ14は、膜電極構造体10の電極触媒層12側の面に対向するように設けられている。このセパレータ14は、その輪郭が略矩形の金属製の波板14xと、この波板14xの周囲を取り囲むように配置された枠部材14yとを備えている。ちなみに、枠部材14yは、後記するセパレータ15の枠部材15yとの間、膜電極構造体10との間をシールするガスケットの機能をも有している。
このセパレータ14の膜電極構造体10に対向する面には、水素(反応ガス)が流通する流路14sが形成されている。この流路14sは、図3に示すように、ガス拡散層21のベース面Bとセパレータ14とが接触する接触部T同士の間に形成された凹部23a内に区画されている。そして、図2に示すように、セパレータ14の枠部材14yには、図2の紙面奥側上段、中段、下段に貫通孔14a,14b,14cが形成されており、図2の紙面手前側上段、中段、下段に貫通孔14d,14e,14fが形成されている。
セパレータ15は、図2に示すように、膜電極構造体10の電極触媒層13側に対向するように設けられている。このセパレータ15は、セパレータ14と同様の構造を有している。つまり、図3に示すように、セパレータ15のガス拡散層22に対向する面には、セパレータ14の流路14sに対応するように、反応ガスとしての空気(酸素)が流通する流路15sが形成されている。この流路15sは、ガス拡散層22のベース面Bとセパレータ15とが接触する接触部T同士の間に形成された凹部23a内に区画されている。そして、セパレータ15には、図2の紙面奥側上段、中段、下段に貫通孔15a,15b,15cが形成されており、図2の紙面手前側上段、中段、下段に貫通孔15d,15e,15fが形成されている。
そして、セパレータ15には、図2および図3に示すように、流路15s(図3参照)が形成された面と反対の面に、冷却水が流通する冷却水路16sが形成されている。なお、この冷却水は、冷却水路16sを流れることにより燃料電池FC(図1参照)を冷却するものである。
そして、単セル1が複数積層されて積層体2(図1参照)を形成した際に、貫通孔14d、および貫通孔15dは、相互に連通し合うことで水素をセパレータ14の流路14sに供給する供給孔(図示せず)を形成する。また、貫通孔14c、および貫通孔15cは、相互に連通し合うことで流路14sから水素を排出する排出孔(図示せず)を形成する。
また、貫通孔14a、および貫通孔15aは、相互に連通し合うことで空気(酸素)をセパレータ15の流路15s(図3参照)に供給する供給孔(図示せず)を形成する。そして、貫通孔14f、および貫通孔15fは、相互に連通し合うことで流路15sから空気(酸素)を排出する排出孔(図示せず)を形成する。
また、貫通孔14b、および貫通孔15bは、相互に連通し合うことで冷却水をセパレータ15の冷却水路16sに供給する供給孔(図示せず)を形成する。そして、貫通孔14e、および貫通孔15eは、相互に連通し合うことで冷却水路16sから冷却水を排出する排出孔(図示せず)を形成する。
膜電極構造体10は、図2に示すように、固体高分子電解質膜20と、この固体高分子電解質膜20の一方の面に形成されたアノード側の電極触媒層12と、他方の面に形成されたカソード側の電極触媒層13とを備えている。なお、固体高分子電解質膜20は、特許請求の範囲にいう「プロトン伝導膜」に相当する。
固体高分子電解質膜20の周縁は、電極触媒層12および電極触媒層13の周縁から外側に向かって延出している。また、電極触媒層12には、セパレータ14側の面にガス拡散層21が配置されており、電極触媒層13には、セパレータ15側の面にガス拡散層22が配置されている。ちなみに、この電極触媒層12および電極触媒層13としては、公知のものでよく、次に説明するガス拡散層21,22を形成するガス透過性材料の表面に触媒ペーストが塗布後に乾燥されたものが挙げられる。触媒ペーストとしては、白金、パラジウム等の触媒、カーボンブラック等の導電性粒子、および高分子電解質等のイオン導電性バインダを含むものが挙げられる。
ガス拡散層21は、水素が、図3に示す流路14sを流れる際に、水素を電極触媒層12に向かって拡散させるものである。
図3に示すように、ガス拡散層21は、そのベース面Bから突出してセパレータ14の凹部23aに嵌り込んで接する凸部23bを有している。この凸部23bは、反応ガスの流路14sが延びる方向に沿って延びており、その断面形状が矩形を呈している。そして、ガス拡散層21の凸部23bが、セパレータ14の凹部23aと接触している部分のうち、ベース面Bから垂直距離で最大となる位置までの長さH、つまり、具体的には、ベース面Bから凸部23bの先端の角までの高さ(以下、単に「凹凸の高さ」ということがある)Hが、45μm〜1000μmとなっている。このように凹部23aに接して凸部23bが部分的に嵌り込むことによって、凹部23aの底面と凸部23bの先端面との間に水素(反応ガス)の流路14sが形成されることとなる。
ガス拡散層22は、空気(酸素)が、図3に示す流路15sを流れる際に、空気(酸素)を電極触媒層13に向かって拡散させるものである。このガス拡散層22は、ガス拡散層21と同様の構造でセパレータ15の凹部23aに嵌り込んで接する凸部23bを有している。本実施形態でのガス拡散層22は、このガス拡散層22の厚さ方向に貫かれてその一端が反応ガスの流路15sに臨むように形成された貫通孔24を有している。つまり、貫通孔24は、ガス拡散層22の凸部23bを貫いている。そして、貫通孔24は、図2に示すように、レール状に延びた凸部23bの長手方向に沿うように複数形成されている。具体的には、貫通孔24の一端が、凸部23bの頂面で幅方向に2列で並ぶように形成されている。ちなみに、本実施形態での貫通孔24の内径は、0.1〜2mmに設定されている。
ガス拡散層21,22の材質としては、公知のものでよく、カーボンペーパ等のガス透過性材料が使用される。
以上のようなセパレータ14,15、および膜電極構造体10を含んで構成される単セル1は、前記したように複数積層されることによって積層体2が構成される(図1参照)。そして、図1に示すように、燃料電池FCでは、一対のエンドプレート3およびエンドプレート4がこの積層体2をその両側から挟み込んで支持している。ちなみに、エンドプレート3には、セパレータ14の貫通孔14a,14b,14c,14d,14e,14f(図2参照)およびセパレータ15の貫通孔15a,15b,15c,15d,15e,15f(図2参照)と対応する位置に、貫通孔3a,3b,3c,3d,3e,3fが形成されており、貫通孔3aは、空気(反応ガス)の供給口に設定されており、貫通孔3fは、空気(反応ガス)の排出口に設定されており、貫通孔3dは、水素(反応ガス)の供給口に設定されており、貫通孔3cは、水素(反応ガス)の排出口に設定されており、貫通孔3bは、冷却水の供給口に設定されており、貫通孔3eは、冷却水の排出口に設定されている。
次に、本実施形態に係る燃料電池FCの動作について説明する。
この燃料電池FCでは、図1に示すエンドプレート3の貫通孔3dから加湿された水素(反応ガス)が供給されると、水素は、積層体2(図1参照)内で各単セル1の貫通孔14d、および貫通孔15d(図2参照)が連通し合って形成された前記供給孔(図示せず)内に流れ込む。そして、各単セル1では、水素が、図2に示すセパレータ14の貫通孔14dを介して、図3に示すセパレータ14の流路14sに流れ込む。次いで、流路14sに流れ込んだ水素は、図2に示すセパレータ14の貫通孔14cを介して排出される。つまり、積層体2(図1参照)内で各単セル1の貫通孔14c、および貫通孔15c(図2参照)が連通し合って形成された前記排出孔(図示せず)内に水素は流れ込む。そして、水素は、図1に示すエンドプレート3の貫通孔3cから排出される。
その一方で、図1に示すエンドプレート3の貫通孔3aから加湿された空気(反応ガス)が供給されると、空気は、積層体2(図1参照)内で各単セル1の貫通孔14a、および貫通孔15a(図2参照)が連通し合って形成された前記供給孔(図示せず)内に流れ込む。そして、各単セル1では、空気が、図2に示すセパレータ15の貫通孔15aを介して、図3に示すセパレータ15の流路15sに流れ込む。次いで、流路15sに流れ込んだ空気は、図2に示すセパレータ15の貫通孔15fを介して排出される。つまり、積層体2(図1参照)内で各単セル1の貫通孔14f、および貫通孔15f(図2参照)が連通し合って形成された前記排出孔(図示せず)内に流れ込む。そして、空気は、図1に示すエンドプレート3の貫通孔3fから排出される。
この燃料電池FCでは、各単セル1のセパレータ14の流路14sに水素が流れ込むとともにセパレータ15の流路15sに空気が流れ込んだ際に、水素は、図3に示す膜電極構造体10のガス拡散層21を介して電極触媒層12側に拡散し、空気は膜電極構造体10のガス拡散層22を介して電極触媒層13側に拡散する。その結果、電極触媒層12では、触媒の作用によってプロトン(水素イオン)と電子に分解されて、プロトンが固体高分子電解質膜20を介して電極触媒層13に透過し、電子が外部負荷を介して電極触媒層13に移動する。なお、周知のとおり、電極触媒層12で生じた電子は、図示しない所定の電極から取り出されるとともに、外部負荷を介して電極触媒層13に戻る。一方、電極触媒層13では、触媒の作用によって、固体高分子電解質膜20を透過したプロトンと、空気中の酸素と、外部負荷からの電子との反応によって水が生成される。
電極触媒層13で生成した水は、ガス拡散層22に移行する。そして、移行した水は、その一端が反応ガスの流路15sに臨んでいる貫通孔24を介して流路15s内に効率よく排出される。このようにして流路15s内に排出された水は、流路15sを流れる空気(反応ガス)とともに、エンドプレート3の貫通孔3f(図1参照)から燃料電池FCの外部に排出される。
以上のような燃料電池FCでは、電極触媒層13で生成した水がガス拡散層22に移行した際に、この水は、内径0.1〜2mmの貫通孔24を介して空気(反応ガス)の流路15s内に効率よく排出される。その結果、この燃料電池FCによれば、ガス拡散層22の排水性能を向上させることができるので、ガス拡散層22での空気の拡散が良好に維持されて、セル電圧等の発電性能を良好に維持することができる。特に、前記した凹凸の高さHを1000μm以下、好ましくは20μm以上であって1000μm以下、さらに好ましくは45μm以上であって1000μm以下、最も好ましくは、45μm以上であって980μm以下とすることによって、セル電圧はさらに良好となる。
また、燃料電池FCでは、セパレータ14,15の凹部23aに接するように、ガス拡散層21,22の凸部23bが部分的に嵌り込んでいるので、セパレータ14,15に対する膜電極構造体10の位置ズレを確実に防止することができる。その結果、この燃料電池FCによれば、セパレータ14,15で膜電極構造体10を挟み込んだ単セル1をスタックしていく際に、および燃料電池FCを使用する際に、セパレータ14,15と膜電極構造体10との間のシール性を良好に維持することができる。特に、凹凸の高さHが45μm以上である燃料電池FCは、前記した位置ズレを更に確実に防止することできる。また、セパレータ15と貫通孔24との位置ズレが防止されるため、貫通孔24が位置ズレを起こすことによる排水性能の低下を抑制することができる。
また、この燃料電池FCでは、セパレータ14,15がガス拡散層21,22に接触部Tで接触するとともに、セパレータ14,15の凹部23aに接するように、ガス拡散層21,22の凸部23bが部分的に嵌り込んでいるので、セパレータ14,15に対するガス拡散層21,22の接触面積が大きくなってセパレータ14,15とガス拡散層21,22との間の接触抵抗を小さくすることができる。その結果、この燃料電池FCでは、貫通孔24の一端が空気(反応ガス)の流路15sに臨んでおり、セパレータ15に直接接していないので、例えば、セパレータ15に貫通孔24の一端がセパレータ15に接しているものと比較して、接触抵抗を低減することが可能となる。そして、電極触媒層13側では、貫通孔24の他端側が接しているものの、貫通孔24の内径が0.1〜2mmと比較的に小さいので、ガス拡散層22と電極触媒層13との間の接触抵抗はわずかとなる。以上のことから、この燃料電池FCは、接触抵抗が小さくなるので優れた発電性能を発揮することができる。
また、この燃料電池FCでは、セパレータ14,15がガス拡散層21,22に接触部Tで接触するとともに、セパレータ14,15の凹部23aに接するように、ガス拡散層21,22の凸部23bが凹部23aに部分的に嵌り込んでいるので、従来の燃料電池(例えば、特許文献1参照)で凸部に応力が集中するといった問題が解消される。その結果、本実施形態に係る燃料電池FCは、優れた耐久性を発揮することができる。
なお、本発明は、前記実施形態に限定されることなく、様々な形態で実施される。
前記実施形態では、ガス拡散層21,22の断面形状が矩形のものを示したが、本発明は凹部23aに凸部23bが接していればよく、ガス拡散層21,22の断面形状に特に制限はない。ここで参照する図4は、ガス拡散層の変形例を示す断面図であり、ガス拡散層の凸部付近の様子を部分的に拡大して表した図である。
図4に示すように、ガス拡散層22の凸部23bの断面形状は、山なり形状を呈しており、セパレータ15の凹部23aに嵌り込んだガス拡散層22の凸部23bは、ベース面Bから立ち上がる側面が凹部23aと連続的に接している。このガス拡散層22における前記した「凹凸の高さ」は、セパレータ15の凹部23aと接触している部分のうち、ベース面Bから垂直距離で最大となる位置までの長さHとなる。
また、前記実施形態では、貫通孔24がカソード側に配置されるガス拡散層22に設けられているが、本発明は貫通孔24がアノード側に配置されるガス拡散層21にも併せて設けられているものであってもよい。
また、前記実施形態では、セパレータ14,15の波板14x,15xに反応ガスの流路14s,15s、および冷却水路16sが形成されているが、本発明では、平板に反応ガスの流路14s,15s、および冷却水路16sが形成されているものであってもよい。
以下、実施例により本発明をさらに具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
(実施例1)
実施例1では、まず、ガス拡散層21,22(図3参照)が作製された。ここで参照する図5(a)から図5(f)は、ガス拡散層21,22の作製の工程を示す模式図である。
図5(a)に示すように、ガス拡散層21,22のベース面B(図3参照)を規定する部材30aが作製された。この部材30aは、紙にフェノール樹脂(昭和高分子(株)製、BLS3135)を含浸させたプリプレグPを複数積層して形成した。なお、紙は、長さ3〜15mm程度の未焼成の合成樹脂繊維と、水と、ポリビニルアルコールとを含む混合液を使用して、公知の抄紙工程を経て得たものである。
次に、図5(b)に示すように、ガス拡散層21,22の凸部23b(図3参照)となる部材30bが作製された。部材30bは、前記した紙を、反応ガスの流路14s,15s(図3参照)に対応する部分を残すように打ち抜くとともに、この紙に前記したフェノール樹脂を含浸させることによって得た。そして、図5(c)に示すように、部材30aに部材30bが重ね合わせられた。
次に、図5(d)に示すように、部材30bの打ち抜いた箇所に、厚さが20μmのスペーサSが配置された。そして、部材30b側から部材30aおよび部材30bに所定のプレス機Mを使用してプレスが行われた。ちなみに、プレス温度は、130℃であり、プレス時間は、40分であった。その結果、図5(e)に示すように、部材30bの高さがスペーサSの厚さに揃えられて硬化した積層体Lが得られた。
次に、図5(f)に示すように、スペーサS(図5(e)参照)が取り外された積層体Lは、2000℃で1時間、バッチ焼成され、炭化(黒鉛化)することでカーボンペーパとなった。そして、ガス拡散層21(図3参照)用のカーボンペーパには、焼成された積層体Lが使用された。また、ガス拡散層22(図3参照)には、凸部23b(図3参照)に相当する部分をその高さ方向にガス拡散層22を貫くように内径0.4mmの貫通孔24が形成された。この貫通孔24は、図3に示すように、このカーボンペーパがガス拡散層22としてセパレータ15が組み付けられた際に、セパレータ15とガス拡散層22との接触部Tの端から流路15s側に離れる距離D1が0.5mmである位置に形成された。そして、貫通孔24は、凸部23bの長手方向、つまり流路15sが延びる方向に1cm間隔で2列に並ぶように形成された(図1参照)。なお、この貫通孔24は、YAGレーザを部材30b(凸部23b(図3参照))に照射することで形成された。
次に、膜電極構造体10(図2参照)が作製された。ここで参照する図6は、実施例で使用した膜電極構造体の構造を示す断面図である。
図6に示すように、膜電極構造体10には、固体高分子電解質膜20の一方の面に電極触媒層12を介してガス拡散層21が形成され、他方の面に電極触媒層13を介してガス拡散層22が形成されている。そして、ガス拡散層21は、膜電極構造体10よりも小さい大きさとなっており、ガス拡散層22は、膜電極構造体10と略同じ大きさとなっている。そして、ガス拡散層22と膜電極構造体10とは、その縁部が接着支持層25を介して接着されている。
まず、カーボンブラック(ファーネスブラック)1質量部と、白金粒子1質量部とを混合することで触媒粒子が調製された。次に、この触媒粒子1質量部と、イオン導伝性の高分子バインダとしてのパーフルオロアルキレンスルホン酸高分子化合物(デュポン社製、ナフィオン(登録商標))溶液1質量部とを混合することで触媒ペーストが調製された。
その一方で、カーボンブラック4質量部と、ポリテトラフルオロエチレン(PTFE)粒子6質量部との混合物を、エチレングリコールに均一に分散させることで下地層用分散液が調製された。
次に、ガス拡散層21(図3参照)用のカーボンペーパの平坦面側に前記した下地層用分散液を塗布し、乾燥することで下地層(図示せず)が形成された。そして、カーボンペーパの下地層側に、前記した触媒ペーストが塗布および乾燥されることでガス拡散層21および電極触媒層12が形成された。なお、触媒ペーストの塗布量は、塗布面積あたりの白金質量に換算して、0.5mg/cmであった。そして、乾燥は、60℃で10分間加熱した後に、減圧下に120℃で更に15分間加熱して行った。
次に、ガス拡散層22(図3参照)用のカーボンペーパにおける平坦面側の全周にわたる縁部に、前記したと同様の下地層(図示せず)が形成されるとともに、その片面の周縁部に接着剤がスクリーン印刷によって塗布されることで接着支持層25が形成された。なお、接着剤としては、シリコーン系接着剤(信越シリコーン社製、KE4898)が使用された。そして、ガス拡散層22の平坦面側には、接着支持層25の内側に前記した触媒ペーストが塗布および乾燥されることで電極触媒層13が形成された。なお、電極触媒層13は、電極触媒層12の内側に収まる大きさとした。
固体高分子電解質膜20には、デュポン社製のナフィオン(登録商標)N112が使用された。そして、図6に示すように、固体高分子電解質膜20の一方の面に、ガス拡散層21および電極触媒層12が重ね合わせられるとともに、固体高分子電解質膜20の他方の面に、ガス拡散層22および電極触媒層13が重ね合わせられた。そして、固体高分子電解質膜20、ガス拡散層21、電極触媒層12、ガス拡散層22および電極触媒層13は、150℃の加熱下に2.5MPaで15分間、ホットプレスが施されて一体化することで、膜電極構造体10となった。ちなみに、この膜電極構造体10の電極面積は200cmであった。
次に、この膜電極構造体10を、金メッキしたステンレス(SUS314L)製のセパレータ14,15(図3参照)で挟持することで、単セル1(図2参照)が作製された。ちなみに、セパレータ14,15は、図3に示すように、ガス拡散層22との接触部Tの幅D2が、2mmであり、流路15sの内側平坦部の幅D3が、2mmであり、セパレータ15の流路15sの高さD4が1.5mmであった。そして、この単セル1の流路14sに純水素(加湿率70%)を流通させることで電極触媒層12側に純水素を供給するとともに、流路15sに空気(加湿率70%)を流通させることで電極触媒層13側に空気を供給して発電が行われた。なお、発電条件としては、電流密度が0.8A/cmに設定され、単セル温度(冷媒入り口温度)が80℃に設定された。ちなみに、この単セル1での水素の利用率および空気の利用率は、ともに75%であった。
そして、発電開始から1時間を経過するまでの単セル1のセル電圧(V)が測定された。その結果を表1に示す。なお、表1中、「凹凸の高さ(μm)」は、図2に示すセパレータ14,15の波板14x,15xに膜電極構造体10が接触する部分の面圧(電極部の面圧)を196N/cm(20kgf/cm)となるように設定するとともに、単セル1で発電した後に、その凹凸の高さH(図3参照)を測定したものである。そして、この単セル1における流路占有率(%)を表1に併記する。なお、流路占有率(%)とは、図3に示す流路15sの高さD4に対する凹凸の高さHの百分率(100H/D3)を意味する。
Figure 2008066208
次に、金属製のセパレータ14,15に代えて透明アクリル板を切削加工して作製したセパレータ14,15(以下、「透明セパレータ」という)に、膜電極構造体10が組み込まれた際に、その透明セパレータに対する膜電極構造体10の位置ズレの大小が組込み性の良否として評価された。
この組込み性の評価は、膜電極構造体10における四方の辺の位置と、これらの辺が本来あるべき透明セパレータでの位置を示した基準線との位置ズレの最大量を測定して行った。
この組込み性の評価基準は、透明セパレータに対する膜電極構造体10の組込みを50回繰り返した際に、前記した基準線よりも0.5mm以上離れている辺があれば「×」と評価し、前記した基準線よりも0.3mm以上離れている辺がなければ「○」と評価し、評価が「×」および「○」ではなく、かつ0.3mm以上、0.5mm未満離れている辺があれば「△」と評価した。その結果を表1に示す。
(実施例2ないし実施例10、および比較例1)
「凹凸の高さ(μm)」が、表1に示すように設定されたこと以外は、実施例1と同様に、単セル1が作製され、この単セル1について、実施例1と同様に、セル電圧が測定されるとともに、組込み性が評価された。その結果を表1に示す。
そして、実施例4については、単セル1の接触抵抗(mΩ)が測定された。なお、接触抵抗(mΩ)の測定は、カレントパルスジェネレータを10秒間かけたときの値である。その結果を表1に示す。なお、実施例2ないし実施例10、および比較例1については、流路占有率(%)を表1に併記し、実施例4については、抵抗過電圧(mV)を表1に併記した。
(比較例2)
ガス拡散層22に代えて、このガス拡散層22の大きさに相当するカーボンペーパ(東レ社製、TGP−H−090)を使用するとともに、ガス拡散層22と同様の位置でこのカーボンペーパを貫く貫通孔24を形成したものを使用した。また、ガス拡散層21に代えて、このガス拡散層21の大きさに相当するカーボンペーパ(東レ社製、TGP−H−090)を使用した。これらのこと以外は、実施例1と同様に、単セル1が作製され、この単セル1について、実施例1と同様に、セル電圧が測定されるとともに、実施例4と同様に、単セル1の接触抵抗(mΩ)が測定された。その結果を表1に示す。なお、流路占有率(%)および抵抗過電圧(mV)を表1に併記した。
(比較例3)
ガス拡散層22としてのカーボンペーパに貫通孔24を形成しなかった以外は、比較例2と同様に、単セル1が作製され、この単セル1の接触抵抗(mΩ)が測定された。その結果を表1に示す。なお、液路占有率(%)および抵抗過電圧(mV)を表1に併記した。
(単セル1の接触抵抗の評価結果)
表1に示すように、ガス拡散層22としてのカーボンペーパに貫通孔24が形成され、かつガス拡散層21,22に凸部23bを有しない単セル1(比較例2参照)は、ガス拡散層22としてのカーボンペーパに貫通孔24が形成されず、かつガス拡散層21,22に凸部23bを有しない単セル1(比較例3参照)と比較して、接触抵抗(mΩ)が低くなっている。そして、ガス拡散層22としてのカーボンペーパに貫通孔24が形成され、かつガス拡散層21,22に凸部23bを有する単セル1(実施例4参照)は、比較例2の単セルと比較して、更に接触抵抗(mΩ)が低くなることが判明した。
(単セル1におけるセル電圧の評価結果)
ここで参照する図7は、ガス拡散層の凹凸の高さと、単セルの発電時におけるセル電圧との関係を示すグラフであって、下横軸は、凹凸の高さ(μm)であり、縦軸は、セル電圧(V)である。そして、上横軸は、凹凸の高さ(μm)に対応する流路占有率(%)となっている。なお、このグラフは、表1に示す比較例1、および実施例1ないし実施例10における凹凸の高さに対するセル電圧の値をプロットして得られたものである。
図7に示すように、凹凸の高さが20μm以上(流路占有率が1.3%以上)、980μm以下(流路占有率が65%以下)の範囲で、セル電圧が0.64V以上の高い値を示している。凹凸の高さが980μmを超えてセル電圧が低下したのは、流路14s,15sの圧損によって電流密度が偏在し、または流路14s,15sを流れる水の排水能力が低下したことによるものと考えられる。
(単セル1の組付け性の評価結果)
一方、表1に示すように、凹凸の高さが45μm以上となることで、単セル1の組付け性が良好となっている。
つまり、凹凸の高さが45μm以上、980μm以下である単セル1は、セル電圧と組付け性の両方に優れていることが判明した。
実施形態に係る燃料電池の斜視図である。 単セルの積層構造を示す分解斜視図である。 図1のA−A断面における単セルの部分拡大図である。 ガス拡散層の変形例を示す断面図であり、ガス拡散層の凸部付近の様子を部分的に拡大して表した図である。 (a)から(f)は、ガス拡散層の作製の工程を示す模式図である。 実施例で使用した膜電極構造体の構造を示す断面図である。 ガス拡散層の凹凸の高さと、単セルの発電時におけるセル電圧との関係を示すグラフであって、下横軸は、凹凸の高さ(μm)であり、縦軸は、セル電圧(V)である。そして、上横軸は、凹凸の高さ(μm)に対応する流路占有率(%)となっている。
符号の説明
12 電極触媒層
13 電極触媒層
14 セパレータ
14s 流路(反応ガスの流路)
15 セパレータ
15s 流路(反応ガスの流路)
20 固体高分子電解質膜
21 ガス拡散層
22 ガス拡散層
23a 凹部
23b 凸部
24 貫通孔
B ベース面
FC 燃料電池
T 接触部

Claims (2)

  1. プロトン伝導膜と、
    前記プロトン伝導膜に積層される電極触媒層と、
    前記電極触媒層に積層されるガス拡散層と、
    前記ガス拡散層に重ねて配置されるセパレータと、
    を備える燃料電池において、
    前記セパレータは、前記ガス拡散層のベース面と接触する複数の接触部を有するとともに、隣接する前記接触部同士の間には、反応ガスの流路となる凹部が形成されており、
    前記ガス拡散層は、前記ベース面から突出して前記セパレータの前記凹部に接する凸部を有するとともに、前記ガス拡散層の厚さ方向に貫かれてその一端が前記反応ガスの流路に臨むように形成された内径0.1〜2mmの貫通孔を備えることを特徴とする燃料電池。
  2. 前記セパレータの前記凹部と前記ガス拡散層の前記凸部とが接触している部分のうち、前記ガス拡散層の前記ベース面から垂直距離で最大となる位置までの長さが、45μm〜980μmであることを特徴とする請求項1に記載の燃料電池。
JP2006244942A 2006-09-11 2006-09-11 燃料電池 Expired - Fee Related JP5113360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244942A JP5113360B2 (ja) 2006-09-11 2006-09-11 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244942A JP5113360B2 (ja) 2006-09-11 2006-09-11 燃料電池

Publications (2)

Publication Number Publication Date
JP2008066208A true JP2008066208A (ja) 2008-03-21
JP5113360B2 JP5113360B2 (ja) 2013-01-09

Family

ID=39288723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244942A Expired - Fee Related JP5113360B2 (ja) 2006-09-11 2006-09-11 燃料電池

Country Status (1)

Country Link
JP (1) JP5113360B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153087A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 燃料電池
JP2011249193A (ja) * 2010-05-28 2011-12-08 Daido Gakuen 固体高分子形燃料電池
JP2016058288A (ja) * 2014-09-10 2016-04-21 タカハタプレシジョンジャパン株式会社 ガス流路構造及び燃料電池
KR20180035001A (ko) * 2016-09-28 2018-04-05 현대자동차주식회사 연료 전지 및 기체 확산층의 제조 방법
CN112072119A (zh) * 2020-08-06 2020-12-11 江苏大学 一种燃料电池气体扩散层结构及其加工方法
CN114447359A (zh) * 2022-01-26 2022-05-06 同济大学 集成反应气体流道的气体扩散层结构、双极板及燃料电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2004087491A (ja) * 2002-08-07 2004-03-18 Matsushita Electric Ind Co Ltd 燃料電池
JP2004179074A (ja) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd 燃料電池
JP2005038738A (ja) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd ガス拡散層電極基材及びその製造方法ならびに高分子電解質型燃料電池
JP2005085517A (ja) * 2003-09-05 2005-03-31 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
JP2005174621A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd 燃料電池部材とその製造方法およびそれを用いた燃料電池
JP2005529454A (ja) * 2002-05-09 2005-09-29 本田技研工業株式会社 燃料電池、燃料電池用セパレータ・拡散層アセンブリ及びその製造方法
JP2006019162A (ja) * 2004-07-02 2006-01-19 Toyota Motor Corp 燃料電池
JP2006049226A (ja) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd 燃料電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007933A (en) * 1998-04-27 1999-12-28 Plug Power, L.L.C. Fuel cell assembly unit for promoting fluid service and electrical conductivity
JP2003151585A (ja) * 2001-11-12 2003-05-23 Toyota Motor Corp 燃料電池及び拡散層
JP2005529454A (ja) * 2002-05-09 2005-09-29 本田技研工業株式会社 燃料電池、燃料電池用セパレータ・拡散層アセンブリ及びその製造方法
JP2004087491A (ja) * 2002-08-07 2004-03-18 Matsushita Electric Ind Co Ltd 燃料電池
JP2004179074A (ja) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd 燃料電池
JP2005038738A (ja) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd ガス拡散層電極基材及びその製造方法ならびに高分子電解質型燃料電池
JP2005085517A (ja) * 2003-09-05 2005-03-31 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池
JP2005174621A (ja) * 2003-12-09 2005-06-30 Hitachi Ltd 燃料電池部材とその製造方法およびそれを用いた燃料電池
JP2006019162A (ja) * 2004-07-02 2006-01-19 Toyota Motor Corp 燃料電池
JP2006049226A (ja) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd 燃料電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153087A (ja) * 2008-12-24 2010-07-08 Toyota Motor Corp 燃料電池
JP2011249193A (ja) * 2010-05-28 2011-12-08 Daido Gakuen 固体高分子形燃料電池
JP2016058288A (ja) * 2014-09-10 2016-04-21 タカハタプレシジョンジャパン株式会社 ガス流路構造及び燃料電池
KR20180035001A (ko) * 2016-09-28 2018-04-05 현대자동차주식회사 연료 전지 및 기체 확산층의 제조 방법
KR101966096B1 (ko) * 2016-09-28 2019-04-05 현대자동차 주식회사 연료 전지 및 기체 확산층의 제조 방법
CN112072119A (zh) * 2020-08-06 2020-12-11 江苏大学 一种燃料电池气体扩散层结构及其加工方法
CN114447359A (zh) * 2022-01-26 2022-05-06 同济大学 集成反应气体流道的气体扩散层结构、双极板及燃料电池

Also Published As

Publication number Publication date
JP5113360B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
KR100512341B1 (ko) 고분자 전해질형 연료전지 및 그 도전성 세퍼레이터판
JP4304101B2 (ja) 電解質膜・電極構造体及び燃料電池
US6960407B2 (en) Fuel cell
US6303245B1 (en) Fuel cell channeled distribution of hydration water
JP5326189B2 (ja) 電解質膜−電極接合体およびその製造方法
JP4907894B2 (ja) 燃料電池スタック
JP5113360B2 (ja) 燃料電池
KR100877273B1 (ko) 연료 전지
JP5062392B2 (ja) 固体高分子型燃料電池
JP4996132B2 (ja) 燃料電池およびその製造方法
JP4514027B2 (ja) 燃料電池セル、および燃料電池
JP2007103241A (ja) 燃料電池
US20050255371A1 (en) Fuel cell
JP2016146313A (ja) バイポーラプレート及びダイレクトメタノール型燃料電池
JP5230174B2 (ja) 燃料電池
JP2007250432A (ja) 燃料電池
JP2007149454A (ja) ガス拡散層、ガス拡散電極、膜電極接合体及び高分子電解質形燃料電池
US20050255375A1 (en) Fuel cell
JP5341321B2 (ja) 固体高分子型燃料電池用電解質膜・電極構造体
JP2009129650A (ja) 燃料電池
JP4739504B2 (ja) 燃料電池用基板の製造方法及び燃料電池
JP2008010164A (ja) 燃料電池に用いられるガス拡散層、および、燃料電池
JP2024043817A (ja) 水電解装置
JP2006134654A (ja) 燃料電池
JP4851478B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees