JP2008058036A - 板材の平坦度測定方法及び板材の平坦度測定装置 - Google Patents

板材の平坦度測定方法及び板材の平坦度測定装置 Download PDF

Info

Publication number
JP2008058036A
JP2008058036A JP2006232689A JP2006232689A JP2008058036A JP 2008058036 A JP2008058036 A JP 2008058036A JP 2006232689 A JP2006232689 A JP 2006232689A JP 2006232689 A JP2006232689 A JP 2006232689A JP 2008058036 A JP2008058036 A JP 2008058036A
Authority
JP
Japan
Prior art keywords
plate material
flatness
linear pattern
plate
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006232689A
Other languages
English (en)
Other versions
JP4797887B2 (ja
Inventor
Yoshihito Isei
良仁 伊勢居
Tomoya Kato
朋也 加藤
Naoshi Maruyama
尚士 丸山
Masahiro Osugi
正洋 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006232689A priority Critical patent/JP4797887B2/ja
Publication of JP2008058036A publication Critical patent/JP2008058036A/ja
Application granted granted Critical
Publication of JP4797887B2 publication Critical patent/JP4797887B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】明瞭に線状パターンを撮影することができ、かつ簡易的な板材の平坦度測定方法を提供する。
【解決手段】平行な複数の線14、14、…からなる線状パターン12を板材11の表面に投影する投影機13と、板材11に投影された線状パターン12を撮影するカメラ15a、15bを備え、線14、14、…の長手方向について、線状パターン12の大きさを板材11より大きくすることにより、板材11の端辺を検出する工程を有する平坦度測定方法を用いる。
【選択図】図1

Description

本発明は、板材に投影した線状パターンをカメラで撮影し、画像から平坦度を測定する板材の平坦度測定方法、板材の平坦度測定装置及び板材の製造方法に関する。
板材は、品質から平坦度が要求される。また、安定した生産からも平坦度が要求される。そのため、板材の生産工程において平坦度を適正に管理することは、従来からの課題である。一般的に、平坦度としては、伸び差率や急峻度といった値が用いられる。伸び差率Δεは一定区間Lにおける板材中央部と板端近傍での伸びの差ΔLを用いて、次の(1)式で表される。
Δε=ΔL/L ・・・(1)
また、急峻度λは、板材の波高さδとそのピッチPを用いて、次の(2)式で表される。
λ=δ/P ・・・(2)
そして、伸び差率Δεと急峻度λとには、次の(3)式の関係がある。
λ=(2/π)(|Δε|)1/2×100 ・・・(3)
例えば、鋼板の熱間圧延ラインにおいては、平坦度の良い鋼板を製造することは圧延製品の品質を確保するのみでなく、仕上圧延機への通板やコイル巻き機での巻き取りなどを安定に行い、高い生産性を維持するためにも重要なことである。熱間圧延ラインは、一般に加熱炉、粗圧延機、仕上圧延機列、冷却帯、及びコイル巻き機から構成される。加熱炉で過熱された鋼板は、粗圧延機で圧延され、鋼片となる。その後、鋼片は、6〜7機の仕上圧延機からなる仕上圧延機列で圧延され、冷却帯で冷却されて、コイル巻き機で巻き取られる。
熱間圧延ラインでは、鋼板の平坦度は仕上圧延機列及び冷却帯で決まる。そのため、仕上圧延機列では、仕上圧延機列の出側に平坦度測定装置が設置され、測定された平坦度から各仕上圧延機のワークロール位置がフィードバック制御されることにより、平坦度が確保されている。冷却帯では、鋼板が幅方向(板材の表面において、板材の圧延方向と直交する方向。以下同じ。)で均一に冷却されないことで、熱応力により鋼板に歪みが生じる。そのため、冷却帯の出側に平坦度測定装置が設置され、測定された平坦度から各冷却ノズルの冷却水量をフィードバック制御するなどにより、平坦度が確保されている。このように、平坦度の良好な鋼板を製造するためには、仕上圧延機間、仕上圧延機列の出側、コイル巻き機前のいずれか、又は、これらの複数の箇所に平坦度測定装置を設置することが好ましい。
そのため、特許文献1には、光を板の幅方向に走査させ、その走査ビーム軌跡下の拡散光を撮像し、撮像から求められた走査ビーム上の点の座標から、表面形状を測定する板の平坦度測定方法が開示されている。かかる技術によれば、板が波打ち等の変形状態、あるいは浮上り状態であっても、平坦度を測定できるため、平坦度制御にとって優れた測定装置が提供され、形状制御手段を有効に活用できる、とされている。
特許文献2には、線状パターンを測定面上に投影機で形成して直接カメラで検出することを特徴とする金属ストリップ又はストリップをコイル巻きする際のコイル表面の平坦度測定方法が開示されている。かかる技術によれば、平坦度の検出及び制御をリアルタイムで効果的に行うことができ、圧延パラメータ及び/又はコイルパラメータを迅速に微調整することができる。その結果ホットストリップミルで使用されている25m/sまでの通常の高仕上げ速度で高度なストリップ平面度が達成される、とされている。
一方で、実際の圧延材は蛇行しながら移動する。平坦度測定装置は、板材幅方向の特定の位置で平坦度を測定するため、又は蛇行により測定位置が板材から外れないようにするために、蛇行に合わせて測定位置を変更することが必要である。特許文献3には、平坦度測定装置に加えて、蛇行量を測定可能な幅計を設置し、蛇行量の測定値に基づいて、平坦度測定の幅方向位置を決める方法が開示されている。かかる技術によれば、圧延材が板道の中央部にない場合にも高精度にて平坦度制御を実施することができる、とされている。
特開昭61−40503号公報 特開平11−2511号公報 特開2000−61520号公報
しかし、特許文献1に記載の発明では、特に正反射成分が強い板材において、照射光源に対して正反射の位置で測定すると非常に輝度が強く、その角度から外れると急激に輝度が減少する。このため、板材全体の大きな傾きや、急峻度が大きな表面形状では、カメラで撮影する画像の輝度が部分的に低下することで、輝度むらが生じる場合があった。また、板材表面の水や部分的なスケールによる反射率低下により、部分的に輝度が低下することで、輝度むらが生じる場合があった。さらに、広い面積を1台の投影機で投影する場合は、投影中心部と周辺部では、部分的な輝度むらを生じていた。これらの輝度むらにより、輝度の低い部分にカメラの感度を合わせた場合は、輝度の強い部分ではカメラ感度が飽和して線状パターンがつぶれていた。また、輝度の高い部分にカメラの感度を合わせた場合は、輝度の低い部分で線状パターンを明瞭に撮影できなかった。そのため、鋼板全面において、カメラにより明瞭な線状パターンを撮影することは困難であるという問題があった。
一方、鋼板全面において十分な輝度を得るために、レーザのような強力な光源を用いることが考えられるが、レーザは非常に高価なため線状パターンの本数が限定され、板波のピッチが短い場合に平坦度の測定精度が劣化するという問題があった。また、強力なレーザを使用することは、管理を厳格に行う必要があり、工数が増加し不経済であるという問題があった。
特許文献2に記載の発明では、特許文献1に記載の発明と同様の構成であるため、特許文献1と同様の問題を有していた。
特許文献3に記載の発明では、幅計はその大きさから設置場所が制限されるという問題があった。また、設置により設備費が増加するという問題があった。
そこで、本発明は上記問題を解決するため、幅計を必要とせず、輝度むらに対しても明瞭に線状パターンを撮影することができ、かつ簡易的な板材の平坦度測定方法、板材の平坦度測定装置、仕上圧延機列及び板材の製造方法を提供することを課題とする。
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて適宜付記するが、それにより本発明が図示の形態に限定されるものではない。
請求項1に記載の発明は、平行な複数の線(14、14、…)からなる線状パターン(12)を板材(11)の表面に投影する投影機(13)と、板材に投影された線状パターンを撮影するカメラ(15a、15b)とを備え、カメラにより撮影した線状パターンの画像を解析して板材の平坦度を測定する板材の平坦度測定方法であって、線の長手方向について、線状パターンの大きさを板材より大きくすることにより、板材の端辺(17a、17b)を検出する工程を有することを特徴とする板材の平坦度測定方法を提供することにより前記課題を解決する。
請求項2に記載の発明は、平行な複数の線(14、14、…)からなる線状パターン(12)を板材(11)の表面に投影する投影機(13)と、板材に投影された線状パターンを撮影するカメラ(15a、15b)とを備え、カメラにより撮影した線状パターンの画像を解析して板材の平坦度を測定する板材の平坦度測定方法であって、線の長手方向について、線状パターンの大きさを板材より大きくすることにより、板材の端辺(17a、17b)を検出する工程と、板材に投影された少なくとも1本の線の幅方向、及び/又は長手方向の形状から、線の長手方向について板材の形状を測定する工程とを有することを特徴とする板材の平坦度測定方法を提供することにより前記課題を解決する。
請求項3に記載の発明は、平行な複数の線(14、14、…)からなる線状パターン(12)を板材(11)の表面に投影する投影機(13)と、板材に投影された線状パターンを撮影するカメラ(15a、15b)とを備え、カメラにより撮影した線状パターンの画像を解析して板材の平坦度を測定する板材の平坦度測定方法であって、線の長手方向について、線状パターンの大きさを板材より大きくすることにより、板材の端辺(17a、17b)を検出する工程と、検出した板材の端辺を基準として、板材の表面において線と直交する形状測定線(18a〜18e)を設定することを特徴とする板材の平坦度測定方法を提供することにより前記課題を解決する。
請求項4に記載の発明は、請求項3に記載の板材(11)の平坦度測定方法において、板材における形状測定線(18a〜18e)での隣接する線(14、14、…)の間隔(以下「線状パターン間隔」ということがある。)と、予め測定した平坦な基準板における形状測定線での隣接する線の間隔とを比較することにより、板材の表面角度分布を計算することを特徴とする。
隣接する線の間隔(線状パターン間隔)としては、線の幅方向における、少なくとも1本の線とこの線に隣接する一方の暗部とを合わせた大きさや、それぞれの線又は暗部の大きさを用いることができる。
請求項5に記載の発明は、請求項4に記載の板材(11)の平坦度測定方法において、表面角度分布の計算が、形状測定線(18a〜18e)での線状パターン(12)による輝度分布(19a、19b、19a’、19b’)から、フーリエ変換により空間周波数領域へ変換することにより線状パターンの空間周波数を求める工程と、空間周波数の逆数を計算して、線の間隔を求める工程とを有することを特徴とする。
請求項6に記載の発明は、請求項5に記載の板材(11)の平坦度測定方法において、輝度分布(19a、19b、19a’、19b’)のデータ数を、再サンプリングにより2(nは自然数とする。)のデータ数とし、高速フーリエ変換により輝度分布を空間周波数領域へ変換することを特徴とする。
請求項7に記載の発明は、請求項5又は6に記載の板材(11)の平坦度測定方法において、輝度分布を、形状測定線(18a〜18e)の長手方向に関して輝度分布(19a、19b、19a’、19b’)を反転した輝度分布を元の輝度分布へ結合した輝度分布とする工程、及び/又は空間周波数を、空間周波数の周波数帯域を抽出し、周波数帯域を低周波側へ移動した空間周波数とする工程を有することを特徴とする。
請求項8に記載の発明は、請求項5〜7のいずれか一項に記載の板材(11)の平坦度測定方法において、感度及び/又は撮影角度の異なる複数台のカメラ(15a、15b)を備え、カメラにより撮影された複数の画像から板材の平坦度を測定するにあたり、画像による同一の形状測定線(18a〜18e)における複数の輝度分布(19a、19b、19a’、19b’)のうち、少なくとも一つの輝度分布(19a’)が輝度の飽和している部分を有する場合は、飽和している部分の少ない輝度分布(19a)を用い、いずれの輝度分布(19b、19b’)も輝度が飽和していない場合は、輝度の最も高い輝度分布(19b’)を用いることを特徴とする。
請求項10に記載の発明は、請求項9に記載の板材(11)の平坦度測定方法において、板材の高さを測定するためのパターン(16a〜16f)を板材の表面に投影し、カメラ(15a、15b)により撮影した画像におけるパターンの位置から板材の高さを測定することを特徴とする。
請求項11に記載の発明は、請求項1〜10のいずれか一項に記載の板材(11)の平坦度測定方法において、カメラ(15a、15b)で撮影する線状パターン(12)の線(14、14、…)の本数を、40〜100本とすることを特徴とする
請求項12に記載の発明は、請求項1〜11のいずれか一項に記載の板材(11)の平坦度測定方法において、カメラ(15a、15b)の露光時間dtを、次の(a)式により求め、設定することを特徴とする。
Figure 2008058036
ただし、Ps’は、板材が水平な場合に線の幅方向における、1本の線とこの線に隣接する一方の暗部とを合わせた大きさである。nは大きさPs’における暗部の割合、αは鉛直方向に対するカメラの撮影角度、βは鉛直方向に対する投影機の投影角度である。Vは板材の速度、θmaxは板材の水平方向に対する最大表面角度である。
大きさPs’における暗部の割合nは、線の幅方向において、例えば1本の線とこの線に隣接する一方の暗部との大きさが同じであれば1/2となる。なお、nの値は限定されず、線状パターンに応じ1/3、2/3などの値となる場合がある。
請求項13に記載の発明は、平行な複数の線(14、14、…)からなる線状パターン(12)を板材(11)の表面に投影する投影機(13)と、板材に投影された線状パターンを撮影する感度及び/又は観察角度の異なる複数のカメラ(15a、15b)とを備えることを特徴とする板材の平坦度測定装置(10、20)を提供することにより前記課題を解決する。
請求項14に記載の発明は、請求項13に記載の板材(11)の平坦度測定装置(10、20)において、投影機(13)に波長360〜560nmを最大輝度とする光源を備え、カメラ(15a、15b)に波長360〜560nmである光の透過フィルタを備えることを特徴とする。
請求項15に記載の発明は、請求項13又は14に記載の板材(11)の平坦度測定装置(10、20)において、平坦な基準板を用い、基準板について予め複数の高さで測定した線(14、14、…)の間隔の測定値を記憶した記憶媒体を備えることを特徴とする。
ここで、「記憶媒体を備える」とは、平坦度測定装置が備えるだけでなく、他の装置が記憶媒体を備え、LANなどの電気通信回路により、平坦度測定装置がその記憶媒体を備えた装置と接続されていることも含む。
請求項16に記載の発明は、複数の仕上圧延機(101、101、…)を直列に備える仕上圧延機列(100)において、仕上圧延機の間に請求項13〜15のいずれか一項に記載の板材(11)の平坦度測定装置(10、20)を備えることを特徴とする仕上圧延機列を提供することにより前記課題を解決する。
請求項17に記載の発明は、請求項1〜12のいずれか一項に記載の板材(11)の平坦度測定方法を用い、板材の平坦度を測定する工程を有することを特徴とする板材の製造方法を提供することにより前記課題を解決する。
請求項18に記載の発明は、請求項13〜15のいずれか一項に記載の板材(11)の平坦度測定装置(10、20)を用い、板材の平坦度を測定する工程を有することを特徴とする板材の製造方法を提供することにより前記課題を解決する。
請求項1に記載の発明によれば、カメラの画像から板材の端辺を検出することで、幅計が不要になる。これにより、平坦度測定装置が小さくなることで、設置場所の制限が少なくなるため、平坦度の測定が容易となる。また、設備費を削減することができる。
請求項2に記載の発明によれば、カメラの画像から線の幅方向、及び/又は長手方向の形状を測定することで、板材の幅方向の形状を測定することができる。これにより、板材の幅方向においても、板材の長手方向の形状と同様に、板材の平坦度を制御することができる。
請求項3に記載の発明によれば、カメラの画像から検出した板材の端辺を基準として、その画像に形状測定線を設定するため、形状測定線の設定が迅速となるとともに、設定位置の精度が向上する。これにより、板材の位置が変わっても容易に同じ位置に形状測定線を設定できるため、平坦度の測定精度が向上する。また、線全体を測定するのではなく形状測定線の位置のみで板材の長手方向の形状を計算するため、計算量を減らすことができ、計算が迅速になる。
請求項4に記載の発明によれば、基準線状パターン間隔を用いることで、測定した線状パターン間隔から、板材の平坦度を計算することが可能となる。
請求項5に記載の発明によれば、フーリエ変換により空間周波数領域へ変換することにより、線状パターン間隔の変化を、画像分解能以上の高分解能で高性能に計算することができる。
請求項6に記載の発明によれば、輝度分布のデータを2(nは自然数とする。)のデータ数に再サンプリングすることで、高速フーリエ変換を用いることが可能となる。これにより、輝度分布を空間周波数領域へ変換する計算を迅速に行うことができる。
請求項7に記載の発明によれば、輝度分布を、形状測定線の長手方向に関して反転した輝度分布を元の輝度分布に結合した輝度分布とすることで、輝度分布の両端で不連続点が生じない。これにより、フーリエ変換において、輝度分布両端の計算を精度良く行うことができる。したがって、平坦度の測定精度が向上する。また、空間周波数を、空間周波数の周波数帯域を抽出し、周波数帯域を低周波側へ移動した空間周波数とすることで、後のアンラッピング処理において、不連続点を安定して検出することができる。これにより、平坦度の測定精度が向上する。
請求項8に記載の発明によれば、複数の画像から明瞭な部分を用いることで、形状測定線の全ての位置において明瞭な輝度分布を得ることができる。これにより、形状測定線の全ての位置において平坦度の測定が可能となる。
請求項9に記載の発明によれば、板材の高さに応じて基準線状パターン間隔が変わる。そのため、板材の高さを測定し、その板材高さに対応した基準線状パターン間隔を用いることで、平坦度の測定精度を向上させることができる。
請求項10に記載の発明によれば、板材の高さをカメラの画像から測定する。これにより、板材の高さが平坦度と同様にパーソナルコンピュータ(以下「PC」という。)で計算されるため、測定が容易となるとともに、迅速に平坦度の測定に反映される。これにより、平坦度の測定精度を向上させることができる。
請求項11に記載の発明によれば、カメラで撮影する線状パターンの線の本数を、40〜100本とすることにより、解析において線状パターンの画像からそれぞれの線を明瞭に分解することができる。これは、撮影する線の本数が少なすぎると板材表面の空間分解能が悪くなり、一方、撮影する線の本数が多すぎるとそれぞれの線を明瞭に分解することができないためである。これにより、板材の平坦度測定精度が向上する。なお、さらに測定精度を向上させるためには、カメラで撮影する線状パターンの線の本数を50〜70本とすることが好ましい。
請求項12に記載の発明によれば、カメラの露光時間を上記(a)式により求め、設定することにより、板材が移動しても線状パターンの隣接する線同士が干渉せず、良好な画像を撮影することができる。これにより、板材の平坦度測定の精度を向上させることができる。
請求項13に記載の発明によれば、感度及び/又は観察角度の異なる複数のカメラを備えることで、輝度の異なる複数の画像が得られる。これにより、複数の画像から輝度の明瞭な部分を用いることで、形状測定線の全ての位置において明瞭な輝度分布を得ることができる。そのため、形状測定線の全ての位置において平坦度の測定が可能となる。
請求項14に記載の発明によれば、板材が高温のため輻射光を発する場合であっても、輻射光の赤外領域での波長と異なる波長の光を光源に用い、フィルタにより光源の波長の光のみを撮影するようにすることで、明瞭な線状パターンを撮影することが可能である。これにより、高温の板材でも平坦度の測定が可能となる。
請求項15に記載の発明によれば、平坦度測定装置のPCなどに予め複数の高さで測定した基準線状パターン間隔の測定値を記憶した記憶媒体を備えることで、板材の高さを測定し、その板材高さに対応した基準線状パターン間隔を用いることができる。これにより、平坦度の測定精度を向上させることができる。
請求項16に記載の発明によれば、請求項13〜15のいずれか一項に記載の板材の平坦度測定装置は、カメラの画像から板材の端辺を検出するため幅計が不要であることから、装置が簡易的となる。これにより、従来狭くて設置が困難であった仕上圧延機の間に平坦度測定装置の設置が可能となる。したがって、仕上圧延機と平坦度測定装置とが1対の関係となるため、調節すべき仕上圧延機及び調整量が明確となることから、板材の平坦度を向上させることができる。
請求項17に記載の発明によれば、請求項1〜12のいずれか一項に記載の板材の平坦度測定方法を用いることで、平坦度の測定が可能、容易となり、又は測定精度が向上するため、平坦度の良い板材を製造することができる。また、平坦度の測定が迅速になるため、板材の生産性が向上する。
請求項18に記載の発明によれば、請求項13〜15のいずれか一項に記載の板材の平坦度測定装置を用いることで、平坦度の測定不能とならないため、安定して板材を生産することができる。また、平坦度の測定精度が向上するため、平坦度の良い板材を製造することができる。
以下、図面に示す実施形態に基づき、本発明に係る板材の製造方法、及び仕上圧延機列の一例として、2台のカメラを備えた平坦度測定装置を鋼板の熱間圧延ラインに備える場合を説明するが、以下に説明するものは本発明の実施形態の一例であって、本発明はその要旨を超えない限り以下の説明になんら限定されるものではない。
図1は、1つの実施形態に係る本発明の鋼板の製造方法に用いる平坦度測定装置10を模式図に示した図である。鋼板11は、紙面左右方向(以下「長手方向」という。)に長尺な形状である。鋼板11の上部には、鋼板11の表面に線状パターン12を投影する投影機13が設置されている。線状パターン12は、平行な複数の線14、14、…により構成されている。線状パターン12は、鋼板11の表面において、線14、14、…の長手方向が鋼板11の長手方向と直交する方向(以下「幅方向」という。)となるようにして投影されている。そして、線状パターン12を向いた2台のカメラ15a、15bが、鋼板11の上部に配置されている。なお、図の見易さのために、線14、14、…の一部の符号を省略する。
図2は、平坦度測定装置10における投影機13及びカメラ15a、15bの配置を示す図である。投影機13は、投影方向を鋼板11の圧延方向と逆方向の斜め下方とし、投影角度は鉛直方向に対してβである。一方、カメラ15a、15bは、撮影方向を鋼板11の圧延方向斜め下方とし、撮影角度は鉛直方向に対してαである。なお、カメラ15a、15bは、同一の撮影角度αで配置されている。そして、カメラ15a、15bは、PC16に接続されている。
かかる構成により、投影機13に線状パターン12を描いたスライド(図示省略)を被せることで、鋼板11の表面に線状パターン12(図1参照)が投影される。この線状パターン12を、カメラ15a、15bにより撮影し、その画像からPC16で平坦度が算出される。ここで、カメラ15a、15bは感度が異なるため、画像の輝度が異なる。そのため、後述するようにカメラ15a、15bの画像を使い分けることにより、明瞭な線状パターン12を得ることができる。
図3は、第2の実施形態に係る平坦度測定装置20を示す図である。なお、図1と同じ構成を採るものについては、図1にて使用した符号を付し、その説明を省略する。カメラ15a、15bは、感度及び鋼板11の長手方向に対する撮影角度を変えて配置されている。かかる構成により、カメラ15a、15bでは、感度に加え、反射を受ける位置からも異なる輝度の画像を得ることができる。そのため、カメラ15a、15bの画像において輝度が飽和した部分や、弱い輝度が弱い部分を有する画像があっても、後述するようにカメラ15a、15bの画像を使い分けることにより、明瞭な輝度分布を得ることが可能である。なお、平坦度測定装置20では、鋼板11の長手方向に対する撮影角度を変えているが、幅方向の角度を変えても良い。また、状況に応じて撮影位置だけを変えて、カメラ15a、15bの感度を同一にしても良い。
平坦度測定装置10、20では、投影機13に波長360〜560nmを最大輝度とする光源を備え、カメラ15a、15bに波長360〜560nmである光の透過フィルタを備えることが好ましい。これによれば、板材が高温のため輻射光を発する場合であっても、輻射光の赤外領域での波長と異なる波長の光を光源に用い、カメラ15a、15bがフィルタによりその波長の光のみを撮影するようにすることで、明瞭に線状パターン12を撮影することが可能である。したがって、高温の板材でも平坦度の測定が可能となる。なお、光源としてはメタルハライドランプやキセノンランプを用いることができる。
図4は、鋼板の平坦度を測定するフローチャート40である。以下、図1により、平坦度測定装置10を用いて鋼板11の平坦度を測定する場合について説明する。最初に、平坦度を測定する位置に鋼板11が有るかについて判定する(ステップS1)。判定は、線状パターン12が鋼板11に投影されると輝度が高いため、線状パターン12を撮影するカメラ15a、15bの画像の輝度を測定することで行われる。ステップS1で肯定判断された場合(鋼板11が有る場合)、ステップS2〜S9により鋼板11の平坦度が測定される。ステップS1で否定判断された場合(鋼板11が無い場合)、鋼板11の平坦度測定は終了する。以下、ステップS2〜S9について詳述する。
(ステップS2)
ステップS2では、鋼板11の高さを測定する。鋼板11は、熱間圧延ラインでの走行時に浮き上がりが生じるため、高さが変化する。フローチャート40では、後述するステップS7で鋼板11の高さを用い、表面角度分布を計算する。そのため、最初に鋼板11の高さを測定することが必要である。図5は、カメラにより撮影された鋼板11表面の線状パターン12を示す図である。紙面左右が鋼板11の幅方向である。線状パターン12は、複数の平行に並べられた線14、14、…と、スリット16a〜16fとを有している。それぞれの線14、14、…は、長手方向において中央部と左右部とに分割され、その間にスリット16a〜16fが配置されている。線状パターン12は、線14、14、…及びスリット16a〜16fの長手方向が鋼板11の幅方向となるように投影されている。なお、図の見易さのために、線14、14、…は、実際より本数を少なく示し、一部の符号を省略する。
かかる構成により、カメラ15a、15b(図1参照)で鋼板11に投影された線状パターン12を撮影し、画像におけるスリット16a〜16fの位置から鋼板11の高さを測定する。図6(a)にスリット16aの位置と、鋼板11の高さとの関係を示す。ここでは、カメラ15bの図示を省略し、以降カメラ15aのみについて説明するが、カメラ15bについても同様である。鋼板11の高さが△h変化すると、鋼板11表面のスリット16aの位置が△Y変化する。そのため、カメラ15aの画像におけるスリット16aの位置が変化する。これにより、スリット16aの位置から、鋼板11の高さを算出することができる。
図6(b)は、カメラ15aの画像におけるスリット16a〜16fの上下方向位置(以下「Y座標」という。)と、鋼板11の高さとの関係を示した図である。鋼板11の高さが変わると、それに伴いカメラ15aの画像における鋼板11表面のスリット16a〜16fのY座標が変化する。なお、Y座標は、カメラ15aの画像における画素位置で決まる。そのため、予め図6(b)の関係を求めておき、スリット16a〜16fのY座標を測定することにより、鋼板11の高さを測定することができる。
(ステップS3)
ステップS3では、鋼板11の幅方向端辺(以下単に「端辺」という。)を検出する。図5において、線状パターン12は、鋼板11の幅方向について、鋼板11より大きくなるように投影されている。これにより、鋼板11の表面では反射により線状パターン12は明るく、鋼板11の表面を外れた位置では、線状パターン12は反射しないため暗くなる。そのため、この輝度の差から鋼板11の端辺を検出することができる。検出方法の一例としては、カメラ15a、15bの画像から、複数の線14、14、…の輝度を鋼板11の長手方向に積算し、積算値を鋼板の幅方向に微分する。微分した結果から、輝度の変化が最大及び最小となる位置が、鋼板11の端辺17a、17bとなる。このように複数の線14、14、…を用いて鋼板11の端辺を検出することで、検出の精度を高めることができる。なお、上記方法によらず、例えば1本の線14について、長手方向の輝度変化から鋼板11の端辺を検出しても良い。
(ステップS4)
ステップS4では、鋼板11の形状測定線を決定する。この形状測定線に沿って、鋼板11の長手方向の表面形状が求められる。ここでは、ステップS3で検出された鋼板11の端辺から、図5のとおり鋼板11の長手方向に形状測定線18a〜18eを設定する。形状測定線18a〜18eは線14、14、…の分割部以外に設定される。
鋼板11の急峻度λを計算するには、(3)式のΔεを求めるために、(1)式のとおり板幅中央部の形状測定線18aの他に、少なくとも1本の形状測定線を、形状を計る位置に設定すれば良い。ただし、実際の操業においては、少なくとも鋼板11の幅方向両端部で急峻度λを測定することから、形状測定線18a〜18cを設置することが好ましい。さらには、図5のとおり、形状測定線18aと、18b及び18cとの中間に形状測定線18d、18eを設定することが好ましい。これによれば、5箇所で鋼板の表面形状が測定されるため、表面形状の把握が容易となる。なお、鋼板11の幅方向の大きさに応じ、さらに形状測定線を設定することも可能であるが、形状測定線の本数に応じ計算量が増加するため、平坦度の測定時間が長くなる。
上記のように形状測定線18a〜18eを設定することにより、画像上の全ての線14、14、…の形状を計算するよりも大幅に計算量を減らすことができる。また、カメラ15a、15bの画像から検出した鋼板11の端辺を基準として、画像に形状測定線18a〜18eを設定することにより、蛇行時など鋼板11の端辺位置が変化するときでも、形状測定線18a〜18eを鋼板11の同じ位置に精度よく設定することができる。これにより、平坦度の測定精度を向上することができる。
(ステップS5)
ステップS5では、形状測定線18a〜18eで輝度分布を作成する。形状測定線18a〜18eは、複数の線14、14、…を横断する。そのため、各形状測定線18a〜18eには輝度の明暗が存在する。最初に、カメラ15a、15bの画像ごとに、この輝度分布を測定する。測定方法の一例としては、カメラ15a、15bの画像から、形状測定線18a〜18eの輝度分布を、PC16において輝度データ列として取り込む。この際、耐ノイズ性能を向上させるために、各形状測定線18a〜18eについて、近傍の幅方向データを測定し、平均化することが好ましい。
図7(a)はカメラ15a、図7(b)はカメラ15bの画像から測定された輝度分布の一例を示す図である。横軸はカメラ15a、15bの画像におけるY座標、縦軸は輝度であり、形状測定線18aの輝度分布19a、19a’及び形状測定線18bの輝度分布19b、19b’が示されている。ここでは、Y座標は画素数から351まで測定されている。一方、カメラ感度範囲を越えて輝度が飽和することにより線状パターン間隔がつぶれてしまう場合や、輝度が低すぎてカメラの暗電流ノイズに線状パターンが埋もれてしまう場合は、輝度の測定が不可能となる。そのため、カメラ15a、15bの感度を変え、形状測定線18a〜18eごとに輝度分布の明瞭な画像を用いる。ここでは、ここでは、カメラ15bの感度は、カメラ15aの感度の4倍に設定されている。
例えば、図7(b)の範囲Aでは、輝度分布19a’の輝度が飽和しており、輝度を測定不能となっている。そのため、形状測定線18aについては、輝度が飽和していない(飽和している部分の少ない)輝度分布19aを用いる。また、形状測定線18bの輝度分布19b、19b’は、いずれのも輝度が飽和していないが、図7(a)の範囲Bでは輝度が低いことから、輝度を測定不能となっている。そのため、形状測定線18bについては、輝度の高いカメラ15bの画像による輝度分布19b’を使用する。このようにして、各形状測定線18a〜18eについて明瞭な輝度分布を得ることで、平坦度の測定が可能となる。
(ステップS6)
ステップS6では、形状測定線18a〜18eの輝度分布から、線状パターン間隔Pm(y)を計算する。ステップS6の詳細については、後述する。
(ステップS7)
ステップS7では、形状測定線18a〜18eにおける鋼板11の表面角度分布を計算する。図8は、鋼板11を幅方向から見た図であり、ステップS6で求めた線状パターン間隔Pm(y)から、鋼板11の表面角度分布を計算する方法を示している。鋼板11の上部には、投影機13とカメラ15a、15bとが設置されている。ここでは、カメラ15bの図示を省略し、以降カメラ15aのみについて説明するが、カメラ15bについても同様である。鋼板11の表面には、投影機13から投影された線状パターン12のうち、2本の線14a、14b、およびこれらの間の暗部14cが図示されている。
カメラ15aは、撮影方向を鋼板11の一の長手方向斜め下方とし、撮影角度は鉛直方向に対してαである。一方、投影機13は投影方向を鋼板11の他の長手方向斜め下方とし、投影角度は鉛直方向に対してβである。線14a、14bの間隔を、線14a、14bの幅方向(鋼板の長手方向)における、線14aと暗部14cとを合わせた大きさとする。鋼板11が水平である場合における鋼板11の表面での線14a、14bの間隔をPsとし、カメラ15aの画像での線14a、14bの間隔をPs(y)とする。鋼板11の水平方向に対する表面角度がθである場合における鋼板11の表面での線14a、14bの間隔をPmとし、カメラ15aの画像での線14a、14bの間隔をPm(y)とする。このとき、幾何学的に、次の(4)〜(6)式が成立する。
Figure 2008058036
(4)式に、(5)、(6)式を代入することで、次の(7)式を導くことができる。
Figure 2008058036
ここで、α及びβは、設定値である。そのため、平坦な基準板で予め基準線状パターン間隔を測定し、これを線状パターン間隔Ps(y)とする。そして、ステップS6により線14a、14bの間隔Pm(y)を測定することで、線14aと14bとの間における鋼板11の表面角度θを求めることができる。同様にして、全ての線14、14、…の間隔から鋼板11の表面角度θを求めることで、形状測定線18a〜18eにおける表面角度分布を求めることができる。
なお、線状パターン間隔Ps(y)は、基準板について、上記ステップS2〜6を実施することで、測定することができる。線状パターン間隔Ps(y)は、鋼板11の高さにより変化するため、予め複数の鋼板11高さで測定することが必要である。そして、ステップS2で測定した鋼板11の高さから、使用する線状パターン間隔Ps(y)を決定する。一の鋼板11高さにおけるPs(y)の測定結果の一例を図9に示す。図9では、基準板における画像のY座標と線状パターン間隔Ps(y)との関係が示されている。これにより、鋼板11の高さ及び鋼板11における位置(Y座標)が定まることで、線状パターン間隔Ps(y)を決定することができる。
(ステップS8)
ステップS8では、ステップS7で求めた表面角度分布から、鋼板11の表面形状を計算する。鋼板11の表面形状は、ステップS7で求めた表面角度を積分することにより、それぞれの形状測定線18a〜18eについて求めることができる。
(ステップS9)
ステップS9は、ステップS8で求めた表面形状から鋼板11の急峻度λを計算する。それぞれの形状測定線18a〜18eの位置において表面形状の表面長さの計算を行うことで、伸び率εを計算する。そして、形状測定線18aでの伸び率ε18aと、他の形状測定線18b〜18eでの伸び率εから伸び差率△εを求め、鋼板11の急峻度λを計算する。ここで、添字mは18a〜18eであり、形状測定線mにおける値であることを表している。得られた伸び率から、次の(9)式により中心部との差(伸び差率)△εを計算する。
ここでは、形状測定線18a、18bの表面形状から鋼板11の急峻度λを求める場合を説明する。図10(a)は形状測定線18aでの表面形状20aを示す図であり、図10(b)は形状測定線18bでの表面形状20bを示す図である。表面形状20a、20bの表面長さと、その間の直線距離を計算して、伸び率を計算する。表面長さの計算は、対象区間を分割して折れ線近似して計算する方法などが用いられる。これによれば、微小な測定ノイズの影響を抑制することができる。ここでは、対象区間を12分割し、折れ線近似により表面長さを計算する。分割後のそれぞれの点をP(i=0〜12)とし、表面形状20a、20bの直線距離をP12とすると、伸び率εは、次の(8)式で表される。
Figure 2008058036
得られた伸び率から、次の(9)式により中心部との差(伸び差率)△εを計算する。
△ε=ε18a−ε18b ・・・(9)
この△εから、(3)式により急峻度λを求めることができる。同様に、形状測定線18aと、形状測定線18c〜18eとによっても急峻度λを測定することが可能である。
以上のステップS1〜9により、鋼板11の急峻度λを計算することで、鋼板11の平坦度とすることが可能である。
図11は、上述したステップS6の詳細なステップを示す図である。ステップS6a〜6cでは、形状測定線18a〜18eの各輝度分布を空間周波数領域へ変換する。ステップS6d、6eでは、変換した空間周波数領域の関数を、空間領域へ逆変換する。ステップS6f〜6hでは、逆変換した空間領域の空間周波数から線状パターン12の間隔Pm(y)を計算する。以下、ステップS6a〜S6hについて詳述する。
(ステップS6a)
ステップS6aでは、形状測定線18a〜18eの輝度分布における輝度データ数が2(nは自然数。以下同じ。)でない場合に、輝度データ数を2の輝度分布k(x)に再サンプリングする。これにより、輝度分布k(x)に、離散フーリエ変換の高速な計算手法である高速フーリエ変換を適用することが可能となる。図12に、輝度データ数を、6から8に再サンプリングする一例を示す。図12(a)における6点の輝度データD1〜D6において、隣接するデータ同士を線で結ぶ。そして、D1〜D6の間を8等分し、この8等分する線と輝度データを結んだ線の交点を新たな輝度データD1’〜D8’とすると、図12(b)のとおり輝度データ数が8となる。ここで、再サンプリングにより、輝度データD1〜D6とD1’〜D8’では位置に差が生じる。しかし、鋼板11の平坦度測定に使用するのは、(3)式のとおり、線状パターン間隔Pm(y)と線状パターン間隔Ps(y)とであり、Pm(y)、Ps(y)ともに再サンプリングされるため、平坦度の値には影響しない。なお、輝度データの精度を低下させないため、再サンプリングでは、データ数を増やすことが好ましい。
(ステップS6b)
ステップS6bでは、再サンプリングした輝度分布k(y)を対称データ化する。離散フーリエ変換は、対象とする信号波形の外側にも同じ波形が繰り返していると仮定する。形状測定線18a〜18eの輝度分布k(y)は、両端において空間周波数(線状パターン間隔)、輝度ともに異なっているため、大きな不連続点を生じる。このことは、線状パターン間隔の計算結果において、輝度分布k(y)の端部に測定誤差を生じることになる。そこで、輝度分布k(y)について、対象とする輝度分布k(y)の輝度データ列を反転させて、元の輝度データ列の後につけくわえて、2倍のデータ点数の輝度分布g(y)とする。これにより、輝度分布g(y)の端部が不連続点でなくなるため、信号端部まで精度良く、線状パターン間隔を計算することが可能となる。図13は、輝度データの対称データ化を示す図である。図13(a)は、対称データ化前の輝度分布k(y)を離散フーリエ変換する場合を示している。k(y)の両端Cは、空間周波数(線状パターン間隔;横軸)、及び輝度(縦軸)の違いにより不連続点となっている。図13(b)では、k(y)を横軸方向に反転させてk(y)の後に結合したg(y)を用いて、離散フーリエ変換を行う。これにより、g(y)の両端Dが不連続点とならないため、端部Dで測定誤差が生じることを防ぐことができる。
(ステップS6c)
ステップS6cでは、対称データ化した輝度分布g(y)に対して、高速フーリエ変換を行う。これにより、輝度の空間分布を空間周波数領域へ変換する。変換後の関数をG(f)とし、高速フーリエ変換をF[ ]とすると、次の(10)式で表すことができる。
G(f)=F[g(y)] ・・・(10)
(ステップS6d)
ステップS6dでは、高速フーリエ変換を行った関数G(f)から空間周波数域を抽出する。抽出は、G(f)にW(f)を積算した後に、fだけ低周波数側へ移動させる。W(f)は図14に示すように、線状パターン間隔Pm(y)の周波数帯域fL〜fHが1(単位は1/画素)で、それ以外は0の関数である。g(f)にW(f)を積算することにより、g(f)の負の空間周波数域の値は0となり、正の空間周波数帯域に存在する線状パターンのみを残すことができる。これにより、鋼板11表面のスケール生成むらにより生じる模様や、水乗りが、空間周波数に与える影響を抑制することができる。
W(f)における線状パターン間隔Pm(y)の周波数帯域fL〜fHは、次により求めることができる。図8におけるカメラ15aの撮影角度αと、投影機13の投影角度βとが定まれば、上述した(7)式より、図15のとおり鋼板11の表面角度θと、線状パターン間隔比Pm(y)/Ps(y)との関係を求めることができる。なお、カメラ15bについても同様である。ここで、実際の操業より表面角度θの測定範囲を決定する。表面角度θの測定範囲は、要求される急峻度測定範囲から求められる表面角度θの範囲と、測定時に発生しうる鋼板11全体の傾きから生じる表面角度θの範囲との和で決められる。ここでは、表面角度θの測定範囲を−10°≦θ≦10°とすると、図15のとおり、Pm(y)/Ps(y)は0.82〜1.20となる。
線状パターン間隔Ps(y)は、上述したとおり基準板で予め求められている。図9のとおり、Ps(y)を7〜13とすると、Pm(y)/Ps(y)にPs(y)を積算して、Pm(y)は5.74(=7×0.82)〜15.6(=13×1.2)と求めることができる。そのため、その逆数である空間周波数は0.064(=1/15.6)〜0.174(=1/5.74)となる。これにより、fL=0.064、fH=0.174と定めることができる。
次に、f≦fLとなるようにfを設定する。そして、G(f)×W(f)をfだけ低周波側へ移動させる。これにより、後述するステップS6gのアンラッピング処理において、位相角の変化量が大きいのか、不連続点なのか判断できない場合が抑制されるため、不連続点を安定して検出することが可能となる。
以上により、抽出後の空間周波数域における関数H(f)は、次の(11)式で表すことができる。
H(f)=G(f+fs)・W(f+fs) ・・・(11)
なお、周波数fの移動は必ず行う必要はないが、線状パターン間隔Pm(y)が狭い(空間周波数が高い)場合は、後述するステップS6gのアンラッピング処理において、不連続点を安定して検出するために実施した方が好ましい。
(ステップS6e)
ステップS6eでは、関数H(f)を逆高速フーリエ変換により、空間周波数域のデータから輝度空間分布へ変換する。変換した結果をgan(y)とする。F−1[ ]は空間周波数領域から空間分布への変換である逆高速フーリエ変換を表す。これにより、gan(y)は、次の(12)式で表すことができる。
an(y)=F−1[H(f)] ・・・(12)
(ステップS6f)
ステップS6fでは、gan(y)の実数部Re[gan(y)]と虚数部Im[gan(y)]から位相角φ(y)を計算する。φ(y)は、次の(13)式で表すことができる。
φ(y)=tan-1[Im[gan(y)]/Re[gan(y)]] ・・・(13)
(ステップS6g)
位相角φ(y)は、−π/2〜π/2に折り畳まれている。これをラッピングされているという。そのため、ステップS6gでは、位相角φ(y)を微分しつつ、不連続点で滑らかにつながるよう、πを足したり引いたりするアンラッピング処理を行う。これにより、φ(y)を連続した波にする。位相角φ(y)の微分値は線状パターンの空間周波数−fに比例する。そのため、次の(14)式により、線状パターンの空間周波数分布を得ることができる。
f(y)=−dφ/dx/(2π)+f ・・・(14)
(ステップS6h)
ステップS6hでは、f(y)の逆数を計算して線状パターン間隔Pm(y)を算出する。Pm(y)は、次の(15)式で表すことができる。
Pm(y)=1/f(y) ・・・(15)
ここで、上述したステップS6bにより、データの後半分は反転したデータが結合された部分であるため、前半分を有効なデータとして用いる。
なお、上記実施形態では、急峻度を計算することで鋼板11の平坦度を求めたが、カメラ15a及び/又は15bの画像における線14の長手方向の形状を、一般に用いられている画像処理で測定することにより鋼板11の幅方向の表面形状を求め、良好な平坦度が得られるように圧延機などの装置を制御することも可能である。
また、上記実施形態において、カメラ15a、15bで撮影する線状パターン12の線14、14、…(図5参照)の本数は、40〜100本とすることが好ましい。これによれば、解析において線状パターンの画像からそれぞれの線を明瞭に分解することができる。そのため、板材の平坦度測定精度が向上する。例えば、図16のとおり、上述のステップS7で求める鋼材11(図1参照)の表面角度θのばらつきσを小さくすることができる。なお、図16における鋼材11の表面角度のばらつきσは、全面の表面角度が0°である完全に平坦な測定対象の表面角度分布を測定して、その角度分布の測定誤差(0°からの偏差)の標準偏差を計算することにより求めた。
上記実施形態では、鋼材11の圧延方向の測定範囲は1400mmである。また、線状パターン12(図1参照)間隔は、線14、14、…の幅方向における、1本の線14とこの線14に隣接する一方の暗部とを合わせた大きさとしている(図8参照)。そのため、次の(16)式により線状パターン12間隔を求めることができる。
線状パターン12間隔=圧延方向の測定範囲/線14、14、…の本数・・・(16)
これにより、線状パターン12間隔は、35mm〜14mmとなる。
なお、さらに測定精度を向上させるためには、カメラ15a、15bで撮影する線状パターン12の線14、14、…の本数を50〜70本とすることが好ましい。
さらに、カメラ15a、15bの露光時間dtは、上記(a)式により求められ、設定されることが好ましい。図17(a)は、カメラ15a、15b(不図示)の露光時間dtを求める方法を示す図である。図17(b)は、図17(a)のA部拡大図である。カメラ15a、15bは撮影方向を鋼板11の一の長手方向斜め下方とし、撮影角度は鉛直方向に対してαである。以降カメラ15aのみについて説明するが、カメラ15bについても同様である。一方、投影機13は投影方向を鋼板11の他の長手方向斜め下方とし、投影角度は鉛直方向に対してβである。水平方向に対する鋼板11の長手方向の表面角度をθとする。水平である板材11において、線14a、14bの幅方向における、線14aと暗部14cとを合わせた大きさ(以下「線14aの大きさ」という。)をPs’とする。表面角度θである鋼板11aにおける線14aの大きさを、Pm(y)’とする。鋼板11a’は、鋼板11aが速度Vでカメラ15aの露光時間dtに移動した後の位置である。鋼板11a’は、鋼板11aの高さからdh上昇している。鋼板11a’において、線14aが露光時間dtにおいて増加した大きさを、dPm(y)’とする。
ここで、図17(b)のとおりdh’を設定すると、
dh’=dh+dh’・tanβ・tanθ
であることから、dh’は次の(17)式で表すことができる。
Figure 2008058036
これにより、dPm(y)’は
Figure 2008058036
であることから、次の(18)式で表すことができる。
Figure 2008058036
また、上記(7)式、(5)式を用いて、Pm(y)’は、次の(19)式で表すことができる。
Figure 2008058036
線状パターン12(図1参照)が認識されるためには、暗部14cが残っていることが必要である。そのためには、次の(20)式を満たすことが必要である。
n・Pm’(y)>dPm(y)’ ・・・(20)
ここで、nは、線14aの大きさPs’における暗部14cの割合である。上述した(20)式に、(18)式、(19)式を代入すると、次の(21)式のとおりとなる。
Figure 2008058036
一方、高さdhは、次の(22)式で表すことができる。
dh=V・dt・tanθ ・・・(22)
(21)式、(22)式から、カメラ15aの露光時間dtは、次の(23)式のとおりとなる。
Figure 2008058036
(23)式では、表面角度θが大きいほど露光時間dtを小さくする必要がある。そのため、露光時間dtを次の(24)式とする。
Figure 2008058036
ここで、θmaxは、表面角度θの最大値である最大表面角度である。この(24)式を用いてカメラ15a、15bの露光時間dtを求め、設定することにより、最大表面角度θmaxで鋼板11が移動しても線状パターンの隣接する線同士が干渉せず、良好な画像を撮影することができる。これにより、鋼板11の平坦度測定の精度を向上させることができる。
図18は、仕上圧延機列100を模式図に示した図である。仕上圧延機列100は、直列に並べられた6基の仕上圧延機101、101、…を有している。そして、それぞれの仕上圧延機101、101、…の間に平坦度測定装置10、10、…を備えている。仕上圧延機101、101、…の間は狭いため、従来は平坦度測定装置を設置することが困難であった。平坦度測定装置10は、幅計が不要となったことで装置が小さくなったため、仕上圧延機101、101、…の間に設置可能である。これにより、仕上圧延機101と平坦度測定装置10とが一対の関係となっているため、各平坦度測定装置10、10、…の測定値から調節すべき仕上圧延機101、101、…及び調整量が明確となる。したがって、仕上圧延機101、101、…の制御を精度良く行うことが可能となることで、鋼板11の平坦度を向上させることができる。なお、仕上圧延機列には、平坦度測定装置10の他に、平坦度測定装置20など、本発明に係る平坦度測定装置を備えることが可能である。
実施例では、上記実施形態における平坦度測定装置10(図2参照)を鋼板の熱間圧延ラインに使用した。以下、図2により説明する。平坦度測定装置10は、投影機13の投影角度βを15°とした。また、カメラ15a、15bの撮影角度αを40°で同一とした。投影機13には、出力2.5kWのメタルハライドランプを使用した。光源は、波長360nm〜560nmに輝度ピークを持つようにした。線状パターン12は、スライドとレンズとを通して鋼板11の表面に投影された。スライドは、石英ガラス基板上にCrの蒸着により形状を生成したもので、線幅0.72mmの線14、14、…(図1参照)を等間隔で60本作成した。粉塵や霧状水滴が多量に飛散している現場へ設置したため、投影機13全体をステンレス鋼製の防塵ボックスに収めた。また、線状パターン12(図1参照)を投影する開口部から防塵ボックス内へ粉塵や霧状水滴が侵入しないように、大型の送風機で防塵ボックス内に空気を供給し、開口部から噴出す構造とした。
撮像用のカメラ15a、15bには、CCDカメラを用いた。このCCDカメラは、毎秒50枚の画像出力、及び複数台のカメラが同期して撮影することを可能とした。そして、カメラ15a、15bの感度の比を1:4とした。また、カメラ15a、15bのレンズ前に波長360nm〜560nmの光を透過するフィルタを備えた。カメラ15a、15bも、投影機13と同様にステンレス鋼製の防塵ボックスに収め、汚れ防止からレンズに圧縮空気を供給した。
カメラ15a、15bの露光時間は、上記(a)式により求めた。上述したように、カメラ15a、15bの撮影角度αは40°、投影機13の投影角度は15°とした。また、線14、14、…の大きさPs’は、鋼板11の圧延方向における測定範囲1400mmにおいて60本の線14、14、…を撮影したため、平均して23mm(1400mm/60本)であった。この線14、14、…の大きさPs’における暗部の割合nは、1/2であった。表面角度θの範囲は、要求される急峻度測定範囲から求められる表面角度θの範囲と、測定時に発生しうる鋼板11全体の傾きから生じる表面角度θの範囲との和で決められる。図19(a)のとおり鋼板11の形状を板材の波高さδ、ピッチPである正弦波とすると、図19(b)のとおり、表面角度θは、次の(25)式により求めることができる。
θ=πλ・cos(2πy/P) ・・・(25)
θの単位はradである。ここで、λは急峻度(δ/P)であり、実施例においては急峻度測定範囲が±5%であることから、λは0.05である。yは鋼板11の圧延方向の位置である。−1≦cos(2πy/L)≦1であることから、表面角度θの範囲は、単位を°に換算すると、−9°≦θ≦9°となった。一方、実施例の測定場所においては、鋼板11全体の傾きはほとんど生じない。そのため、表面角度θの範囲は、−10°≦θ≦10°とした。これにより、鋼板11の最大表面角度θmaxは10°となった。また、鋼板の速度Vは、最大で25m/secであった。以上により、上記(a)式からdt<2.80msecと求められたため、カメラ15a、15bの露光時間を1msecに設定した。
PC16は、内蔵したマルチチャンネル画像取り込みボードにより、0〜255の輝度階調にて、2台のカメラ15a、15bからの画像を、同時にメモリー内に取り込むことを可能とした。画像の画素数から、形状測定線の輝度分布における輝度データ数は、351であった。PC16は、作成した平坦度解析プログラムによって、上記ステップS1〜ステップS9を実行可能とした。
(実施例1)
図20は、上述したステップS2(図4参照)のカメラ15a、15bの画像から鋼板11の端辺17a、17b(図5参照)を検出した実施例1の結果を示す図である。図20(a)は、時間と実測した鋼板11の蛇行量との関係を示す図である。図20(b)は、カメラ15a、15bの画像から鋼板11の端辺17a、17bを検出し、形状測定線18a〜18c(図5参照)を設定した場合における、形状測定線18aと、形状測定線18b及び18cとによる鋼板11の急峻度λの測定値を示す図である。図20(c)は、圧延スケジュールによる鋼板11の幅データから形状測定線18a〜18cを設定した場合における、形状測定線18aと、形状測定線18b及び18cとによる鋼板11の急峻度λの測定値を示す図である。図20(a)における鋼板11の蛇行量が大きくなる時間において、図20(c)では急峻度λに異常値Eが発生した。そのため、鋼板11の幅データから形状測定線18a〜18cを設定する方法では、急峻度λの測定精度が悪化することが確認できた。一方、図20(b)では、急峻度λの異常値は発生しなかった。これにより、カメラ15a、15bの画像から鋼板11の端辺17a、17bを検出し、形状測定線を設置することで、急峻度λを精度良く測定できることが確認できた。
(実施例2)
図21(a)〜図21(c)は、上述したステップS6a〜ステップS6h(図11参照)及びステップS7(図4)を実施した実施例2の結果を示す図である。形状測定線18aを設定し、その輝度分布を測定した。ステップS6aにより、形状測定線18aの輝度分布をデータ数512に再サンプリングして、輝度分布k(y)とした。次に、ステップS6bによりk(y)を反転させて、k(y)の後につけくわえて、輝度分布g(y)としたところ、図21(a)のとおりとなった。このg(y)に対してステップS6c〜ステップS6hを実行したところ、線状パターン間隔Pm(y)は図21(b)のとおりとなった。そして、ステップS7により、形状測定線18aの表面角度分布を求めたところ、図21(c)のとおりとなった。これにより、カメラの画像による輝度分布から、形状測定線における表面角度分布を求めることが確認できた。
(比較例1)
図22(a)〜図22(c)は、上記実施例2に対する比較例1の結果を示す図である。比較例1では、図22(a)のとおり、ステップS6bによる輝度分布の対称データ化をしなかった。なお、他のステップは実施例2と同様に実行した。比較例1では、図22(b)、図22(c)のとおり、Y座標の0付近で大きな測定誤差が生じた。したがって、ステップS6bにより輝度分布を対称データ化することで、表面角度分布が精度良く計算できることが確認できた。
(比較例2)
図23(a)〜図23(d)は、上記実施例2に対する比較例2の結果を示す図である。比較例2では、実施例2でステップS6a〜S6cまでを実行し、ステップS6dにおいてG(f)にW(f)を積算した後に、図23(a)のとおり正の空間周波数帯域に存在する線状パターンを低周波数側へf移動させなかった。そのため、上述した(11)式に代えて、次の(11)’式により、関数H(f)を求めた。
H(f)=G(f)・W(f) ・・・(11)’
なお、他のステップは実施例2と同様に実行した。そのため、ステップS6gにおいて、図23(b)のとおり、空間周波数が高いFの部分でアンラッピング処理ができなかった。これにより、図23(c)、図23(d)においてもFの部分で、線状パターン間隔Pm(y)、及び表面角度分布θの値が定まらなかった。したがって、ステップS6dにおいて、正の空間周波数帯域に存在する線状パターンを低周波数側へf移動させることにより、空間周波数が高い部分でも線状パターン間隔Pm(y)、及び表面角度分布が計算されることが確認できた。
(実施例3)
図24は、線状パターン間隔Ps(y)の計測高さhPs(y)、鋼板11の高さhPm(y)、及び急峻度λの関係を測定した実施例3の結果を示す図である。急峻度λを測定する鋼板11は、急峻度0%のものを用意した。鋼板11の高さhPm(y)は、テーブルローラーの表面高さを0とした。予め基準板の計測高さhPs(y)を18mm、63mm、108mmとして線状パターン間隔Ps(y)を測定した。そして、それぞれの線状パターン間隔Ps(y)について、鋼板11の高さhPm(y)を0〜200mmに変化させて、急峻度λを測定した。
これによれば、鋼板11の高さhPm(y)が、線状パターン間隔Ps(y)を測定した高さhPs(y)と近いほど急峻度が0%に近くなり、平坦度の精度が良いことが確認できた。そのため、鋼板の高さに応じてPsを使い分けることが必要である。具体的には、24において急峻度測定誤差を±0.05%以内とするためには、鋼板高さhPm(y)が約40mm以下では基準板高さhPs(y)が18mmである線状パターン間隔Ps(y)を使用する。同様に、鋼板高さhPm(y)が約40mmから約80mmに対しては、基準板高さhPs(y)が63mmである線状パターン間隔Ps(y)を使用する。鋼板高さhPm(y)が約80mmから約130mmに対しては、基準板高さhPs(y)が108mmである線状パターン間隔Ps(y)を使用する。このように、実績から予め鋼板高さhPm(y)に対して使用するhPs(y)を定めることにより、鋼板高さhPm(y)が大きく変化した場合でも、急峻度が下がることなく精度良く測定することができる。
(実施例4)
実施例4では、実際に平坦度測定装置10を用いて急峻度λを測定した。平坦度測定装置10では、毎秒約15回の急峻度λ測定が可能であった。これにより、実際の制御に運用する上で問題のない応答速度であることが確認できた。
なお、上記実施形態では、2台のカメラを備えた平坦度測定装置を鋼板の熱間圧延ラインに備える場合を示したが、カメラは3台以上であっても良い。また、カメラを1台として、一の画像から鋼板の平坦度を測定しても良い。さらに、鋼板だけでなく、アルミニウムや銅など、他の材質の平坦度測定にも、本発明を適用することが可能である。
以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う板材の平坦度測定方法、板材の平坦度測定装置、仕上圧延機列及び板材の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
鋼板の製造方法に用いる平坦度測定装置を模式図に示した図である。 投影機及びカメラの配置を示す図である。 第2の実施形態に係る平坦度測定装置を示す図である。 鋼板の平坦度を測定するフローチャートである。 カメラにより撮影された鋼板表面の線状パターンを示す図である。 スリットの位置と、鋼板の高さとの関係を示す図である。 カメラの画像から測定された輝度分布の一例を示す図である。 線状パターン間隔から、鋼板の表面角度分布を計算する方法を示す図である。 一の鋼板高さにおける基準線状パターン間隔の測定結果の一例を示す図である。 形状測定線での表面形状を示す図である。 線状パターン間隔の計算(ステップS6)の詳細なステップを示す図である。 輝度データを再サンプリングする状況の一例を示す図である。 輝度分布の対称データ化について示す図である。 空間周波数領域の関数から、正の空間周波数帯域に存在する線状パターンのみを残す関数W(f)を示す図である。 鋼板の表面角度θと、基準板と鋼板とにおける線状パターン間隔比Pm(y)/Ps(y)との関係を示す図である。 線状パターンにおける線の本数と、鋼材表面角度のばらつきとの関係を示す図である。 カメラの露光時間dtを求める方法を示す図である。 仕上圧延機の間に平坦度測定装置を備える仕上圧延機列を模式図に示す図である。 鋼板の形状及び鋼板の表面角度θを示す図である。 カメラの画像から鋼板の端辺を検出した結果を示す図である。 形状測定線の輝度分布から鋼板の表面角度分布を求めた結果を示す図である。 形状測定線の輝度分布から、輝度分布の対称データ化をせずに鋼板の表面角度分布を求めた結果を示す図である。 正の空間周波数帯域に存在する線状パターンを低周波数側へf移動させずに鋼板の表面角度分布を求めた結果を示す図である。 測定した基準線状パターン間隔の計測高さ、鋼板の高さ、及び急峻度の関係を示す図である。
符号の説明
Pm(y) 線状パターン間隔
Ps(y) 板材が水平での線状パターン間隔
α カメラの撮影角度
β 投影機の投影角度
θ 板材の表面角度
λ 急峻度
10 平坦度測定装置
11 板材
12 線状パターン
13 投影機
14、14a、14b 線
14c 暗部
15a、15b カメラ
16a スリット
18a〜18e 各形状測定線
20 平坦度測定装置
100 仕上圧延機列
101 仕上圧延機

Claims (18)

  1. 平行な複数の線からなる線状パターンを板材の表面に投影する投影機と、前記板材に投影された線状パターンを撮影するカメラとを備え、前記カメラにより撮影した前記線状パターンの画像を解析して前記板材の平坦度を測定する板材の平坦度測定方法であって、
    前記線の長手方向について、前記線状パターンの大きさを前記板材より大きくすることにより、前記板材の端辺を検出する工程を有することを特徴とする板材の平坦度測定方法。
  2. 平行な複数の線からなる線状パターンを板材の表面に投影する投影機と、前記板材に投影された線状パターンを撮影するカメラとを備え、前記カメラにより撮影した前記線状パターンの画像を解析して前記板材の平坦度を測定する板材の平坦度測定方法であって、
    前記線の長手方向について、前記線状パターンの大きさを前記板材より大きくすることにより、前記板材の端辺を検出する工程と、
    前記板材に投影された少なくとも1本の前記線の幅方向、及び/又は長手方向の形状から、前記線の長手方向について前記板材の形状を測定する工程と
    を有することを特徴とする板材の平坦度測定方法。
  3. 平行な複数の線からなる線状パターンを板材の表面に投影する投影機と、前記板材に投影された線状パターンを撮影するカメラとを備え、前記カメラにより撮影した前記線状パターンの画像を解析して前記板材の平坦度を測定する板材の平坦度測定方法であって、
    前記線の長手方向について、前記線状パターンの大きさを前記板材より大きくすることにより、前記板材の端辺を検出する工程と、
    検出した前記板材の端辺を基準として、前記板材の表面において前記線と直交する形状測定線を設定することを特徴とする板材の平坦度測定方法。
  4. 前記板材における前記形状測定線での隣接する前記線の間隔と、予め測定した平坦な基準板における前記形状測定線での隣接する前記線の間隔とを比較することにより、前記板材の表面角度分布を計算することを特徴とする請求項3に記載の板材の平坦度測定方法。
  5. 前記表面角度分布の計算が、
    前記形状測定線での前記線状パターンによる輝度分布から、フーリエ変換により空間周波数領域へ変換することにより前記線状パターンの空間周波数を求める工程と、
    前記空間周波数の逆数を計算して、前記線の間隔を求める工程と
    を有することを特徴とする請求項4に記載の板材の平坦度測定方法。
  6. 前記輝度分布のデータ数を、再サンプリングにより2(nは自然数とする。)のデータ数とし、高速フーリエ変換により前記輝度分布を前記空間周波数領域へ変換することを特徴とする請求項5に記載の板材の平坦度測定方法。
  7. 前記輝度分布を、前記形状測定線の長手方向に関して前記輝度分布を反転した輝度分布を前記輝度分布へ結合した輝度分布とする工程、及び/又は前記空間周波数を、前記空間周波数の周波数帯域を抽出し、前記周波数帯域を低周波側へ移動した空間周波数とする工程を有することを特徴とする請求項5又は6に記載の板材の平坦度測定方法。
  8. 感度及び/又は撮影角度の異なる複数のカメラを備え、
    前記カメラにより撮影された複数の画像から前記板材の平坦度を測定するにあたり、
    複数の前記画像による同一の前記形状測定線における複数の前記輝度分布のうち、少なくとも一つの前記輝度分布が輝度の飽和している部分を有する場合は、飽和している部分の少ない前記輝度分布を用い、いずれの前記輝度分布も輝度が飽和していない場合は、輝度の最も高い前記輝度分布を用いることを特徴とする請求項5〜7のいずれか一項に記載の板材の平坦度測定方法。
  9. 前記基準板について、予め複数の高さで前記形状測定線での隣接する前記線の間隔を測定しておく工程と、
    前記板材の高さを測定する工程と、
    測定した前記板材の高さから、使用する前記基準板の前記線の間隔を決定する工程と
    を有することを特徴とする請求項4〜8のいずれか一項に記載の板材の平坦度測定方法。
  10. 前記板材の高さを測定するためのパターンを前記板材の表面に投影し、前記カメラにより撮影した前記画像における前記パターンの位置から前記板材の高さを測定することを特徴とする請求項9に記載の板材の平坦度測定方法。
  11. 前記カメラで撮影する前記線状パターンの前記線の本数を、40〜100本とすることを特徴とする請求項1〜10のいずれか一項に記載の板材の平坦度測定方法。
  12. 前記カメラの露光時間dtを、次の(a)式により求め、設定することを特徴とする請求項1〜11のいずれか一項に記載の板材の平坦度測定方法。
    Figure 2008058036
    ただし、Ps’:前記板材が水平な場合に、前記線の幅方向における1本の前記線と前記線に隣接する一方の暗部とを合わせた大きさ
    n:前記大きさPs’における暗部の割合
    α:鉛直方向に対する前記カメラの撮影角度
    β:鉛直方向に対する前記投影機の投影角度
    V:前記板材の速度
    θmax:前記板材の水平方向に対する最大表面角度
  13. 平行な複数の線からなる線状パターンを板材の表面に投影する投影機と、
    前記板材に投影された線状パターンを撮影する感度及び/又は観察角度の異なる複数のカメラと
    を備えることを特徴とする板材の平坦度測定装置。
  14. 前記投影機に波長360〜560nmを最大輝度とする光源を備え、前記カメラに波長360〜560nmである光の透過フィルタを備えることを特徴とする請求項13に記載の板材の平坦度測定装置。
  15. 平坦な基準板を用い、前記基準板について予め複数の高さで測定した前記線の間隔の測定値を記憶した記憶媒体を備えることを特徴とする請求項13又は14に記載の板材の平坦度測定装置。
  16. 複数の仕上圧延機を直列に備える仕上圧延機列において、前記仕上圧延機の間に請求項13〜15のいずれか一項に記載の板材の平坦度測定装置を備えることを特徴とする仕上圧延機列。
  17. 請求項1〜12のいずれか一項に記載の板材の平坦度測定方法を用い、前記板材の平坦度を測定する工程を有することを特徴とする板材の製造方法。
  18. 請求項13〜15のいずれか一項に記載の板材の平坦度測定装置を用い、前記板材の平坦度を測定する工程を有することを特徴とする板材の製造方法。
JP2006232689A 2006-08-29 2006-08-29 板材の平坦度測定方法及び板材の平坦度測定装置 Active JP4797887B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006232689A JP4797887B2 (ja) 2006-08-29 2006-08-29 板材の平坦度測定方法及び板材の平坦度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006232689A JP4797887B2 (ja) 2006-08-29 2006-08-29 板材の平坦度測定方法及び板材の平坦度測定装置

Publications (2)

Publication Number Publication Date
JP2008058036A true JP2008058036A (ja) 2008-03-13
JP4797887B2 JP4797887B2 (ja) 2011-10-19

Family

ID=39240959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006232689A Active JP4797887B2 (ja) 2006-08-29 2006-08-29 板材の平坦度測定方法及び板材の平坦度測定装置

Country Status (1)

Country Link
JP (1) JP4797887B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237008A (ja) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc 高温物体の形状計測装置及び形状計測方法
JP2011007744A (ja) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd 三次元計測装置、及び三次元計測方法
JP4666272B1 (ja) * 2009-10-19 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
JP4666273B1 (ja) * 2010-05-18 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
JP2011099821A (ja) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd 板材の光学式形状測定方法及び測定装置
JP2011104598A (ja) * 2009-11-12 2011-06-02 Sumitomo Metal Ind Ltd 熱延板の製造方法
JP2011161473A (ja) * 2010-02-08 2011-08-25 Sumitomo Metal Ind Ltd 熱延板の形状制御方法、製造方法及び製造装置
US20120042985A1 (en) * 2010-08-19 2012-02-23 Reto Eggimann Apparatus and method for forming a wire loop
WO2014185478A1 (ja) 2013-05-14 2014-11-20 新日鐵住金株式会社 板材の平坦度測定方法、板材の平坦度測定装置及び鋼板の製造方法
JP2014224803A (ja) * 2013-04-26 2014-12-04 本田技研工業株式会社 ワーク品質判定方法及びワーク品質判定システム
JP2016065863A (ja) * 2014-09-22 2016-04-28 新日鐵住金株式会社 鋼板形状測定装置及びその方法、並びにそれらを用いた鋼板製造装置及びその方法
JP2016140898A (ja) * 2015-02-04 2016-08-08 Jfeスチール株式会社 鋼帯の平坦形状測定方法及び測定設備
CN105841640A (zh) * 2016-04-29 2016-08-10 北京航空航天大学 平面度误差评定方法及装置
JP2022074862A (ja) * 2020-11-05 2022-05-18 Primetals Technologies Japan株式会社 不良判断装置および不良判断方法
JP2023132603A (ja) * 2022-03-11 2023-09-22 Primetals Technologies Japan株式会社 金属帯板の板形状判断装置、連続圧延設備、および判断方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510569B1 (ko) 2013-12-24 2015-04-08 주식회사 포스코 판 높이 측정 시스템 및 방법
TWI826779B (zh) * 2021-04-23 2023-12-21 達運精密工業股份有限公司 基材平坦度的檢測方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524679A (en) * 1978-08-11 1980-02-21 Sumitomo Metal Ind Ltd Planar shape detector
JPS6140503A (ja) * 1984-07-31 1986-02-26 Sumitomo Metal Ind Ltd 連続搬送鋼板の平坦度測定方法
JPH04143608A (ja) * 1990-10-05 1992-05-18 Nkk Corp 鋼板の平坦度測定装置
JPH112511A (ja) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh 金属ストリップ用平面度測定システム
JP2001502800A (ja) * 1996-10-18 2001-02-27 インノメス・ゲゼルシャフト・フュア・メステクニク・エム・ベー・ハー 反射表面の経路を測定する方法及び装置
JP2002162205A (ja) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd 縞画像解析誤差検出方法および縞画像解析誤差補正方法
JP2004239886A (ja) * 2002-12-11 2004-08-26 Fuji Xerox Co Ltd 三次元画像撮像装置および方法
JP2005164294A (ja) * 2003-11-28 2005-06-23 Wakayama Univ 評価値を用いる縞画像計測データ合成方法
JP2005308439A (ja) * 2004-04-19 2005-11-04 Canon Inc パターン投影法による三次元形状計測装置
JP2006189315A (ja) * 2005-01-06 2006-07-20 Nippon Steel Corp 光学的形状測定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524679A (en) * 1978-08-11 1980-02-21 Sumitomo Metal Ind Ltd Planar shape detector
JPS6140503A (ja) * 1984-07-31 1986-02-26 Sumitomo Metal Ind Ltd 連続搬送鋼板の平坦度測定方法
JPH04143608A (ja) * 1990-10-05 1992-05-18 Nkk Corp 鋼板の平坦度測定装置
JP2001502800A (ja) * 1996-10-18 2001-02-27 インノメス・ゲゼルシャフト・フュア・メステクニク・エム・ベー・ハー 反射表面の経路を測定する方法及び装置
JPH112511A (ja) * 1997-03-11 1999-01-06 Betrieps Forsch Vdeh Inst Angew Forsch Gmbh 金属ストリップ用平面度測定システム
JP2002162205A (ja) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd 縞画像解析誤差検出方法および縞画像解析誤差補正方法
JP2004239886A (ja) * 2002-12-11 2004-08-26 Fuji Xerox Co Ltd 三次元画像撮像装置および方法
JP2005164294A (ja) * 2003-11-28 2005-06-23 Wakayama Univ 評価値を用いる縞画像計測データ合成方法
JP2005308439A (ja) * 2004-04-19 2005-11-04 Canon Inc パターン投影法による三次元形状計測装置
JP2006189315A (ja) * 2005-01-06 2006-07-20 Nippon Steel Corp 光学的形状測定方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237008A (ja) * 2009-03-31 2010-10-21 Toyota Central R&D Labs Inc 高温物体の形状計測装置及び形状計測方法
JP2011007744A (ja) * 2009-06-29 2011-01-13 Nissan Motor Co Ltd 三次元計測装置、及び三次元計測方法
US9138790B2 (en) 2009-10-19 2015-09-22 Nippon Steel & Sumitomo Metal Corporation Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
US8459073B2 (en) 2009-10-19 2013-06-11 Nippon Steel & Sumitomo Metal Corporation Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
WO2011048860A1 (ja) 2009-10-19 2011-04-28 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
KR101307037B1 (ko) 2009-10-19 2013-09-11 신닛테츠스미킨 카부시키카이샤 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법
JP4666272B1 (ja) * 2009-10-19 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
CN102667400A (zh) * 2009-10-19 2012-09-12 住友金属工业株式会社 板材的平坦度测量方法以及使用该方法的钢板的制造方法
JP2011099821A (ja) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd 板材の光学式形状測定方法及び測定装置
JP2011104598A (ja) * 2009-11-12 2011-06-02 Sumitomo Metal Ind Ltd 熱延板の製造方法
JP2011161473A (ja) * 2010-02-08 2011-08-25 Sumitomo Metal Ind Ltd 熱延板の形状制御方法、製造方法及び製造装置
JP4666273B1 (ja) * 2010-05-18 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
CN102918353A (zh) * 2010-05-18 2013-02-06 新日铁住金株式会社 板材的平坦度测量方法及采用该方法的钢板的制造方法
WO2011145168A1 (ja) 2010-05-18 2011-11-24 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
KR101441226B1 (ko) 2010-05-18 2014-09-17 신닛테츠스미킨 카부시키카이샤 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법
US9003846B2 (en) 2010-05-18 2015-04-14 Nippon Steel & Sumitomo Metal Corporation Method for measuring flatness of sheet material and method for manufacturing steel sheet using the same
US10014644B2 (en) * 2010-08-19 2018-07-03 Komax Holding Ag Apparatus and method for forming a wire loop
US20120042985A1 (en) * 2010-08-19 2012-02-23 Reto Eggimann Apparatus and method for forming a wire loop
JP2014224803A (ja) * 2013-04-26 2014-12-04 本田技研工業株式会社 ワーク品質判定方法及びワーク品質判定システム
US9482520B2 (en) 2013-05-14 2016-11-01 Nippon Steel & Sumitomo Metal Corporation Method for measuring flatness of sheet, device for measuring flatness of sheet, and production method for steel sheet
WO2014185478A1 (ja) 2013-05-14 2014-11-20 新日鐵住金株式会社 板材の平坦度測定方法、板材の平坦度測定装置及び鋼板の製造方法
JP2016065863A (ja) * 2014-09-22 2016-04-28 新日鐵住金株式会社 鋼板形状測定装置及びその方法、並びにそれらを用いた鋼板製造装置及びその方法
JP2016140898A (ja) * 2015-02-04 2016-08-08 Jfeスチール株式会社 鋼帯の平坦形状測定方法及び測定設備
CN105841640A (zh) * 2016-04-29 2016-08-10 北京航空航天大学 平面度误差评定方法及装置
CN105841640B (zh) * 2016-04-29 2018-09-18 北京航空航天大学 平面度误差评定方法及装置
JP2022074862A (ja) * 2020-11-05 2022-05-18 Primetals Technologies Japan株式会社 不良判断装置および不良判断方法
JP2023132603A (ja) * 2022-03-11 2023-09-22 Primetals Technologies Japan株式会社 金属帯板の板形状判断装置、連続圧延設備、および判断方法

Also Published As

Publication number Publication date
JP4797887B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4797887B2 (ja) 板材の平坦度測定方法及び板材の平坦度測定装置
US9138790B2 (en) Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
JP4957586B2 (ja) 熱延鋼板の製造方法、及び製造設備配列
CN103759638B (zh) 一种零件检测方法
KR101441226B1 (ko) 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법
US6286349B1 (en) Flatness measurement system for metal strip
CN103954213B (zh) 一种分析零件的实测图的方法
US20100195114A1 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
KR101734748B1 (ko) 판재의 평탄도 측정 방법, 판재의 평탄도 측정 장치 및 강판의 제조 방법
KR102044196B1 (ko) 조도 측정 장치 및 조도 측정 방법
JP5263126B2 (ja) 板材の光学式形状測定方法及び測定装置
JP2005517165A (ja) 表面形状の光学的測定及び圧延処理設備における運動中のストリップの光学的表面検査のための方法及び装置
JP2016065863A (ja) 鋼板形状測定装置及びその方法、並びにそれらを用いた鋼板製造装置及びその方法
KR20080060065A (ko) 열연 압연시 강판의 측면 형상 측정 장치 및 그 방법
JP2018065190A (ja) 鋼板形状の矯正装置、矯正方法、および、鋼板の連続酸洗装置
JP2005134362A (ja) 表面凹凸の検査方法及び検査装置
WO2021014811A1 (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JPH01282404A (ja) 熱処理炉内の帯材の位置測定方法及び装置
JP7222415B2 (ja) 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法
Isei et al. Development of a Shape Meter Employing the LED Dot Pattern Projection Method for a Hot Strip Finishing Mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4797887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350