JP2008060202A - Cpp構造の磁気抵抗効果素子の製造方法。 - Google Patents

Cpp構造の磁気抵抗効果素子の製造方法。 Download PDF

Info

Publication number
JP2008060202A
JP2008060202A JP2006233247A JP2006233247A JP2008060202A JP 2008060202 A JP2008060202 A JP 2008060202A JP 2006233247 A JP2006233247 A JP 2006233247A JP 2006233247 A JP2006233247 A JP 2006233247A JP 2008060202 A JP2008060202 A JP 2008060202A
Authority
JP
Japan
Prior art keywords
layer
heusler alloy
group
manufacturing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006233247A
Other languages
English (en)
Inventor
Yoshihiro Tsuchiya
芳弘 土屋
Tomohito Mizuno
友人 水野
Koji Shimazawa
幸司 島沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006233247A priority Critical patent/JP2008060202A/ja
Priority to US11/757,174 priority patent/US7533456B2/en
Publication of JP2008060202A publication Critical patent/JP2008060202A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49034Treating to affect magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49039Fabricating head structure or component thereof including measuring or testing with dual gap materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49046Depositing magnetic layer or coating with etching or machining of magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/49052Machining magnetic material [e.g., grinding, etching, polishing] by etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【課題】 ホイスラー合金層の形成に際して、成膜速度(成膜レート)を上げることができ、生産性の向上を図ることができ、しかも素子特性の向上を図ることができるホイスラー合金層の形成方法を提供する。
【解決手段】 フリー層(50)は、外部磁界に応じて磁化の方向が変化するように機能するとともに、第1のホイスラー合金層を含む積層体から構成され、磁化固定層(30)は、非磁性中間層(32)を挟むようにしてインナーピン層(33)およびアウターピン層(31)が積層された形態を有しており、インナーピン層(33)は、第2のホイスラー合金層(333)を含む積層体から構成され、第1および第2のホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
【選択図】 なし

Description

本発明は、CPP構造の磁気抵抗効果素子の製造方法に関するものであって、特に、その素子の膜構成の一部をなすホイスラー合金層の製造方法に関する。
近年、ハードディスク装置の面記録密度の向上に伴って、薄膜磁気ヘッドの性能の向上が求められている。薄膜磁気ヘッドとしては、基板に対して、読み出し専用の磁気抵抗効果素子(以下、単にMR(Magneto-resistive)素子と簡略に記すことがある)を有する再生ヘッドと、書き込み専用の誘導型磁気変換素子を有する記録ヘッドと、を積層した構造の複合型薄膜磁気ヘッドが広く使用されている。
MR素子としては、異方性磁気抵抗(Anisotropic Magneto-resistive)効果を用いたAMR素子や、巨大磁気抵抗(Giant Magneto-resistive)効果を用いたGMR素子や、トンネル磁気抵抗(Tunnel-type Magneto-resistive)効果を用いたTMR素子等が挙げられる。
再生ヘッドの特性としては、特に、高感度で高出力であることが要求される。このような要求を満たす再生ヘッドとして、既に、スピンバルブ型GMR素子を用いたGMRヘッドが量産されている。また、近年では面記録密度のさらなる向上に応じてTMR素子を用いた再生ヘッドの量産も行なわれている。
スピンバルブ型GMR素子は、一般に、非磁性層と、この非磁性層の一方の面に形成されたフリー層と、非磁性層の他方の面に形成された磁化固定層と、非磁性層とは反対に位置する側の磁化固定層の面に形成されたピンニング層(一般には反強磁性層)とを有している。フリー層は外部からの信号磁界に応じて磁化の方向が変化するよう作用する層であり、磁化固定層は、ピンニング層(反強磁性層)からの交換結合磁界によって、磁化の方向が固定される。なお、磁化固定層は、好ましい態様として、非磁性中間層をインナーピン層とアウターピン層とで挟み込んだシンセティックピンド層から構成される。
従来のGMRヘッドは、磁気的信号検出用の電流(いわゆる、センス電流)を、GMR素子を構成する各層の面に対して平行な方向に流す構造、すなわち、CIP(Current In Plane)構造が主流となっていた。これに対して、センス電流を、GMR素子を構成する各層の面に対して垂直方向(積層方向)に流す構造、すなわち、CPP(Current Perpendicular to Plane)構造のGMR素子も次世代の素子として開発が進められている。前述したTMR素子もCPP構造の範疇に入るものである。
従来より提案されているCPP構造のGMR素子は、フリー層や磁化固定層の材料として、主としてCoFe合金やNiFe合金などが用いられていた。このような従来のCPP構造のGMR素子では、実用的な再生ギャップ長を実現できる層の構成において、抵抗に対する磁気抵抗変化の比率である磁気抵抗変化率(MR比)は高々4%程度であり、実用上、十分な大きさであると言うことはできなかった。従来のCPP構造のGMR素子のMR比が小さいのは、フリー層や磁化固定層の材料として用いられているCoFe合金やNiFe合金のスピン分極率が小さいことに起因しているものと考えられる。
近年、CPP構造のGMR素子のMR比を大きくするために、フリー層や磁化固定層の材料として、スピン分極率が1に近いハーフメタルの一種であるホイスラー合金を用いたものが提案されている(特許文献1,2)。
ホイスラー合金層を形成するには、一般に、スパッタ法が用いられる。
特開2005−51251号公報 特開2005−116701号公報
しかしながら、本願発明者らの研究によって、ホイスラー合金のターゲットは、非常にもろく割れやすい性質があるために、スパッタのための投入パワーを上げて成膜するとターゲットそのものが割れてしまうという問題が生じることがわかってきた。これにより、成膜速度(成膜レート)を上げることができず、生産性の向上を図ることができなかった。また、得られる特性も想定したレベルまでの良好なものとは言えなかった。
本発明はこのような実状のものに創案されたものであって、その目的は、ホイスラー合金層の形成に際して、成膜速度(成膜レート)を上げることができ、生産性の向上を図ることができ、しかも素子特性の向上を図ることができるホイスラー合金層の形成方法、延いては、生産性の向上を図ることができ、しかも素子特性の向上を図ることができるCPP構造の磁気抵抗効果素子の製造方法を提供することにある。
このような課題を解決するために、本発明は、非磁性スペーサー層と、前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、第1のホイスラー合金層を含む積層体から構成され、前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、前記インナーピン層は、第2のホイスラー合金層を含む積層体から構成され、前記第1および第2のホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記第1および第2のホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記第1および第2のホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、AとCの合金と、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記一般式A2BCは、Co2MnSi、Co2MnGe、Co2FeSiであるように構成される。
また、本発明の好ましい態様として、前記第1および第2のホイスラー合金層は、一般式ABCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
本発明は、非磁性スペーサー層と、前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、ホイスラー合金層を含む積層体から構成され、前記ホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
本発明は、非磁性スペーサー層と、前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、前記インナーピン層は、ホイスラー合金層を含む積層体から構成され、前記ホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記ホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記ホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、AとCの合金と、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記一般式A2BCは、Co2MnSi、Co2MnGe、Co2FeSiであるように構成される。
また、本発明の好ましい態様として、前記ホイスラー合金層は、一般式ABCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜されるように構成される。
また、本発明の好ましい態様として、前記同時スパッタ法における成膜レートが、0.2Å/sec以上であるように構成される。
本発明は、非磁性スペーサー層と、前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、第1のホイスラー合金層を含む積層体から構成され、前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、前記インナーピン層は、第2のホイスラー合金層を含む積層体から構成され、前記第1および第2のホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成されるので、ホイスラー合金層の形成に際して、成膜速度(成膜レート)を上げることができ、生産性の向上を図ることができ、しかも素子特性の向上を図ることができる。
以下、本発明を実施するための最良の形態について詳細に説明する。
図1は、本発明の実施の形態における再生ヘッドのABS(Air Bearing Surface)であって、特に本発明の要部であるCPP構造の磁気抵抗効果素子のABSを模式的に示した図面である。ABSとは、再生ヘッドが記録媒体と対向する面(以下、媒体対向面ともいう)に相当するのであるが、本発明でいうABSは素子の積層構造が明瞭に観察できる位置での断面までを含む趣旨であり、例えば、厳密な意味での媒体対向面に位置しているDLC等の保護層(素子を覆う保護層)は必要に応じて省略して考えることができる。
図2は、本発明の好適な一実施の形態に係る薄膜磁気ヘッドの構成を説明するための図面であり、薄膜磁気ヘッドのABSおよび基板に垂直な断面を示した図面である。
図3は、本発明の好適な一実施の形態に係る薄膜磁気ヘッドの構成を説明するための図面であり、特に、薄膜磁気ヘッドの磁極部分のABSに平行な断面を示した図面である。
図4は、図1の変形例であり、本発明の要部である磁気抵抗効果素子の変形態様をABSから見た図面である。
図5は、図1の変形例であり、本発明の要部である磁気抵抗効果素子の変形態様をABSから見た図面である。
本発明のCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法について説明する前に、CPP構造の磁気抵抗効果素子の構成について説明しておく。
第1の実施形態のCPP構造の磁気抵抗効果素子の構成について
図1を参照して、本発明のCPP構造の磁気抵抗効果素子を有する再生ヘッドの構成について、詳細に説明する。
図1は、上述したように、再生ヘッドの媒体対向面に平行な断面に相当する断面図である。
本実施の形態における再生ヘッドは、図1に示されるように所定の間隔を開けて対向配置された第1のシールド層3および第2のシールド層8と、これら第1のシールド層と第2のシールド層8との間に配置されたCPP構造の磁気抵抗効果素子5(以下、単に「MR素子5」と称すことがある)と、MR素子5の2つの側部およびこの側部に沿って第1のシールド層3の上面の一部を覆う絶縁膜4と、絶縁膜4を介してMR素子5の2つの側部に隣接する2つのバイアス磁界印加層6とを有している。
第1のシールド層3と第2のシールド層8は、いわゆる磁気シールドの役目と、一対の電極として役目を兼ね備えている。つまり、磁気シールド機能に加え、センス電流をMR素子に対して、MR素子5を構成する各層の面と交差する方向、例えば、MR素子を構成する各層の面に対して垂直な方向(積層方向)に流すための一対の電極としての機能をも有している。
なお、第1のシールド層3と第2のシールド層8とは別に、新たに、MR素子の上下に一対の電極を形成するようにしてもよい。
本発明における再生ヘッドは、本発明の要部であるCPP構造のMR素子5を有している。
本発明におけるCPP構造のMR素子5は、その構造を大きな概念でわかやすく区分して説明すると、非磁性スペーサー層24と、この非磁性スペーサー層24を挟むようにして積層形成される磁化固定層30およびフリー層50を有している。そして、MR素子5の積層方向にセンス電流が印加されて、その素子機能を発揮するようになっている。つまり、CPP(Current Perpendicular to Plane)構造のMR素子5である。
フリー層50は、外部磁界、すなわち記録媒体からの信号磁界に応じて磁化の方向が変化する層であり、磁化固定層30は、反強磁性層22の作用によって磁化の方向が固定された層である。
(磁化固定層30の説明)
本発明における磁化固定層30は、第1のシールド層3の上に形成された下地層21を介して形成されたピンニング作用を果たす反強磁性層22の上に形成されている。磁化固定層30は、反強磁性層22側から、アウターピン層31、非磁性中間層32、およびインナーピン層33が順次積層された構成、すなわち、いわゆるシンセティックピンド層を構成している。
そして、磁化固定層30におけるインナーピン層33は、図1に示されるようにホイスラー合金層333を含む積層体から構成され、ホイスラー合金層333の積層方向の両平面側にはホイスラー合金層333を挟むように下地磁性層331および中間磁性層335がそれぞれ形成されている。すなわち、磁化固定層30におけるインナーピン層33は、非磁性中間層32側から、下地磁性層331、ホイスラー合金層333、および中間磁性層335からなる積層体を有し構成されている。
以下、上述してきた各層について詳細に説明する。
アウターピン層31
アウターピン層31は、Coを含む強磁性材料からなる強磁性層を有して構成される。アウターピン層31とインナーピン層33は、反強磁性的に結合し、磁化の方向が逆方向となるように固定されている。
アウターピン層31は、例えば、Co70Fe30(原子%)の合金層とすることが好ましい。その厚さは、3〜7nm程度とすることが好ましい。
非磁性中間層32
非磁性中間層32は、例えば、Ru,Ph,Ir,Re,Cr,Zr,Cuのグループから選ばれた少なくとも1種を含む非磁性材料から構成される。非磁性中間層32の厚さは、例えば0.35〜1.0nm程度とされる。非磁性中間層32はインナーピン層33の磁化と、アウターピン層31の磁化とを互いに逆方向に固定するために設けられている。「磁化が互いに逆方向」というのは、これらの2つの磁化が互いに180°異なる場合のみに狭く限定解釈されることなく、180°±20°異なる場合をも含む広い概念である。
インナーピン層33
(i)下地磁性層331
下地磁性層331は、Coを含むCo合金層から構成され、例えば、CoFe合金からなる体心立方構造の磁性合金層とすることが好ましい。Feの含有割合は、30原子%以上とすることが好ましい。好適例としてCo70Fe30(原子%)の合金層が挙げられる。その厚さは、1〜2nm程度とされる。
(ii)ホイスラー合金層333
以下のホイスラー合金を使用することができる。
(1)組成式が一般式A2BCで表されるホイスラー合金
ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種を表す。
より具体的には、Co2MnSi、Co2MnGe、Co2FeSi、Co2MnAl、Co2FeAl等が挙げられる。
上記ホイスラー合金の結晶構造はL21構造またはB2構造であることが好ましい。
(2)組成式が一般式ABCで表されるホイスラー合金
ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種を表す。
より具体的には、NiMnSb、PtMnSb等が挙げられる。
上記ホイスラー合金の結晶構造はC1b構造であることが好ましい。
本発明においては、上記してきたホイスラー合金の中で、Co2MnSi、Co2MnGe、Co2FeSi、Co2MnAl、Co2FeAl、NiMnSbを用いるのが好ましく、中でも特に、Co2MnSi、Co2MnGeを用いるのがよい。
このようなホイスラー合金層の厚さは、1〜7nm程度とされる。
(iv)中間磁性層335
中間磁性層335は、Coを含むCo合金層とすることが好ましい。Coの含有割合は、30〜50原子%とすることが好ましい。この範囲のCo含有量で比較的に高い分極率が得られるからである。好適例としてFeCo30-50の合金層が挙げられる。その厚さは、0.5〜2nm程度とされる。
(反強磁性層22の説明)
反強磁性層22は、上述したように磁化固定層30(特に、アウターピンド層31)との交換結合により、アウターピンド層31の磁化の方向を固定するように作用している。
反強磁性層22は、例えば、Pt,Ru,Rh,Pd,Ni,Cu,Ir,CrおよびFeのグループの中から選ばれた少なくとも1種からなる元素M´と、Mnとを含む反強磁性材料から構成される。Mnの含有量は35〜95原子%とすることが好ましい。反強磁性材料の中には、(1)熱処理しなくても反強磁性を示して強磁性材料との間で交換結合磁界を誘起する非熱処理系反強磁性材料と、(2)熱処理により反強磁性を示すようになる熱処理系反強磁性材料とがある。本発明においては(1)、(2)のいずれのタイプを用いても良い。非熱処理系反強磁性材料としては、RuRhMn,FeMn、IrMn等が例示できる。熱処理系反強磁性材料としては、PtMn,NiMn,PtRhMn等が例示できる。
反強磁性層22の厚さは、5〜30nm程度とされる。
また、反強磁性層22の下に形成されている下地層21は、その上に形成される各層の結晶性や配向性を向上させるための層であり、特に、反強磁性層22と磁化固定層30との交換結合を良好にするために設けられる。このような下地層21としては、例えばTa層とNiCr層との積層体が用いられる。下地層21の厚さは、例えば2〜6nm程度とされる。
(非磁性スペーサー層24の説明)
非磁性スペーサー層24は、磁化固定層30とフリー層50との間に介在される層である。非磁性スペーサー層24は、例えば、Cu,AuおよびAgからなる群のうち少なくとも1種を80重量%以上含む非磁性の導電性材料から構成される。その厚さは、例えば1〜4nm程度とされる。
(フリー層50の説明)
本発明におけるフリー層50は、図1に示されるように非磁性スペーサー層24の上に順次積層された、下地磁性層51、およびホイスラー合金層53からなる積層体を有している。
下地磁性層51
下地磁性層51は、Coを含む合金層から構成され、例えば、CoFe合金からなる体心立方構造の磁性合金層とすることが好ましい。Coの含有割合は、50〜70原子%とすることが好ましい。この含有範囲で分極率が高く、しかもフリー層に要求される小さい保磁力特性が得られるからである。好適例としてCo50-70Fe(原子%)の合金層が挙げられる。その厚さは、0.5〜2nm程度とされる。
ホイスラー合金層53
以下のホイスラー合金を使用することができる。
(1)組成式が一般式A2BCで表されるホイスラー合金
ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種を表す。
より具体的には、Co2MnSi、Co2MnGe、Co2FeSi、Co2MnAl、Co2FeAl等が挙げられる。
上記ホイスラー合金の結晶構造はL21構造またはB2構造であることが好ましい。
(2)組成式が一般式ABCで表されるホイスラー合金
ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種を表す。
より具体的には、NiMnSb、PtMnSb等が挙げられる。
上記ホイスラー合金の結晶構造はC1b構造であることが好ましい。
本発明においては、上記してきたホイスラー合金の中で、Co2MnSi、Co2MnGe、Co2FeSi、Co2MnAl、Co2FeAl、NiMnSbを用いるのが好ましく、中でも特に、Co2MnSi、Co2MnGeを用いるのがよい。
このようなホイスラー合金層の厚さは、1〜7nm程度とされる。
フリー層50の上には、例えばRu層からなる保護層26が形成される。その厚さは、0.5〜10nm程度とされる。
また、絶縁層4を構成する材料としては、例えばアルミナが用いられる。バイアス磁界印加層6としては、硬磁性層(ハードマグネット)や、強磁性層と反強磁性層との積層体が用いられ、具体的には、CoPtやCoCrPtを例示することができる。
第2の実施形態のCPP構造の磁気抵抗効果素子
次いで、図4を参照しつつ、第2の実施形態のCPP構造の磁気抵抗効果素子について説明する。図4に示される第2の実施形態のCPP構造の磁気抵抗効果素子が上述してきた第1の実施形態のそれと異なるのは、フリー層50のみに、ホイスラー合金層53が用いられている点である。
すなわち、図4に示される第2の実施形態のCPP構造の磁気抵抗効果素子は、下地層21側から、反強磁性層22、アウターピン層31、非磁性中間層32、インナーピン層33、非磁性スペーサー層24、フリー層50(下地磁性層51、ホイスラー合金層53からなる積層体)が順次積層された形態となっている。
図4に示される第2の実施形態におけるインナーピン層33は、例えば、単層からなっており、このインナーピン層33は、Coを含むCo合金層から構成され、例えば、CoFe合金からなる磁性合金層とすることが好ましい。Feの含有割合は、20〜80原子%とすることが好ましい。第2の実施形態におけるインナーピン層33の厚さは、2〜7nm程度とされる。また、インナーピン層33は、Coを含むCo合金層とCu層との積層構造であってもよい。ここで、Cu層の厚さは、0.1〜0.5nm程度とされる。
この第2の実施形態におけるインナーピン層33以外の他の層の材質や構造は、上述した第1の実施形態の材質や構造に従えばよい。
第3の実施形態のCPP構造の磁気抵抗効果素子
次いで、図5を参照しつつ、第3の実施形態のCPP構造の磁気抵抗効果素子について説明する。図5に示される第3の実施形態のCPP構造の磁気抵抗効果素子が上述してきた第1の実施形態のそれと異なるのは、磁化固定層30のインナーピン層33のみに、ホイスラー合金層333が用いられている点である。すなわち、図5に示される第3の実施形態のCPP構造の磁気抵抗効果素子は、下地層21側から、反強磁性層22、アウターピン層31、非磁性中間層32、インナーピン層33(下地磁性層331、ホイスラー合金層333、中間磁性層335からなる積層体)、非磁性スペーサー層24、フリー層50が順次積層された形態となっている。
図5に示される第3の実施形態におけるフリー層50は、例えば、単層からなっており、このフリー50は、Coを含むCo合金層から構成され、例えば、CoFe合金からなる磁性合金層とすることが好ましい。Coの含有割合は、50〜70原子%とすることが好ましい。第3の実施形態におけるインナーピン層50の厚さは、2〜7nm程度とされる。
この第3の実施形態におけるフリー層50以外の他の層の材質や構造は、上述した第1の実施形態の材質や構造に従えばよい。また、フリー層50は2層以上の積層体から構成されてもよい。
CPP構造の磁気抵抗効果素子の製造方法
上述してきた本発明の第1〜3の実施形態におけるCPP構造の磁気抵抗効果素子は、例えば、スパッタ法等の真空成膜法を用いて形成することができる。
特に、本発明の製造方法の要部は、前記フリー層50の一部の層を構成する第1のホイスラー合金層53や前記インナーピン層33の一部を構成する第2のホイスラー合金層333を、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用いて、同時スパッタ法により成膜させているところにある。
分割ターゲットとせずに、ホイスラー合金層そのものに相当する1つのターゲットを用いてスパッタ成膜した場合、スパッタの投入パワーを大きくして成膜レートを上げようとすると、ターゲットそのものが割れてしまうという不都合が生じてしまう。そのため、生産性の向上を図ることができず、さらには、膜特性も想定したレベルまでの良好なものが得られないという不都合が生じてしまう。
また、分割ターゲットを用いた場合であっても、同時スパッタ法とせずに、逐次スパッタ法を用いた場合には、ターゲットごとのスパッタに時間差が生じてしまうために、成膜雰囲気中の不純物(酸素など)を膜中に取り込み易くなり、膜特性が低下する傾向が生じてしまう。生産性も劣るし、膜特性が安定しないという不都合も生じ得る。なお、本発明でいう同時スパッタ法とは、分割したターゲットに対して、時間差をおくことなく、同時にスパッタを開始するスパッタ方法を意味する。
また、本発明の素子成膜において、ホイスラー合金層の形成の場合にのみ、分割された分割ターゲットを用いた効果が顕著に出るのである。
ホイスラー合金層の形成に際する分割ターゲットの分割形式は以下のようにすることが望ましい。
(分割ターゲットの分割形式)
ホイスラー合金層として、上述した一般式A2BCで表される組成を用いる場合、好適には、(1)AとBの合金と、Cと、に分割された2つの分割ターゲットを用いるか、あるいは、(2)AとBの合金と、AとCとの合金と、に分割された2つの分割ターゲットを用いる。理由は定かではないが、これ以外の分割形式を採用すると本願発明の効果が十分に発現できない場合が生じ得る。
また、ホイスラー合金層として、上述した一般式ABCで表される組成を用いる場合、好適には、AとBの合金と、Cと、に分割された2つの分割ターゲットを用いる。理由は定かではないが、これ以外の分割形式を採用すると本願発明の効果が十分に発現できない場合が生じ得る。
スパッタ運転条件としては、以下の好適な運転条件を例示することができる。
・ターゲット電圧:200〜600V
・ターゲット平均電流密度:0.5〜1.0mA/cm2
・成膜レート:0.2Å/sec以上
・成膜時圧力:5mTorr以下
・到達真空度:1×10-6Pa以下
本発明における分割ターゲットを用いた同時スパッタ法における成膜レートは、0.2Å/sec以上、特に、0.2〜0.5Å/secとするのが良い。この値が0.2Å/sec未満となると、生産性という観点から好ましくない。また、理由は不明であるが、0.2Å/sec以上としたほうがホイスラー合金層の特性も良好なものが得られる。
本発明では、ターゲットの割れを気にせずに成膜レートを上げることができ、さらに優れた膜特性のものが得られる。
(薄膜磁気ヘッドの全体構成の説明)
次いで、本発明の製造の対象となるCPP構造の磁気抵抗効果素子についての理解をより深めるために、上述してきたCPP構造の磁気抵抗効果素子を備えてなる薄膜磁気ヘッドの全体構成について説明する。
前述したように図2および図3は本発明の好適な一実施の形態に係る薄膜磁気ヘッドの構成について説明するための図面であり、図2は、薄膜磁気ヘッドのABSおよび基板に垂直な断面を示している。図3は、薄膜磁気ヘッドの磁極部分のABSに平行な断面を示している。
薄膜磁気ヘッドの全体構造は、その製造工程に沿って説明することによりその構造が容易に理解できると思われる。そのため、以下、製造工程を踏まえて薄膜磁気ヘッドの全体構造を説明する。
まず、アルティック(Al23・TiC)等のセラミック材料よりなる基板1の上に、スパッタ法等によって、アルミナ(Al23)、二酸化珪素(SiO2)等の絶縁材料からなる絶縁層2を形成する。厚さは、例えば0.5〜20μm程度とする。
次に、この絶縁層2の上に、磁性材料からなる再生ヘッド用の下部シールド層3を形成する。厚さは、例えば0.1〜5μm程度とする。このような下部シールド層3に用いられる磁性材料としては、例えば、FeAlSi、NiFe、CoFe、CoFeNi、FeN、FeZrN、FeTaN、CoZrNb、CoZrTa等が挙げられる。下部シールド層3は、スパッタ法またはめっき法等によって形成される。
次に、下部シールド層3の上に、再生用のCPP構造の磁気抵抗効果素子5を形成する。CPP構造の磁気抵抗効果素子5の一部を構成するホイスラー合金層は、上述したように、分割ターゲットを用いた同時スパッタ法により形成される。
次に、図面では示していないが、MR素子の2つの側部および第1のシールド層3の上面を覆うように絶縁膜を形成する。絶縁膜はアルミナ等の絶縁材料より形成される。
次に、絶縁膜を介してMR素子5の2つの側部に隣接するように、2つのバイアス磁界印加層6を形成する。次に、MR素子5およびバイアス磁界印加層6の周囲に配置されるように絶縁膜7を形成する。絶縁膜7は、アルミナ等の絶縁材料によって形成される。
次に、MR素子5、バイアス磁界印加層6および絶縁層7の上に、磁性材料からなる再生ヘッド用の第2のシールド層8を形成する。第2のシールド層8は、例えば、めっき法やスパッタ法により形成される。
次に、上部シールド層8の上に、スパッタ法等によって、アルミナ等の絶縁材料からなる分離層18を形成する。次に、この分離層18の上に、例えば、めっき法やスパッタ法により、磁性材料からなる記録ヘッド用の下部磁極層19を形成する。第2のシールド層8および下部磁極層19に用いられる磁性材料としては、NiFe,CoFe,CoFeNi,FeN等の軟磁性材料があげられる。なお、第2のシールド層8、分離層18および下部磁極層19の積層体の代わりに、下部電極層を兼ねた第2のシールド層を設けても良い。
次に、下部磁極層19の上に、スパッタ法等によって、アルミナ等の非磁性材料からなる記録ギャップ層9が形成される。厚さは、50〜300nm程度とされる。
次に、磁路形成のために、後述する薄膜コイルの中心部において、記録ギャップ層9を部分的にエッチングしてコンタクトホール9aを形成する。
次に、記録ギャップ層9の上に、例えば銅(Cu)からなる薄膜コイルの第1層部分10を、例えば2〜3μmの厚さに形成する。なお、図2において、符号10aは、第1層部分10のうち、後述する薄膜コイルの第2層部分15に接続される接続部を示している。第1層部分10は、コンタクトホール9aの周囲に巻回される。
次に、薄膜コイルの第1層部分10およびその周辺の記録ギャップ層9を覆うように、フォトレジスト等の、加熱時に流動性を有する有機材料からなる絶縁層11を所定のパターンに形成する。
次に、絶縁層11の表面を平坦にするために所定の温度で熱処理する。この熱処理により、絶縁層11の外周および内周の各端縁部分は、丸みを帯びた斜面形状となる。
次に、絶縁層11のうちの後述する媒体対向面20側の斜面部分から媒体対向面20側にかけての領域において、記録ギャップ層9および絶縁層11の上に、記録ヘッド用の磁性材料によって、上部磁極層12のトラック幅規定層12aを形成する。上部磁極層12は、このトラック幅規定層12aと、後述する連結部分層12bおよびヨーク部分層12cとで構成される。
トラック幅規定層12aは、記録ギャップ層9の上に形成され、上部磁極層12の磁極部分となる先端部と、絶縁層11の媒体対向面20側の斜面部分の上に形成されヨーク部分層12cに接続される接続部と、を有している。先端部の幅は記録トラック幅と等しくなっている。接続部の幅は、先端部の幅よりも大きくなっている。
トラック幅規定層12aを形成する際には、同時にコンタクトホール9aの上に磁性材料からなる連結部分層12bを形成するとともに、接続部10aの上に磁性材料からなる接続層13を形成する。連結部分層12bは、上部磁極層12のうち、上部シールド層8に磁気的に連結される部分を構成する。
次に、磁極トリミングを行なう。すなわち、トラック幅規定層12aの周辺領域において、トラック幅規定層12aをマスクとして、記録ギャップ層9および上部シールド層8の磁極部分における記録ギャップ層9側の少なくとも一部をエッチングする。これにより、図3に示されるごとく、上部磁極層12の磁極部分、記録ギャップ層9および上部シールド層8の磁極部分の少なくとも一部の各幅が揃えられたトリム(Trim)構造が形成される。このトリム構造によれば、記録ギャップ層9の近傍における磁束の広がりによる実効的なトラック幅の増加を防止することができる。
次に、全体に、アルミナ等の無機絶縁材料からなる絶縁層14を、例えば3〜4μm厚さに形成する。
次に、この絶縁層14を、例えば化学機械研摩によって、トラック幅規定層12a、連結部分層12b、接続層13の表面に至るまで研摩して平坦化する。
次に、平坦化された絶縁層14の上に、例えば銅(Cu)からなる薄膜コイルの第2層部分15を、例えば2〜3μmの厚さに形成する。なお、図2において、符号15aは、第2層部分15のうち、接続層13を介して薄膜コイルの第1層部分10の接続部10aに接続される接続部を示している。第2層部分15は、連結部分層12bの周囲に巻回される。
次に、薄膜コイルの第2層部分15およびその周辺の絶縁層14を覆うように、フォトレジスト等の、加熱時に流動性を有する有機材料からなる絶縁層16を所定のパターンに形成する。
次に、絶縁層16の表面を平坦にするために所定の温度で熱処理する。この熱処理により、絶縁層16の外周および内周の各端縁部分は、丸みを帯びた斜面形状となる。
次に、トラック幅規定層12a、絶縁層14、16および連結部分層12bの上にパーマロイ等の記録ヘッド用の磁性材料によって、上部磁性層12のヨーク部分を構成するヨーク部分層12cを形成する。ヨーク部分層12cの媒体対向面20側の端部は、媒体対向面20から離れた位置に配置されている。また、ヨーク部分層12cは、連結部分層12bを介して下部磁極層19に接続されている。
次に、全体を覆うように、例えばアルミナからなるオーバーコート層17を形成する。最後に、上記各層を含むスライダの機械加工を行い、記録ヘッドおよび再生ヘッドを含む薄膜ヘッドの媒体対向面20を形成して、薄膜磁気ヘッドが完成する。
このようにして製造される薄膜磁気ヘッドは、記録媒体に対向する媒体対向面20と、前述した再生ヘッドと、記録ヘッド(誘導型磁気変換素子)とを備えている。
記録ヘッドは、媒体対向面20側において互いに対向する磁極部分を含むとともに、互いに磁気的に連結された下部磁極層19および上部磁極層12と、この下部磁極層19の磁極部分と上部磁極層12の磁極部分との間に設けられた記録ギャップ層9と、少なくとも一部が下部磁極層19および上部磁極層12の間に、これらに対して絶縁された状態で配置された薄膜コイル10、15と、を有している。
このような薄膜磁気ヘッドでは、図2に示されるように、媒体対向面20から、絶縁層11の媒体対向面側の端部までの長さが、スロートハイト(図面上、符号THで示される)となる。なお、スロートハイトとは、媒体対向面20から、2つの磁極層の間隔が開き始める位置までの長さ(高さ)をいう。
次に、薄膜磁気ヘッドの作用について説明する。薄膜磁気ヘッドは、記録ヘッドによって記録媒体に情報を記録し、再生ヘッドによって、記録媒体に記録されている情報を再生する。
再生ヘッドにおいて、バイアス磁界印加層6によるバイアス磁界の方向は、媒体対向面20に垂直な方向と直交している。CPP構造の磁気抵抗効果素子5において、信号磁界がない状態では、フリー層50の磁化の方向は、バイアス磁界の方向に揃えられている。磁化固定層30の磁化の方向は、媒体対向面20に垂直な方向に固定されている。
CPP構造の磁気抵抗効果素子5では、記録媒体からの信号磁界に応じてフリー層50の磁化の方向が変化し、これにより、フリー層50の磁化の方向と磁化固定層30の磁化の方向との間の相対角度が変化し、その結果、CPP構造の磁気抵抗効果素子の抵抗値が変化する。CPP構造の磁気抵抗効果素子の抵抗値は、第1および第2のシールド層3,8によって、MR素子にセンス電流を流したときの2つの電極層3,8間の電位差より求めることができる。このようにして、再生ヘッドによって、記録媒体に記録されている情報を再生することができる。
上述してきた本発明にかかるCPP構造の磁気抵抗効果素子の製造方法を、以下に示す具体的実施例によりさらに詳細に説明する。
〔実験例I〕
CPP構造の磁気抵抗効果素子の積層膜構成を下記の表1のごとく設計し、この設計に沿って、素子の成膜を行なった。すなわち、パーマロイからなる下部電極兼下部シールド層の上に、表1に示される多層膜をスパッタ法により、順次形成した。さらに、この多層膜のRu保護膜の上にパーマロイからなる上部電極兼上部シールド層を形成した。
Figure 2008060202
なお、表1に示される第1のホイスラー合金層および第2のホイスラー合金層は、下記表2に示されるような要領でスパッタの方式や条件を種々変えて、膜状態の異なる種々のホイスラー合金層を備えるサンプルを作製した。各サンプルにおけるJunction Scaleは、0.2μm×0.2μmであり、各素子は、290℃で3時間のアニールを行なった。
下記表2に示されるようにアニール後のサンプルについて、通常の4端子法でMR比を測定した。MR比は、抵抗の変化量ΔRを、抵抗値Rで割った値であり、ΔR/Rで表される。通常、100を掛けてパーセント表示とされる。なお、MR比は、サンプル数100個の素子での平均値として求めた。
また、ホイスラー合金層のスパッタ成膜時にターゲットの割れの有無も確認した。ターゲットの割れの有無は、スパッタ放電の不安定性から判断し、割れたと思われるところで、成膜を中断して、目視で確認した。割れが生じたものは表2中に、「有」と表記してある。
Figure 2008060202
表2に示される結果より、ホイスラー合金層の組成と同じ単体ターゲットを用いた比較例1−1〜1−4の場合には、ターゲットへの投入電力を上げると、早い段階でターゲット割れが生じてしまう。これにより特性がとれると思われる成膜レートの速い条件での膜の作製が不可能となっている。
これに対して本発明(実施例)の分割ターゲットを用いた同時スパッタでは、ターゲット割れの問題が生じにくく、投入電力(input power)を引き上げることが可能となる。これにより、良好な膜特性が得られる領域まで、成膜レートを上げることができる。生産性も上がる。
また、分割ターゲットを用いた逐次スパッタ(比較例1−5)では、同時スパッタと比べてMR特性が低下する傾向にあることがわかる。なお、データが容易に視認できるように、表2のデータ値(比較例1−5を除く)をグラフにしたものが図6に示される。
〔実験例II〕
CPP構造の磁気抵抗効果素子の積層膜構成を下記の表3のごとく設計し、この設計に沿って、素子の成膜を行なった。すなわち、パーマロイからなる下部電極兼下部シールド層の上に、表3に示される多層膜をスパッタ法により、順次形成した。さらに、この多層膜のRu保護膜の上にパーマロイからなる上部電極兼上部シールド層を形成した。
Figure 2008060202
なお、表3に示される第1のホイスラー合金層および第2のホイスラー合金層は、下記表4に示されるような要領でスパッタの方式や条件を種々変えて、膜状態の異なる種々のホイスラー合金層を備えるサンプルを作製した。各サンプルにおけるJunction Scaleは、0.2μm×0.2μmであり、各素子は、290℃で3時間のアニールを行なった。
下記表4に示されるように、アニール後のサンプルについて、通常の4端子法でMR比を測定した。MR比は、抵抗の変化量ΔRを、抵抗値Rで割った値であり、ΔR/Rで表される。通常、100を掛けてパーセント表示とされる。なお、MR比は、サンプル数100個の素子での平均値として求めた。
また、ホイスラー合金層のスパッタ成膜時にターゲットの割れの有無も確認した。ターゲットの割れの有無は、スパッタ放電の不安定性から判断し、割れたと思われるところで、成膜を中断して、目視で確認した。割れが生じたものは表4中に、「有」と表記してある。
Figure 2008060202
表4に示される結果より、ホイスラー合金層の組成と同じ単体ターゲットを用いた比較例2−1〜2−4の場合には、ターゲットへの投入電力を上げると、早い段階でターゲット割れが生じてしまう。これにより特性がとれると思われる成膜レートの速い条件での膜の作製が不可能となっている。
これに対して本発明(実施例)の分割ターゲットを用いた同時スパッタでは、ターゲット割れの問題が生じにくく、投入電力(input power)を引き上げることが可能となる。これにより、良好な膜特性が得られる領域まで、成膜レートを上げることができる。生産性も上がる。
また、分割ターゲットを用いた逐次スパッタ(比較例2−5)では、同時スパッタと比べてMR特性が低下する傾向にあることがわかる。なお、データが容易に視認できるように、表4のデータ値(比較例2−5を除く)をグラフにしたものが図7に示される。
〔実験例III〕
CPP構造の磁気抵抗効果素子の積層膜構成を下記の表5のごとく設計し、この設計に沿って、素子の成膜を行なった。すなわち、パーマロイからなる下部電極兼下部シールド層の上に、表5に示される多層膜をスパッタ法により、順次形成した。さらに、この多層膜のRu保護膜の上にパーマロイからなる上部電極兼上部シールド層を形成した。
Figure 2008060202
なお、表5に示される第1のホイスラー合金層および第2のホイスラー合金層は、下記表6に示されるような要領でスパッタの方式や条件を種々変えて、膜状態の異なる種々のホイスラー合金層を備えるサンプルを作製した。各サンプルにおけるJunction Scaleは、0.2μm×0.2μmであり、各素子は、290℃で3時間のアニールを行なった。
下記表6に示されるように、アニール後のサンプルについて、通常の4端子法でMR比を測定した。MR比は、抵抗の変化量ΔRを、抵抗値Rで割った値であり、ΔR/Rで表される。通常、100を掛けてパーセント表示とされる。なお、MR比は、サンプル数100個の素子での平均値として求めた。
また、ホイスラー合金層のスパッタ成膜時にターゲットの割れの有無も確認した。ターゲットの割れの有無は、スパッタ放電の不安定性から判断し、割れたと思われるところで、成膜を中断して、目視で確認した。割れが生じたものは表6中に、「有」と表記してある。
Figure 2008060202
表6に示される結果より、ホイスラー合金層の組成と同じ単体ターゲットを用いた比較例3−1〜3−5の場合には、ターゲットへの投入電力を上げると、早い段階でターゲット割れが生じてしまう。これにより特性がとれると思われる成膜レートの速い条件での膜の作製が不可能となっている。
これに対して本発明(実施例)の分割ターゲットを用いた同時スパッタでは、ターゲット割れの問題が生じにくく、投入電力(input power)を引き上げることが可能となる。これにより、良好な膜特性が得られる領域まで、成膜レートを上げることができる。生産性も上がる。
また、分割ターゲットを用いた逐次スパッタ(比較例3−6)では、同時スパッタと比べてMR特性が低下する傾向にあることがわかる。なお、データが容易に視認できるように、表6のデータ値(比較例3−6を除く)をグラフにしたものが図8に示される。
〔実験例IV〕
CPP構造の磁気抵抗効果素子の積層膜構成を下記の表7のごとく設計し、この設計に沿って、素子の成膜を行なった。すなわち、パーマロイからなる下部電極兼下部シールド層の上に、表7に示される多層膜をスパッタ法により、順次形成した。さらに、この多層膜のRu保護膜の上にパーマロイからなる上部電極兼上部シールド層を形成した。
Figure 2008060202
なお、表7に示されるホイスラー合金層は、インナーピン層中のみに存在しており、フリー層中には存在していない。
下記表8に示されるような要領でスパッタの方式や条件を種々変えて、膜状態の異なる種々のホイスラー合金層を備えるサンプルを作製した。各サンプルにおけるJunction Scaleは、0.2μm×0.2μmであり、各素子は、290℃で3時間のアニールを行なった。
下記表8に示されるように、アニール後のサンプルについて、通常の4端子法でMR比を測定した。MR比は、抵抗の変化量ΔRを、抵抗値Rで割った値であり、ΔR/Rで表される。通常、100を掛けてパーセント表示とされる。なお、MR比は、サンプル数100個の素子での平均値として求めた。
また、ホイスラー合金層のスパッタ成膜時にターゲットの割れの有無も確認した。ターゲットの割れの有無は、スパッタ放電の不安定性から判断し、割れたと思われるところで、成膜を中断して、目視で確認した。割れが生じたものは表8中に、「有」と表記してある。
Figure 2008060202
表8に示される結果より、ホイスラー合金層の組成と同じ単体ターゲットを用いた比較例4−1〜4−4の場合には、ターゲットへの投入電力を上げると、早い段階でターゲット割れが生じてしまう。これにより特性がとれると思われる成膜レートの速い条件での膜の作製が不可能となっている。
これに対して本発明(実施例)の分割ターゲットを用いた同時スパッタでは、ターゲット割れの問題が生じにくく、投入電力(input power)を引き上げることが可能となる。これにより、良好な膜特性が得られる領域まで、成膜レートを上げることができる。生産性も上がる。
また、分割ターゲットを用いた逐次スパッタ(比較例4−5)では、同時スパッタと比べてMR特性が低下する傾向にあることがわかる。なお、データが容易に視認できるように、表8のデータ値(比較例4−5を除く)をグラフにしたものが図9に示される。
〔実験例V〕
CPP構造の磁気抵抗効果素子の積層膜構成を下記の表9のごとく設計し、この設計に沿って、素子の成膜を行なった。すなわち、パーマロイからなる下部電極兼下部シールド層の上に、表9に示される多層膜をスパッタ法により、順次形成した。さらに、この多層膜のRu保護膜の上にパーマロイからなる上部電極兼上部シールド層を形成した。
Figure 2008060202
なお、表9に示されるホイスラー合金層は、フリー層中のみに存在しており、インナーピン層中には存在していない。
下記表10に示されるような要領でスパッタの方式や条件を種々変えて、膜状態の異なる種々のホイスラー合金層を備えるサンプルを作製した。各サンプルにおけるJunction Scaleは、0.2μm×0.2μmであり、各素子は、290℃で3時間のアニールを行なった。
下記表10に示されるように、アニール後のサンプルについて、通常の4端子法でMR比を測定した。MR比は、抵抗の変化量ΔRを、抵抗値Rで割った値であり、ΔR/Rで表される。通常、100を掛けてパーセント表示とされる。なお、MR比は、サンプル数100個の素子での平均値として求めた。
また、ホイスラー合金層のスパッタ成膜時にターゲットの割れの有無も確認した。ターゲットの割れの有無は、スパッタ放電の不安定性から判断し、割れたと思われるところで、成膜を中断して、目視で確認した。割れが生じたものは表10中に、「有」と表記してある。
Figure 2008060202
表10に示される結果より、ホイスラー合金層の組成と同じ単体ターゲットを用いた比較例5−1〜5−4の場合には、ターゲットへの投入電力を上げると、早い段階でターゲット割れが生じてしまう。これにより特性がとれると思われる成膜レートの速い条件での膜の作製が不可能となっている。
これに対して本発明(実施例)の分割ターゲットを用いた同時スパッタでは、ターゲット割れの問題が生じにくく、投入電力(input power)を引き上げることが可能となる。これにより、良好な膜特性が得られる領域まで、成膜レートを上げることができる。生産性も上がる。
また、分割ターゲットを用いた逐次スパッタ(比較例5−5)では、同時スパッタと比べてMR特性が低下する傾向にあることがわかる。なお、データが容易に視認できるように、表10のデータ値(比較例5−5を除く)をグラフにしたものが図10に示される。
上記の結果より、本発明の効果は明らかである。すなわち、本発明は、非磁性スペーサー層と、前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、第1のホイスラー合金層を含む積層体から構成され、前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、前記インナーピン層は、第2のホイスラー合金層を含む積層体から構成され、前記第1および第2のホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されるように構成されるので、ホイスラー合金層の形成に際して、成膜速度(成膜レート)を上げることができ、生産性の向上を図ることができ、しかも素子特性の向上を図ることができる。
磁気記録媒体等の磁界強度を信号として読み取るための磁気抵抗効果素子を備えるハードディスク装置の産業に利用できる。
図1は、本発明の実施の形態における再生ヘッドのABS(Air Bearing Surface)であって、特に本発明の要部であるCPP構造の磁気抵抗効果素子のABSを模式的に示した図面である。 図2は、本発明の好適な一実施の形態に係る薄膜磁気ヘッドの構成を説明するための図面であり、薄膜磁気ヘッドのABSおよび基板に垂直な断面を示した図面である。 図3は、本発明の好適な一実施の形態に係る薄膜磁気ヘッドの構成を説明するための図面であり、特に、薄膜磁気ヘッドの磁極部分のABSに平行な断面を示した図面である。 図4は、図1の変形例であり、本発明の要部である磁気抵抗効果素子の変形態様をABSから見た図面である。 図5は、図1の変形例であり、本発明の要部である磁気抵抗効果素子の変形態様をABSから見た図面である。 図6は、実験データに基づく、成膜レートとMR(%)との関係を示したグラフである。 図7は、実験データに基づく、成膜レートとMR(%)との関係を示したグラフである。 図8は、実験データに基づく、成膜レートとMR(%)との関係を示したグラフである。 図9は、実験データに基づく、成膜レートとMR(%)との関係を示したグラフである。 図10は、実験データに基づく、成膜レートとMR(%)との関係を示したグラフである。
符号の説明
1…基板
2…絶縁層
3…第1のシールド層
4…絶縁膜
5…磁気抵抗効果素子(MR素子)
6…バイアス磁界印加層
7…絶縁層
8…第2のシールド層
9…記録ギャップ層
10…薄膜コイルの第1層部分
12…上部磁極層
15…薄膜コイル第2層部分
17…オーバーコート層
20…媒体対向面(ABS)
21…下地層
22…反強磁性層
24…非磁性スペーサー層
30…磁化固定層
31…アウターピン層
32…非磁性中間層
33…インナーピン層
331…下地磁性層
333…ホイスラー合金層
335…中間磁性層
50…フリー層
51…下地磁性層
53…ホイスラー合金層

Claims (12)

  1. 非磁性スペーサー層と、
    前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、
    前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、第1のホイスラー合金層を含む積層体から構成され、
    前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、
    前記インナーピン層は、第2のホイスラー合金層を含む積層体から構成され、
    前記第1および第2のホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されることを特徴とするCPP構造の磁気抵抗効果素子の製造方法。
  2. 前記第1および第2のホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項1に記載のCPP構造の磁気抵抗効果素子の製造方法。
  3. 前記第1および第2のホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、AとCの合金と、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項1に記載のCPP構造の磁気抵抗効果素子の製造方法。
  4. 前記一般式A2BCは、Co2MnSi、Co2MnGe、Co2FeSiである請求項2または請求項3に記載のCPP構造の磁気抵抗効果素子の製造方法。
  5. 前記第1および第2のホイスラー合金層は、一般式ABCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項1に記載のCPP構造の磁気抵抗効果素子の製造方法。
  6. 非磁性スペーサー層と、
    前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、
    前記フリー層は、外部磁界に応じて磁化の方向が変化するように機能するとともに、ホイスラー合金層を含む積層体から構成され、
    前記ホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されることを特徴とするCPP構造の磁気抵抗効果素子の製造方法。
  7. 非磁性スペーサー層と、
    前記非磁性スペーサー層を挟むようにして積層形成される磁化固定層およびフリー層を有し、この積層方向にセンス電流が印加されてなるCPP(Current Perpendicular to Plane)構造の磁気抵抗効果素子の製造方法であって、
    前記磁化固定層は、非磁性中間層を挟むようにしてインナーピン層およびアウターピン層が積層された形態を有しており、
    前記インナーピン層は、ホイスラー合金層を含む積層体から構成され、
    前記ホイスラー合金層は、それぞれ、ホイスラー合金層組成を構成するように少なくとも2つ以上に分割された分割ターゲットを用い、同時スパッタ法により成膜されることを特徴とするCPP構造の磁気抵抗効果素子の製造方法。
  8. 前記ホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項6または請求項7に記載のCPP構造の磁気抵抗効果素子の製造方法。
  9. 前記ホイスラー合金層は、一般式A2BCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、AとCの合金と、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項6または請求項7に記載のCPP構造の磁気抵抗効果素子の製造方法。
  10. 前記一般式A2BCは、Co2MnSi、Co2MnGe、Co2FeSiである請求項8または請求項9に記載のCPP構造の磁気抵抗効果素子の製造方法。
  11. 前記ホイスラー合金層は、一般式ABCで表される組成からなるホイスラー合金であり(ここで、Aは、Co、Ni、Cu、Rh、Pt、Au、Pd、Ir、Ru、Ag、Zn、Cdのグループの中から選ばれた少なくとも1種であり、Bは、Mn、V、Cr、Fe、Ti、Zr、Nb、Hf、Ta、Niのグループの中から選ばれた少なくとも1種であり、Cは、Si、Ga、Ge、Al、Sn、In、Sb、Pb、Znのグループの中から選ばれた少なくとも1種)、AとBの合金と、Cと、に分割された2つの分割ターゲットを用い、同時スパッタ法により成膜される請求項6または請求項7に記載のCPP構造の磁気抵抗効果素子の製造方法。
  12. 前記同時スパッタ法における成膜レートが、0.2Å/sec以上である請求項1ないし請求項11のいずれかに記載のCPP構造の磁気抵抗効果素子の製造方法。
JP2006233247A 2006-08-30 2006-08-30 Cpp構造の磁気抵抗効果素子の製造方法。 Pending JP2008060202A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006233247A JP2008060202A (ja) 2006-08-30 2006-08-30 Cpp構造の磁気抵抗効果素子の製造方法。
US11/757,174 US7533456B2 (en) 2006-08-30 2007-06-01 Fabrication process for magneto-resistive effect devices of the CPP structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233247A JP2008060202A (ja) 2006-08-30 2006-08-30 Cpp構造の磁気抵抗効果素子の製造方法。

Publications (1)

Publication Number Publication Date
JP2008060202A true JP2008060202A (ja) 2008-03-13

Family

ID=39149533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233247A Pending JP2008060202A (ja) 2006-08-30 2006-08-30 Cpp構造の磁気抵抗効果素子の製造方法。

Country Status (2)

Country Link
US (1) US7533456B2 (ja)
JP (1) JP2008060202A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190914A (ja) * 2011-03-09 2012-10-04 Tohoku Univ 磁気抵抗効果素子および磁気デバイス
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060202A (ja) 2006-08-30 2008-03-13 Tdk Corp Cpp構造の磁気抵抗効果素子の製造方法。
US7826182B2 (en) * 2007-07-23 2010-11-02 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with CoFeGe ferromagnetic layers
US7961438B2 (en) 2008-05-28 2011-06-14 Tdk Corporation Magnetoresistive device of the CPP type, and magnetic disk system
US20110200845A1 (en) * 2010-02-16 2011-08-18 Seagate Technology Llc Current perpendicular to the plane reader with improved giant magneto-resistance
WO2011111493A1 (ja) * 2010-03-12 2011-09-15 アルプス・グリーンデバイス株式会社 電流センサ
CN102812376B (zh) 2010-03-12 2016-02-10 阿尔卑斯电气株式会社 磁性传感器和使用磁性传感器的磁性平衡式电流传感器
US8873203B2 (en) 2012-12-21 2014-10-28 HGST Netherlands B.V. Magnetic head having a soft magnetic layer formed behind a tunneling magnetoresistance (TMR) sensor in an element height direction
JP2015179824A (ja) * 2014-02-28 2015-10-08 Tdk株式会社 磁性素子およびそれを備えた磁性高周波素子
US9634241B2 (en) 2014-08-06 2017-04-25 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions including Heusler multilayers
CN106119801B (zh) * 2016-09-20 2019-02-15 重庆师范大学 一种Cr-Al二元合金材料及其制备方法
CN113228208B (zh) * 2018-10-30 2023-06-02 田中贵金属工业株式会社 面内磁化膜、面内磁化膜多层结构、硬偏置层、磁阻效应元件和溅射靶
US11631535B1 (en) * 2021-10-07 2023-04-18 Western Digital Technologies, Inc. Longitudinal sensor bias structures and method of formation thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047046A (ko) 2001-12-07 2003-06-18 삼성전자주식회사 Co-sputtering에 의한 Heusleralloy 의 증착방법
JP2004146480A (ja) 2002-10-23 2004-05-20 Hitachi Ltd ホイスラー磁性層と体心立方構造の非磁性中間層を積層した磁気抵抗効果素子および磁気ヘッド
JP2005116701A (ja) 2003-10-06 2005-04-28 Alps Electric Co Ltd 磁気検出素子
JP2005051251A (ja) 2004-08-20 2005-02-24 Alps Electric Co Ltd 磁気検出素子
US7672088B2 (en) * 2006-06-21 2010-03-02 Headway Technologies, Inc. Heusler alloy with insertion layer to reduce the ordering temperature for CPP, TMR, MRAM, and other spintronics applications
JP2008060202A (ja) 2006-08-30 2008-03-13 Tdk Corp Cpp構造の磁気抵抗効果素子の製造方法。

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO
JP2012190914A (ja) * 2011-03-09 2012-10-04 Tohoku Univ 磁気抵抗効果素子および磁気デバイス

Also Published As

Publication number Publication date
US20080052896A1 (en) 2008-03-06
US7533456B2 (en) 2009-05-19

Similar Documents

Publication Publication Date Title
JP4421822B2 (ja) ボトムスピンバルブ磁気抵抗効果センサ素子およびその製造方法
JP4942445B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP4492604B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2008060202A (ja) Cpp構造の磁気抵抗効果素子の製造方法。
JP4670890B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP4343940B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ハードディスク装置および磁気抵抗効果素子の製造方法
KR100690492B1 (ko) 자기 저항 효과 소자, 자기 헤드, 및 자기 기억 장치
JP4449951B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP4328348B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2005286340A (ja) 磁気抵抗効果素子およびその形成方法
JP4492617B2 (ja) 磁気抵抗効果素子および磁気ディスク装置
JP2007287863A (ja) 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果素子集合体、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP4343941B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ハードディスク装置、および、磁気抵抗効果素子の製造方法
JP2007273657A (ja) 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2000215415A (ja) 磁気抵抗効果素子
JP2007317824A (ja) 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP3836294B2 (ja) 磁気ヘッド、及びこれを用いた磁気記録再生装置
JP2008042103A (ja) 交換結合膜、磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2006286669A (ja) 磁気抵抗効果素子の製造方法
US20080112091A1 (en) Current-confined-path type magnetoresistive element and method of manufacturing same
JP4471020B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP3683577B1 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよび磁気ディスク装置
JP2008021896A (ja) Cpp構造のgmr素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP4539876B2 (ja) 磁気抵抗効果素子の製造方法
JP3823028B2 (ja) 磁気ヘッド

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421