KR20030047046A - Co-sputtering에 의한 Heusleralloy 의 증착방법 - Google Patents

Co-sputtering에 의한 Heusleralloy 의 증착방법 Download PDF

Info

Publication number
KR20030047046A
KR20030047046A KR1020010077421A KR20010077421A KR20030047046A KR 20030047046 A KR20030047046 A KR 20030047046A KR 1020010077421 A KR1020010077421 A KR 1020010077421A KR 20010077421 A KR20010077421 A KR 20010077421A KR 20030047046 A KR20030047046 A KR 20030047046A
Authority
KR
South Korea
Prior art keywords
heusler alloy
thin film
sputtering
substrate
target
Prior art date
Application number
KR1020010077421A
Other languages
English (en)
Inventor
김기원
박완준
김태완
송이헌
박상진
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020010077421A priority Critical patent/KR20030047046A/ko
Priority to EP02255286A priority patent/EP1318208A3/en
Priority to JP2002324566A priority patent/JP2003277926A/ja
Priority to US10/309,212 priority patent/US20030116426A1/en
Publication of KR20030047046A publication Critical patent/KR20030047046A/ko

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법에 관한 것이다. 챔버 내에 기판 홀더부에 위치한 기판 및 상기 기판으로 부터 소정거리 이격된 타겟 홀더부에 위치한 타겟을 포함하는 증착 장비를 이용하여 X2YZ 또는 XYZ의 일반 구조식을 가지는 Heusler alloy의 박막을 제조하는 방법에 있어서, 상기 Heusler alloy의 각 구성 성분들을 각각 독립적인 타겟 또는 binary alloy 타겟으로 하여 Co-sputtering 방법에 의해 제조하는 것을 특징으로 하는 Heusler alloy의 박막의 제조 방법을 제공한다. 그리하여, 종래 박막화 하기 어려웠던 Heusler alloy를 우수한 자성 특성을 지니는 박막으로 용이하게 제조 할 수 있다.

Description

Co-sputtering에 의한 Heusler alloy 의 증착 방법{Deposition of Heusler alloy thin film by Co-sputtering}
본 발명은 Heusler alloy의 증착 방법에 관한 것으로, 보다 상세하게는 Co-sputtering에 의해 Heusler alloy를 구성하는 물질들을 동시에 증착시킴으로써, 보다 향상된 성질을 지니는 박막을 형성하는 방법에 관한 것이다.
마그네틱 랜덤 액세스 메모리(Magnetic Random Access Memory), 즉 MRAM은 불휘발성 메모리 소자의 하나로 나노 자성체 특유의 스핀 의존 전도 현상에 기초한 자기 저항 효과를 이용하는 새로운 고체 자기 메모리이다. 이러한 마그네틱 랜덤 액세스 메모리는 전자가 지닌 자유도인 스핀이 전자 전달 현상에 큰 영향을 미치므로 생기는 거대 자기 저항(Giant Magnetoresistance)현상이나 터널 자기 저항(Tunnel Magnetoresitance)현상을 이용한 것이다.
거대 자기 저항이란 강자성체/금속비자성체/강자성체의 연속적인 배열을 하게 하여 비자성체를 사이에 두고 형성된 강자성체들 사이의 스핀 배열이 같은 경우와 서로 반대인 경우의 저항의 차이가 생기는 현상을 의미한다. 터널 자기 저항은 강자성체/절연체/강자성체의 연속적인 배열에서 두 강자성층에서의 스핀의 배열이 같은 경우가 다른 경우에 비해 전류의 투과가 용이한 현상을 의미한다. 거대 자기 저항 현상을 이용한 MRAM의 경우 자화 방향에 따른 저항치의 차가 상대적으로 작기 때문에 전압치의 차를 크게 할 수 없다. 또한, 셀을 구성하기 위해 GMR 막과 조합하여 사용하는 MOSFET의 사이즈를 크게 해야 하는 단점이 있어 현재로는 TMR막을 채용하여 MRAM의 실용화를 위한 연구가 보다 활발해 지고 있다.
이러한 MRAM은 높은 MR(Magnetoresitance) 비를 지니는 자기 저항 소자를 구현하는 것이 매우 중요하다. 일반적으로 MR 비는 자성 박막의 Spin polarization과직접적인 관련성을 가지는 것으로 알려져있다. 현재 가장 큰 값을 가지는 것으로 알려져 있는 CoFe의 같은 재료는 최대 약, 60%의 MR비 값이 그 한계인 것으로 알려진다. 1980년대에 들어와 일부의 Heusler alloy에서 전도에 기여하는 전자의 스핀 방향이 일 방향으로만 존재하는 100% spin polarization이 이론적으로 예견된 뒤, 이를 실험적으로 확인하였다. 그러나 이러한 특성을 spintronics devices에 응용하고자하는 많은 연구가 있었으나, Heusler alloy를 박막화하는데 많은 어려움이 있어 큰 성과는 얻을 수 없었다.
종래에는 MBE(molecular beam epitaxi)를 이용하거나 칩을 타겟 상에 올려 놓은 상태에서 스퍼터링을 하여 Heusler alloy증착하는 것이 일반적이었다. 그러나, 이러한 종래 기술에 의한 Huesler alloy의 제작 방법은 생산성 문제와 조성제어에 어려움이 있어 효율적이지 못했다. 일반적인 alloy 형태의 박막을 증착시키는데 있어서, 스퍼터링 방법의 효율성은 널리 인정되고 있다. 그러나 Heusler alloy의 경우에는 부서지기 쉬운 성질을 가지고 있어 타겟으로 제작하기 어려운 문제점이 있다.
본 발명에서는 상기 종래 기술의 문제점을 해결하기 위하여, Huesler alloy의 박막을 효율적으로 형성시키며, MRAM의 TMR 셀 구조에 적용가능하도록 하는 Heusler alloy의 박막 제조 방법을 제공하는 것을 목적으로 한다.
도 1a 및 도 1b는 본 발명에 의한 Heusler alloy의 증착시 사용되는 스퍼터링 시스템의 간략한 단면도 및 타겟 장착부의 평면도이다.
도 2a 내지 도 2d는 본 발명에 의해 기판의 온도를 달리하여 제조된 Heusler alloy 박막에 대해 VSM으로 측정한 자성 특성에 관한 그래프이다.
도 3a 및 도 3b는 본 발명에 의해 기판의 온도를 달리하여 제조된 Heusler alloy 박막에 대해 기판 온도에 따른 자성 특성을 측정한 그래프이다.
도 4는 본 발명에 의해 기판 온도를 달리하여 제조된 Heusler alloy 박막에 대해 XRD(X-ray diffraction)을 측정한 그래프이다.
< 도면의 주요 부분에 대한 부호의 설명 >
10... 챔버 11... 기판 홀더부
12... 기판 13a, 13b, 13c... 타겟
14... 타겟 장착부
본 발명에서는 상기 목적을 달성하기 위하여,
챔버 내에 기판 홀더부에 위치한 기판 및 상기 기판으로 부터 소정거리 이격된 타겟 장착부에 위치한 타겟을 포함하는 증착 장비를 이용하여 X2YZ 또는 XYZ의 일반 구조식을 가지는 Heusler alloy의 박막을 제조하는 방법에 있어서,
상기 Heusler alloy의 각 구성 성분들을 각각 독립적인 타겟 또는 binary alloy 타겟으로 하여 Co-sputtering 방법에 의해 제조하는 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법을 제공한다.
본 발명에 있어서, 상기 기판 장착부의 온도를 섭씨 약 200도 내지 500도로 유지시키며, 상기 챔버 내의 진공도를 10-2Torr 내지 10-3Torr로 유지시키는 것을 특징으로 한다.
이하, 도면을 참고하면서 본 발명에 의한 Heusler alloy 박막의 제조 방법에 대해 보다 상세하게 설명하고자 한다.
본 발명에 의한 Co-sputtering에 의한 Heusler alloy 제조 방법에서는 Heusler alloy 박막을 제조하기 위하여 Heusler alloy를 구성하는 성분들 각각을 싱글 타겟 형태로 스퍼터링하는 것을 특징으로 한다.
Heusler ally의 일반적인 구조식은 X2YZ로 이루어지며, 여기서 X는 Co, Cu 계열의 금속이며, Y는 주로 Mn이 사용되며, Z는 3A족 또는 4A족 물질로서 Al, Si, Ga, Ge, Sn, Sb 등의 비자성체가 사용된다. 또한, semi-Heusler alloy의 구조로서 XYZ의 형태로 이루어진 것으로 PtMnSb, NiMnSb 등이 존재한다.
도 1a 및 도 1b를 참고하여 설명한다. 도 1a은 본 발명에 의한 Co-sputtering에 의한 Heusler alloy의 제조 공정에서 사용되는 스퍼터링 시스템을 나타낸 개념도이며, 도 1b는 타겟 장착부에 Heusler alloy를 구성하는 성분 각각의 싱글 타겟이 장착된 형태를 나타낸 평면도이다. 도 1a에 나타낸 바와 같이 Heusler alloy를 구성하는 성분인 예를 들어, Cu, Mn 및 Al 각각의 타겟(13a, 13b, 13c)을 스퍼터링 장비의 챔버(10) 내의 타겟 장착부(14)에 위치시키고 각 성분에 따른 증착 조건을 설정하여 기판(11) 상에 CuMnAl alloy를 증착시키게 된다. 또한 상기 타겟으로 CuMn, CuAl 또는 MnAl 등의 binary alloy 타겟 중 하나와 상기 Cu, Mn 및 Al 타겟 중 하나를 사용하여 CuMnAl alloy를 증착할 수 있다.
상기 Heusler alloy의 구성 물질들을 증착시키는 경우 사용되는 시스템은 일반적인 스퍼터링 장비와 방전 가스를 사용하여 각 성분별 증착률을 조절하며 증착시킬 수 있다.
본 발명에 의한 Heusler alloy 박막의 제조 방법의 일실시예에 대해 보다 상세하게 설명하면 다음과 같다.
먼저, Heusler alloy를 구성하는 성분들 각각의 싱글 타겟(13a, 13b, 13c)을 타겟 장착부(14)에 장착시킨다. 그리고, 기판(12)을 기판 홀더부(11)에 위치시킨다. 여기서, 상기 스퍼터닝 시스템의 챔버(10) 내부를 일정한 진공도로 유지한다. 이러한 내부 진공도는 일반적으로 7 ×10-10Torr 정도이다. 그리고 나서 방전 가스, 예를 들어 아르곤(Ar)을 챔버 내부에 주입시킨다. 이때의 진공도는 10-3Torr 내지 10-2Torr이다. 계속적으로 일정한 진공도를 유지시키기 위해 진공 펌프 및 방전 가스 주입 장치는 작동을 시킨다. 기판(12)의 온도는 섭씨 약 200도 내지 약 500도로 유지시키며, 기판 홀더부(11)는 소정의 속도로 회전을 시킨다. 이때, 기판(12)과 타겟(13a, 13b, 13c) 간의 거리는 스퍼터링 시스템에 따라 변할 수 있으며, 일반적으로는 5 내지 20cm 내외이다. 이는 일반적인 스퍼터링 공정과 다르지 않다. 기판 홀더부(11)와 타겟 장착부(14) 사이에 전압이 인가되어 상기 방전 가스는 플라즈마 상태가 되어 상기 Heusler alloy를 구성하는 성분들이 기판(12) 상에 증착된다. 여기서, 각 성분들의 증착률은 Cu의 경우 83Å/min, Mn의 경우 44Å/min 이었으며, Al의 경우 57Å/min이었다. 본 발명에 의한 Heusler alloy 박막 제조 방법에서는 상기 Heusler alloy 구성 성분들의 증착률에 낮을 수록 우수한 성질의 Heusler alloy 박막을 형성시킨다. 이는 스퍼터링 시스템 장비들에 따라 달라질 수 있다.
도 2a 내지 도 2d에서는 본 발명에 의한 Co-Sputtering에 의해 제조된 Heusler alloy 박막들의 각 기판 온도에 따른 박막의 자성 특성을 VSM 장비를 사용하여 측정한 것을 나타내었다.
도 2a의 경우, 기판의 온도를 섭씨 약 200도에서 약 20분간 증착한 Heusler alloy 박막이다. 여기서 나타낸 바와 같이, 섭씨 약 200도에서 형성시킨 Heusler alloy 박막의 경우 MRAM에 사용될 수 있는 자성 특성이 나타나지 않을 것을 볼 수 있다. 도 2b는 섭씨 약 250도에서 약 20분간 증착시킨 것을 나타내었다. 섭씨 약 200도에서 형성시킨 박막에 비해 자성 특성이 잘 나타나고, 자화 값도 크게 증가한 것을 알 수 있다. 도 2c는 섭씨 약 300도에서 약 20분간 증착시킨 박막을 나타내었다. 상기 도 2b에 비해 자화 값이 더욱 크게 나타난 것을 알 수 있다. 도 2d는 섭씨 약 400도에서 약 200 분간 증착시킨 박막을 나타내었다. 도면에 나타낸 바와 같이, 가장 포화 자화 값이 커진 것을 알 수 있다. 이때, 형성시킨 Heusler alloy 박막의 경우 기판과 타겟 사이의 거리가 약 10cm인 경우이다. 각각의 경우 기판의 온도만을 다르게 하였고, 그외의 조건들은 모두 동일하여 기판상에 증착된 Heusler alloy 박막은 동일하다.
도 3a 및 도 3b는 본 발명에 의해 제조된 Heusler alloy 박막들의 각 기판 온도에 따른 Ms/Area 값 및 Mr/Ms 값을 나타낸 그래프이다. 여기서, Ms 값은 포화 자화 값을 나타내고, Mr은 잔류 자화 값을 나타내며, Area는 기판의 면적을 나타내었다. 도 3a 및 도 3b을 살펴보면, 온도가 상승 할수록 자성 특성이 보다 더 향상된다는 사실을 알 수 있다. 섭씨 약 200도의 기판 온도에서 증착된 박막에 비해 섭씨 약 250도에서 증착된 박막의 특성이 가장 크게 향상되고, 온도가 상승됨에 따라 그 상승률은 감소하여 섭씨 약 350도 이상에서는 그 증가율이 크지 않음을 알 수 있다.
도 4는 본 발명에 의해 각 기판 온도에 따라 제조된 Heusler alloy 박막에 대해 XRD(X-ray diffraction) 장비로 측정한 것을 나타낸 그래프이다. 도 4을 참고하여 공정 온도에 따른 박막의 특성에 대해 보다 상세하게 설명하고자 한다. 도 4에서 약 33도, 62도 및 68도 부근에서 발생하는 피크는 실리콘 기판의 특성 피크이며, 약 26도에서 발생하는 피크는 초격자 피크이며, 약 42도에서 발생하는 피크는 Huesler alloy의 결정 구조에서 각 구성 성분들이 disorder된 것을 나타내는 피크이다. 여기서, 기판 온도가 섭씨 250도, 300도 및 400도 경우의 intensity 값들은 비교를 용이하게 하게 위하여 각각 y축 방향으로 100 단위 만큼 이동 시킨 것이다. 즉, 상기 특성 피크를 제외한 기저부의 intensity는 거의 동일하다. 일반적으로, 초격자 피크가 발생하는 경우, 자성 박막으로서의 특성이 우수한 것으로 알려져 있다. 여기서 기판의 온도가 증가할 수록, 약 26도 근방의 초격자 피크가 두드러지며, 약 42도 부근의 박막의 결정 구조의 disorder를 암시하는 피크가 감소함을 알 수 있다.
본 발명에 의하면, 종래 박막화 하기 어려웠던 Heusler alloy를 우수한 자성 특성을 지니는 박막으로 용이하게 제조 할 수 있다. 본 발명과 같이 Co-sputtering을 이용한 증착 방법은 Heusler alloy를 구성하는 물질 및 조성의 변화에 따라 용이하게 변화시킬 수 있다. 이렇게 제조된 Heusler alloy 박막은 높은 MR 비와 같은 특성을 얻을 수 있어 MRAM의 제조시 용이하게 채용되어 우수한 효과를 나타내는 소자를 제공할 수 있다. 제조 공정 상에서는 uniformity tolerance, relaibility 및 yield의 향상을 나타낼 수 있다. 그리고 이를 MRAM의 자기 저항 메모리 소자에 채용할 경우, S/N 비(신호대 잡음비), 센싱 마진(sensing margin)이 증가하고 MR 값의 바이어스 전압 의존도에 따른 MR 값의 감소의 영향을 줄일 수 있는 장점이 있다.

Claims (6)

  1. 챔버 내에 기판 홀더부에 위치한 기판 및 상기 기판으로 부터 소정거리 이격된 타겟 장착부에 위치한 타겟을 포함하는 증착 장비를 이용하여 X2YZ 또는 XYZ의 일반 구조식을 가지는 Heusler alloy의 박막을 제조하는 방법에 있어서,
    상기 Heusler alloy의 각 구성 성분들을 각각 독립적인 타겟 또는 binary alloy 타겟으로 상기 타겟 장착부에 장착시켜, Co-sputtering 방법에 의해 제조하는 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법.
  2. 제 1항에 있어서,
    상기 기판 홀더부의 온도를 섭씨 약 200도 내지 500도로 유지시키는 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법.
  3. 제 1항에 있어서,
    상기 챔버 내의 진공도를 10-2Torr 내지 10-3Torr로 유지시키는 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법.
  4. 제 1항에 있어서,
    상기 기판 및 상기 타겟 사이의 거리는 약 5 내지 20cm인 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법.
  5. 제 1항에 있어서,
    상기 Heusler alloy의 일반 구조식 X2YZ에서 상기 X는 Co, Cu 계열의 금속이며, 상기 Y는 Mn이며, 상기 Z는 3A족 또는 4A족 물질로서 Al, Si, Ga, Ge, Sn, Sb 등의 비자성체인 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법.
  6. 제 1항에 있어서,
    상기 Heusler alloy의 구조식 XYZ는 PtMnSb, NiMnSb인 것을 특징으로 하는 Co-sputtering에 의한 Heusler alloy 박막의 제조 방법
KR1020010077421A 2001-12-07 2001-12-07 Co-sputtering에 의한 Heusleralloy 의 증착방법 KR20030047046A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020010077421A KR20030047046A (ko) 2001-12-07 2001-12-07 Co-sputtering에 의한 Heusleralloy 의 증착방법
EP02255286A EP1318208A3 (en) 2001-12-07 2002-07-29 Method of depositing heusler alloy thin film by co-sputtering
JP2002324566A JP2003277926A (ja) 2001-12-07 2002-11-08 同時スパッタリング法によるホイスラー合金の蒸着方法
US10/309,212 US20030116426A1 (en) 2001-12-07 2002-12-04 Method of depositing heusler alloy thin film by co-sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010077421A KR20030047046A (ko) 2001-12-07 2001-12-07 Co-sputtering에 의한 Heusleralloy 의 증착방법

Publications (1)

Publication Number Publication Date
KR20030047046A true KR20030047046A (ko) 2003-06-18

Family

ID=19716782

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010077421A KR20030047046A (ko) 2001-12-07 2001-12-07 Co-sputtering에 의한 Heusleralloy 의 증착방법

Country Status (4)

Country Link
US (1) US20030116426A1 (ko)
EP (1) EP1318208A3 (ko)
JP (1) JP2003277926A (ko)
KR (1) KR20030047046A (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228998A (ja) * 2004-02-13 2005-08-25 Japan Science & Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
US7672088B2 (en) * 2006-06-21 2010-03-02 Headway Technologies, Inc. Heusler alloy with insertion layer to reduce the ordering temperature for CPP, TMR, MRAM, and other spintronics applications
JP2008060202A (ja) 2006-08-30 2008-03-13 Tdk Corp Cpp構造の磁気抵抗効果素子の製造方法。
FR2905707B1 (fr) * 2006-09-08 2009-01-23 Centre Nat Rech Scient Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince.
US20080173543A1 (en) * 2007-01-19 2008-07-24 Heraeus Inc. Low oxygen content, crack-free heusler and heusler-like alloys & deposition sources & methods of making same
US7957106B2 (en) * 2007-04-30 2011-06-07 Hitachi Global Storage Technologies Netherlands, B.V. Chemically disordered material used to form a free layer or a pinned layer of a magnetoresistance (MR) read element
CN102129863B (zh) * 2010-12-17 2013-04-03 北京科技大学 一种可电场调节磁电阻的自旋阀结构及其制备工艺
JP2016134520A (ja) * 2015-01-20 2016-07-25 国立研究開発法人物質・材料研究機構 ホイスラー合金薄膜およびその製造方法、磁気抵抗効果素子、磁気メモリ
US10818839B2 (en) 2018-03-15 2020-10-27 Samsung Electronics Co., Ltd. Apparatus for and method of fabricating semiconductor devices
CN114093663A (zh) * 2021-12-03 2022-02-25 天津城建大学 室温磁热材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285739A (ja) * 1987-05-18 1988-11-22 Kureha Chem Ind Co Ltd 磁気光学記録再生用薄膜の製造方法
JPH0661087A (ja) * 1985-06-11 1994-03-04 Nikon Corp 磁性薄膜の製造方法
JPH08250366A (ja) * 1995-03-14 1996-09-27 Toshiba Corp ホイスラー合金薄膜の製造方法、磁性膜を備えた積層膜、それを利用した磁気抵抗効果素子および固体磁気記録素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952295A (en) * 1988-04-15 1990-08-28 Matsushita Electric Industrial Co., Ltd. Method of producing a deposition film of composite material
US5525199A (en) * 1991-11-13 1996-06-11 Optical Corporation Of America Low pressure reactive magnetron sputtering apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661087A (ja) * 1985-06-11 1994-03-04 Nikon Corp 磁性薄膜の製造方法
JPS63285739A (ja) * 1987-05-18 1988-11-22 Kureha Chem Ind Co Ltd 磁気光学記録再生用薄膜の製造方法
JPH08250366A (ja) * 1995-03-14 1996-09-27 Toshiba Corp ホイスラー合金薄膜の製造方法、磁性膜を備えた積層膜、それを利用した磁気抵抗効果素子および固体磁気記録素子

Also Published As

Publication number Publication date
EP1318208A3 (en) 2003-07-02
EP1318208A2 (en) 2003-06-11
JP2003277926A (ja) 2003-10-02
US20030116426A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
US7606010B2 (en) Mg-Zn oxide tunnel barriers and method of formation
US8318510B2 (en) Method and apparatus for manufacturing magnetoresistive element
KR101242628B1 (ko) 비정질 또는 미세결정질 MgO 터널 배리어용 강자성 우선 과립 성장 촉진 시드층
Milner et al. Spin-dependent electronic transport in granular ferromagnets
US7570463B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
US7598555B1 (en) MgO tunnel barriers and method of formation
EP2434556B1 (en) Ferromagnetic tunnel junction structure and magnetoresistive element using same
US9705075B2 (en) Cobalt (Co) and platinum (Pt)-based multilayer thin film having inverted structure and method for manufacturing same
EP1560231A2 (en) Magnetic resistance device
Inomata et al. Magnetoresistance in tunnel junctions using Co 2 (Cr, Fe) Al full Heusler alloys
KR20160147791A (ko) 희토류 나이트라이드를 포함하는 자성체 및 장치
KR20030047046A (ko) Co-sputtering에 의한 Heusleralloy 의 증착방법
Lee et al. Effect of Zr concentration on the microstructure of Al and the magnetoresistance properties of the magnetic tunnel junction with a Zr-alloyed Al–oxide barrier
KR20230118765A (ko) 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기터널 접합 및 이의 제조 방법
US20090166182A1 (en) Method for manufacturing tunneling magnetoresistive film
US6599401B1 (en) In-plane anisotropic tri-layered magnetic sandwich structure with large magnetoresistance effect
Hayakawa et al. The origin of bias-voltage dependence in CoFe/SrTiO 3/La 0.7 Sr 0.3 MnO 3 magnetic tunnel junctions
Egelhoff Jr et al. Low‐temperature growth of giant magnetoresistance spin valves
Tsunegi et al. Tunnel magnetoresistance in epitaxially grown magnetic tunnel junctions using Heusler alloy electrode and MgO barrier
Endo et al. Optimization of exchange-biased Heusler alloys
KR20110129624A (ko) 자기 터널 접합 소자
CN1422977A (zh) 用共溅射法沉积赫斯勒合金薄膜的方法
Bobo et al. Structural, magnetic and magnetoresistive properties of PTCTE based organic spin valves
KR102560822B1 (ko) 스핀궤도 토크(spin-orbit torque, SOT) 기반 자기 터널 접합 및 이의 제조 방법
JPH07335575A (ja) 薄膜の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J121 Written withdrawal of request for trial