JP2008062738A - 電磁サスペンション装置 - Google Patents

電磁サスペンション装置 Download PDF

Info

Publication number
JP2008062738A
JP2008062738A JP2006241315A JP2006241315A JP2008062738A JP 2008062738 A JP2008062738 A JP 2008062738A JP 2006241315 A JP2006241315 A JP 2006241315A JP 2006241315 A JP2006241315 A JP 2006241315A JP 2008062738 A JP2008062738 A JP 2008062738A
Authority
JP
Japan
Prior art keywords
voltage command
phase
command value
value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006241315A
Other languages
English (en)
Inventor
Tomoo Kubota
友夫 窪田
Hirobumi Inoue
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd, Toyota Motor Corp filed Critical Kayaba Industry Co Ltd
Priority to JP2006241315A priority Critical patent/JP2008062738A/ja
Publication of JP2008062738A publication Critical patent/JP2008062738A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】電磁サスペンション装置の最大発生荷重の向上と車両への搭載性を満足させることである。
【解決手段】一方部材1と、一方部材1に対し相対運動を呈する他方部材2と、該相対運動を少なくとも抑制可能なステータに三相の巻線を有するモータMとを備えた電磁サスペンション装置において、三相の各巻線12の各相間電圧の波形の最大振幅を電源電圧にまで高めることが可能な制御手段を備えたことを特徴とする。
【選択図】図2

Description

本発明は、電磁サスペンション装置に関する。
この種、電磁サスペンション装置としては、たとえば、車両のバネ上部材もしくはバネ下部材の一方に連結される筒と、バネ上部材もしくはバネ下部材の一方に連結され筒内に挿通されるロッドと、ロッドの外周に軸方向に並べて装着される複数の永久磁石と、筒の内周に設けられ上記永久磁石に対向する複数の巻線とでリニアモータを構成し、リニアモータの電磁力をロッドと筒との軸方向の相対運動を抑制する荷重(制御力)として利用しているものがある(たとえば、特許文献1参照)。
また、他の電磁サスペンション装置としては、たとえば、螺子軸と、螺子軸に回転自在に螺合されるボール螺子ナットと、螺子軸に連結されるモータとを備え、モータの電磁力をロッドと筒との軸方向の相対運動を抑制する荷重(制御力)として利用しているものがある(たとえば、特許文献2参照)。
上述した電磁サスペンション装置におけるリニアモータやモータは、U,V,Wの三相の巻線を備えたブラシレスモータとして構成されており、電磁サスペンション装置の発生荷重の制御に当たっては、該三相の各巻線にインバータによって正弦波でなる電圧を印加してモータをPWM(Pulse Width Modulation)制御するのが一般的である。
また、モータを制御する場合、d軸およびq軸の回転座標を用いてU,V,Wの三相をd相およびq相の二相に変換するdq変換し、d相およびq相に印加する電圧を算出して行う方法が広く一般的に行われている。詳しくは、三相の巻線に流れる電流のうち任意の二相の電流値とロータ位相から磁界の作る磁束方向のd相とd相に直交するq相の電流を演算し、d相電流目標値を0として、q相電流目標値を演算し、このd相電流目標値およびq相電流目標値からd相電圧指令値およびq相電圧指令値を演算し、さらに、d相電圧指令値およびq相電圧指令値を三相の電圧指令値に変換し、この三相の電圧指令値に基づいてモータをPWM(Pulse Width Modulation)制御する。
ここで、d相およびq相は、U,V,Wの三相巻線と等価な直交二相巻線に変換するdq変換によって得られる相の巻線であり、三相ブラシレスモータの制御を簡単にするものである。
最終的には、モータ制御装置は、以下の(1)式によって、上記dq相の電圧指令値Vd,Vqを実際の三相の電圧指令値Vu,Vv,Vwに変換して上記三相ブラシレスモータを制御する。
Figure 2008062738
なお、上記(1)式において、θは電気角である。
特開平6−153569号公報(発明の詳細な説明欄,図5) 特開2005−256918号公報
上記したような電磁サスペンション装置を車両へ適用する場合、最大荷重の出力が可能であることは勿論であるが、搭載スペースが限られると同時に重量的な制限もあり、電磁サスペンション装置にはより一層の小型化および軽量化が要求されている。
したがって、モータを極力小型軽量とする一方で、最大荷重の発生を満足させなくてはならないため、電源電圧を最大限に利用してモータを駆動することが望ましい。
しかしながら、上記したdq変換を利用した正弦波PWMによるモータ駆動では、従来の制御では、U−V,V−W,W−Uの3つの巻線間電圧における正弦波の振幅は電源電圧の√3/2までしか高めることができず、電磁サスペンション装置の最大荷重もその分低下してしまい、ひいては、最大荷重の発生を担保するため電源電圧の増強を強いられ、結局、車両への電磁サスペンション装置の搭載性は悪化してしまうことになる。
そこで、本発明は、上記した不具合を改善するために創案されたものであって、電磁サスペンション装置の最大発生荷重の向上と車両への搭載性を満足させることである。
上記した目的を達成するため、本発明の課題解決手段は、一方部材と、一方部材に対し相対運動を呈する他方部材と、該相対運動を少なくとも抑制可能なステータに三相の巻線を有するモータとを備えた電磁サスペンション装置において、三相の各巻線の各相間電圧の波形の最大振幅を電源電圧にまで高めることが可能な制御手段を備えたことを特徴とする。
本発明の電磁サスペンション装置によれば、電源の電圧を効率的に利用可能となるので、電磁サスペンション装置の発生荷重を大きくすることができることから、モータを従来より小型化および軽量化することができ、結果、電磁サスペンション装置の車両への搭載性と発生荷重に対する要求とを高次元で両立することができ、電磁サスペンション装置の実用性が飛躍的に向上することになる。
以下、図に示した実施の形態に基づき、本発明を説明する。図1は、電磁サスペンション装置の概念図である。図2は、一実施の形態の電磁サスペンション装置における制御手段のシステム図である。図3は、PWM回路を示す図である。図4は、電源電圧をパラメータとした電源電圧初期値を電源電圧で除した比を示すマップである。図5は、d相電圧指令値とq相電圧指令値の合成ベクトル長さの自乗の値をパラメータとして作成した飽和電圧Vsを合成ベクトル長さで除した制限割合のマップである。図6は、修正後の相間電圧波形の一例を示した図である。図7は、修正後の相間電圧波形の他の例を示した図である。図8は、修正後の相間電圧波形の別の例を示した図である。図9は、一実施の形態の電磁サスペンション装置における制御手段の処理手順を示すフローチャートである。図10は、他の実施の形態における電磁サスペンション装置の概念図である。
一実施の形態における電磁サスペンション装置は、図1に示すように、回転部材たる螺子軸1と直動部材たるボール螺子ナット2とを有してボール螺子ナット2の直線運動を螺子軸2の回転運動に変換する運動変換機構Hと、螺子軸1に連結されるロータRを有するモータMとを備えて構成されている。
詳しくは、螺子軸1は、ボール螺子ナット2に回転自在に螺合されるとともに、螺子軸1の図1中上端は、モータMのロータRに連結されている。他方のボール螺子ナット2は、螺子軸1が挿入される筒4の上端に固着されており、この筒4を介して車両のバネ上部材およびバネ下部材のうち一方に連結することが可能なようになっている。
また、螺子軸1は、車両のバネ上部材およびバネ下部材の他方に回転自在に連結されるようになっており、具体的には、上記車両のバネ上部材およびバネ下部材の他方に設けたボールベアリングに軸支されるか、モータMを上記車両のバネ上部材およびバネ下部材の他方に固定するなどとされる。
したがって、螺子軸1とボール螺子ナット2が軸方向の直線相対運動を呈すると、回転部材である螺子軸1が回転運動を呈することになり、この螺子軸1の回転運動がモータMのロータRに伝達されることになり、運動変換機構Hは、この実施の形態の場合、送り螺子機構とされている。ここで、螺子軸1の回転速度を歯車機構等で構成される減速機を介して減速して上記螺子軸1の回転運動をロータRに伝達するようにしてもよい。
なお、上記螺子軸1とボール螺子ナット2が軸方向の直線相対運動を呈するときに、螺子軸1を回転不能として代わりにボール螺子ナット2を回転させるようにする場合には、このボール螺子ナット2の回転運動をモータMのロータRに伝達するようにしてもよい。具体的には、螺子軸1を車両のバネ上部材およびバネ下部材の一方に回転不能に連結し、他方のボール螺子ナット2を車両のバネ上部材およびバネ下部材の他方にボールベアリング等を介して回転自在に連結するか、モータMのフレーム10に回転自在に連結するとして、ボール螺子ナット2の回転運動を直接に或いは歯車機構や摩擦車機構等を介してモータMのロータRに伝達してやればよい。
そして、モータMは、この場合、筒状のフレーム10と、フレーム10の内周側に設けた電機子であるステータSと、フレーム10に回転自在に軸支されるロータRとを備え三相ブラシレスモータとして構成され、詳しくは、ステータSは、複数のティースを備えた環状のステータコア11と、各ティースに巻回されたU,V,W相の各相における巻線12とを備えており、他方のロータRは、螺子軸1の一端に連結されるシャフト13と、シャフト13の中間部外周に装着された駆動用磁石14とを備えている。
なお、駆動用磁石14は、駆動用磁石14を所定数の極数を実現できるようにブロック化してシャフト13の外周に接着されるか、環状に形成して分割着磁されてシャフト13の外周に嵌着される。
また、このモータMには、ロータRの回転角(電気角)θを検出するために、回転角センサ15が搭載されており、具体的にはたとえば、回転角センサ15は、シャフト13に設けたレゾルバコアとフレーム10に設けられるレゾルバコアに対向するレゾルバステータとを備え、さらに、電気角θから電気角速度ωを得られるようになっている。なお、電気角θから電気角速度ωを演算する演算部を別途設けるのであれば、他にも、光学式のエンコーダを採用してもよいし、ロータRにセンシング用磁石を設ける場合にはホール素子やMR素子等の磁気センサをフレーム10に設けるとした構成としてもよい。
上述のように、この電磁サスペンション装置にあっては、駆動源をモータMとしているので、モータMに電気エネルギを与えて駆動する場合には、螺子軸1を回転駆動させて螺子軸1とボール螺子ナット2とを積極的に相対直線運動させる、すなわち、ストロークさせることができ、アクチュエータとしての機能を発揮できる。
また、モータMは、螺子軸1から強制的に回転運動が入力されると、誘導起電力や電源からの電力によって巻線12に電流が流れて磁界が形成されて電磁力が発生し、螺子軸1の回転運動を抑制するトルクを発生するので、螺子軸1とボール螺子ナット2の相対直線運動を抑制するように機能する。すなわち、この場合には、モータMが外部から入力される運動エネルギを回生して電気エネルギに変換して得られる電力によって、あるいは、この回生に加えて電源から供給される電力によって、発生するトルクで螺子軸1とボール螺子ナット2の相対直線運動を抑制することができる。
したがって、この電磁サスペンション装置は、モータMをアクチュエータとしてもジェネレータとしても機能させ得るので、上記螺子軸1とボール螺子ナット2の相対直線運動を抑制することができると同時に、アクチュエータとしての機能を生かして車両の車体の姿勢制御も同時に行うことができ、これにより、アクティブサスペンションとしての機能をも発揮することができる。
そして、上記モータMの巻線12に流れる電流を制御するために、具体的には、U,V,W相の巻線12は、制御手段たる制御装置20に接続され、このモータMは、制御装置20によって駆動制御される。
この制御装置20は、図2に示すように、車両の姿勢制御を司る図示しない車両制御装置から入力されるトルク指令に基づいて各電流目標値id*,iq*を演算する電流目標値演算部21と、各電流目標値iq*が取りうる最大値を超えないように制限するリミッタ29と、上記巻線12の三相のうち二相に流れる電流をdq変換してd相電流値idおよびq相電流値iqを演算する二相電流演算部22と、各電流目標値id*,iq*と上記d相およびq相の電流値id,iqに基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを演算する比例積分制御部23と、電源Eの電圧値Vbに基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを補正する電源電圧補正部24と、補正後のd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが飽和電圧を越えないように制限するdq電圧制限部25と、d相電圧指令値Vdおよびq相電圧指令値VqをU,V,Wの三相各相の電圧指令値Vu,Vv,Vwに変換する三相変換演算部26と、三相各相の電圧指令値Vu,Vv,Vwから三相各相の最終電圧指令値Vu,Vv,Vwを演算する三相電圧修正部27と、修正された三相各相の最終電圧指令値Vu,Vv,Vwが電源電圧を超えないように制限する三相電圧制限部30と、モータMのU,V,Wのうち二相iu,ivに流れる電流値を検出する電流検出器31と、モータ駆動回路としてのPWM回路28とを備えて構成されている。
そして、この制御手段たる制御装置20は、基本的には、電流目標値演算部21によって決定されるd相およびq相の各電流目標値id*,iq*と、二相電流演算部22の演算結果として得られるd相およびq相の電流値id,iqとのそれぞれの偏差εd,εqに基づいてモータMを比例積分制御する。なお、偏差εd,εqを微分して得られる要素を追加して比例微分積分制御を行うようにしてもよい。
ここで、電流目標値演算部21は、上位の車両制御装置から出力されるトルク指令に基づいてd相およびq相の電流目標値id*,iq*を所定の制御則に則って上記比例積分制御部23に出力するものであるが、この場合、車両制御装置の車両制御則は車体姿勢制御、スカイフック制御等の振動抑制制御が用いられるが、電流目標値演算部21への出力としては、トルク指令としてではなくても、電磁サスペンション装置が発生すべき力指令の状態で出力し、電流目標値演算部21でその分の換算を行うようにしてもよい。また、制御装置20の電流目標値演算部21でバネ上速度等の車両制御に必要な信号を取り込み、この電流目標値演算部21で車両制御則の演算を行うようにしてもよいことは勿論である。
なお、上位の車両制御装置における車体姿勢制御に必要となる電磁サスペンション装置の伸縮量、ストローク速度や伸縮加速度等については、回転角センサ15から得られる電気角θと螺子軸1のピッチ、減速比から演算すればよく、別途センサを設ける必要は無い。
また、この電流目標値演算部21は、基本的には、d相電流目標値id*を0としてq相電流目標値iq*を演算するようになっているが、ロータの電気角速度ωが大きい場合に、d相電流目標値id*をマイナスの値に誘導して弱め界磁制御をするようにしてもよいことは無論である。
そして、電流検出器31としては、ホール素子や巻線等を用いた非接触型や、三相の巻線12のいずれか二つに直列介装した抵抗の電圧降下から電流値を得る電流センサを用いればよい。
また、上記電流検出器31は、U,V,W相のうち二相に流れる電流値を検出すればよく、これは、二相の電流値が分かればロータRの電気角θから後述する下記式(2)を用いてd相およびq相の電流値に変換可能であるからである。
さらに、PWM回路28は、図3に示すように、電源Eと、モータMにおける三相各相の巻線12に電流供給を行う6つのスイッチング素子41と、各スイッチング素子41にPWMパルス信号を与えるマルチバイブレータ等の図示しないパルス発生器とを備えて構成されており、このPWM回路28は、比例積分制御部21が出力する各電圧指令値に基づいて所定のPWMデューティ比で上記各相に電流供給を行う。なお、電源Eについては、車両に搭載されるバッテリとしておけばよい。また、電源Eの電圧をモニタする電圧検出器32が設けられており、この電圧検出器32で検知した電圧の値は、電源電圧補正部24に出力される。
そして、二相電流演算部22は、電気角θを用いて、以下の式(2)に示したように、上記各電流値iv,iuをd相およびq相の電流値id,iqへ変換する演算を行い、この変換されたd相およびq相の電流値id,iqを比例積分制御部23へ出力する。
Figure 2008062738
比例積分制御部23は、各電流目標値id*,iq*とd相およびq相の電流値id,iqの各偏差εd,εqを求め、上記各偏差εd,εqをそれぞれ積分した値に積分ゲインKIを乗じるとともに、各偏差εd,εqに比例ゲインKPを乗じることで得られる二つの値を加算して、d相電圧指令値Vdおよびq相電圧指令値Vqを演算する。
具体的には、各相毎の偏差εd,εqは、それぞれ、εd=id*−id、εq=iq*−iqの計算式によって演算され、各偏差εd,εqの積分については、各相毎に積分値fd,fqは、それぞれ前回制御時に演算されたd相およびq相の積分値fdpre,fqpreに対応する相の偏差εd,εqを加算演算することによりd相およびq相の積分値を演算される。つまり、d相の積分値fdはfd=fdpre+εdで,q相の積分値fqはfq=fqpre+εqでそれぞれを演算される。
したがって、d相の電圧指令値Vdは、Vd=KI・fd+KP・εdで演算され、q相の電圧指令値Vqは、Vq=KI・fq+KP・εqで演算され、上記した比例積分制御部23は、上記のようにして演算した各電圧指令値Vd,Vqを出力する。
そして、さらに、d相電圧指令値Vdおよびq相電圧指令値Vqは、上記したようにU,V,Wの各相の電圧指令値に変換する三相変換演算部26に入力され、この三相変換演算部26は、上記式(1)の演算によって、上記d相電圧指令値Vdおよびq相電圧指令値Vqを実際のU,V,W各相の電圧指令値Vu,Vv,Vwへ変換し、この変換された電圧指令値Vu,Vv,VwをPWM回路28に出力する。
つづき、電源電圧補正部24は、電源Eの電圧値Vbに基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを補正する。電源Eの電圧が変動して電源電圧初期値Vinitと異なる場合には、d相電圧指令値Vdおよびq相電圧指令値Vqから電圧指令値Vu,Vv,Vwを得て、PWM回路28にて三相の電圧指令値Vu,Vv,Vwに対応する所定のデューティ比でU,V,Wの三相の巻線12に電圧を印加しても、電源Eの電圧変動により、U,V,Wの三相の巻線12に印加される電圧は、三相の電圧指令値Vu,Vv,Vw通りに印加されない状態となる。
つまり、PWM回路28側では、三相の電圧指令値Vu,Vv,Vwに対して一義的に決められたデューティ比によって三相の巻線12を印加するので、制御時における電源Eの電圧Vbが電源電圧初期値Vinitから変動して大きくなっている場合、実際に三相の巻線12に印加される電圧は三相の電圧指令値Vu,Vv,Vwより大きくなり、他方、制御時における電源Eの電圧Vbが電源電圧初期値Vinitから変動して小さくなっている場合、実際に三相の巻線12に印加される電圧は三相の電圧指令値Vu,Vv,Vwより小さくなる。このような現象は、電流ループによる制御、すなわち、三相の巻線12に流れる電流をフィードバックして比例積分制御しているので、d相電流値idおよびq相電流値iqと電流目標値演算部21で演算される各電流目標値id*,iq*との乖離が大きくなって比例積分制御部23で演算されるd相電圧指令値Vdおよびq相電圧指令値Vqは増大もしくは減少することになり、定常的には、d相電流値idおよびq相電流値iqは電流目標値演算部21で演算される各電流目標値id*,iq*に追随することになる。しかしながら、上記電流ループにおけるゲインが増減するということは制御応答性の悪化につながる。
そこで、電源電圧補正部24は、比例積分制御部23が演算した補正前のd相電圧指令値Vdおよびq相電圧指令値Vqによって求められる電圧指令値Vu,Vv,Vw通りにU,V,Wの三相の巻線12に電圧を印加することができるように、電源Eの電圧の変動に基づいてd相電圧指令値Vdおよびq相電圧指令値Vqを補正する。すなわち、本実施の形態において補正手段は、電源電圧補正部24ということになる。
具体的には、電源電圧補正部24は、電圧検出器32で検知した電圧Eの制御時における電圧値Vbと、電源電圧初期値Vinitとから、d相の電圧指令値Vdとq相の電圧指令値Vqを式(3)を用いて補正する。
Figure 2008062738
すなわち、電源電圧補正部24は、電圧値Vbと電源電圧初期値Vinitとの比である補正値によってd相の電圧指令値Vdとq相の電圧指令値Vqを補正し、電圧値Vbが電源電圧初期値Vinitを上回る場合、d相の電圧指令値Vdとq相の電圧指令値Vqを小さくし、電圧値Vbが電源電圧初期値Vinitを下回る場合、d相の電圧指令値Vdとq相の電圧指令値Vqを大きくする。
したがって、補正されたd相の電圧指令値Vdとq相の電圧指令値Vqを用いて三相の電圧指令値Vu,Vv,Vwを求めることによって、電源Eの電圧変動の影響を取り除くことができ、もともとの指令値である補正前のd相の電圧指令値Vdとq相の電圧指令値Vqから得られる三相の電圧指令値Vu,Vv,Vwの通りの電圧で三相の巻線12を印加することができる。すなわち、電磁サスペンション装置は、電源Eの電圧変動によらず、応答性良く狙い通りの荷重を発生することが可能となって、電源Eの電圧変動によって車両の乗心地が変化して車両搭乗者に違和感や不快感を抱かせることが無く、また、発生荷重の過不足が生じないので車両のバネ上部材の振動を適切に抑制することが可能となる。
また、上記式(3)を演算して補正するようにするが、本制御装置20は、後述するように、全ての演算をCPU(Central Prossesing Unit)を用いて行い、実際に、電源電圧補正部24で式(3)の演算を行うと、電源電圧初期値Vinitを電圧値Vbで割る除算が必要となり、除算に要する演算時間が長いため、制御応答性が悪化し、また、これを担保しようとするとCPUを高性能なものとしなければならずコスト高となる。
したがって、上記した電源電圧補正部24では、予め、図4に示す、電源Eの電圧をパラメータとして作成した電源電圧初期値Vinitを電源Eの制御時における電圧値Vbで除した比である補正値のマップを保有し、上記マップを参照して電圧検出器32で検出した電源Eの電圧Vbから上記補正値をマップ演算によって求めるようにしている。
このようにマップ演算を行うことによって、除算を実施することなしに、補正に必要な補正値を得ることができ、これによって、演算時間の短縮を図って制御応答性を向上することができ、さらには、コスト高となる高性能なCPUを用いなければならない事態も回避することができる。
なお、電源Eの電圧が、電磁サスペンション装置を適切に制御することができない程度に電源電圧初期値Vinitから乖離する場合には、電磁サスペンション装置の動作不良等を招くので、本制御装置20にあっては、電源Eの電圧が予め規定される範囲内にない場合には、フェール処理を行って当該比例積分制御を停止する。
そのため、上記マップは、上記した規定される範囲内(Vmin≦Vb≦Vmax)の電圧値Vbの変化に対するものとすればよく、また、上記範囲内の最小の電圧値Vminから適当な値Δvずつ最大の電圧値Vmaxまで変化させたときの不連続な比としておき、実際に検出された電圧値VbがVmin+(n−1)・Δv<Vb<Vmin+n・Δv(n=1,2,3・・・N)であり、マップ上に電圧値Vbに対応する補正値が無い場合、その電圧値Vbより小さい値で対応する補正値がマップ上に存在するVmin+(n−1)・Δvにおける補正値と、電圧値Vbより大きい値で対応する比がマップ上に存在するVmin+n・Δvにおける比を用いて線形補間によって電圧値Vbに対応する補正値を演算するようにしておけばよい。
また、電源電圧補正部24は、d相電圧指令値Vdおよびq相電圧指令値Vqを制限するdq電圧制限部25の前でd相電圧指令値Vdおよびq相電圧指令値Vqを補正するようにしているが、比例積分制御部23の前後のいずれの位置で行われても良く、たとえば、PWM回路28のデューティ比を決する三相の電圧指令値Vv,Vu,Vwを補正するようにしてもよいし、比例積分制御部23における演算前に電流目標値id*,iq*および電流値id,iqを上記と同様の比を用いて補正するようにしてもよい。すなわち、補正手段において補正する対象である電圧指令値には、d相電圧指令値Vdおよびq相電圧指令値Vq以外にも三相の電圧指令値Vv,Vu,Vwが含まれ、さらに、補正手段には、電流目標値id*,iq*および電流値id,iqを補正して最終的な電圧指令値を補正することも含まれる概念である。
しかしながら、比例積分制御部23における演算前に電流目標値id*,iq*および電流値id,iqを上記と同様の比を用いて補正する場合には、比例パスと積分パスの4つで補正演算が行われることになり、三相の電圧指令値Vv,Vu,Vwを補正する場合にも3つのパスで補正演算が行われることになる。さらに、後述するdq電圧制限部25によって制限されたd相電圧指令値Vdおよびq相電圧指令値Vqを補正すると、折角制限したd相電圧指令値Vdおよびq相電圧指令値Vqを当該補正によって増大させてしまう場合があり、デューティ比が飽和して電磁サスペンション装置が出力する荷重にリップルが生じて車両における乗心地が悪化することになってしまう場合がある。
したがって、本実施の形態のように、電源電圧補正部24で、d相電圧指令値Vdおよびq相電圧指令値Vqを制限するdq電圧制限部25の前でd相電圧指令値Vdおよびq相電圧指令値Vqを補正するようにしておくことによって、上記補正演算も一番少なくて済み、制御応答性が向上すると共に、デューティ比が飽和して電磁サスペンション装置が出力する荷重にリップルが生じて車両における乗心地が悪化するといった事態を回避することが可能となる。
つづき、上述したように補正されたd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが電源Eの飽和電圧以上となる場合、dq電圧制限部25は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが飽和電圧Vs以下となるように、d相電圧指令値Vdおよびq相電圧指令値Vqを制限する。ここで、飽和電圧Vsは、dq座標における電源Eの電圧に相当する値となり、この実施の形態の場合、飽和電圧Vsは、(1/√2)・Vinitとされている。つまり、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが(1/√2)・Vinitの値を半径とする電圧制限円を超える場合、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和する状態となる。
d相およびq相は、上述したように、U,V,Wの三相巻線と等価な直交二相巻線に変換されたものであるので、実際のd相電圧とq相電圧の合成ベクトル長さの値は、dq座標における電源Eの電圧に相当する値となる飽和電圧Vsを超える値をとることができないが、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2は、上記制限とは無関係に各電流目標値id*,iq*と上記d相およびq相の電流値id,iqに基づいて比例積分制御部23で演算されるので、上記制限を超える場合がある。
したがって、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが飽和電圧Vsを超える場合、すなわち、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している場合には、これらd相電圧指令値Vdおよびq相電圧指令値Vqを三相変換演算部26で三相の巻線12にそれぞれ印加すべき電圧指令値Vu,Vv,Vwに変換しても、実際には電圧指令値Vu,Vv,Vw通りには、三相各相の巻線12を印加できないため、各電流値id,iqが各電流目標値id*,iq*に追随できず、各電流目標値id*,iq*と各電流値id,iqとの偏差εd,εqの絶対値が大きくなってしまう。
すると、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和しているにもかかわらず、比例積分制御部23で演算されるd相電圧指令値Vdおよびq相電圧指令値Vqの絶対値は増大するので、飽和の影響で電磁サスペンション装置の荷重にリップルを生じて制御性が悪化することになる。
そこで、制限手段たるdq電圧制限部25は、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和する状態となると、これを制限するようにして、上述の荷重リップルの発生と制御応答性の悪化を防止するようにしている。
具体的には、dq電圧制限部25は、比例積分制御部23で演算されるd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値と飽和電圧Vsの自乗の値とを比較して、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さが飽和電圧Vsを超えてd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している状態であるかを判断し、飽和状態であれば、d相電圧指令値Vdおよびq相電圧指令値Vqを制限する。
このように、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値、すなわち、d相電圧指令値Vdの二乗の値とq相電圧指令値Vqの二乗の値とを足し合わせた加算値(Vd+Vq)と飽和電圧Vsの自乗とを比較して、d相電圧指令値Vdとq相電圧指令値Vqの合成ベクトル長さ(Vd+Vq1/2が飽和電圧Vsを超えているかを判断するようにしているので、この判断に必要な演算にルート演算を行わずに済み、演算時間の短縮に寄与することができる。
さらに、d相電圧指令値Vdおよびq相電圧指令値Vqを制限に当たっては、dq電圧制限部25は、予め、図5に示す、合成ベクトル長さの自乗の値Vd+Vqをパラメータとして作成した飽和電圧Vsを合成ベクトル長さ(Vd+Vq1/2で除した制限割合のマップを保有し、上記マップを参照して合成ベクトル長さの自乗の値(Vd+Vq)から飽和電圧Vsを合成ベクトル長さ(Vd+Vq1/2で除した制限割合をマップ演算によって求めるようにしている。
すなわち、マップ演算を利用せずに制限割合を算出するには、Vs/(Vd+Vq1/2を演算する必要があるが、このようにマップ演算を行うことによって、ルート演算を実施することなしに、制限に必要な上記制限割合を得ることができ、これによって、演算時間の短縮を図って制御応答性を向上することができ、さらには、コスト高となる高性能なCPUを用いなければならない事態も回避することができる。
なお、上記マップは、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している状態となる場合に参照が必要となるので、飽和する状態であるVs≦(Vd+Vq)における(Vd+Vq)の変化に対するものとすればよく、また、(Vd+Vq)の最小の値である飽和電圧の自乗の値Vsから適当な値Δvdqずつ変化させたときの不連続な制限割合としておき、演算された(Vd+Vq)がVs+(n−1)・Δvdq<(Vd+Vq)<Vs+n・Δvdq(n=1,2,3・・・N)であり、マップ上にこの演算された(Vd+Vq)に対応する制限割合が無い場合、その演算された(Vd+Vq)より小さい値で対応する制限割合がマップ上に存在するVs+(n−1)・Δvdqにおける制限割合の値と、演算された(Vd+Vq)より大きい値で対応する制限割合がマップ上に存在するVs+n・Δvdqにおける制限割合を用いて線形補間によって(Vd+Vq)に対応する制限割合を演算するようにしておけばよい。
そして、このように、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和してdq電圧制限部25によって制限された場合、d相電圧指令値Vdおよびq相電圧指令値Vqは、同じ制限割合で制限されることになり、荷重リップルの発生による制御性の悪化を防止できるのである。さらに、d相電圧指令値Vdのベクトルおよびq相電圧指令値Vqのベクトルの成す角度は、制限前のd相電圧指令値Vdのベクトルおよびq相電圧指令値Vqのベクトルの成す角度に保たれることになる。
したがって、d相電圧指令値Vdのベクトルおよびq相電圧指令値Vqのベクトルの成す角度は、制限前のd相電圧指令値Vdのベクトルおよびq相電圧指令値Vqのベクトルの成す角度に保たれるから制限後にd相電流idが著しく増加してしまい電磁サスペンション装置の発生荷重が著しく減少してしまうような事態を防止することができる。
また、dq電圧制限部25においては、合成ベクトル長さの飽和電圧Vsを補正する必要はない。これは、上述の電圧制限円はPWM開度が全開となる状態に相当するため、電源Eの電圧Vbがどのように変化しても、常に、PWM開度が全開となる状態で制限をかけることになるので、補正の必要が無いのである。
そして、このdq電圧制限部25による上記判断において、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和してこれらの制限が必要な状態が続くと、各電流値id,iqが各電流目標値id*,iq*に追随できず、偏差εd,εqの絶対値が大きくなって、比例積分制御部23における積分演算の値fd,fqの絶対値が増大していくことになる。
その後、各電流値id,iqが各電流目標値id*,iq*に追随させる上で、実際に必要となるd相電圧およびq相電圧が飽和しない状態となっても、d相電圧指令値Vdおよびq相電圧指令値Vqは、積分演算の値fd,fqの絶対値が増大しているため飽和した状態が続いてしまい、制御遅れが生じて、車両における乗り心地を悪化してしまう弊害がある。
そこで、dq電圧制限部25による上記判断において、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和したと判断する場合、dq電圧制限部25は、比例積分制御部23に対して、積分演算を中止するよう積分中止指令を出力する。
すると、比例積分制御部23は、この中止指令によって、積分演算を中止して、積分値fd,fqをそれぞれfd=fdpre,fq=fqpreとし、比例積分制御部23で演算されるd相電圧指令値Vdおよびq相電圧指令値Vqは、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している間は、それぞれVd=KP・εd+KI・fd(fd=fdpre)、Vq=KP・εq+KI・fq(fq=fqpre)となり、積分を中止した状態で比例制御が行われることになる。
そして、d相電圧指令値Vdおよびq相電圧指令値Vqの飽和が解消されると、こんどは、dq電圧制限部25は、比例積分制御部23に対して、積分演算を再開するよう積分再開指令を出力する。
この積分再開指令を受け取ると、比例積分制御部23は、上述したような通常通りの比例積分制御を再開することになる。
したがって、このように、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和した場合、比例積分制御部23における積分演算が中止されるので、d相電圧指令値Vdおよびq相電圧指令値Vqの飽和中に、積分値fd,fqの絶対値が増大し続けてしまうことがなく、各電流値id,iqが各電流目標値id*,iq*に追随させる上で、実際に必要となるd相電圧およびq相電圧が飽和しない状態となると、d相電圧指令値Vdおよびq相電圧指令値Vqも速やかに飽和が解消されることになり、制御遅れを生じさせることがなく、車両における乗り心地を向上させることが可能となる。
そして、このようなd相電圧指令値Vdおよびq相電圧指令値Vqの補正および制限の処理が終了すると、d相電圧指令値Vdおよびq相電圧指令値Vqは、三相変換演算部26に入力され、この三相変換演算部26は、上述のように、式(3)の演算によって、上記d相電圧指令値Vdおよびq相電圧指令値Vqを実際のU,V,W各相の電圧指令値Vu,Vv,Vwへ変換する。
このように三相変換演算部26によって、d相電圧指令値Vdおよびq相電圧指令値Vqが電圧指令値Vu,Vv,Vwへ変換される場合、電圧指令値Vu,Vv,Vwは正弦波電圧となり、このままでは、三相の相間電圧波形における最大振幅は電源Eの電圧まで達することができない。
そこで、三相変換演算部26によって変換された電圧指令値Vu,Vv,Vwを三相電圧修正部27によって、三相の相間電圧波形における最大振幅を電源Eの電圧値Vbまで達することが可能なように修正する。
なお、この修正は、相間電圧波形の最大振幅を電源Eの電圧の√3/2以上に高める必要があるときに、行えばよく、電圧指令値Vu,Vv,Vwを正弦波電圧として印加すればよい状況、すなわち、相間電圧波形の最大振幅が電源Eの電圧の√3/2以内となる場合には、特に修正を行わなくともかまわない。
この三相電圧修正部27による修正は、具体的には、三相変換演算部26が出力した三相の電圧指令値Vu,Vv,Vwのうち最大の電圧指令値と最小の電圧指令値の中間値Vcを基準として、中間値Vcと三相の電圧指令値Vu,Vv,Vwとの差を各相の最終電圧指令値Vu,Vv,Vwとする。すなわち、各相の最終電圧指令値Vu,Vv,Vwは、それぞれ、Vu=Vu−Vc、Vv=Vv−Vc、Vw=Vw−Vcで演算され、この演算結果による各相の最終電圧指令値Vu,Vv,Vwに基づいて、デューティ比が決定されて、PWM回路28は、決定されたデューティ比で三相の巻線12をそれぞれ印加する。このようにすることで、図6に示すように、各相の巻線12の電圧Vu,Vv,Vwの波形の最大振幅を電源Eの電圧Vbの二分の一の値の範囲内としつつ、各相間の電圧Vuv,Vvw,Vwuの電圧波形の最大振幅を電源Eの電圧Vbまで高めることができる。そして、この各相間電圧の電圧波形は、三相の各巻線の三つの相間電圧のうち一つが他の二つに対して120度の位相差で正弦波をなすので、電磁サスペンション装置の発生荷重にリップルが生じることが無く、車両における乗心地を悪化させること無く、電源Eの電圧利用効率を向上させることが可能となる。
すなわち、三相の巻線12の中性点の電圧は上記中間値Vcとされ、従来では中性点をゼロとしていたのに対して、その時々の電圧指令値Vu,Vv,Vwによって中性点の電圧をゼロからオフセットすることにより各相間電圧の電圧波形の最大振幅を電源Eの電圧まで高めることができるのである。
そして、電源Eの電圧を効率的に利用可能となるので、電磁サスペンション装置の発生荷重を大きくすることができることから、モータMを従来より小型化および軽量化することができ、結果、電磁サスペンション装置の車両への搭載性と発生荷重に対する要求とを高次元で両立することができ、電磁サスペンション装置の実用性が飛躍的に向上することになる。
また、上記した三相電圧修正部27による修正は、上記以外にも、次のようにすることもできる。すなわち、上記したところでは、三相の電圧指令値Vu,Vv,Vwのうち最大の電圧指令値と最小の電圧指令値の中間値Vcを基準として、中間値Vcと三相の電圧指令値Vu,Vv,Vwとの差を各相の最終電圧指令値Vu,Vv,Vwとしていたが、三相の電圧指令値Vu,Vv,Vwのうち最小の電圧指令値をゼロとなる最終電圧指令値とし、他の二相の電圧指令値と最小の電圧指令値との差を他の二相の最終電圧指令値とするようにする。
つまり、たとえば、三相の電圧指令値Vu,Vv,Vwのうち最小の電圧指令値が電圧指令値Vuである場合、最終電圧指令値Vuはゼロとなり、他の二相の電圧指令値Vv,Vwは、それぞれ、Vv=Vv−Vu、Vw=Vw−Vuで演算され、この演算結果による各相の最終電圧指令値Vu,Vv,Vwに基づいて、デューティ比が決定されて、PWM回路28は、決定されたデューティ比で三相の巻線12をそれぞれ印加する。このようにしても、図7に示すように、各相の巻線12の電圧波形の最大振幅を電源Eの電圧の二分の一の値の範囲内としつつ、各相間電圧の電圧波形の最大振幅を電源Eの電圧まで高めることができ、電磁サスペンション装置の車両への搭載性と発生荷重に対する要求とを高次元で両立することができ、電磁サスペンション装置の実用性が飛躍的に向上することになる。
さらに、これらとは別に、三相電圧修正部27による修正は、三相の電圧指令値Vu,Vv,Vwに第三次高調波を重畳して最終電圧指令値Vu,Vv,Vwを演算するようにしてもよい。
このようにしても、図8に示すように、相間電圧を電源Eの電圧まで高めることが可能であるので、上記したように、電磁サスペンション装置の車両への搭載性と発生荷重に対する要求とを高次元で両立することができ、電磁サスペンション装置の実用性が飛躍的に向上することになる。
転じて、各電流目標値id*,iq*を取りうる最大値を超えないように制限するリミッタ29は、モータMの電気角速度ωを取り込んで、各電流目標値id*,iq*がその電気角速度ωで実現可能な電流の最大値を超える場合、これらを最大値に制限するためのものであり、他方、修正された三相各相の電圧指令値Vu,Vv,Vwが電源電圧を超えないように制限する三相電圧制限部30は、PWM開度が全開、すなわち、PWM回路28におけるデューティ比が最大値以上となる場合に、当該デューティ比を最大値とする値に電圧指令値Vu,Vv,Vwを制限するために設けられているものである。
上記した制御装置20のPWM回路28以外の各部は、ハードウェアとして、具体的にはたとえば、電流検出器31、電圧検出器32および回転角センサ15が出力する各信号を増幅するためのアンプと、アナログ信号をデジタル信号に変換する変換器と、CPU(Central Prossesing Unit)と、ROM(Read Only Memory)等の記憶装置と、CPUに記憶領域を提供するRAM(Random Access Memory)と、水晶発振子及びこれらを連絡するバスラインとを備えた図示しない周知のコンピュータシステムとして構成され、また、PWM回路28に最終電圧指令値Vu,Vv,Vwを出力することができるようになっている。なお、このハードウェアとして制御装置20のPWM回路28以外の各部は、車両に搭載されるECUに統合されてもよい。
そして、この場合、上記電流目標値演算部21、二相電流演算部22、比例積分制御部23、電源電圧補正部24、dq電圧制限部25、三相変換演算部26、三相電圧修正部27、リミッタ29および三相電圧制限部30における処理手順は、プログラムとしてROMや他の記憶装置に予め格納され、上記これら各部は、CPUが上記プログラムを読み込んで、各演算処理を実行することによって実現されている。
ここで、上記した制御装置20における処理手順について詳細に説明する。制御装置20による一連の処理は、具体的にはたとえば、図9に示す処理手順に従って実行される。
まず、ステップS1で制御装置20は、三相の巻線12のうちの任意の二相、たとえば、U相とV相の電流値iu,ivと、モータMの電気角θと、電源Eの電圧値Vbを読み込む。
つづき、ステップS2に移行して、車両の姿勢制御を司る図示しない車両制御装置から入力されるトルク指令に基づいて各電流目標値id*,iq*を演算する。
そして、ステップS3に移行して、ロータRの電気角速度ωに基づいて上記各電流目標値id*,iq*が上限値を超える場合、これらを上限値に制限し、超えない場合、各電流目標値id*,iq*の制限処理を施さず、ステップS4に移行する。
さらに、ステップS4では、制御装置20は、電流値iu,ivと電気角θを用いて、上記各電流値iv,iuをd相およびq相の電流値id,iqへ変換する演算を行って、ステップS5に移行する。
続き、ステップS5では、制御装置20は、各電流目標値id*,iq*とd相およびq相の電流値id,iqとの偏差εd,εqを演算する。
ステップS6に移行し、制御装置20は、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの合成ベクトルが飽和していたか、すなわち、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの二乗の値が飽和電圧Vsの自乗を超えていたかを、制限フラグを参照して判断し、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和していなかった場合、ステップS7へ移行し、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和している場合、ステップS8へ移行する。
なお、制限フラグは、後述するステップS10によってセットされ、たとえば、制限フラグがゼロである場合には、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和しておらず、制限フラグが1である場合には、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和していたことを示すように取り決めてある。
つづき、ステップS7では、制御装置20は、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和していなかったので、偏差εd,εqを用いて比例積分制御に則ってd相電圧指令値Vdおよびq相電圧指令値Vqを演算して、ステップS9に移行する。
他方、ステップS8では、制御装置20は、前回制御時にd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルが飽和していたので、積分演算を中止した状態でd相電圧指令値Vdおよびq相電圧指令値Vqを算出し、ステップS9に移行する。
ステップS9では、制御装置20は、ステップS2で読み込んだ今回制御における電源Eの電圧Vbに基づいて上記マップを用いてd相電圧指令値Vdおよびq相電圧指令値Vqを補正する。
そして、ステップS10に移行して、制御装置20は、ステップS9で補正されたd相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトル長さの自乗の値(Vd+Vq)が飽和電圧Vsを超えているかを判断し、超えている場合には、上記マップ演算によって求めた制限割合をd相電圧指令値Vdおよびq相電圧指令値Vqにそれぞれ乗じてd相電圧指令値Vdおよびq相電圧指令値Vqを上述の如く制限して制限フラグを1に書き換える処理を行う。他方、超えていない場合には、d相電圧指令値Vdおよびq相電圧指令値Vqの制限処理を施さず、制限フラグをゼロに書き換える処理を行って、ステップ11に移行する。このようにすることで、次回制御時には、比例積分演算を行うことに先んじて、積分演算を中止すべきか再開もしくは継続すべきかを判断することができ、d相電圧指令値Vdおよびq相電圧指令値Vqの合成ベクトルの飽和の影響を最小限に食い止めることが可能となる。
さらに、ステップS11では、制御装置20は、上記d相電圧指令値Vdおよびq相電圧指令値Vqを三相の電圧指令値Vu,Vv,Vwに変換する演算を行って、ステップS12に移行する。
つづいて、ステップS12では、制御装置20は、三相の電圧指令値Vu,Vv,Vwから最終電圧指令値Vu,Vv,Vwを演算する。なお、当該ステップS12において、上述のように三相の電圧指令値Vu,Vv,Vwを修正する必要が無い場合には、当該処理を行わないようにしてもよい。
そして、ステップS13に移行して、制御装置20は、最終電圧指令値Vu,Vv,Vwを取り得る値に制限する処理が必要な場合には、この制限処理を行い、必要が無い場合には、制限処理を施さずにステップS14に移行する。
ステップS14では、制御装置20は、最終電圧指令値Vu,Vv,VwをPWM回路28へ出力して、これらの一連の処理を終了する。
そして、この制御装置20は、以上のステップS1からS14までを繰り返し処理して電磁サスペンション装置を制御する。
したがって、制御装置20が上記した一連の処理を実行することで、上述した上記電流目標値演算部21、二相電流演算部22、比例積分制御部23、電源電圧補正部24、dq電圧制限部25、三相変換演算部26、三相電圧修正部27、リミッタ29および三相電圧制限部30の各部の処理が実現され、これによって、電磁サスペンション装置の実用性が向上するのである。
さらに、電磁サスペンション装置を、図10に示す他の電磁サスペンション装置のように、一方部材である筒51と、筒51に対し相対運動を呈する他方部材であるロッド52と、該相対運動を少なくとも抑制可能なモータM2とで構成するようにしてもよい。
詳しくは、筒51は、車両のバネ上部材およびバネ下部材の一方に連結され、この筒51内には、車両のバネ上部材およびバネ下部材の他方に連結されるロッド52が相通される。
また、モータM2は、ロッド52の外周に軸方向にS極とN極が交互に現われるように装着される駆動用磁石53と、筒51内に駆動用磁石53と対向する巻線54とを備えて構成され、巻線54は所定の長さにわたり筒51の軸方向に添ってU,V,Wの各相が交互に並ぶように配置されている。
なお、筒51に設けられた巻線54は環状に成型され、少なくとも内周側は、樹脂等によってコーティングされ、この巻線54の内周と、ロッド52の外周あるいは駆動用磁石53と、の間には図示しない環状の軸受が配在され、筒51に対してロッド52の軸ぶれが防止されている。
すなわち、この他の電磁サスペンション装置にあっては、筒51に対しロッド52が進退して相対運動を呈すると、駆動用磁石53が巻線54に対して相対移動する、いわゆるリニアモータ型の構成となっており、この他の電磁サスペンション装置にあっても、上記した一実施の形態における電磁サスペンション装置と同様に、モータM2は、モータとしてもジェネレータとしても機能し、モータM2の動作はモータMと同様である。
そして、一実施の形態と同様の制御装置20によって、上述した制御を行うことによって、この実施の形態における電磁サスペンション装置にあっても、電源Eの電圧を効率的に利用することが可能となる。
したがって、この他の実施の形態の電磁サスペンション装置にあっても、電源Eの電圧を効率的に利用可能となるので、電磁サスペンション装置の発生荷重を大きくすることができることから、モータMを従来より小型化および軽量化することができ、結果、電磁サスペンション装置の車両への搭載性と発生荷重に対する要求とを高次元で両立することができ、電磁サスペンション装置の実用性が飛躍的に向上することになる。
以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。
電磁サスペンション装置の概念図である。 一実施の形態の電磁サスペンション装置における制御手段のシステム図である。 PWM回路を示す図である。 電源電圧をパラメータとした電源電圧初期値を電源電圧で除した比を示すマップである。 d相電圧指令値とq相電圧指令値の合成ベクトル長さの自乗の値をパラメータとして作成した飽和電圧Vsを合成ベクトル長さで除した制限割合のマップである。 修正後の相間電圧波形の一例を示した図である。 修正後の相間電圧波形の他の例を示した図である。 修正後の相間電圧波形の別の例を示した図である。 一実施の形態の電磁サスペンション装置における制御手段の処理手順を示すフローチャートである。 他の実施の形態における電磁サスペンション装置の概念図である。
符号の説明
1 回転部材たる螺子軸
2 直動部材たるボール螺子ナット
4 筒
10 フレーム
11 ステータコア
12 巻線
13 シャフト
14 駆動用磁石
15 回転角センサ
20 制御装置
21 電流目標値演算部
22 二相電流演算部
23 比例積分制御部
24 電源電圧補正部
25 dq電圧制限部
26 三相変換演算部
27 三相電圧修正部
28 PWM回路
29 リミッタ
30 三相電圧制限部
31 電流検出器
32 電圧検出器
41 スイッチング素子
51 筒
52 ロッド
53 駆動用磁石
54 巻線
E 電源
H 運動変換機構
M,M2 モータ
R ロータ
S ステータ

Claims (11)

  1. 一方部材と、一方部材に対し相対運動を呈する他方部材と、該相対運動を少なくとも抑制可能なステータに三相の巻線を有するモータとを備えた電磁サスペンション装置において、三相の各巻線の各相間電圧の波形の最大振幅を電源電圧にまで高めることが可能な制御手段を備えたことを特徴とする電磁サスペンション装置。
  2. 制御手段は、三相の各巻線の三つの相間電圧のうち一つが他の二つに対して120度の位相差の正弦波をなすように三相巻線に電圧を印加すること特徴とする請求項1に記載の電磁サスペンション装置。
  3. 制御手段は、三相の各巻線に印加すべき電圧指令値のうち最大と最小の値の中間値を三相巻線の中性点の電圧とし、この中性点の電圧と上記電圧指令値との差を各巻線に印加すべき各相の最終電圧指令値として、この最終電圧指令値に基づいて各巻線に電圧を印加することを特徴とする請求項1または2に記載の電磁サスペンション装置。
  4. 制御手段は、三相の各巻線に印加すべき電圧指令値のうち最小の電圧指令値をゼロとしてこれをその相の最終電圧指令値とし、他の二つの電圧指令値と最小の電圧指令値との差を他の二つの相の最終電圧指令値として、この最終電圧指令値に基づいて各巻線に電圧を印加することを特徴とする請求項1から3のいずれかに記載の電磁サスペンション装置。
  5. 制御手段は、正弦波電圧でなる電圧指令値に、第3次高調波を重畳することによって三相の各相における最終電圧指令値を求め、この最終電圧指令値に基づいて各巻線に電圧を印加することを特徴とする請求項1または2に記載の電磁サスペンション装置。
  6. 制御手段は、三相巻線に流れる電流と電気角とからdq変換を用いてd相電圧指令値およびq相電圧指令値を求め、d相電圧指令値とq相電圧指令値を三相の各巻線へ印加する電圧指令値に変換することを特徴とする請求項1から5のいずれかに記載の電磁サスペンション装置。
  7. d相電圧指令値およびq相電圧指令値の合成ベクトルの長さを飽和電圧以下に制限する制限手段を備えたことを特徴とする請求項6に記載の電磁サスペンション装置。
  8. 制限手段は、d相電圧指令値の二乗の値とq相電圧指令値の二乗の値とを足し合わせた加算値が飽和電圧の二乗の値を超える場合、加算値をパラメータとして飽和電圧の値を加算値の二分の一乗の値で除した制限割合をマップとして当該マップと加算値から制限割合を得て、d相電圧指令値およびq相電圧指令値に得られた制限割合をそれぞれ乗算することによってd相電圧指令値およびq相電圧指令値を制限することを特徴とする請求項7に記載の電磁サスペンション装置。
  9. 制御手段は、電圧指令値を電源電圧の変動に基づいて補正する補正手段を備えていることを特徴とする請求項1から8のいずれかに記載の電磁サスペンション装置。
  10. 補正手段は、d相電圧指令値およびq相電圧指令値のベクトル長さを飽和電圧以下に制限する前にq相電圧指令値を補正することを特徴とする請求項9に記載の電磁サスペンション装置。
  11. 制御手段は、d相電圧指令値およびq相電圧指令値が制限される場合、d相およびq相の電流ループにおける積分演算を中止することを特徴とする請求項7から10のいずれかに記載の電磁サスペンション装置。











JP2006241315A 2006-09-06 2006-09-06 電磁サスペンション装置 Pending JP2008062738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241315A JP2008062738A (ja) 2006-09-06 2006-09-06 電磁サスペンション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241315A JP2008062738A (ja) 2006-09-06 2006-09-06 電磁サスペンション装置

Publications (1)

Publication Number Publication Date
JP2008062738A true JP2008062738A (ja) 2008-03-21

Family

ID=39285833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241315A Pending JP2008062738A (ja) 2006-09-06 2006-09-06 電磁サスペンション装置

Country Status (1)

Country Link
JP (1) JP2008062738A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122954A1 (ja) * 2008-04-02 2009-10-08 日産自動車株式会社 電動アクチュエータの駆動制御装置及び駆動制御方法及び電動アクチュエータの駆動制御装置を備える車両
JP2012131395A (ja) * 2010-12-22 2012-07-12 Toyota Motor Corp サスペンション装置
WO2020158755A1 (ja) * 2019-02-01 2020-08-06 Kyb株式会社 電磁緩衝器
CN112606648A (zh) * 2020-12-28 2021-04-06 江苏大学 一种馈能式混合电磁主动悬架复合控制器的构造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614590A (ja) * 1992-06-23 1994-01-21 Honda Motor Co Ltd Pwmインバータ
JPH10136699A (ja) * 1996-10-25 1998-05-22 Toyota Motor Corp モータ制御装置
JPH10257780A (ja) * 1997-03-07 1998-09-25 Shinko Electric Co Ltd 多レベルインバータの制御方法とその装置
JP2003304697A (ja) * 2002-04-09 2003-10-24 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004023843A (ja) * 2002-06-13 2004-01-22 Nissan Motor Co Ltd モータ制御装置
JP2005256918A (ja) * 2004-03-11 2005-09-22 Kayaba Ind Co Ltd 電磁緩衝器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614590A (ja) * 1992-06-23 1994-01-21 Honda Motor Co Ltd Pwmインバータ
JPH10136699A (ja) * 1996-10-25 1998-05-22 Toyota Motor Corp モータ制御装置
JPH10257780A (ja) * 1997-03-07 1998-09-25 Shinko Electric Co Ltd 多レベルインバータの制御方法とその装置
JP2003304697A (ja) * 2002-04-09 2003-10-24 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004023843A (ja) * 2002-06-13 2004-01-22 Nissan Motor Co Ltd モータ制御装置
JP2005256918A (ja) * 2004-03-11 2005-09-22 Kayaba Ind Co Ltd 電磁緩衝器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122954A1 (ja) * 2008-04-02 2009-10-08 日産自動車株式会社 電動アクチュエータの駆動制御装置及び駆動制御方法及び電動アクチュエータの駆動制御装置を備える車両
US8447468B2 (en) 2008-04-02 2013-05-21 Nissan Motor Co., Ltd. Electrically-powered actuator driving control apparatus and driving control method and vehicle having electrically-powered actuator driving control apparatus
JP5375822B2 (ja) * 2008-04-02 2013-12-25 日産自動車株式会社 電動アクチュエータの駆動制御装置及び駆動制御方法及び電動アクチュエータの駆動制御装置を備える車両
JP2012131395A (ja) * 2010-12-22 2012-07-12 Toyota Motor Corp サスペンション装置
WO2020158755A1 (ja) * 2019-02-01 2020-08-06 Kyb株式会社 電磁緩衝器
JP2020125781A (ja) * 2019-02-01 2020-08-20 Kyb株式会社 電磁緩衝器
JP7049281B2 (ja) 2019-02-01 2022-04-06 Kyb株式会社 電磁緩衝器
CN112606648A (zh) * 2020-12-28 2021-04-06 江苏大学 一种馈能式混合电磁主动悬架复合控制器的构造方法
CN112606648B (zh) * 2020-12-28 2022-04-26 江苏大学 一种馈能式混合电磁主动悬架复合控制器的构造方法

Similar Documents

Publication Publication Date Title
JP5011705B2 (ja) 電動パワーステアリング制御装置
JP2007216822A (ja) 電磁サスペンション装置
JP6852522B2 (ja) 多相回転機の制御装置
EP2019473A1 (en) Motor controller
JP4816919B2 (ja) ブラシレスモータ用制御装置
JP5387878B2 (ja) モータ制御装置
JP6044585B2 (ja) 多相交流モータの制御装置
JP2014121182A (ja) ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2009106069A (ja) 電動機制御装置
JP5220293B2 (ja) モータ制御装置、モータ制御方法およびアクチュエータ
JP2008062738A (ja) 電磁サスペンション装置
JP2011036078A (ja) モータ制御装置
JP6288408B2 (ja) モータ制御方法、モータ制御装置および電動パワーステアリング装置
JP5842852B2 (ja) 回転電機制御システム及び回転電機の制御方法
JP2012217284A (ja) 車両用モータ制御装置
JP2009136034A (ja) モータ制御装置
JP4908096B2 (ja) 制御装置およびアクチュエータの制御装置
JP5995079B2 (ja) モータ制御装置
JP2010193549A (ja) 交流電動機の制御システム
JP2007030663A (ja) 電磁サスペンション装置
JP4895737B2 (ja) モータ制御装置
JP4908095B2 (ja) 駆動系およびアクチュエータ
JP7431346B2 (ja) モータ制御装置、機電一体ユニット、ハイブリッドシステム、および電動パワーステアリングシステム
JP2006296116A (ja) モータ制御装置
WO2023218676A1 (ja) 回転電機の制御装置および回転電機の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110