WO2011048860A1 - 板材の平坦度測定方法及びこれを用いた鋼板の製造方法 - Google Patents

板材の平坦度測定方法及びこれを用いた鋼板の製造方法 Download PDF

Info

Publication number
WO2011048860A1
WO2011048860A1 PCT/JP2010/063068 JP2010063068W WO2011048860A1 WO 2011048860 A1 WO2011048860 A1 WO 2011048860A1 JP 2010063068 W JP2010063068 W JP 2010063068W WO 2011048860 A1 WO2011048860 A1 WO 2011048860A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
plate material
flatness
shape measurement
plate
Prior art date
Application number
PCT/JP2010/063068
Other languages
English (en)
French (fr)
Inventor
伊勢居 良仁
朋也 加藤
正洋 大杉
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2010541650A priority Critical patent/JP4666272B1/ja
Priority to CN201080058029.5A priority patent/CN102667400B/zh
Priority to EP10824712.3A priority patent/EP2492634B1/en
Priority to KR1020127012779A priority patent/KR101307037B1/ko
Priority to IN3206DEN2012 priority patent/IN2012DN03206A/en
Publication of WO2011048860A1 publication Critical patent/WO2011048860A1/ja
Priority to US13/444,342 priority patent/US8459073B2/en
Priority to US13/899,800 priority patent/US9138790B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Definitions

  • the present invention relates to a method for accurately measuring the flatness of a plate material such as a steel plate traveling in the longitudinal direction, and a method for manufacturing a steel plate using the same.
  • the plate material is required to have good flatness even if the quality is ensured and stable production is performed. For this reason, it is a conventional problem to properly manage the flatness in the manufacturing process of the plate material.
  • elongation difference rate ⁇ is an elongation rate ⁇ CENT at the central portion in the width direction of the plate material in a certain section in the longitudinal direction of the plate material, and an elongation rate ⁇ EDGE other than the central portion in the width direction of the plate material (generally in the vicinity of the edge).
  • ⁇ CENT - ⁇ EDGE
  • a hot-rolled steel sheet production line which is an example of a plate material, generally includes a heating furnace, a rough rolling mill, a finish rolling mill row, a cooling zone, and a coil winding machine.
  • the slab heated in the heating furnace is rolled by a roughing mill and processed into a steel piece (coarse bar) having a thickness of 30 to 60 mm.
  • the steel slab is rolled in a finishing mill line composed of 6 to 7 finishing mills to obtain a hot-rolled steel sheet having a thickness required by the customer.
  • This hot-rolled steel sheet is cooled in a cooling zone and wound up by a coil winder.
  • Producing a hot-rolled steel sheet with good flatness ensures product quality, and stably feeds through a finishing mill or coiling with a coil winder to maintain high productivity. Also important.
  • the flatness defect of the hot-rolled steel sheet is caused by unevenness in the sheet width direction of the elongation rate generated in the finishing rolling mill row and the cooling zone. For this reason, as a method for producing hot-rolled steel sheets with good flatness, a flatness meter and a thickness profile meter are installed between finishing mills or on the exit side of the finishing mill row, and measurement thereof is performed.
  • a method for feedback control of a work roll bender of a finishing mill and a method for learning control of setup conditions such as a work roll shift position and a load distribution of a finishing mill train have been proposed.
  • the above control method is described in, for example, Japanese Patent Application Laid-Open No. 11-104721.
  • a flatness meter is installed on the outlet side of the cooling zone and feedback control is performed on the cooling water amount of each cooling nozzle in the cooling zone based on the measured value.
  • a linear pattern consisting of a plurality of bright lines extending in the sheet width direction is projected onto the surface of a hot-rolled steel sheet that is hot-rolled and traveled, and the linear pattern is two-dimensionally projected.
  • a method is known in which an image is taken by a camera from a direction different from the projection direction of the linear pattern, and the surface shape of the hot-rolled steel sheet and thus the flatness is measured based on the distortion of the linear pattern in the captured image.
  • this method by projecting a linear pattern over a range of about 1 m in the longitudinal direction (rolling direction) of the hot-rolled steel sheet, a plate wave frequently observed in the immediate vicinity of the exit side of the finish rolling mill is present.
  • Japanese Patent Application Laid-Open No. 61-40503 discloses that three laser beams projected at intervals in the longitudinal direction of the plate are scanned at a high speed in the plate width direction so that three bright beams are formed on the plate surface.
  • a method is described in which a linear pattern composed of lines is projected and the surface shape of the plate, and thus the flatness, is measured based on the distortion of the linear pattern in the captured image obtained by capturing the pattern with a camera.
  • the linear pattern composed of three bright lines cannot accurately measure the surface shape of the plate, and in particular, there is a problem that the measurement accuracy is extremely deteriorated when the period of the plate wave is short.
  • a high-density linear pattern consisting of a plurality of bright lines extending in the plate width direction is projected onto the surface of a plate material using a slide depicting a high-density linear pattern.
  • a method is described in which the surface shape of the plate material, and thus the flatness, is measured based on the distortion of the linear pattern in the captured image obtained by imaging this with a camera.
  • a high-density linear pattern is projected, so that the surface shape measurement resolution (spatial resolution) is increased, and the surface shape of the plate is reduced. It can be expected to measure with high accuracy.
  • FIG. 1 is a diagram schematically illustrating an apparatus configuration example for performing the lattice projection method.
  • the surface of the plate is used by using a projector having a light source, a slide depicting a lattice pattern (generally a linear pattern) and an imaging lens from obliquely above the plate surface.
  • a grid pattern is projected onto the screen.
  • the lattice pattern projected on the surface of the plate material is imaged using a two-dimensional camera from a direction different from the projection direction of the lattice pattern.
  • the inclination angle of the plate material surface also changes, and the pitch of the lattice pattern in the captured image captured by the camera (generally, the interval between the bright lines constituting the linear pattern) is It changes according to the inclination angle of the plate material surface.
  • the relationship between the inclination angle of the plate surface and the pitch of the lattice pattern in the captured image can be calculated geometrically.
  • the inclination angle of the plate material surface can be calculated based on the measurement result and the above relationship. Then, by integrating the calculated inclination angle, the surface shape of the plate material can be calculated.
  • a linear pattern consisting of a plurality of bright lines extending in the sheet width direction is used as the grid pattern. Project to. Then, in the captured image of the linear pattern, a shape measurement line extending along the longitudinal direction of the hot-rolled steel sheet is set at a position where the surface shape needs to be measured in order to calculate the flatness, and the shape measurement is performed. Based on the density distribution of the pixels on the line, the distribution of the pitch of the linear pattern on the shape measurement line (interval of each bright line constituting the linear pattern) is calculated.
  • a device for carrying out the grid projection method as shown in FIG. 1 When a device for carrying out the grid projection method as shown in FIG. 1 is installed in a production line for hot-rolled steel sheets and the flatness measurement value is fed back in real time to control the finishing mill, the device is used for the finishing mill. It is necessary to install near the exit side. In addition to the installation of measuring instruments such as thickness gauges, sheet width gauges, sheet thermometers, etc., there is a water-cooled cooling zone in the immediate vicinity of the exit side of the finishing mill, so there is sufficient equipment installation space. In many cases, it cannot be secured.
  • the projector and the camera are brought closer to the hot-rolled steel plate, and the hot-rolled steel plate is placed within the projection angle of view of the projector and the angle of view of the camera. It is conceivable to set each angle of view wider so that the measurement range (about 1 m in the longitudinal direction) is included.
  • the camera receives regular reflection light of the projector projection light (regular reflection light of a linear pattern). You will have to place it in the position you want.
  • a linear pattern with a small pitch may be projected.
  • the surface of the hot-rolled steel sheet immediately after finish rolling is highly specular (the reflection intensity of the specular reflection component is large)
  • the camera is placed at a position where it can receive the specular reflection light of the projector projection light, Of the elements, the output signal from the element that receives the specularly reflected light is saturated and halation occurs, and adjacent bright lines are attracted to each other in the pixel region of the captured image corresponding to the element that receives the specularly reflected light and its peripheral elements.
  • the linear pattern tends to be crushed.
  • the output signal intensity of elements other than the element that receives the specularly reflected light will be insufficient, so the output signal intensity will be insufficient in the captured image.
  • the density of the pixels corresponding to the existing elements is reduced, and the bright line is difficult to identify.
  • the present invention has been made in order to solve the above-described problems of the prior art, and is a method for measuring the flatness of a plate material such as a steel plate traveling in the longitudinal direction, and is a plate material having strong regular reflection. Even when the imaging means is placed at a position where it can receive regular reflection light of the light and dark pattern projected on the surface of the plate, the surface shape of the plate material can be measured with high accuracy, and the flatness of the plate material can be measured with high accuracy. It is an object to provide a simple method.
  • the imaging means When the light / dark pattern projected onto the surface of the plate is a linear pattern with a small pitch, if the imaging means is arranged at a position where it can receive the specularly reflected light, it corresponds to the element that receives the specularly reflected light and its peripheral elements. As measures to avoid the linear pattern from being easily crushed in the pixel area, (1) Even if the sensitivity of the image pickup means is lowered, the image pickup means is used so that the output signal intensity of the element that does not receive regular reflection light is not insufficient. It is conceivable to employ a camera with a wide dynamic range, or (2) increase the pitch of the linear pattern.
  • the present inventors have intensively studied, and as shown in FIG. 3 (c), the bright portion has a predetermined pitch (in the vertical direction) in the vertical direction and the horizontal direction, as shown in FIG. 3C.
  • the vertical direction of the staggered pattern is along the longitudinal direction of the plate material
  • the horizontal direction is along the width direction of the plate material.
  • the distance between the bright parts adjacent in the vertical direction is the distance between the bright parts adjacent in the vertical direction in the conventional linear pattern. Since the distance becomes larger than the distance P L ′ (doubled), the interval between the bright portions increases.
  • the bright portions are continuous in the conventional linear pattern, whereas in the staggered pattern, the bright portions that are linearly adjacent in the horizontal direction (for example, the bright portions M1 and M3) are spaced apart. . For this reason, even in a pixel region corresponding to an element or the like of an imaging unit that receives regular reflection light, there is an advantage that the bright and dark pattern is hardly crushed.
  • the shape measurement line L1 simply extends along the longitudinal direction of the plate material (vertical direction of the staggered pattern) as in the conventional case. If the surface shape of the plate material is calculated on the basis of the density distribution of the pixels, the measurement resolution (spatial resolution) of the surface shape is reduced because the interval between the bright portions that are linearly adjacent in the vertical direction is large. .
  • the present inventors have further studied diligently, extend in the horizontal direction of the staggered pattern through the pixels on the shape measurement line L1, and have a length W that is twice or more the horizontal setting pitch P W of the bright portion.
  • We focused on calculating the average pixel density by averaging the pixel density on the straight line L2. For example, it is assumed that the pixel density of the bright portion of the staggered pattern is 254 and the pixel density of the dark portion is all 0. If the length W of the straight line L2 is twice the horizontal setting pitch P W of the bright part (W 2P W ), and the number of pixels in the bright part and the number of pixels in the dark part on the straight line L2 are the same, The average pixel density on the straight line L2 is 127.
  • the average pixel density distribution along the shape measurement line L1 is calculated (the vertical position of the straight line L2 is changed)
  • the average pixel density distribution is such that the average pixel density is at a position where the straight line L2 passes through the bright portion. 127, and the average pixel density at a position which does not pass only the dark portion becomes 0 distribution, i.e., a distribution having a longitudinal same cycle as set pitch P L of the bright portion of the.
  • the period P L of the average pixel density distribution is the same as the period P L ′ of the pixel density distribution on the shape measurement line L ′ for the conventional linear pattern (FIG. 3A).
  • the measurement resolution (spatial resolution) of the surface shape in the vertical direction (longitudinal direction of the plate material) of the staggered pattern is not reduced, It is possible to obtain the same measurement resolution as when using a linear pattern. Note that the amplitude of the average pixel density distribution when the staggered pattern is used is lower than the amplitude of the pixel density distribution when the linear pattern is used. However, if the length W of the straight line L2 to be averaged is twice or more the horizontal setting pitch PW of the bright portion, the bright portion always exists on the straight line L2.
  • the measurement resolution (spatial resolution) of the surface shape in the horizontal direction (width direction of the plate material) of the staggered pattern decreases according to the length W of the straight line L2, but is the main application target of the present invention.
  • a hot-rolled steel sheet does not cause a sudden shape change in the width direction, and therefore does not cause a problem unless W is extremely increased.
  • the present inventors can calculate the surface shape of the plate material according to the following procedures (A) to (C), so that the specularly reflected light of the bright and dark pattern projected on the surface can be received. Even when the image pickup means is arranged, it has been conceived that the light / dark pattern is not easily crushed and the surface shape of the plate material and thus the flatness can be measured with high accuracy without lowering the measurement resolution.
  • the present invention is an imaging means that projects a light / dark pattern composed of bright and dark portions on the surface of a plate that runs in the longitudinal direction and has an imaging field of view larger than the width of the plate.
  • a method of measuring a flatness of the plate material by acquiring a pattern image by imaging the light-dark pattern and analyzing the acquired pattern image, and includes the following first to sixth steps.
  • the staggered pattern is projected onto the surface of the plate so that the vertical direction is along the longitudinal direction of the plate and the horizontal direction of the staggered pattern is along the width of the plate.
  • Second step The imaging unit is arranged at a position where regular reflection light on the surface of the plate material of the staggered pattern can be received, and a pattern image is captured by imaging the staggered pattern with the imaging unit. get.
  • Third step A shape measurement line extending along the vertical direction of the staggered pattern is set at a predetermined position in the acquired pattern image.
  • Fourth step Average pixel density on a straight line extending in the horizontal direction of the staggered pattern through the pixels on the shape measurement line and having a length more than twice the horizontal set pitch of the bright portion To calculate the average pixel density.
  • the “set pitch” is a value obtained by projecting the interval between the bright portions of the staggered pattern in the imaging direction when it is assumed that the surface shape of the plate material on which the staggered pattern is projected is completely flat.
  • the “vertical direction setting pitch” means a vertical interval between bright portions adjacent in a staggered pattern along the vertical direction of the staggered pattern.
  • the “lateral direction setting pitch” means a horizontal interval between bright portions adjacent in a zigzag pattern along the horizontal direction of the zigzag pattern.
  • the shape measurement line is used.
  • a known phase analysis method is applied to the average pixel density distribution
  • the vertical pitch distribution p m in the staggered pattern along the shape measurement line
  • Relationship between the inclination angle ⁇ of the longitudinal pitch p m and plate surface of the light portion of the staggered pattern can be determined geometrically.
  • FIG. 4 is a schematic diagram showing the relationship between the inclination angle ⁇ of the longitudinal pitch p m and plate surface of the light portion of the staggered pattern.
  • FIG. 4 shows an example in which the plate material is traveling in the horizontal direction.
  • is the inclination angle formed by the travel direction (horizontal direction) of the plate material and the surface of the plate material
  • is the angle formed by the direction perpendicular to the travel direction of the plate material (vertical direction) and the imaging direction by the imaging means.
  • means an angle formed by a direction (vertical direction) perpendicular to the traveling direction of the plate material and the projection direction of the staggered pattern.
  • p m is the longitudinal pitch of the bright portions of the staggered pattern in the pattern image acquired for plate material
  • p m0 denotes the value obtained by projecting in a direction perpendicular (vertical direction) of p m to the running direction of the plate material.
  • p S is set in parallel to the traveling direction of the plate material (horizontally), and the vertical pitch of the bright portions of the staggered pattern in the pattern image acquired for the reference material having a flat surface shape
  • p S0 is p It means a value obtained by projecting S in a direction (vertical direction) perpendicular to the traveling direction of the plate material.
  • the distribution ⁇ (x) of the inclination angle of the surface of the plate along the shape measurement line can be calculated by the following equation (1).
  • the first step to the fifth step are performed on a reference material that is installed in parallel with the traveling direction of the plate material whose flatness is to be measured and has a flat surface shape.
  • a reference material that is installed in parallel with the traveling direction of the plate material whose flatness is to be measured and has a flat surface shape.
  • x is a position along the vertical direction of the staggered pattern in the pattern image (position along the longitudinal direction of the plate material)
  • ⁇ (x) is the traveling direction of the plate material and the surface of the plate material.
  • the distribution of the inclination angle, ⁇ is the angle formed between the direction perpendicular to the traveling direction of the plate and the imaging direction by the imaging means, and ⁇ is the angle formed between the direction perpendicular to the traveling direction of the plate and the projection direction of the staggered pattern Means.
  • the shape measurement line is set at least in the width direction central portion and the edge vicinity of the plate material.
  • the plate material is, for example, a hot-rolled steel plate
  • the plate often travels in a meandering or cambered state.
  • the positional relationship between the imaging means and the edge of the plate material changes in the width direction of the plate material.
  • the shape measurement line is set at fixed coordinates in the pattern image acquired by the imaging means, the shape measurement line is not correctly set at the center in the width direction of the plate according to the meandering or camber of the plate. Occurs.
  • the pixel corresponding to the edge of the plate material in the pattern image acquired by the imaging means is first detected, and the detected pixel is used as a reference. It is preferable to set a shape measurement line.
  • the third step includes a step of setting an edge detection line extending in a lateral direction of the staggered pattern at a predetermined position in the acquired pattern image, and a step on the edge detection line.
  • a standard deviation of the pixel density on a straight line that extends along the vertical direction of the staggered pattern through the pixels and has a length that is twice or more the vertical setting pitch of the bright portion is measured along the edge detection line.
  • a straight line (hereinafter referred to as a “standard deviation measurement line” as appropriate) having a length that is at least twice the vertical setting pitch of the bright part.
  • a standard deviation measurement line having a length that is at least twice the vertical setting pitch of the bright part.
  • the standard deviation of the pixel density on the standard deviation measurement line is increased.
  • the standard deviation of the pixel density on the standard deviation measurement line becomes small. Accordingly, it is possible to detect pixels corresponding to the edge of the plate material on the edge detection line based on the magnitude of the pixel density standard deviation.
  • the shape measurement line can be correctly set at a desired position such as the center in the width direction of the plate material even if meandering or camber occurs on the plate material. Is possible.
  • works on a conveyance roll
  • an edge detection line is set at a position where a pixel area corresponding to the transport roll exists, there is a possibility that pixels corresponding to the edge of the plate cannot be normally detected. Therefore, when the plate material travels on the transport roll, it is preferable to set the edge detection line at a position where there is no pixel area corresponding to the transport roll.
  • the zigzag pattern projected on the surface of the plate is picked up by the image pickup means, it is picked up by the image pickup means due to uneven illuminance of the light source for projecting the pattern or the inclination angle of the plate surface.
  • a large unevenness may occur in the pixel density of the pattern image.
  • the central portion of the staggered pattern tends to become brighter by arranging the imaging means at a position where it can receive irregular illumination of the light source and regular reflection light on the surface of the staggered pattern plate.
  • two imaging means having different sensitivities are juxtaposed so that their imaging fields of view overlap each other, and shapes are formed at corresponding positions in the pattern image acquired by each imaging means. It is conceivable to set a measurement line.
  • the shape measurement line passes through a pixel region having a very high pixel density
  • the surface of the plate is obtained using the average pixel density distribution along the shape measurement line set in the pattern image acquired by the low-sensitivity imaging means.
  • the shape measurement line passes through a pixel region having a low pixel density while calculating the shape
  • the plate material is used by using the average pixel density distribution along the shape measurement line set in the pattern image acquired by the high-sensitivity imaging means. What is necessary is just to calculate the surface shape.
  • the average pixel density distribution along the shape measurement line set in the pattern image acquired by the high-sensitivity imaging means has a large number of saturated pixels, it is acquired by the low-sensitivity imaging means.
  • the surface shape of the plate material may be calculated using the average pixel density distribution along the shape measurement line set in the pattern image.
  • the pattern image acquired by the high-sensitivity imaging means when the number of pixels whose density is saturated is small What is necessary is just to calculate the surface shape of a board
  • a high-sensitivity imaging unit and a low-sensitivity imaging unit having a lower sensitivity than the high-sensitivity imaging unit are used as the imaging unit.
  • the high-sensitivity imaging means and the low-sensitivity imaging means are juxtaposed so as to have overlapping portions, and in the third step, the correspondence in each pattern image acquired by the high-sensitivity imaging means and the low-sensitivity imaging means, respectively.
  • the shape measurement line is set at a position where the density is saturated in the average pixel density distribution along the shape measurement line set in the pattern image acquired by the high-sensitivity imaging unit.
  • the plate material is a hot-rolled steel plate
  • flatness measurement such as local flatness failure is too severe
  • the steel plate with a thin thickness is lifted up momentarily, and the occurrence of a partial abnormal scale on the steel plate surface.
  • Controlling a finishing mill or the like using an abnormal measurement value results in incorrect control, causing further deterioration in flatness and troubles in the production line. Even when such an abnormal measurement value occurs, control is performed as much as possible.
  • the control is preferably interrupted.
  • the plate wave observed in the pattern image is about 1 to 3 peaks. For this reason, since the flatness measurement value measured using one pattern image varies, the value obtained by averaging the most recent flatness measurement values can be used as an output for controlling a finishing mill or the like. preferable.
  • the measurement response speed required for feedback control to the finishing mill, etc. is about 1 second (there is also a transfer delay from the flatness measuring device to the finishing mill, etc., so a higher response speed is required.
  • a plurality of parts different in the longitudinal direction of the plate material be obtained by repeatedly executing the first step to the sixth step on the plate material traveling in the longitudinal direction.
  • N is an integer of 2 or more
  • the measurement was successful. Is output, and an average value of the measured flatness values that have been successfully measured is output as the flatness measurement result. For this reason, if these outputs are input to a control device that controls a finishing mill or the like and the control device performs control based on this input, the control based on the measured flatness value will not be interrupted.
  • a signal indicating that the measurement has failed is output. If it inputs into the control apparatus which controls a finishing mill etc., it is possible to interrupt control appropriately. For example, the number N of averaging can be exemplified as 10 times and the threshold value can be exemplified as 5 times.
  • the determination of whether or not the flatness measurement value in the eighth step has been successfully measured is, for example, whether or not the edge of the plate material has been normally detected, and whether the surface shape of the plate material along the shape measurement line is normal. It is possible to make a determination based on whether the calculation is successful. Whether or not the edge of the plate material has been detected normally is, for example, whether or not the width of the plate material and the amount of meander that can be calculated from the coordinates of the pixels corresponding to the edge of the plate material detected in the pattern image are abnormal values. Is predictable. Further, whether or not the surface shape of the plate material along the shape measurement line can be normally calculated can be predicted, for example, by whether or not the amplitude of the average pixel density distribution along the shape measurement line is excessively small. .
  • the eighth step includes edge detection lines extending in the lateral direction of the staggered pattern in the pattern image used to obtain the most recent N times of flatness measurement values.
  • the present invention is a method of manufacturing a steel plate by rolling a steel slab rough-rolled by a rough rolling mill in a finishing mill row and then cooling it in a cooling zone, and by the flatness measuring method, Based on the result of measuring the flatness, the rolling condition of the finishing mill or the cooling condition in the cooling zone is controlled.
  • the imaging means is arranged at a position where it can receive regular reflection light of a bright and dark pattern projected on the surface of a plate material having strong regular reflection.
  • the flatness of the plate material can be measured with high accuracy.
  • FIG. 1 is a diagram schematically illustrating an apparatus configuration example for performing the lattice projection method.
  • FIG. 2 is an explanatory diagram for explaining a range in which the camera receives regular reflection light of projector projection light.
  • FIG. 3 is an explanatory diagram for comparing various light and dark patterns.
  • Figure 4 is a schematic diagram showing the relationship between the inclination angle ⁇ of the longitudinal pitch p m and plate surface of the light portion of the staggered pattern.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration example of a flatness measuring apparatus for carrying out the flatness measuring method according to the present invention.
  • FIG. 6 is a schematic diagram showing an installation state of the flatness measuring apparatus shown in FIG. FIG.
  • FIG. 7 is a graph showing the relationship between p m / p S and the inclination angle ⁇ of the surface of the hot-rolled steel sheet under the arrangement condition in the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a staggered pattern formed on a slide that constitutes the projector shown in FIG.
  • FIG. 9 is a diagram showing another example of a staggered pattern formed on a slide that constitutes the projector shown in FIG.
  • FIG. 10 is a flowchart showing an outline of processing executed by the image analysis apparatus shown in FIG.
  • FIG. 11 is an explanatory diagram for explaining an edge detection method and a shape measurement line determination method for hot-rolled steel sheets.
  • FIG. 12 is an explanatory diagram for explaining a method of calculating the steepness.
  • FIG. 11 is an explanatory diagram for explaining an edge detection method and a shape measurement line determination method for hot-rolled steel sheets.
  • FIG. 12 is an explanatory diagram for explaining a method of calculating the steepness.
  • FIG. 13 shows an example of a pattern image when a conventional linear pattern is used as a light and dark pattern projected onto the surface of a hot-rolled steel sheet, and a shape measurement line and a right edge vicinity in the center in the width direction of the hot-rolled steel sheet for the pattern image. It is a figure which shows pixel density distribution along the shape measurement line.
  • FIG. 14 shows an example of a pattern image when a staggered pattern is used as a bright and dark pattern projected on the surface of a hot-rolled steel sheet, a shape measurement line at the center in the width direction of the hot-rolled steel sheet, and a shape near the right edge It is a figure which shows average pixel density distribution along a measurement line.
  • FIG. 15 shows a measurement example such as the steepness of the entire length of one coil of the steel plate when a conventional linear pattern is used as the light and dark pattern projected onto the surface of the hot rolled steel plate.
  • FIG. 16 shows a measurement example of the steepness of the entire length of one coil of the steel plate when a staggered pattern is used as the light and dark pattern projected on the surface of the hot rolled steel plate.
  • FIG. 17 shows a measurement example of the steepness of the entire length of one coil of a steel plate when a staggered pattern is used as a light and dark pattern projected on the surface of the hot rolled steel plate with respect to a hot rolled steel plate made of a material having a low surface reflectance. .
  • the plate material is a hot-rolled steel plate
  • the flatness is measured on the exit side of the finish rolling mill line of the hot-rolled steel plate production line Will be described as an example.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration example of a flatness measuring apparatus for carrying out the flatness measuring method according to the present invention.
  • FIG. 6 is a schematic diagram showing an installation state of the flatness measuring apparatus shown in FIG.
  • the flatness measuring apparatus 100 according to the present embodiment uses a zigzag pattern P as a light and dark pattern, and the zigzag pattern P has a vertical direction along the longitudinal direction of the hot-rolled steel sheet S.
  • the installation space on the finish rolling mill row side where the flatness measuring apparatus 100 of the present embodiment is installed is only 2 m in the longitudinal direction of the hot-rolled steel sheet S and 2.5 m in the vertical direction.
  • the imaging means 2 receives regular reflection light of the projection light from the projector 1 (regular reflection light of the staggered pattern P). It must be placed in a possible position.
  • the projector 1 is used to project the staggered pattern P with respect to the hot-rolled steel sheet S at an angle of 15 ° (an angle formed by the vertical direction and the projection direction of the staggered pattern P) from above.
  • the projected staggered pattern P is imaged at an angle of 15 ° (an angle formed between the vertical direction and the imaging direction) from the upper side of the hot-rolled steel sheet S by using the imaging unit 2.
  • FIG. 7 is a graph showing the relationship between p m / p S and the inclination angle ⁇ of the surface of the hot-rolled steel sheet S under the above arrangement conditions.
  • the p m is longitudinal pitch of the bright portions of the staggered pattern P in the pattern image acquired for hot-rolled steel sheet S
  • p S is for a reference material having a flat surface shape disposed horizontally
  • means the inclination angle formed by the horizontal direction and the surface of the hot-rolled steel sheet S.
  • the measurement range of the inclination angle ⁇ of the surface of the hot-rolled steel sheet S is determined by the sum of the required flatness (steepness) measurement range and the range of the inclination angle of the entire surface of the hot-rolled steel sheet S that can occur during measurement. .
  • the required measurement range of steepness is -5% to + 5% (corresponding to -9 ° to + 9 ° in terms of the inclination angle of the surface of the hot-rolled steel sheet S).
  • the measurement range of the inclination angle ⁇ of the hot-rolled steel sheet S surface is set to ⁇ 15 ° to + 15 °. 7 that the inclination angle of the hot-rolled steel sheet S surface changes in the range of -15 ° ⁇ + 15 °, p m / p S will vary in the range of 0.85 to 1.15.
  • a metal halide lamp with an output of 2.5 kW is used as the light source constituting the projector 1.
  • the light emitted from the lamp passes through a slide and an imaging lens arranged in front of the lamp, and is projected on the surface of the hot-rolled steel sheet S at an imaging magnification of about 20 times.
  • the distance from the projector 1 to the surface of the hot-rolled steel sheet S is about 2 m, and the dimensions of the projected staggered pattern are 1400 m in the vertical direction and 1800 mm in the horizontal direction.
  • a staggered pattern is formed on the slide by depositing Cr on a quartz glass substrate. A portion where Cr is deposited becomes a dark portion of a staggered pattern, and a portion where Cr is not deposited becomes a bright portion of a staggered pattern.
  • FIG. 8 is a diagram showing an example of a staggered pattern formed on a slide that constitutes the projector.
  • FIG. 8A shows an overall view
  • FIG. 8B shows a partially enlarged view.
  • the bright portions M are arranged on the slide in a staggered manner with a pitch of 2 mm in the vertical and horizontal directions.
  • the staggered pattern is not limited to the form shown in FIG. 8.
  • one bright part M is divided into two elements MA and MB without changing the pitch of the bright part M. It is also possible to have a staggered pattern of the shape. In addition, it is possible to suppress the influence of the uneven illuminance of the projector 1 by changing the size of the bright part M partially.
  • the illuminance near the surface of the hot-rolled steel sheet S is about 6000 Lx near the optical axis of the projector 1 and about 3000 Lx near the edge of the hot-rolled steel sheet M.
  • the entire projector 1 is housed in a stainless steel dustproof box.
  • air is supplied into the dust-proof box using a large blower so that dust and mist-like water droplets do not enter the dust-proof box from the opening that projects the staggered pattern, and the air is blown out from the opening. It is said.
  • the imaging means 2 has SVGA size light receiving elements (788 light receiving elements in the horizontal direction and 580 pixels in the vertical direction), and outputs 40 image signals per second in a progressive manner.
  • a two-dimensional CCD camera is used.
  • a plurality of CCD cameras can capture images in synchronization with an external synchronization signal.
  • the two CCD cameras 21 and 22 are used as the imaging means 2.
  • the CCD cameras 21 and 22 are juxtaposed so that the respective imaging fields of view overlap each other, and the sensitivity is set to 1: 4 by adjusting the respective lens diaphragm and gain (hereinafter referred to as appropriate).
  • the CCD camera with the lower sensitivity is called the low-sensitivity imaging means 21, and the CCD camera with the higher sensitivity is called the high-sensitivity imaging means 22.
  • the exposure time of the imaging means 2 is set to 2.5 msec so that the surface shape of the hot-rolled steel sheet S rolled and wound at a maximum speed of 1500 mpm can be measured without blurring.
  • the imaging means 2 of the present embodiment can be used to clearly capture the staggered pattern without being affected by the radiation from the surface of the hot-rolled steel sheet S.
  • a band-pass filter that transmits only blue-green is provided in front of the lens.
  • the image pickup means 2 of this embodiment is housed in a stainless steel dustproof box, and air purge is performed with compressed air so that the lens is not soiled. Since the imaging unit 2 of the present embodiment has an imaging field of view of about 1800 mm in the width direction of the hot-rolled steel sheet S, the horizontal resolution of the pattern image acquired by the imaging unit 2 is about 2.3 mm / pixel.
  • the image analysis apparatus 3 is a program (hereinafter, referred to as “program”) for executing processing as described later on a general-purpose personal computer (CPU: Core2Duo processor with a clock frequency of 2.4 GHz, OS: Windows (registered trademark)).
  • program for executing processing as described later on a general-purpose personal computer (CPU: Core2Duo processor with a clock frequency of 2.4 GHz, OS: Windows (registered trademark)).
  • the flatness analysis program is installed.
  • the image analysis apparatus 3 uses the built-in multi-channel image capturing board to capture the image signals output from the low-sensitivity imaging unit 21 and the high-sensitivity imaging unit 22 into the memory simultaneously with 256 gradations (8 bits). It is configured.
  • the image data (pattern image) captured in the memory of the image analysis device 3 is analyzed by the flatness analysis program, and the flatness measurement value as the analysis result is displayed on the monitor screen of the image analysis device 3 and the upper control device ( Is output to a control device for controlling a finishing mill or the like.
  • the image analysis apparatus 3 processes the pattern image acquired by the imaging unit 2 using the installed flatness analysis program according to the procedure shown in FIG. Hereinafter, each process will be described sequentially.
  • FIG. 11 is an explanatory diagram for explaining an edge detection method and a shape measurement line determination method for hot-rolled steel sheets.
  • the standard deviation of the pixel density on the straight line having the above length (100 mm in this embodiment) is sequentially calculated along the edge detection line LE1. Based on the calculated pixel density standard deviation, pixels E11 and E12 corresponding to the edges of the hot-rolled steel sheet S are detected on the edge detection line LE1. Specifically, for example, the distribution of the pixel density standard deviation along the edge detection line LE1 is differentiated along the edge detection line LE1, and the pixel E11 having the maximum differential intensity and the pixel E12 having the minimum differential are heated.
  • edges E21 and E22 corresponding to the edges of the hot-rolled steel sheet S are detected on the edge detection line LE2 based on the magnitude of the pixel density standard deviation sequentially calculated along the edge detection line LE2. .
  • straight lines passing through the pixels E11 and E21 and straight lines passing through the pixels E12 and E22 are detected as the estimated edges LL and LR of the steel sheet S, respectively.
  • the width of the hot-rolled steel sheet S on the edge detection line LE1 is calculated based on the detected coordinates of the pixels E11 and E12 and the horizontal resolution of the pattern image (about 2.3 mm / pixel in this embodiment). can do.
  • the width of the hot-rolled steel sheet S on the edge detection line LE2 can be calculated based on the detected coordinates of the pixels E21 and E22 and the lateral resolution of the pattern image.
  • the coordinates of the center portion of the hot-rolled steel sheet S on the edge detection line LE1 can be calculated from the detected coordinates of the pixel E11 and the pixel E12.
  • the coordinates of the central portion of the hot-rolled steel sheet S on the edge detection line LE2 can be calculated from the detected coordinates of the pixel E21 and the pixel E22.
  • the meandering amount of the hot-rolled steel sheet S can be calculated. When the meandering amount is larger than a predetermined threshold value, it is possible to determine that the edge of the hot-rolled steel sheet S has not been normally detected.
  • the shape measurement line is determined based on the edge equivalent pixels E11 to E22 detected as described above (based on the left estimated edge LL passing through the pixels E11 and E21 and the right estimated edge LR passing through the pixels E12 and E22). And set in the pattern image acquired by the high-sensitivity imaging means 22. Specifically, in the present embodiment, the shape measurement line L11 in the vicinity of the left edge of the hot-rolled steel sheet S (inside by 75 mm from the left-side estimated edge LL), the width 1 of the hot-rolled steel sheet S from the left edge of the hot-rolled steel sheet S.
  • Shape measuring line L12 on the inner side by the length corresponding to / 4 (the inner side by a length corresponding to 1 ⁇ 4 of the width of the hot-rolled steel sheet S from the left estimated edge LL), the shape of the center portion in the width direction of the hot-rolled steel sheet Measurement line L13, the length corresponding to 1/4 of the width of the hot-rolled steel sheet S from the right edge of the hot-rolled steel sheet S (the length corresponding to 1/4 of the width of the hot-rolled steel sheet S from the estimated right edge LR)
  • the shape measurement lines L14 on the inner side only) and the shape measurement lines L15 in the vicinity of the right edge of the hot-rolled steel sheet S (the inner side by 75 mm from the right estimated edge LR) are set in total.
  • the low-sensitivity imaging means is obtained by obtaining in advance the positional relationship between the coordinates in the pattern image acquired by the high-sensitivity imaging means 22 and the coordinates in the pattern image acquired by the low-sensitivity imaging means 21 corresponding thereto.
  • the shape measurement line can be set at a position corresponding to the shape measurement lines L 11 to L 15 set for the pattern image acquired by the high-sensitivity imaging means 22 as described above. is there.
  • the pattern images acquired by both the low-intensity imaging unit 21 and the high-intensity imaging unit 22 extend in the horizontal direction of the staggered pattern through the pixels on the shape measurement lines L11 to L15, and the horizontal part of the bright part.
  • the horizontal resolution of the pattern image is about 2.3 mm / pixel. Therefore, the length of the straight line for averaging the pixel density may be 35 pixels or more.
  • the length of the straight line for averaging the pixel density is 40 pixels, and the distribution of the average pixel density along each shape measurement line L11 to L15 is calculated. Further, the average pixel density distribution (that is, 512 average pixels) in which the x coordinate (position along the vertical direction of the staggered pattern in the pattern image) on each of the shape measurement lines L11 to L15 ranges from 50 to 561 in pixel units. Data).
  • the average pixel density distribution along the shape measurement line set in the pattern image acquired by the low sensitivity imaging means 21 is used ( As will be described later, the average pixel density distribution is used to calculate the surface shape of the hot-rolled steel sheet S along the shape measurement line).
  • the average pixel density distribution along the shape measurement line set in the pattern image acquired by the high sensitivity imaging means 22 is used.
  • the low sensitivity when the number of density saturation pixels is equal to or greater than the threshold value, the low sensitivity The average pixel density distribution along the shape measurement line L11 set in the pattern image acquired by the imaging means 21 is used. Further, for example, in the average pixel density distribution along the shape measurement line L13 set in the pattern image acquired by the high-sensitivity imaging unit 22, when the number of density saturated pixels is less than the threshold value, the low-sensitivity imaging unit 21 The average pixel density distribution along the shape measurement line L13 set in the pattern image acquired in step S13 is used.
  • the vertical pitch distribution p S (x) of the staggered pattern along the shape measurement lines L11 to L15 is calculated in advance. deep.
  • Various methods are conceivable as methods for calculating the vertical pitch distributions p m (x) and p S (x) of the bright portion based on the average pixel density distribution. In this embodiment, the phase described below is used. The analysis method is applied.
  • f (x) be the average pixel density distribution obtained for the hot-rolled steel sheet S that is the target for measuring the flatness.
  • a frequency analysis method such as Fourier transform
  • the fluctuation range of the vertical pitch of the bright portion of the assumed staggered pattern from f (x) (for example, ⁇ 5% to +5 %)
  • a distribution f S (x) represented by the following equation (9) is obtained. Since this f S (x) includes only the vertical pitch distribution of the bright portions of the projected zigzag pattern as a periodic component, by analyzing the phase component ⁇ (x), the vertical direction The pitch distribution can be obtained.
  • Hilbert transform For the analysis of the phase component, for example, Hilbert transform can be used.
  • the Hilbert transform is a transformation into a waveform having the same amplitude whose phase is shifted by ⁇ / 2 (90 °) with respect to the original waveform.
  • the result of the discrete inverse Fourier transform is performed by replacing the coefficient of the negative frequency part of F S (k) obtained by performing the discrete Fourier transform of f S (x) with 0. It is used that f S (X) + if H (x).
  • the obtained f H (x) is expressed by the following formula (10) because the phase is shifted by ⁇ / 2 with respect to f S (x).
  • the amplitude A (x) of f S (x) can be obtained by calculating the square root of the square of f S (x) and f H (x). .
  • the vertical pixel pitch p S (x) of the staggered pattern is determined by performing the same analysis on the average pixel density distribution obtained for the reference material having a flat surface shape installed horizontally. Is possible.
  • is an angle formed by the vertical direction and the imaging direction by the imaging means (15 ° in the present embodiment), and ⁇ is an angle formed by the vertical direction and the projection direction of the staggered pattern (15 in the present embodiment). °) means.
  • the slope angle of the surface of the hot-rolled steel sheet S along the shape measurement lines L11 to L15 calculated as described above is integrated along the shape measurement lines L11 to L15.
  • the surface shape of the hot-rolled steel sheet S along the shape measurement lines L11 to L15 is calculated.
  • Whether or not the surface shape of the hot-rolled steel sheet S along the shape measurement lines L11 to L15 has been normally calculated can be determined, for example, by the excessive amplitude of the average pixel density distribution along the shape measurement lines L11 to L15. Judgment can be made based on whether or not it is smaller. Specifically, the amplitude of the average pixel density distribution f (x) is less than a preset threshold value among the amplitudes A (x) calculated by the equation (12) by analyzing the phase as described above. If the number of pixels is counted and the number of pixels is less than the predetermined number, it is determined that the surface shape of the hot-rolled steel sheet S cannot be calculated normally. If the number of pixels is equal to or greater than the predetermined number, It can be determined that the surface shape of the rolled steel sheet S has been normally calculated.
  • FIG. 12 is an explanatory diagram for explaining a method of calculating the steepness.
  • the elongation ⁇ EDGE at the shape measurement line L11 is calculated by the calculation formula in the figure based on the surface length in the target section of the surface shape S11 of the hot-rolled steel sheet S along the shape measurement line L11 and the linear distance therebetween. To do.
  • the elongation ⁇ CENT at the shape measurement line L13 is calculated based on the surface length in the target section of the surface shape S13 of the hot-rolled steel sheet S along the shape measurement line L13 and the linear distance therebetween. Calculate with the formula.
  • the target section is divided into 12 sections by points P 0 to P 12 and approximated by a polygonal line, thereby reducing the surface lengths of the surface shapes S11 and S13. I'm calculating.
  • an elongation difference rate ⁇ which is a difference between the elongation rate ⁇ CENT at the shape measurement line L13 and the elongation rate ⁇ EDGE at the shape measurement line L11, is calculated, and based on the elongation difference rate ⁇ and the equation (3). Then, the steepness ⁇ is calculated.
  • Measurement Result Validity Determination Process (S6 in FIG. 10)>
  • the flatness (steepness) of a plurality of different portions in the longitudinal direction of the hot-rolled steel sheet S is sequentially measured, and the nearest N (N is an integer of 2 or more) preset times. It is determined whether or not the flatness measurement values are each successfully measured.
  • the determination as to whether or not the measurement has been successful is performed based on whether or not the edge of the hot-rolled steel sheet S has been normally detected and the surface shape of the hot-rolled steel sheet S along the shape measurement line is normal. Judgment is made based on whether or not the calculation was successful.
  • whether or not the surface shape of the hot-rolled steel sheet S along the shape measurement line can be normally calculated is set in advance in the amplitude A (x) calculated by the equation (12).
  • the number of pixels having an amplitude less than the threshold is counted, and if the number of pixels is less than the predetermined number, it is determined that the surface shape of the hot-rolled steel sheet S cannot be calculated normally, and the number of pixels is predetermined. If it is more than the number, it is determined that the surface shape of the hot-rolled steel sheet S can be normally calculated.
  • the measurement was successful when the number of times determined that the measurement was successful among the most recent N flatness measurement values was greater than or equal to a preset threshold value M.
  • a signal indicating that the measurement result is valid (a signal indicating that the measurement result is valid) is output to the control device for controlling the finishing mill, etc.
  • An average value of the degree measurement values is output to the control device as a flatness measurement result.
  • a signal indicating that the measurement has failed a signal indicating that the measurement result is invalid
  • the case where the flatness is measured on the exit side of the finish rolling mill row of the hot rolled steel sheet production line has been described as an example, but the present invention is not limited to this, and between the finishing mills It is also possible to apply to the case where the flatness is measured on the exit side of the cooling zone.
  • effects when the flatness measurement method according to the present embodiment is applied will be described.
  • FIG. 13 shows an example of a pattern image when a conventional linear pattern is used as the light and dark pattern projected onto the surface of the hot-rolled steel sheet S, and a shape measurement line L13 at the center in the width direction of the hot-rolled steel sheet S for the pattern image. It is a figure which shows pixel density distribution along the shape measurement line L15 of the right edge vicinity.
  • FIG. 14 shows an example of a pattern image when the staggered pattern of the present embodiment is used as a bright and dark pattern projected onto the surface of the hot-rolled steel sheet S, and the shape of the central portion in the width direction of the hot-rolled steel sheet S for the pattern image.
  • the influence of the specularly reflected light deviates from the central portion of the hot-rolled steel sheet S regardless of whether the linear pattern (FIG. 13) or the staggered pattern (FIG. 14) is used as the light and dark pattern. Therefore, for the pixel density distribution along the shape measurement line L15 in the vicinity of the edge (average pixel density distribution in the case of FIG. 14), by using the pattern image acquired by the high-sensitivity imaging means, A periodic waveform can be observed over the entire direction.
  • the pixel density distribution along the shape measurement line L13 at the center in the width direction of the hot-rolled steel sheet S is a pattern image acquired by either the high-sensitivity imaging means or the low-sensitivity imaging means. Even if it exists, a periodic waveform cannot be observed over the longitudinal direction whole region of a pattern image.
  • the staggered pattern of the present embodiment as shown in FIG.
  • the staggered pattern is less likely to be crushed, and the pixel density is averaged in the width direction.
  • the difference in pixel density between the pixel region corresponding to the position where the regularly reflected light is received and the other pixel regions is small.
  • the average pixel density distribution along the shape measurement line L13 at the center in the width direction of the hot-rolled steel sheet S has a periodicity over almost the entire region in the vertical direction of the pattern image. It is possible to observe a typical waveform.
  • FIG. 15 shows a measurement example such as the steepness of the entire length of one coil of the steel sheet when a conventional linear pattern is used as the light and dark pattern projected onto the surface of the hot-rolled steel sheet S.
  • FIG. 16 shows a measurement example of the steepness of the entire length of one coil of the steel plate when the staggered pattern of the present embodiment is used as the bright and dark pattern projected onto the surface of the hot-rolled steel plate S.
  • 15A and 16A show the measured values of the steepness measured for the shape measurement lines L11 and L15 in the vicinity of both edges
  • FIGS. 15B and 16B show the flatness of the 10 most recent times. Of the measured values, the number of successful measurements, FIGS.
  • FIGS. 15 (c) and 16 (c) indicate whether or not the edge of the hot-rolled steel sheet S has been detected
  • FIGS. 15 (d) and 16 (d) indicate the surface.
  • the number of shape measurement lines that can be measured normally is shown.
  • the hot-rolled steel sheet S to be measured is the same material and the same dimensions in any case, and is near the tip where the flatness defect occurs.
  • edge detection is normally performed over the entire length of the hot-rolled steel sheet S (FIG. 15 (c)).
  • the number of times of successful measurement of the last 10 flatness measurement values may be less than 5 times, resulting in an unreliable measurement value, which cannot be output to the control device.
  • it cannot be measured in a tension-free state at the tip of the hot-rolled steel sheet S, which originally needs to control the flatness.
  • the edge detection and the surface shape measurement can be normally performed over the entire length of one coil of the hot-rolled steel sheet S. It can be seen that this is an improvement.
  • FIG. 17 shows the steepness of the entire length of one coil of the steel sheet when the staggered pattern of the present embodiment is used as the light and dark pattern projected onto the surface of the hot rolled steel sheet S with respect to the hot rolled steel sheet S having a low surface reflectance.
  • FIG. 17A shows the measured values of the steepness measured for the shape measurement lines L11 and L15 in the vicinity of both edges
  • FIG. 17B shows the number of times of successful measurement among the 10 most recent flatness measured values.
  • 17 (c) shows whether or not the edge of the hot-rolled steel sheet S has been detected
  • FIG. 17 (d) shows the number of shape measurement lines on which the surface shape can be normally measured.
  • FIG. 17C there are some cases where edge detection could not be performed (FIG. 17C), but the number of successful measurements out of the latest 10 flatness measurement values is 5. If it is equal to or greater than the number of times, one coil of the hot-rolled steel sheet S is used to output the average value of the measured flatness values that have been successfully measured to the control device as the effective flatness measurement result among the 10 most recently measured flatness values.
  • the flatness measurement result is output without interruption over the entire length (FIG. 17B). Note that there are cases where the surface shape can be normally measured for all of the five shape measurement lines even though the edge detection cannot be performed (the portions surrounded by the broken lines in FIGS. 17C and 17D). .
  • Table 1 shows an example of the result of comparing the measurement stability when using the conventional linear pattern and the staggered pattern of the present embodiment for the hot-rolled steel sheet S of the same steel type. Since the state of the surface of the hot-rolled steel sheet S differs depending on the steel type, the measurement stability is compared for the same steel type as the steel type whose surface shape measurement success rate was low when the conventional linear pattern was used.
  • the edge detection success rate, surface shape measurement success rate, and effective judgment rate in Table 1 indicate the average values of the values obtained by the following formulas (14) to (16) for each coil of the hot-rolled steel sheet S, respectively. ing.
  • the methods of edge detection and surface shape measurement are as described above.
  • Edge detection success rate (number of successful edge detections / number of processed images of the entire length of one coil) ⁇ 100 (14)
  • Surface shape measurement success rate (number of successful surface shape measurements / number of processed images of the entire length of the coil) ⁇ 100 (15)
  • Effective judgment rate (Number of successful surface shape measurement and edge detection / number of processed images of one coil total length) ⁇ 100 (16)
  • edge detection a success rate of 99% or more is shown in any case, and it can be seen that there is not much difference regardless of whether a linear pattern or a staggered pattern is used. In other words, even if a staggered pattern is used as the projection pattern, the edge detection capability does not deteriorate.
  • the success rate was 83.8% when the conventional linear pattern was used, but it was greatly improved to 97.9% by using the staggered pattern. Yes. Accordingly, the effective determination rate is improved from 94.2% to 98.6%.
  • the staggered pattern is changed as in this embodiment. It can be expected that the effect of application to the control of the measured flatness value will be great. Moreover, by turning the control on / off based on the determination of the validity of the measurement result, it is possible to prevent a control error due to an abnormal measurement value and to realize stable control.

Abstract

【課題】正反射性の強い板材の表面に投影された明暗パターンの正反射光を受光し得る位置に撮像手段を配置する場合であっても、板材の表面形状・平坦度を精度良く測定できる方法を提供する。 【解決手段】本発明に係る方法は、板材の表面に投影する明暗パターンとして、明部が縦方向及び横方向にそれぞれ所定の設定ピッチで千鳥状に配置された千鳥状パターンを用いる。そして、撮像手段で取得したパターン画像に対して、千鳥状パターンの縦方向に沿って延びる形状測定線を設定し、形状測定線上の画素を通って千鳥状パターンの横方向に延び、明部の横方向設定ピッチの2倍以上の長さを有する直線上の画素濃度を平均化して、平均画素濃度を算出する。さらに、形状測定線に沿った平均画素濃度分布に基づき、板材の表面形状を算出し、該算出した表面形状に基づき、板材の平坦度を演算する。

Description

板材の平坦度測定方法及びこれを用いた鋼板の製造方法
 本発明は、長手方向に走行する鋼板等の板材の平坦度を精度良く測定する方法、及びこれを用いた鋼板の製造方法に関する。
 板材には、その品質を確保すると共に、安定した製造を行うでも、良好な平坦度が求められる。このため、板材の製造工程において平坦度を適正に管理することは、従来からの課題である。
 一般に、平坦度を表す指標として、伸び差率や急峻度といった値が用いられている。
 伸び差率Δεとは、板材の長手方向の一定区間における、板材の幅方向中央部の伸び率εCENTと、板材の幅方向中央部以外(一般的には、エッジ近傍)の伸び率εEDGEとの差であり、以下の式(2)で表される。
 Δε=εCENT-εEDGE ・・・(2)
 また、急峻度λとは、板波の高さδとそのピッチPを用いてλ=δ/Pで定義される。この板波の形状を正弦波と近似することにより、伸び差率Δεと急峻度λ(%)との間には、以下の式(3)で表される周知の関係がある。
Figure JPOXMLDOC01-appb-M000002
 例えば、板材の一例である熱延鋼板の製造ラインは、一般的に、加熱炉、粗圧延機、仕上圧延機列、冷却帯、コイル巻き機から構成されている。加熱炉で加熱されたスラブは、粗圧延機で圧延され、厚み30~60mmの鋼片(粗バー)に加工される。次いで、鋼片は、6~7機の仕上圧延機からなる仕上圧延機列で圧延され、客先から要求される厚みの熱延鋼板とされる。この熱延鋼板は、冷却帯にて冷却され、コイル巻き機によって巻き取られる。
 平坦度の良好な熱延鋼板を製造することは、製品品質を確保すると共に、仕上圧延機への通板やコイル巻き機での巻き取りなどを安定して行い、高い生産性を維持するためにも重要である。熱延鋼板の平坦度不良は、仕上圧延機列及び冷却帯において生じる伸び率の板幅方向のムラが原因である。このため、平坦度の良好な熱延鋼板を製造するための方法として、仕上圧延機間、または、仕上圧延機列の出側に、平坦度計や板厚プロフィール計を設置し、それらの測定値に基づいて、仕上圧延機のワークロールベンダーをフィードバック制御する方法や、ワークロールのシフト位置や仕上圧延機列の荷重配分等のセットアップ条件を学習制御する方法が提案されている。上記のような制御方法は、例えば、日本国特開平11-104721号公報に記載されている。また、冷却帯の出側に平坦度計を設置し、その測定値に基づいて、冷却帯の各冷却ノズルの冷却水量をフィードバック制御する方法も提案されている。上記のような制御方法を実施するために、仕上圧延機間、仕上圧延機列の出側、或いは、冷却帯の出側において、高速で走行する熱延鋼板の平坦度を測定する方法や装置が考案され、実機に適用されている。
 従来の熱延鋼板の平坦度測定方法として、熱間圧延され走行する熱延鋼板の表面に、板幅方向に延びる複数の明線からなる線状パターンを投影し、その線状パターンを2次元カメラによって、線状パターンの投影方向とは異なる方向から撮像し、その撮像画像内の線状パターンの歪みに基づいて、熱延鋼板の表面形状ひいては平坦度を測定する方法が知られている。この方法では、熱延鋼板の長手方向(圧延方向)の1m程度の範囲に亘って線状パターンを投影することで、仕上圧延機の出側直近において頻繁に観察される板波が定在する状態(仕上圧延機で板波が固定されるために固定端となる)での測定精度の劣化を抑制している。上記のような平坦度測定方法は、例えば、日本国特開昭61-40503号公報や日本国特開2008-58036号公報に記載されている。
 日本国特開昭61-40503号公報には、板の長手方向に間隔を置いて投光した3本のレーザ光線をそれぞれ板幅方向に高速で走査することにより、板表面に3本の明線からなる線状パターンを投影し、これをカメラで撮像して得た撮像画像内の線状パターンの歪みに基づいて、板の表面形状ひいては平坦度を測定する方法が記載されている。しかしながら、3本の明線からなる線状パターンでは、板の表面形状を精度良く測定できず、特に、板波の周期が短いときに測定精度が極端に悪化するという問題がある。
 また、日本国特開2008-58036号公報には、高密度の線状パターンを描いたスライドを用いて、板幅方向に延びる複数の明線からなる高密度の線状パターンを板材表面に投影し、これをカメラで撮像して得た撮像画像内の線状パターンの歪みに基づいて、板材の表面形状ひいては平坦度を測定する方法が記載されている。この方法では、日本国特開昭61-40503号公報に記載の方法と異なり、高密度の線状パターンを投影するため、表面形状の測定分解能(空間分解能)が高くなり、板材の表面形状を精度良く測定できることが期待できる。
 日本国特開2008-58036号公報に記載のような形状測定方法は、一般的には格子投影法と呼ばれ、鋼板の表面形状を測定する場合に限らず、種々の用途に広く用いられている。
 図1は、格子投影法を実施するための装置構成例を模式的に示す図である。図1に示すように、格子投影法では、板材表面に対して斜め上方から、光源、格子パターン(一般には線状パターン)を描いたスライド及び結像レンズを備えたプロジェクタを用いて、板材表面に格子パターンを投影する。そして、格子パターンの投影方向とは異なる方向から、2次元カメラを用いて、板材表面に投影された格子パターンを撮像する。この際、板材の表面形状が変化すると、板材表面の傾斜角度も変化し、カメラで撮像した撮像画像内の格子パターンのピッチ(一般には線状パターンを構成する各明線の間隔)は、前記板材表面の傾斜角度に応じて変化する。板材表面の傾斜角度と撮像画像内の格子パターンのピッチとの関係は、幾何学的に算出可能である。このため、撮像画像内の格子パターンのピッチを測定すれば、この測定結果と前記の関係とに基づき、板材表面の傾斜角度を算出可能である。そして、この算出した傾斜角度を積分すれば、板材の表面形状を算出することができる。
 上記の格子投影法を用いて熱延鋼板の表面形状ひいては平坦度を測定する場合には、前述のように、格子パターンとして板幅方向に延びた複数の明線からなる線状パターンを鋼板表面に投影する。そして、その線状パターンの撮像画像内において、平坦度を算出するために表面形状を測定する必要のある位置に、熱延鋼板の長手方向に沿って延びる形状測定線を設定し、該形状測定線上の画素の濃度分布に基づき、該形状測定線上にある線状パターンのピッチ(線状パターンを構成する各明線の間隔)の分布を算出する。次いで、前記形状測定線上にある線状パターンのピッチの分布に基づき、前記形状測定線上の鋼板表面の傾斜角度の分布を算出し、この傾斜角度を前記形状測定線に沿って積分することにより、前記形状測定線上の鋼板の表面形状を算出する。さらに、この算出した表面形状に基づき、平坦度を演算する。
 図1に示すような格子投影法を実施するための装置を熱延鋼板の製造ラインに設置し、平坦度測定値をリアルタイムでフィードバックして仕上圧延機を制御する場合、装置は仕上圧延機の出側直近に設置する必要がある。仕上圧延機の出側直近は、板厚計、板幅計、板温度計等の計測器が設置されていることに加え、すぐ近くに水冷の冷却帯があるため、十分な装置の設置スペースを確保できない場合が多い。
 装置の設置スペースをできるだけ小さくするには、まず鉛直方向の設置スペースを小さくするため、プロジェクタ及びカメラを熱延鋼板に近づけると共に、プロジェクタの投影画角内及びカメラの画角内に熱延鋼板の測定範囲(長手方向に1m程度)が入るように、各画角を広めに設定することが考えられる。しかしながら、図2に示すように、プロジェクタの投影画角が広い場合、水平方向の設置スペースを小さくするには、カメラをプロジェクタ投影光の正反射光(線状パターンの正反射光)を受光し得る位置に配置しなければならなくなる。表面形状の測定分解能(空間分解能)を高める点ではピッチの小さな線状パターンを投影すればよい。しかしながら、仕上圧延直後の熱延鋼板の表面は正反射性が強い(正反射成分の反射強度が大きい)ため、カメラをプロジェクタ投影光の正反射光を受光し得る位置に配置すると、カメラの受光素子のうち正反射光を受光する素子からの出力信号が飽和してハレーションが生じ、正反射光を受光する素子及びその周辺素子に対応する撮像画像の画素領域において、隣り合う明線同士が引っ付いて、線状パターンが潰れてしまい易くなる。また、線状パターンが潰れないように、カメラの感度を低くし過ぎると、正反射光を受光する素子以外の素子の出力信号強度が不足するため、撮像画像において前記出力信号強度の不足している素子に対応する画素の濃度が低下し、明線が識別し難い線状パターンとなってしまう。
 本発明は、以上に説明した従来技術の問題点を解決するためになされたものであり、長手方向に走行する鋼板等の板材の平坦度を測定する方法であって、正反射性の強い板材の表面に投影された明暗パターンの正反射光を受光し得る位置に撮像手段を配置する場合であっても、板材の表面形状を精度良く測定でき、これにより板材の平坦度を精度良く測定可能な方法を提供することを課題とする。
 板材の表面に投影する明暗パターンをピッチの小さな線状パターンとした場合に、その正反射光を受光し得る位置に撮像手段を配置すると、正反射光を受光する素子及びその周辺素子に対応する画素領域において線状パターンが潰れ易くなることを回避する対策として、(1)撮像手段の感度を低くしても、正反射光を受光しない素子の出力信号強度が不足しないように、撮像手段としてダイナミックレンジの広いカメラを採用することや、(2)線状パターンのピッチを大きくすることが考えられる。
 しかしながら、上記(1)の対策については、近年普及してきたデジタル式のカメラを用いることにより、12ビット(4096階調)以上のダイナミックレンジを得ることができるものの、配線長さの制約や、カメのラコストが高くなるといった問題があり、容易に適用できない場合がある。
 また、上記(2)の対策については、図3(b)に示すように、単純に線状パターンのピッチを大きくすると、表面形状の測定分解能(空間分解能)が低下することにより、表面形状の測定精度ひいては平坦度の測定精度の劣化を招いてしまう。
 そこで、本発明者らは、鋭意検討し、板材の表面に投影する明暗パターンとして、図3(c)に示すように、明部が縦方向及び横方向にそれぞれ所定の設定ピッチ(縦方向の設定ピッチP、横方向の設定ピッチP)で千鳥状に配置された千鳥状パターンを用い、この千鳥状パターンの縦方向が板材の長手方向に沿い、横方向が板材の幅方向に沿うように板材の表面に投影することに着想した。この千鳥状パターンを用いれば、明部が縦方向及び横方向に千鳥状に配置されているため、たとえ縦方向の明部の設定ピッチPが従来の線状パターン(図3(a))の設定ピッチP’と同じであったとしても、縦方向に隣接する明部同士(例えば、明部M1、M2)の距離が、従来の線状パターンにおいて縦方向に隣接する明部同士の距離P’よりも大きくなる(2倍になる)ため、明部同士の間隔が広がる。横方向については、従来の線状パターンでは明部が連続しているのに対し、千鳥状パターンでは横方向に直線状に隣接する明部同士(例えば、明部M1、M3)が間隔を有する。このため、正反射光を受光する撮像手段の素子等に対応する画素領域でも、明暗パターンが潰れ難いという利点を有する。
 ただし、たとえ板材の表面に投影する明暗パターンとして千鳥状パターンを用いたとしても、従来と同様に、単純に板材の長手方向(千鳥状パターンの縦方向)に沿って延びる形状測定線L1上の画素の濃度分布に基づいて板材の表面形状を算出するのであれば、縦方向に直線状に隣接する明部同士の間隔が大きいため、表面形状の測定分解能(空間分解能)が低下することになる。
 そこで、本発明者らは、さらに鋭意検討し、形状測定線L1上の画素を通って千鳥状パターンの横方向に延び、明部の横方向設定ピッチPの2倍以上の長さWを有する直線L2上の画素濃度を平均化して、平均画素濃度を算出することに着眼した。例えば、千鳥状パターンの明部の画素濃度が全て254であり、暗部の画素濃度が全て0であると仮定する。直線L2の長さWが明部の横方向設定ピッチPの2倍(W=2P)であり、直線L2上の明部の画素数と暗部の画素数とが同一であるとすると、直線L2上の平均画素濃度は、127となる。そして、形状測定線L1に沿った平均画素濃度の分布を算出する(直線L2の縦方向位置を変更する)と、この平均画素濃度分布は、直線L2が明部を通る位置で平均画素濃度が127となり、暗部しか通らない位置で平均画素濃度が0となる分布、つまり、縦方向の明部の設定ピッチPと同じ周期を有する分布となる。換言すれば、前記平均画素濃度分布の周期Pは、従来の線状パターン(図3(a))についての形状測定ラインL’上の画素濃度分布の周期P’と同じになる。従って、前記平均画素濃度分布に基づいて板材の表面形状を算出すれば、千鳥状パターンの縦方向(板材の長手方向)についての表面形状の測定分解能(空間分解能)が低下することなく、従来の線状パターンを用いる場合と同程度の測定分解能を得ることが可能である。なお、千鳥状パターンを用いた場合の平均画素濃度分布の振幅は、線状パターンを用いた場合の画素濃度分布の振幅と比較して低下する。しかしながら、平均化を行う直線L2の長さWを明部の横方向設定ピッチPの2倍以上の長さとすれば、直線L2上には必ず明部が存在することになるため、平均画素濃度分布の振幅は、最も低下したとしても、線状パターンを用いる場合の1/2程度であり、問題とはならない。また、千鳥状パターンの横方向(板材の幅方向)についての表面形状の測定分解能(空間分解能)は、直線L2の長さWに応じて低下することになるものの、本発明の主たる適用対象である熱延鋼板は幅方向に急激な形状変化はしないため、極端にWを大きくしない限り問題とはならない。
 以上に説明したように、本発明者らは、下記(A)~(C)の手順で板材の表面形状を算出すれば、表面に投影された明暗パターンの正反射光を受光し得る位置に撮像手段を配置する場合であっても、明暗パターンが潰れ難く、なお且つ、測定分解能が低下することなく、板材の表面形状ひいては平坦度を精度良く測定可能であることに想到した。
(A)板材の表面に投影する明暗パターンとして、明部が縦方向及び横方向にそれぞれ所定の設定ピッチで千鳥状に配置された千鳥状パターンを用い、この千鳥状パターンの縦方向が板材の長手方向に沿い、横方向が板材の幅方向に沿うように板材の表面に投影する。
(B)千鳥状パターンの縦方向(板材の長手方向)に沿って延びる形状測定線上の画素を通って千鳥状パターンの横方向(板材の幅方向)に延び、明部の横方向設定ピッチの2倍以上の長さを有する直線上の画素濃度を平均化して、平均画素濃度を算出する。
(C)形状測定線に沿った前記平均画素濃度の分布を算出し、この平均画素濃度分布に基づき、形状測定線に沿った板材の表面形状を算出する。
 本発明は、上記の本発明者らの知見に基づき完成されたものである。すなわち、前記課題を解決するため、本発明は、長手方向に走行する板材の表面に明部及び暗部から構成される明暗パターンを投影し、前記板材の幅よりも大きな撮像視野を有する撮像手段で前記明暗パターンを撮像することでパターン画像を取得し、該取得したパターン画像を解析することにより前記板材の平坦度を測定する方法であって、以下の第1~第6ステップを含むことを特徴とする。
(1)第1ステップ:前記板材の表面に投影する明暗パターンとして、明部が縦方向及び横方向にそれぞれ所定の設定ピッチで千鳥状に配置された千鳥状パターンを用い、該千鳥状パターンの縦方向が前記板材の長手方向に沿い、該千鳥状パターンの横方向が前記板材の幅方向に沿うように、該千鳥状パターンを前記板材の表面に投影する。
(2)第2ステップ:前記千鳥状パターンの前記板材の表面での正反射光を受光し得る位置に前記撮像手段を配置し、該撮像手段で前記千鳥状パターンを撮像することでパターン画像を取得する。
(3)第3ステップ:前記取得したパターン画像内の所定の位置に、前記千鳥状パターンの縦方向に沿って延びる形状測定線を設定する。
(4)第4ステップ:前記形状測定線上の画素を通って前記千鳥状パターンの横方向に延び、前記明部の横方向設定ピッチの2倍以上の長さを有する直線上の画素濃度を平均化して、平均画素濃度を算出する。
(5)第5ステップ:前記形状測定線に沿った前記平均画素濃度の分布を算出する。
(6)第6ステップ:前記算出した平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出し、該算出した表面形状に基づき、前記板材の平坦度を演算する。
 なお、本発明において、「設定ピッチ」とは、千鳥状パターンを投影する板材の表面形状が完全に平坦であると仮定した場合に、千鳥状パターンの明部の間隔を撮像方向に投影した値を意味する。特に、「縦方向設定ピッチ」とは、千鳥状パターンの縦方向に沿って千鳥状に隣接する明部同士の縦方向の間隔を意味する。また、「横方向設定ピッチ」とは、千鳥状パターンの横方向に沿って千鳥状に隣接する明部同士の横方向の間隔を意味する。
 ここで、前記第6ステップにおいて、形状測定線に沿った平均画素濃度分布に基づき、形状測定線に沿った板材の表面形状を算出するには、具体的には、まず最初に、形状測定線に沿った平均画素濃度分布に基づいて(例えば、平均画素濃度分布に公知の位相解析法を適用して)、形状測定線に沿った千鳥状パターンの明部の縦方向ピッチの分布p(x)を算出すればよい。千鳥状パターンの明部の縦方向ピッチpと板材の表面の傾斜角度θとの関係は、幾何学的に求めることができる。このため、形状測定線に沿った千鳥状パターンの明部の縦方向ピッチの分布p(x)を算出すれば、この明部の縦方向ピッチの分布p(x)と前記の関係とに基づき、形状測定線に沿った板材の表面の傾斜角度の分布θ(x)を算出することができる。
 図4は、千鳥状パターンの明部の縦方向ピッチpと板材の表面の傾斜角度θとの関係を示す模式図である。図4は、板材が水平方向に走行している例を示している。図4において、θは板材の走行方向(水平方向)と板材の表面とが成す傾斜角度を、αは板材の走行方向に垂直な方向(鉛直方向)と撮像手段による撮像方向とが成す角度を、βは板材の走行方向に垂直な方向(鉛直方向)と千鳥状パターンの投影方向とが成す角度を意味する。また、pは板材について取得したパターン画像における千鳥状パターンの明部の縦方向ピッチを、pm0はpを板材の走行方向に垂直な方向(鉛直方向)に投影した値を意味する。さらに、pは板材の走行方向に平行に設置され(水平に設置され)平坦な表面形状を有する基準材について取得したパターン画像における千鳥状パターンの明部の縦方向ピッチを、pS0はpを板材の走行方向に垂直な方向(鉛直方向)に投影した値を意味する。
 θ、α、β、p、pm0、p、pS0の間には、幾何学的に以下の式(4)~(6)が成立する。
Figure JPOXMLDOC01-appb-M000003
 上記の式(5)、(6)を式(4)に代入すると、以下の式(7)が成立する。
Figure JPOXMLDOC01-appb-M000004
 上記の式(7)より以下の式(8)が成立する。
Figure JPOXMLDOC01-appb-M000005
 従って、形状測定線に沿った板材の表面の傾斜角度の分布θ(x)は、以下の式(1)で算出することが可能である。
Figure JPOXMLDOC01-appb-M000006
 すなわち、本発明において、好ましくは、平坦度を測定する対象である板材の走行方向に平行に設置され平坦な表面形状を有する基準材に対して、前記第1ステップ~前記第5ステップを実行することにより、前記基準材について取得した前記パターン画像における前記形状測定線に沿った平均画素濃度分布を算出し、該平均画素濃度分布に基づいて、前記基準材について取得した前記パターン画像における前記形状測定線に沿った前記千鳥状パターンの明部の縦方向ピッチの分布p(x)を予め算出するステップを更に含み、前記第6ステップは、前記板材について算出した前記平均画素濃度分布に基づいて、前記板材について取得した前記パターン画像における前記形状測定線に沿った前記千鳥状パターンの明部の縦方向ピッチの分布p(x)を算出するステップと、下記の式(1)に基づいて、前記形状測定線に沿った前記板材の表面の傾斜角度の分布θ(x)を算出し、該板材の表面の傾斜角度の分布θ(x)に基づいて、前記板材の表面形状を算出するステップとを含む。
Figure JPOXMLDOC01-appb-M000007

 上記の式(1)において、xはパターン画像における千鳥状パターンの縦方向に沿った位置(板材の長手方向に沿った位置)を、θ(x)は板材の走行方向と板材の表面とが成す傾斜角度の分布を、αは板材の走行方向に垂直な方向と撮像手段による撮像方向とが成す角度を、βは板材の走行方向に垂直な方向と千鳥状パターンの投影方向とが成す角度を意味する。 
 ここで、板材の平坦度を算出するには、形状測定線を、少なくとも板材の幅方向中央部及びエッジ近傍に設定する必要がある。しかしながら、板材が例えば熱延鋼板である場合には、蛇行やキャンバーを生じた状態で走行する場合が多い。この場合、板材の幅が仮に一定であったとしても、撮像手段と板材のエッジとの位置関係が、板材の幅方向に変化することになる。このため、撮像手段で取得したパターン画像内の固定された座標に形状測定線を設定すると、板材の蛇行やキャンバーに応じて、板材の幅方向中央部に形状測定線が正しく設定されない等の問題が生じる。この問題を回避するには、前記第3ステップにおいて形状測定線を設定する際に、撮像手段で取得したパターン画像内の板材のエッジに相当する画素をまず検出し、この検出した画素を基準として形状測定線を設定することが好ましい。
 すなわち、本発明において、好ましくは、前記第3ステップは、前記取得したパターン画像内の所定の位置に、前記千鳥状パターンの横方向に延びるエッジ検出線を設定するステップと、前記エッジ検出線上の画素を通って前記千鳥状パターンの縦方向に沿って延び、前記明部の縦方向設定ピッチの2倍以上の長さを有する直線上の画素濃度の標準偏差を、前記エッジ検出線に沿って順次算出するステップと、前記算出した画素濃度標準偏差の大小に基づき、前記エッジ検出線上において前記板材のエッジに相当する画素を検出するステップと、前記検出したエッジ相当画素を基準として、前記形状測定線を設定するステップとを含む。
 斯かる好ましい構成によれば、エッジ検出線上の千鳥状パターンが存在する画素領域においては、明部の縦方向設定ピッチの2倍以上の長さを有する直線(以下、適宜「標準偏差測定線」という)上に、明部及び暗部の双方が必ず存在することになる。従って、この標準偏差測定線上の画素濃度の標準偏差は大きくなる。一方、エッジ検出線上の千鳥状パターンが存在しない画素領域においては、暗部しか存在しないため、標準偏差測定線上の画素濃度の標準偏差は小さくなる。従って、この画素濃度標準偏差の大小に基づき、エッジ検出線上における板材のエッジに相当する画素を検出することが可能である。そして、このエッジ相当画素を基準として、形状測定線を設定すれば、板材に蛇行やキャンバーが生じていたとしても、板材の幅方向中央部など所望する位置に形状測定線を正しく設定することが可能である。なお、搬送ロール上を板材が走行する場合には、搬送ロールでの反射光が撮像手段に入射することによって、搬送ロールに相当する明るい画素領域がパターン画像内に存在する虞がある。この際、搬送ロールに相当する画素領域が存在する位置にエッジ検出線を設定すると、板材のエッジに相当する画素を正常に検出できない虞がある。従って、搬送ロール上を板材が走行する場合には、搬送ロールに相当する画素領域が存在しない位置にエッジ検出線を設定することが好ましい。
 ここで、板材の表面に投影された千鳥状パターンを撮像手段で撮像する際に、パターンを投影するための光源の照度ムラや板材表面の傾斜角度等に起因して、撮像手段で撮像し取得したパターン画像の画素濃度に大きなムラが生じる場合がある。具体的には、光源の照度むらや、千鳥状パターンの板材の表面での正反射光を受光し得る位置に撮像手段を配置することにより、千鳥状パターンの中心部が明るくなる傾向にある。パターン画像の画素濃度のムラが大きい場合、前述した従来の線状パターンを用いる場合と同様に、撮像手段の感度が高すぎると、パターン画像の画素濃度が大きい中心部の画素領域で千鳥状パターンが潰れ易くなる一方、撮像手段の感度が低すぎると、パターン画像の画素濃度が小さい周辺部の画素領域で千鳥状パターンの明部が識別し難くなるという問題が生じる。
 上記の問題を回避する対策としては、感度の異なる2つの撮像手段を、それぞれの撮像視野が互いに重複する部分を有するように並置し、各撮像手段で取得したパターン画像内の対応する位置に形状測定線を設定することが考えられる。そして、画素濃度の非常に大きい画素領域を形状測定線が通る場合には、低感度の撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を用いて板材の表面形状を算出する一方、画素濃度の小さい画素領域を形状測定線が通る場合には、高感度の撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を用いて板材の表面形状を算出すればよい。具体的には、高感度撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布において、濃度が飽和している画素数が多い場合には、低感度撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を用いて板材の表面形状を算出すればよい。一方、高感度撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布において、濃度が飽和している画素数が少ない場合には、高感度撮像手段で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を用いて板材の表面形状を算出すればよい。
 すなわち、本発明において、好ましくは、前記撮像手段として、高感度撮像手段と、該高感度撮像手段よりも感度が低い低感度撮像手段とを用い、前記第2ステップにおいて、それぞれの撮像視野が互いに重複する部分を有するように、前記高感度撮像手段及び前記低感度撮像手段を並置し、前記第3ステップにおいて、前記高感度撮像手段及び前記低感度撮像手段でそれぞれ取得した各パターン画像内の対応する位置に、前記形状測定線を設定し、前記第6ステップは、前記高感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布において、濃度が飽和している画素数を計数するステップと、前記濃度飽和画素数が予め設定した所定のしきい値以上の場合には、前記低感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出し、前記濃度飽和画素数が予め設定したしきい値未満の場合には、前記高感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出するステップとを含む。
 ここで、板材が熱延鋼板である場合、局所的に平坦度不良が酷すぎたり、厚みが薄い鋼板での瞬時の浮き上がり、鋼板表面での部分的な異常スケールの発生等、平坦度の測定がうまくできないことが発生する場合がある。異常な測定値を用いて仕上圧延機等を制御することは、間違った制御を行うこととなり、平坦度の更なる悪化や製造ラインにおけるトラブルの原因となる。このように異常な測定値が発生した場合にも、できる限り制御を行うようにする一方、測定値の異常が連続して発生する場合には、制御を中断等することが好ましい。
 一方、熱延鋼板の長手方向の測定範囲が1m程度であれば、パターン画像内で観察される板波は1~3山程度となる。このため、1つのパターン画像を用いて測定した平坦度測定値はバラつくため、直近何回分かの平坦度測定値を平均化した値を仕上圧延機等を制御するための出力とすることが好ましい。
 仕上圧延機等へのフィードバック制御を行うために必要な測定応答速度は1秒程度(平坦度測定装置から仕上圧延機等への移送遅れもあるため、それ以上の高応答速度を要求することに意味がない)であるが、近年の計算機技術の進歩により、1秒間に20枚以上のパターン画像を処理することができ、ある程度の平均化を行っても十分に仕上圧延機等への制御に適用することが可能である。 
 以上の点より、本発明において、好ましくは、長手方向に走行する板材に対して、前記第1ステップ~前記第6ステップを繰り返し実行することにより、前記板材の長手方向に異なる複数の部位についての平坦度を順次測定する第7ステップと、予め設定した直近N(Nは2以上の整数)回の前記平坦度測定値が、それぞれ測定に成功したものであるか否かを判定する第8ステップと、前記直近N回の平坦度測定値の内、測定に成功したものであると判定された回数が、予め設定したしきい値以上である場合には、測定に成功したことを示す信号を出力すると共に、前記直近N回の平坦度測定値の内、測定に成功した平坦度測定値の平均値を平坦度測定結果として出力し、測定に成功したものであると判定された回数が前記しきい値未満である場合には、測定に失敗したことを示す信号を出力する第9ステップとを更に含む。
 斯かる好ましい構成によれば、何らかの理由で瞬間的に平坦度の測定が失敗したとしても(測定に成功したものであると判定された回数がしきい値以上である場合)、測定に成功したことを示す信号が出力されると共に、測定に成功した平坦度測定値の平均値が平坦度測定結果として出力される。このため、これらの出力を仕上圧延機等を制御する制御装置に対して入力し、この入力に基づき制御装置が制御を行えば、平坦度測定値に基づく制御が途切れることがない。また、測定に連続して失敗すれば(測定に成功したものであると判定された回数がしきい値未満である場合)、測定に失敗したことを示す信号が出力されるため、この出力を仕上圧延機等を制御する制御装置に対して入力すれば、適切に制御を中断することが可能である。例えば、平均化の回数Nとしては10回を、しきい値としては5回を例示できる。
 前記第8ステップにおける平坦度測定値が測定に成功したものである否かの判定は、例えば、板材のエッジを正常に検出できたか否かと、形状測定線に沿った板材の表面形状を正常に算出できたか否かの双方で判定することが可能である。板材のエッジを正常に検出できたか否かは、例えば、パターン画像において検出した板材のエッジに相当する画素の座標から算出することができる板材の幅や蛇行量が異常値になっているか否かで予測可能である。また、形状測定線に沿った板材の表面形状を正常に算出できたか否かは、例えば、形状測定線に沿った平均画素濃度分布の振幅が過度に小さくなっているか否かで予測可能である。
 従って、本発明において、好ましくは、前記第8ステップは、前記直近N回の各平坦度測定値を得るのに用いた前記パターン画像内に、前記千鳥状パターンの横方向に延びるエッジ検出線を、前記千鳥状パターンの縦方向に異なる位置に2つ設定するステップと、前記各エッジ検出線上において前記板材のエッジに相当する画素を検出するステップと、前記検出した前記板材のエッジに相当する画素の座標と、前記第5ステップで算出した前記形状測定線に沿った前記平均画素濃度分布の振幅とに基づいて、前記直近N回の各平坦度測定値が測定に成功したものであるか否かを判定するステップとを含む。
 また、本発明は、粗圧延機で粗圧延された鋼片を仕上圧延機列で圧延した後、冷却帯で冷却して鋼板を製造する方法であって、前記平坦度測定方法によって、鋼板の平坦度を測定した結果に基づき、仕上圧延機の圧延条件又は冷却帯での冷却条件を制御することを特徴とする鋼板の製造方法としても提供される。
 本発明によれば、正反射性の強い板材の表面に投影された明暗パターンの正反射光を受光し得る位置に撮像手段を配置する場合であっても、板材の表面形状を精度良く測定でき、これにより板材の平坦度を精度良く測定可能である。
図1は、格子投影法を実施するための装置構成例を模式的に示す図である。 図2は、カメラがプロジェクタ投影光の正反射光を受光する範囲を説明する説明図である。 図3は、各種の明暗パターンを比較して説明する説明図である。 図4は、千鳥状パターンの明部の縦方向ピッチpと板材の表面の傾斜角度θとの関係を示す模式図である。 図5は、本発明に係る平坦度測定方法を実施するための平坦度測定装置の概略構成例を示す模式図である。 図6は、図5に示す平坦度測定装置の設置状況を表す模式図である。 図7は、本発明の一実施形態での配置条件下における、p/pと熱延鋼板表面の傾斜角度θとの関係を示すグラフである。 図8は、図5に示すプロジェクタを構成するスライドに形成される千鳥状パターンの一例を示す図である。 図9は、図5に示すプロジェクタを構成するスライドに形成される千鳥状パターンの他の例を示す図である。 図10は、図5に示す画像解析装置で実行される処理の概要を示すフロー図である。 図11は、熱延鋼板のエッジ検出方法及び形状測定線の決定方法を説明するための説明図である。 図12は、急峻度を演算する方法を説明するための説明図である。 図13は、熱延鋼板表面に投影する明暗パターンとして従来の線状パターンを用いた場合のパターン画像例と、当該パターン画像についての熱延鋼板の幅方向中央部の形状測定線及び右側エッジ近傍の形状測定線沿った画素濃度分布を示す図である。 図14は、熱延鋼板表面に投影する明暗パターンとして千鳥状パターンを用いた場合のパターン画像例と、当該パターン画像についての熱延鋼板の幅方向中央部の形状測定線及び右側エッジ近傍の形状測定線に沿った平均画素濃度分布を示す図である。 図15は、熱延鋼板表面に投影する明暗パターンとして従来の線状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。 図16は、熱延鋼板表面に投影する明暗パターンとして千鳥状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。 図17は、表面反射率の低い材質の熱延鋼板に対して、熱延鋼板表面に投影する明暗パターンとして千鳥状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態について、板材が熱延鋼板であり、熱延鋼板製造ラインの仕上圧延機列の出側で平坦度(急峻度)を測定する場合を例に挙げて説明する。
 <1.平坦度測定装置の全体構成>
 図5は、本発明に係る平坦度測定方法を実施するための平坦度測定装置の概略構成例を示す模式図である。図6は、図5に示す平坦度測定装置の設置状況を表す模式図である。図5、図6に示すように、本実施形態の平坦度測定装置100は、明暗パターンとしての千鳥状パターンPを、千鳥状パターンPの縦方向が熱延鋼板Sの長手方向に沿い、千鳥状パターンPの横方向が熱延鋼板Sの幅方向に沿うように、長手方向に水平に走行する熱延鋼板Sの表面に投影するためのプロジェクタ1と、熱延鋼板Sの幅よりも大きな撮像視野を有し、熱延鋼板Sの表面に投影された千鳥状パターンPを撮像しパターン画像を取得する撮像手段2と、撮像手段2で取得したパターン画像を解析する画像解析装置3とを備える。
 図6に示すように、本実施形態の平坦度測定装置100が設置される仕上圧延機列出側の設置スペースは、熱延鋼板Sの長手方向に2m、鉛直方向に2.5mしかないため、熱延鋼板Sの長手方向に少なくとも1mの測定範囲(撮像視野)を確保するには、撮像手段2をプロジェクタ1からの投影光の正反射光(千鳥状パターンPの正反射光)を受光し得る位置に配置しなければならない。本実施形態では、プロジェクタ1を用いて、熱延鋼板Sに対して斜め上方から角度15°(鉛直方向と千鳥状パターンPの投影方向とが成す角度)で千鳥状パターンPを投影し、この投影した千鳥状パターンPを、撮像手段2を用いて、熱延鋼板Sに対して斜め上方から角度15°(鉛直方向と撮像方向とが成す角度)で撮像している。
 図7は、上記配置条件下における、p/pと熱延鋼板Sの表面の傾斜角度θとの関係を示すグラフである。ここで、前述のように、pは熱延鋼板Sについて取得したパターン画像における千鳥状パターンPの明部の縦方向ピッチを、pは水平に設置され平坦な表面形状を有する基準材について取得したパターン画像における千鳥状パターンの明部の縦方向ピッチを、θは水平方向と熱延鋼板Sの表面とが成す傾斜角度を意味する。熱延鋼板S表面の傾斜角度θの測定範囲は、要求される平坦度(急峻度)測定範囲と、測定時に発生し得る熱延鋼板S表面全体の傾斜角度の範囲との和で決定される。本実施形態では、要求される急峻度の測定範囲が-5%~+5%(熱延鋼板Sの表面の傾斜角度に換算すれば-9°~+9°に相当)であり、これに熱延鋼板Sのバタツキに伴う熱延鋼板S表面全体の傾斜角度の変動代を考慮して、熱延鋼板S表面の傾斜角度θの測定範囲を-15°~+15°とした。図7より、熱延鋼板S表面の傾斜角度が-15°~+15°の範囲で変化すると、p/pは0.85から1.15の範囲で変動することになる。
 <2.プロジェクタの構成>
 本実施形態では、プロジェクタ1を構成する光源として、出力2.5kWのメタルハライドランプを使用している。このランプから放出された光は、ランプ前面に配置したスライド及び結像レンズを通って、熱延鋼板S表面に約20倍の結像倍率で投影される。プロジェクタ1から熱延鋼板S表面までの距離は約2mであり、投影された千鳥状パターンの寸法は縦方向に1400m、横方向に1800mmである。前記スライドには、石英ガラス基板上にCrを蒸着することにより、千鳥状パターンが形成されている。Crが蒸着されている部分が千鳥状パターンの暗部となり、蒸着されていない部分が千鳥状パターンの明部となる。
 図8は、プロジェクタを構成するスライドに形成された千鳥状パターンの一例を示す図である。図8(a)は全体図を、図8(b)は部分的に拡大した図を示す。図8に示すように、スライドには、明部Mが縦方向及び横方向にそれぞれ2mmピッチで千鳥状に配置されている。前述のように、結像倍率は約20倍であるため、熱延鋼板S表面においては、明部Mが縦方向及び横方向にそれぞれ40mmピッチ(すなわち、縦方向の設定ピッチP=40mm、横方向の設定ピッチP=40mm)で千鳥状に配置された千鳥状パターンPが投影されることになる。
 なお、千鳥状パターンとしては、図8に示す形態に限られず、例えば、図9に示すように、明部Mのピッチを変えずに、1つの明部Mが2つの要素MA、MBに分割された形態の千鳥状パターンとすることも可能である。また、部分的に明部Mの大きさを変更する等の工夫により、プロジェクタ1の照度ムラの影響を抑制することも可能である。本実施形態では、熱延鋼板S表面付近での照度は、プロジェクタ1の光軸付近で約6000Lx、熱延鋼板Mのエッジ近傍で約3000Lxである。粉塵や霧状水滴が多量に飛散している現場への設置となるため、本実施形態では、プロジェクタ1全体をステンレス製の防塵ボックス内に収納している。また、千鳥状パターンを投影する開口部から防塵ボックス内に粉塵や霧状水滴が侵入しないように、大型のブロアを用いて防塵ボックス内にエアーを供給し、前記開口部から外部に噴出する構造としている。
 <3.撮像手段の構成>
 本実施形態では、撮像手段2として、SVGAサイズの受光素子(横方向に788個の受光素子、縦方向に580画素の受光素子)を有し、毎秒40枚の画像信号をプログレッシブ方式で出力する2次元CCDカメラを用いている。このCCDカメラは、外部からの同期信号により、複数台が同期して撮像可能とされている。本実施形態では、撮像手段2として、2台の前記CCDカメラ21、22を用いている。CCDカメラ21、22は、それぞれの撮像視野が互いに重複する部分を有するように並置しており、それぞれのレンズ絞り及びゲインの調整により、感度が1:4に設定されている(以下、適宜、感度が低い方のCCDカメラを低感度撮像手段21、感度が高い方のCCDカメラを高感度撮像手段22という)。
 本実施形態では、最大1500mpmという高速で圧延され巻き取られる熱延鋼板Sの表面形状をぶれなく測定できるように、撮像手段2の露光時間を2.5msecに設定している。また、950℃の熱延鋼板Sを測定する際にも、熱延鋼板S表面からの輻射光の影響を受けることなく明瞭に千鳥状パターンを撮像できるように、本実施形態の撮像手段2のレンズの前には、青緑色のみを透過するバンドパスフィルタを具備している。本実施形態の撮像手段2もプロジェクタ1と同様に、ステンレス製の防塵ボックス内に収納し、レンズが汚れないように圧空によるエアパージを行っている。本実施形態の撮像手段2は、熱延鋼板Sの幅方向に約1800mmの撮像視野を有するため、撮像手段2で取得されるパターン画像の横方向の分解能は約2.3mm/画素である。
 <4.画像解析装置の構成>
 本実施形態の画像解析装置3は、汎用のパーソナルコンピュータ(CPU:クロック周波数2.4GHzのCore2Duoプロセッサ、OS:Windows(登録商標))に、後述するような処理を実行するためのプログラム(以下、平坦度解析プログラムという)がインストールされた構成である。画像解析装置3は、内蔵されたマルチチャンネル画像取り込みボードにより、低感度撮像手段21及び高感度撮像手段22から出力された画像信号を、256階調(8ビット)で同時にメモリ内に取り込むように構成されている。画像解析装置3のメモリ内に取り込まれた画像データ(パターン画像)は、平坦度解析プログラムによって解析され、解析結果としての平坦度測定値が、画像解析装置3のモニタ画面及び上位の制御装置(仕上圧延機等を制御する制御装置)に出力される。
 <5.平坦度解析プログラムの処理内容>
 画像解析装置3は、インストールされた平坦度解析プログラムによって、撮像手段2で撮像して取得したパターン画像に対し、図10に示す手順で処理を行う。以下、各処理について順次説明する
 <5-1.熱延鋼板のエッジ検出及び形状測定線の設定処理(図10のS1)>
 図11は、熱延鋼板のエッジ検出方法及び形状測定線の決定方法を説明するための説明図である。熱延鋼板Sのエッジを検出するに際しては、まず、高感度撮像手段22によって取得したパターン画像内の所定の位置(千鳥状パターンPの縦方向に異なる位置2箇所)に、千鳥状パターンPの横方向に延びるエッジ検出線LE1、LE2を設定する。
 次に、エッジ検出線LE1上の画素を通って千鳥状パターンPの縦方向に沿って延び、明部の縦方向設定ピッチ(本実施形態では、縦方向設定ピッチP=40mm)の2倍以上の長さ(本実施形態では100mm)を有する直線上の画素濃度の標準偏差を、エッジ検出線LE1に沿って順次算出する。そして、算出した画素濃度標準偏差の大小に基づき、エッジ検出線LE1上において熱延鋼板Sのエッジに相当する画素E11、E12を検出する。具体的には、例えば、エッジ検出線LE1に沿った画素濃度標準偏差の分布を、エッジ検出線LE1に沿って微分し、その微分強度が最大となる画素E11及び最小となる画素E12をそれぞれ熱延鋼板Sのエッジに相当する画素として検出すればよい。エッジ検出線LE2についても同様に、エッジ検出線LE2に沿って順次算出した画素濃度標準偏差の大小に基づき、エッジ検出線LE2上において熱延鋼板Sのエッジに相当する画素E21、E22を検出する。以上の処理により、画素E11及びE21を通る直線、並びに、画素E12及び画素E22を通る直線が、それぞれ鋼板Sの推定エッジLL、LRとして検出されることになる。
 なお、検出した画素E11及び画素E12の座標と、パターン画像の横方向分解能(本実施形態では約2.3mm/画素)とに基づき、エッジ検出線LE1上での熱延鋼板Sの幅を算出することができる。同様に、検出した画素E21及び画素E22の座標と、パターン画像の横方向分解能とに基づき、エッジ検出線LE2上での熱延鋼板Sの幅を算出することができる。これらエッジ検出線LE1上での熱延鋼板Sの幅とエッジ検出線LE2上での熱延鋼板Sの幅との差が大きい(例えば、10mm以上)場合には、熱延鋼板Sのエッジを正常に検出できなかったと判定することが可能である。また、検出した画素E11及び画素E12の座標からエッジ検出線LE1上での熱延鋼板Sの中央部の座標を算出することができる。同様に、検出した画素E21及び画素E22の座標からエッジ検出線LE2上での熱延鋼板Sの中央部の座標を算出することができる。そして、エッジ検出線LE1上での熱延鋼板Sの中央部の座標とエッジ検出線LE2上での熱延鋼板Sの中央部の座標との差と、パターン画像の横方向分解能とに基づき、熱延鋼板Sの蛇行量を算出することができる。この蛇行量が予め定めたしきい値よりも大きい場合には、熱延鋼板Sのエッジを正常に検出できなかったと判定することが可能である。
 以上のようにして検出したエッジ相当画素E11~E22を基準として(画素E11及びE21を通る左側推定エッジLL、並びに、画素E12及び画素E22を通る右側推定エッジLRを基準として)形状測定線を決定し、高感度撮像手段22によって取得したパターン画像内に設定する。具体的には、本実施形態では、熱延鋼板Sの左側エッジ近傍(左側推定エッジLLから75mmだけ内側)の形状測定線L11、熱延鋼板Sの左側エッジから熱延鋼板Sの幅の1/4に相当する長さだけ内側(左側推定エッジLLから熱延鋼板Sの幅の1/4に相当する長さだけ内側)の形状測定線L12、熱延鋼板Sの幅方向中央部の形状測定線L13、熱延鋼板Sの右側エッジから熱延鋼板Sの幅の1/4に相当する長さだけ内側(右側推定エッジLRから熱延鋼板Sの幅の1/4に相当する長さだけ内側)の形状測定線L14、熱延鋼板Sの右側エッジ近傍(右側推定エッジLRから75mmだけ内側)の形状測定線L15の計5箇所の形状測定線を設定する。
 なお、高感度撮像手段22で取得したパターン画像内の座標と、これに対応する低感度撮像手段21で取得したパターン画像内の座標との位置関係を予め求めておくことにより、低感度撮像手段21によって取得したパターン画像については、上記のようにして高感度撮像手段22によって取得したパターン画像に対して設定した形状測定線L11~L15と対応する位置に形状測定線を設定することが可能である。
 <5-2.形状測定線に沿った平均画素濃度分布の算出処理(図10のS2)>
 本処理では、低輝度撮像手段21及び高輝度撮像手段22の双方でそれぞれ取得したパターン画像について、形状測定線L11~L15上の画素を通って千鳥状パターンの横方向に延び、明部の横方向設定ピッチ(本実施形態では、横方向設定ピッチP=40mm)の2倍以上の長さを有する直線上の画素濃度を平均化して、平均画素濃度を算出する。前述のように、本実施形態ではパターン画像の横方向の分解能は約2.3mm/画素であるため、画素濃度を平均化する直線の長さは、35画素以上であればよい。そこで、本実施形態では、画素濃度を平均化する直線の長さを40画素とし、各形状測定線L11~L15に沿った平均画素濃度の分布を算出することにしている。また、各形状測定線L11~L15上のx座標(パターン画像における千鳥状パターンの縦方向に沿った位置)が画素単位で50~561の範囲の平均画素濃度分布(つまり、512個の平均画素データ)を算出することにしている。
 <5-3.低感度撮像手段及び高感度撮像手段の使い分け判定処理(図10のS3)>
 本処理では、高感度撮像手段22で取得したパターン画像内に設定した各形状測定線L11~L15に沿った平均画素濃度分布において、濃度が飽和している画素数を計数する。具体的には、本実施形態では、濃度が250を超えていると、濃度が飽和していると考え、この画素数(濃度飽和画素数)を計数する。この結果、濃度飽和画素数が予め設定した所定のしきい値以上の場合には、低感度撮像手段21で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を使用する(後述するように、この平均画素濃度分布を使用して、形状測定線に沿った熱延鋼板Sの表面形状を算出する)。一方、濃度飽和画素数が予め設定したしきい値未満の場合には、高感度撮像手段22で取得したパターン画像内に設定した形状測定線に沿った平均画素濃度分布を使用する。具体的には、例えば、高感度撮像手段22で取得したパターン画像内に設定した形状測定線L11に沿った平均画素濃度分布において、濃度飽和画素数がしきい値以上の場合には、 低感度撮像手段21で取得したパターン画像内に設定した形状測定線L11に沿った平均画素濃度分布を使用することになる。また、例えば、高感度撮像手段22で取得したパターン画像内に設定した形状測定線L13に沿った平均画素濃度分布において、濃度飽和画素数がしきい値未満の場合には、 低感度撮像手段21で取得したパターン画像内に設定した形状測定線L13に沿った平均画素濃度分布を使用することになる。
 <5-4.形状測定線に沿った熱延鋼板表面の傾斜角度分布及び表面形状の算出処理(図10のS4)>
 本処理では、平坦度を測定する対象である熱延鋼板Sについて前述のように算出した形状測定線L11~L15に沿った平均画素濃度分布に基づき、形状測定線L11~L15に沿った千鳥状パターンPの明部の縦方向ピッチの分布p(x)を算出する。
 一方、水平に設置され平坦な表面形状を有する基準材に対しても、前述したのと同様の各処理を施し、基準材について取得したパターン画像における形状測定線L11~L15に沿った平均画素濃度分布を算出する。そして、これら形状測定線L11~L15に沿った平均画素濃度分布に基づき、形状測定線L11~L15に沿った千鳥状パターンの明部の縦方向ピッチの分布p(x)を予め算出しておく。
 平均画素濃度分布に基づき明部の縦方向ピッチの分布p(x)、p(x)を算出する方法としては、種々の方法が考えられるが、本実施形態では、以下に説明する位相解析法を適用している。
 以下、上記の平均画素濃度分布に適用する位相解析法について説明する。
 平坦度を測定する対象である熱延鋼板Sについて得られた平均画素濃度分布をf(x)とする。このf(x)にフーリエ変換法等の周波数解析法を適用することにより、f(x)から、想定される千鳥状パターンの明部の縦方向ピッチの変動幅(例えば、-5%~+5%)に相当する空間周波数成分のみを抜き出すと、以下の式(9)で表される分布f(x)が得られる。このf(x)には、投影した千鳥状パターンの明部の縦方向ピッチの分布のみが周期的な成分として含まれているので、位相成分φ(x)を解析することで、縦方向ピッチの分布を求めることができる。
Figure JPOXMLDOC01-appb-M000008
 位相成分の解析には、例えばヒルベルト変換を用いることができる。ヒルベルト変換とは、元の波形に対して位相がπ/2(90°)だけずれた同振幅の波形への変換のことである。ヒルベルト変換を行うための計算方法には、f(x)を離散フーリエ変換して得られたF(k)の負の周波数部の係数を0に置き換えて、離散逆フーリエ変換した結果がf(X)+if(x)になることが利用される。得られたf(x)はf(x)に対して、位相がπ/2だけずれているため、以下の式(10)で表される。
Figure JPOXMLDOC01-appb-M000009
 このため、f(x)/f(x)のアークタンジェント(逆正接関数)を計算した結果は、以下の式(11)に示すように、位相成分である-φ(x)と等しくなる。
Figure JPOXMLDOC01-appb-M000010
 得られたφ(x)はラッピングされている(π毎に折り返しされている)ため、折り返し点毎にπを足し引き(アンラッピング処理)を行い、連続的な波形とする。また、以下の式(12)に示すように、f(x)とf(x)の自乗和平方根を計算することにより、f(x)の振幅A(x)を求めることができる。
Figure JPOXMLDOC01-appb-M000011
 ここで、位相成分φ(x)の微分であるdφ(x)/dxは、空間周波数分布に2πを乗じたものに等しいため、千鳥状パターンの明部の縦方向ピッチp(x)は、以下の式(13)で求めることができる。
Figure JPOXMLDOC01-appb-M000012
 水平に設置され平坦な表面形状を有する基準材について得られた平均画素濃度分布についても上記と同様の解析を行うことにより、千鳥状パターンの明部の縦方向ピッチp(x)を求めることが可能である。
 次に、本処理では、上記のようにして算出した千鳥状パターンの明部の縦方向ピッチの分布p(x)、p(x)と、下記の式(1)とに基づいて、形状測定線L11~L15に沿った熱延鋼板Sの表面の傾斜角度の分布θ(x)を算出する。
Figure JPOXMLDOC01-appb-M000013

 上記の式(1)において、xはパターン画像における千鳥状パターンの縦方向に沿った位置(板材の長手方向に沿った位置)を、θ(x)は水平方向と板材の表面とが成す傾斜角度の分布を、αは鉛直方向と撮像手段による撮像方向とが成す角度(本実施形態では15°)を、βは鉛直方向と千鳥状パターンの投影方向とが成す角度(本実施形態では15°)を意味する。
 最後に、本処理では、上記のようにして算出した各形状測定線L11~L15に沿った熱延鋼板Sの表面の傾斜角度を、各形状測定線L11~L15に沿って積分することにより、各形状測定線L11~L15に沿った熱延鋼板Sの表面形状を算出する。
 なお、各形状測定線L11~L15に沿った熱延鋼板Sの表面形状を正常に算出できたか否かは、例えば、各形状測定線L11~L15に沿った平均画素濃度分布の振幅が過度に小さくなっているか否かで判定することが可能である。具体的には、平均画素濃度分布f(x)を前述のように位相解析することによって式(12)で算出される振幅A(x)の内、予め設定したしきい値未満の振幅となる画素数を計数し、その画素数が予め定めた個数よりも少なければ、熱延鋼板Sの表面形状を正常に算出できなかったと判定し、その画素数が予め定めた個数以上であれば、熱延鋼板Sの表面形状を正常に算出できたと判定することが可能である。
 <5-5.平坦度(急峻度)の演算処理(図10のS5)>
 本処理では、前述のようにして算出した各形状測定線L11~L15に沿った熱延鋼板Sの表面形状に基づき、急峻度を演算する。この急峻度の演算に際しては、まず、各形状測定線L11~L15に沿った一定の対象区間における表面長さと、その間の直線距離とに基づき、各形状測定線L11~L15での伸び率を算出する。そして、熱延鋼板Sの幅方向中央部の形状測定線L13での伸び率εCENTと、他の形状測定線L11、L12、L14、L15での伸び率εEDGEとの差である伸び差率Δεを算出する(前述した式(2)参照)。そして、この伸び差率Δεと前述した式(3)とに基づき、急峻度λを算出する。
 以下、左側エッジ近傍の形状測定線L11及び幅方向中央部の形状測定線L13に沿った表面形状に基づき急峻度を求める場合について、図12を参照して具体的に説明する。
 図12は、急峻度を演算する方法を説明するための説明図である。形状測定線L11での伸び率εEDGEは、形状測定線L11に沿った熱延鋼板Sの表面形状S11の対象区間における表面長さと、その間の直線距離とに基づき、図中の計算式で算出する。同様に、形状測定線L13での伸び率εCENTは、形状測定線L13に沿った熱延鋼板Sの表面形状S13の対象区間における表面長さと、その間の直線距離とに基づき、図中の計算式で算出する。図12に示す例では、微小な測定ノイズの影響を抑制するため、対象区間を点P~P12で12区間に分割し、折れ線近似することにより、表面形状S11及びS13の表面長さを計算している。そして、形状測定線L13での伸び率εCENTと、形状測定線L11での伸び率εEDGEとの差である伸び差率Δεを算出し、この伸び差率Δεと式(3)とに基づき、急峻度λを算出する。
 <5-6.測定結果の有効性判定処理(図10のS6)>
 本処理では、前述のようにして、熱延鋼板Sの長手方向に異なる複数の部位についての平坦度(急峻度)を順次測定し、予め設定した直近N(Nは2以上の整数)回の平坦度測定値が、それぞれ測定に成功したものであるか否かを判定する。本実施形態では、測定に成功したものであるか否かの判定を、熱延鋼板Sのエッジを正常に検出できたか否かと、形状測定線に沿った熱延鋼板Sの表面形状を正常に算出できたか否かの双方で判定している。つまり、熱延鋼板Sのエッジを正常に検出でき、なお且つ、形状測定線に沿った熱延鋼板Sの表面形状を正常に算出できた場合に初めて、測定に成功した平坦度測定値であると判定している。熱延鋼板Sのエッジを正常に検出できたか否かは、前述のように、エッジ検出線LE1上での熱延鋼板Sの幅とエッジ検出線LE2上での熱延鋼板Sの幅との差が大きいか否か、並びに、熱延鋼板Sの蛇行量が予め定めたしきい値より大きいか否かで判定している。また、形状測定線に沿った熱延鋼板Sの表面形状を正常に算出できたか否かは、前述のように、式(12)で算出される振幅A(x)の内、予め設定したしきい値未満の振幅となる画素数を計数し、その画素数が予め定めた個数よりも少なければ、熱延鋼板Sの表面形状を正常に算出できなかったと判定し、その画素数が予め定めた個数以上であれば、熱延鋼板Sの表面形状を正常に算出できたと判定している。
 次に、本処理では、直近N回の平坦度測定値の内、測定に成功したものであると判定された回数が、予め設定したしきい値M以上である場合には、測定に成功したことを示す信号(測定結果が有効であることを示す信号)を仕上圧延機等を制御する制御装置に対して出力すると共に、前記直近N回の平坦度測定値の内、測定に成功した平坦度測定値の平均値を平坦度測定結果として前記制御装置に出力する。一方、測定に成功したものであると判定された回数が前記しきい値M未満である場合には、測定に失敗したことを示す信号(測定結果が無効であることを示す信号)を前記制御装置に出力する。
 本実施形態では、N=10に設定している。本実施形態の画像解析装置3によれば、1秒間に20枚のパターン画像を処理することができるため、N=10は0.5秒に相当する。これは、平坦度測定値を仕上圧延機等へのフィードバック制御で用いるのに十分な測定応答速度である。また、本実施形態では、しきい値M=5に設定している。正確な急峻度を演算するには、熱延鋼板Sの幅(最大で1.65m)の約3倍以上の長さ5mに亘る測定値が必要であると考えられる。このため、本実施形態における熱延鋼板Sの長手方向の撮像視野1mの範囲を少なくとも5回正常に測定できたものが前記制御装置に出力されるように、しきい値M=5に設定している。
 なお、本実施形態では、熱延鋼板製造ラインの仕上圧延機列の出側で平坦度を測定する場合を例に挙げて説明したが、本発明はこれに限るものではなく、仕上圧延機間や冷却帯の出側で平坦度を測定する場合に適用することも可能である。以下、本実施形態に係る平坦度測定方法を適用した場合の効果について説明する。
 <画素濃度分布について>  
 図13は、熱延鋼板S表面に投影する明暗パターンとして従来の線状パターンを用いた場合のパターン画像例と、当該パターン画像についての熱延鋼板Sの幅方向中央部の形状測定線L13及び右側エッジ近傍の形状測定線L15に沿った画素濃度分布を示す図である。また、図14は、熱延鋼板S表面に投影する明暗パターンとして本実施形態の千鳥状パターンを用いた場合のパターン画像例と、当該パターン画像についての熱延鋼板Sの幅方向中央部の形状測定線L13及び右側エッジ近傍の形状測定線L15に沿った平均画素濃度分布を示す図である。
 なお、従来の線状パターンを撮像する際の撮像手段の露光時間は1.5msecに設定したのに対し、本実施形態の千鳥状パターンを撮像する際の露光時間は、画素濃度が飽和しても千鳥状パターンが潰れ難いため、前述のように、2.5msecと長めに設定している。測定対象である熱延鋼板Sは、いずれの場合も同じ材質、同じ寸法であって、平坦度不良の発生した先端付近のものである。
 図13、図14から分かるように、明暗パターンとして線状パターン(図13)及び千鳥状パターン(図14)の何れを用いても、正反射光の影響は熱延鋼板Sの中央部から外れると小さくなるので、エッジ近傍の形状測定線L15に沿った画素濃度分布(図14の場合は平均画素濃度分布)については、高感度撮像手段で取得したパターン画像を用いることにより、パターン画像の縦方向全域に亘り、周期的な波形を観察することができる。
 一方、熱延鋼板Sの中央部においては、従来の線状パターンを投影する場合、正反射光を受光する位置に対応する画素領域と、それ以外の画素領域との画素濃度の差が大きい。このため、図13に示すように、熱延鋼板Sの幅方向中央部の形状測定線L13に沿った画素濃度分布については、高感度撮像手段及び低感度撮像手段の何れで取得したパターン画像であっても、パターン画像の縦方向全域に亘り周期的な波形を観察することができない。一方、本実施形態の千鳥状パターンを投影する場合、図14に示すように、画素濃度が飽和しても千鳥状パターンが潰れ難くなることと、画素濃度を幅方向に平均化していることにより、正反射光を受光する位置に対応する画素領域と、それ以外の画素領域との画素濃度の差が小さくなっている。このため、低感度撮像手段で取得したパターン画像については、熱延鋼板Sの幅方向中央部の形状測定線L13に沿った平均画素濃度分布は、パターン画像の縦方向のほぼ全域に亘り、周期的な波形を観察することが可能である。
 <急峻度等測定チャート>
 図15は、熱延鋼板S表面に投影する明暗パターンとして従来の線状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。図16は、熱延鋼板S表面に投影する明暗パターンとして本実施形態の千鳥状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。図15(a)及び図16(a)は両エッジ近傍の形状測定線L11、L15について測定した急峻度の測定値を、図15(b)及び図16(b)は直近10回の平坦度測定値のうち測定に成功した回数を、図15(c)及び図16(c)は熱延鋼板Sのエッジを検出できたか否かを、図15(d)及び図16(d)は表面形状を正常に測定できた形状測定線の本数を示す。測定対象である熱延鋼板Sは、いずれの場合も同じ材質、同じ寸法であって、平坦度不良の発生した先端付近のものである。
 図15に示すように、明暗パターンとして線状パターンを用いた場合、エッジ検出は熱延鋼板Sの全長に亘り正常に行われている(図15(c))が、表面形状の測定については、5つの形状測定線の全てについて正常に測定できず、いくつかの形状測定線について失敗する場合が生じている。このため、直近10回の平坦度測定値のうち測定に成功した回数が5回未満となる場合が生じ、信頼できない測定値となるため、制御装置に出力できない。特に、本来平坦度を制御する必要がある熱延鋼板S先端の無張力状態で測定できていない。一方、図16に示すように、明暗パターンとして千鳥状パターンを用いた場合は、ほぼ熱延鋼板Sの1コイル分全長に亘り、エッジ検出も表面形状の測定も正常にできており、従来に比べて改善されているのが分かる。
 <有効性判定の効果>
 図17は、表面反射率の低い材質の熱延鋼板Sに対して、熱延鋼板Sの表面に投影する明暗パターンとして本実施形態の千鳥状パターンを用いた場合の鋼板1コイル分全長の急峻度等の測定例を示す。図17(a)は両エッジ近傍の形状測定線L11、L15について測定した急峻度の測定値を、図17(b)は直近10回の平坦度測定値のうち測定に成功した回数を、図17(c)は熱延鋼板Sのエッジを検出できたか否かを、図17(d)は表面形状を正常に測定できた形状測定線の本数を示す。
 図17に示すように、この例では、エッジ検出ができなかった場合が若干発生している(図17(c))が、直近10回の平坦度測定値のうち測定に成功した回数が5回以上であれば、直近10回の平坦度測定値の内、測定に成功した平坦度測定値の平均値を有効な平坦度測定結果として制御装置に出力するため、熱延鋼板Sの1コイル分全長に亘り、途切れることなく平坦度測定結果を出力することになる(図17(b))。なお、エッジ検出ができなかったにも関わらず、5つの形状測定線の全てについて表面形状を正常に測定できている場合(図17(c)及び(d)において破線で囲んだ箇所)がある。これは、熱延鋼板Sの真のエッジではなく、それよりも内側の点がエッジであると間違って検出した場合、その内側には千鳥状パターンが投影されているので、表面形状としては正常に測定できるためである。この結果より、平坦度測定値が測定に成功したものである否かの判定は、板材のエッジを正常に検出できたか否かと、板材の表面形状を正常に測定できたか否かの何れか一方ではなく、双方で判定することが必要であることが分かる。
 <測定安定性>
 表1に、同一鋼種の熱延鋼板Sに対して、従来の線状パターンを用いた場合と、本実施形態の千鳥状パターンを用いた場合の測定安定性を比較した結果の一例を示す。鋼種に応じて熱延鋼板S表面の状況が異なるので、従来の線状パターンを用いた場合に表面形状測定成功率が低めであった鋼種と同一の鋼種について測定安定性を比較している。表1中のエッジ検出成功率、表面形状測定成功率、有効判定率は、それぞれ、熱延鋼板Sの各コイル毎に以下の式(14)~(16)で求めた値の平均値を示している。エッジ検出及び表面形状測定の方法は、前述したとおりである。
 エッジ検出成功率=(エッジ検出成功回数/1コイル全長の処理画像数)×100 ・・・(14)
 表面形状測定成功率=(表面形状測定成功回数/1コイル全長の処理画像数)×100 ・・・(15)
 有効判定率=(表面形状測定とエッジ検出が共に成功した回数/1コイル全長の処理画像数)×100 ・・・(16)
Figure JPOXMLDOC01-appb-T000014
 エッジ検出については、何れの場合も99%以上の成功率を示しており、線状パターン及び千鳥状パターンの何れを用いた場合であってもそれほど差が無いことが分かる。換言すれば、投影パターンとして千鳥状パターンを用いても、エッジ検出能の低下は生じないということがいえる。また、表面形状の測定については、従来の線状パターンを用いた場合には83.8%の成功率であったのが、千鳥状パターンを用いることにより97.9%と大幅に改善されている。これに伴い、有効判定率も94.2%から98.6%に改善されている。
 以上に説明したように、従来の線状パターンを用いる場合の測定不良は、本来制御を行うべき平坦度不良部に多く発生していたことを考慮すると、本実施形態のように千鳥状パターンを用いることによる平坦度測定値の制御への適用効果は大きなものとなることが期待できる。しかも、測定結果の有効性判定に基づき、制御をオン/オフすることにより、測定異常値による制御ミスを防止することができ、安定した制御が実現できる。

Claims (7)

  1.  長手方向に走行する板材の表面に明部及び暗部から構成される明暗パターンを投影し、前記板材の幅よりも大きな撮像視野を有する撮像手段で前記明暗パターンを撮像することでパターン画像を取得し、該取得したパターン画像を解析することにより前記板材の平坦度を測定する方法であって、
     前記板材の表面に投影する明暗パターンとして、明部が縦方向及び横方向にそれぞれ所定の設定ピッチで千鳥状に配置された千鳥状パターンを用い、該千鳥状パターンの縦方向が前記板材の長手方向に沿い、該千鳥状パターンの横方向が前記板材の幅方向に沿うように、該千鳥状パターンを前記板材の表面に投影する第1ステップと、
     前記千鳥状パターンの前記板材の表面での正反射光を受光し得る位置に前記撮像手段を配置し、該撮像手段で前記千鳥状パターンを撮像することでパターン画像を取得する第2ステップと、
     前記取得したパターン画像内の所定の位置に、前記千鳥状パターンの縦方向に沿って延びる形状測定線を設定する第3ステップと、
     前記形状測定線上の画素を通って前記千鳥状パターンの横方向に延び、前記明部の横方向設定ピッチの2倍以上の長さを有する直線上の画素濃度を平均化して、平均画素濃度を算出する第4ステップと、
     前記形状測定線に沿った前記平均画素濃度の分布を算出する第5ステップと、
     前記算出した平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出し、該算出した表面形状に基づき、前記板材の平坦度を演算する第6ステップとを含むことを特徴とする板材の平坦度測定方法。
  2.  平坦度を測定する対象である板材の走行方向に平行に設置され平坦な表面形状を有する基準材に対して、前記第1ステップ~前記第5ステップを実行することにより、前記基準材について取得した前記パターン画像における前記形状測定線に沿った平均画素濃度分布を算出し、該平均画素濃度分布に基づいて、前記基準材について取得した前記パターン画像における前記形状測定線に沿った前記千鳥状パターンの明部の縦方向ピッチの分布p(x)を予め算出するステップを更に含み、
     前記第6ステップは、
     前記板材について算出した前記平均画素濃度分布に基づいて、前記板材について取得した前記パターン画像における前記形状測定線に沿った前記千鳥状パターンの明部の縦方向ピッチの分布p(x)を算出するステップと、
     下記の式(1)に基づいて、前記形状測定線に沿った前記板材の表面の傾斜角度の分布θ(x)を算出し、該板材の表面の傾斜角度の分布θ(x)に基づいて、前記板材の表面形状を算出するステップとを含むことを特徴とする請求項1に記載の板材の平坦度測定方法。
    Figure JPOXMLDOC01-appb-M000001

     上記の式(1)において、xはパターン画像における千鳥状パターンの縦方向に沿った位置(板材の長手方向に沿った位置)を、θ(x)は水平方向と板材の表面とが成す傾斜角度の分布を、αは鉛直方向と撮像手段による撮像方向とが成す角度を、βは鉛直方向と千鳥状パターンの投影方向とが成す角度を意味する。
  3.  前記第3ステップは、
     前記取得したパターン画像内の所定の位置に、前記千鳥状パターンの横方向に延びるエッジ検出線を設定するステップと、
     前記エッジ検出線上の画素を通って前記千鳥状パターンの縦方向に沿って延び、前記明部の縦方向設定ピッチの2倍以上の長さを有する直線上の画素濃度の標準偏差を、前記エッジ検出線に沿って順次算出するステップと、
     前記算出した画素濃度標準偏差の大小に基づき、前記エッジ検出線上において前記板材のエッジに相当する画素を検出するステップと、
     前記検出したエッジ相当画素を基準として、前記形状測定線を設定するステップとを含むことを特徴とする請求項1又は2に記載の板材の平坦度測定方法。
  4.  前記撮像手段として、高感度撮像手段と、該高感度撮像手段よりも感度が低い低感度撮像手段とを用い、
     前記第2ステップにおいて、それぞれの撮像視野が互いに重複する部分を有するように、前記高感度撮像手段及び前記低感度撮像手段を並置し、
     前記第3ステップにおいて、前記高感度撮像手段及び前記低感度撮像手段でそれぞれ取得した各パターン画像内の対応する位置に、前記形状測定線を設定し、
     前記第6ステップは、
     前記高感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布において、濃度が飽和している画素数を計数するステップと、
     前記濃度飽和画素数が予め設定した所定のしきい値以上の場合には、前記低感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出し、前記濃度飽和画素数が予め設定したしきい値未満の場合には、前記高感度撮像手段で取得したパターン画像内に設定した前記形状測定線に沿った前記平均画素濃度分布に基づき、前記形状測定線に沿った前記板材の表面形状を算出するステップとを含むことを特徴とする請求項1から3のいずれかに記載の板材の平坦度測定方法。
  5.  長手方向に走行する板材に対して、前記第1ステップ~前記第6ステップを繰り返し実行することにより、前記板材の長手方向に異なる複数の部位についての平坦度を順次測定する第7ステップと、
     予め設定した直近N(Nは2以上の整数)回の前記平坦度測定値が、それぞれ測定に成功したものであるか否かを判定する第8ステップと、
     前記直近N回の平坦度測定値の内、測定に成功したものであると判定された回数が、予め設定したしきい値以上である場合には、測定に成功したことを示す信号を出力すると共に、前記直近N回の平坦度測定値の内、測定に成功した平坦度測定値の平均値を平坦度測定結果として出力し、測定に成功したものであると判定された回数が前記しきい値未満である場合には、測定に失敗したことを示す信号を出力する第9ステップとを更に含むことを特徴とする請求項1から4の何れかに記載の板材の平坦度測定方法。
  6.  前記第8ステップは、
     前記直近N回の各平坦度測定値を得るのに用いた前記パターン画像内に、前記千鳥状パターンの横方向に延びるエッジ検出線を、前記千鳥状パターンの縦方向に異なる位置に2つ設定するステップと、
     前記各エッジ検出線上において前記板材のエッジに相当する画素を検出するステップと、
     前記検出した前記板材のエッジに相当する画素の座標と、前記第5ステップで算出した前記形状測定線に沿った前記平均画素濃度分布の振幅とに基づいて、前記直近N回の各平坦度測定値が測定に成功したものであるか否かを判定するステップとを含むことを特徴とする請求項5に記載の板材の平坦度測定方法。
  7.  粗圧延機で粗圧延された鋼片を仕上圧延機列で圧延した後、冷却帯で冷却して鋼板を製造する方法であって、
     請求項1から6の何れかに記載の平坦度測定方法によって、鋼板の平坦度を測定した結果に基づき、仕上圧延機の圧延条件又は冷却帯での冷却条件を制御することを特徴とする鋼板の製造方法。
PCT/JP2010/063068 2009-10-19 2010-08-03 板材の平坦度測定方法及びこれを用いた鋼板の製造方法 WO2011048860A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010541650A JP4666272B1 (ja) 2009-10-19 2010-08-03 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
CN201080058029.5A CN102667400B (zh) 2009-10-19 2010-08-03 板材的平坦度测量方法以及使用该方法的钢板的制造方法
EP10824712.3A EP2492634B1 (en) 2009-10-19 2010-08-03 Method of measuring flatness of sheet and method of manufacturing steel sheet using same
KR1020127012779A KR101307037B1 (ko) 2009-10-19 2010-08-03 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법
IN3206DEN2012 IN2012DN03206A (ja) 2009-10-19 2010-08-03
US13/444,342 US8459073B2 (en) 2009-10-19 2012-04-11 Method for measuring sheet material flatness and method for producing steel sheet using said measuring method
US13/899,800 US9138790B2 (en) 2009-10-19 2013-05-22 Method for measuring sheet material flatness and method for producing steel sheet using said measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240574 2009-10-19
JP2009240574 2009-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/444,342 Continuation US8459073B2 (en) 2009-10-19 2012-04-11 Method for measuring sheet material flatness and method for producing steel sheet using said measuring method

Publications (1)

Publication Number Publication Date
WO2011048860A1 true WO2011048860A1 (ja) 2011-04-28

Family

ID=43900101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063068 WO2011048860A1 (ja) 2009-10-19 2010-08-03 板材の平坦度測定方法及びこれを用いた鋼板の製造方法

Country Status (7)

Country Link
US (2) US8459073B2 (ja)
EP (1) EP2492634B1 (ja)
JP (1) JP4666272B1 (ja)
KR (1) KR101307037B1 (ja)
CN (1) CN102667400B (ja)
IN (1) IN2012DN03206A (ja)
WO (1) WO2011048860A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620663A (zh) * 2012-03-21 2012-08-01 莱芜钢铁集团有限公司 热轧板带坯料在线测长装置及其使用方法
JP2015007284A (ja) * 2013-06-24 2015-01-15 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy 陽極鋳造物整形方法および装置
JP2015505039A (ja) * 2011-12-12 2015-02-16 ザイゴ コーポレーションZygo Corporation 変調光を使用した非接触表面形状評価
JP2016505133A (ja) * 2012-11-14 2016-02-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated 構造化された光のアクティブ深度検知システムにおける光源電力の動的調整
TWI630366B (zh) * 2017-04-28 2018-07-21 中國鋼鐵股份有限公司 鋼板寬度量測系統及其方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666272B1 (ja) * 2009-10-19 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
KR101399886B1 (ko) * 2013-03-28 2014-05-27 현대제철 주식회사 캠버 제어 장치 및 그 방법
WO2014185478A1 (ja) 2013-05-14 2014-11-20 新日鐵住金株式会社 板材の平坦度測定方法、板材の平坦度測定装置及び鋼板の製造方法
CN103322948B (zh) * 2013-07-04 2015-12-23 上海宝锋工程技术有限公司 板坯表面凹凸点检测方法、检测装置与处理方法
WO2015027014A1 (en) * 2013-08-21 2015-02-26 Severstal Dearborn, Llc Method for measuring surface characteristics of hot dipped galvanneal steel sheet
US9250066B2 (en) * 2014-03-21 2016-02-02 Charles Thorndike System for measuring base edge bevel angles and conditions of base flatness for skis and snowboards
JP6341883B2 (ja) * 2014-06-27 2018-06-13 キヤノン株式会社 位置検出装置、位置検出方法、インプリント装置及び物品の製造方法
KR101950634B1 (ko) * 2015-04-22 2019-02-20 신닛테츠스미킨 카부시키카이샤 형상 측정 장치 및 형상 측정 방법
TWI651511B (zh) * 2015-05-15 2019-02-21 高準精密工業股份有限公司 偵測方法以及應用該偵測方法的光學裝置
CN105032784B (zh) * 2015-06-30 2017-07-14 张金丹 一种具有筛选功能的板材生产系统
EP3220101B1 (en) * 2016-03-16 2020-01-29 Ricoh Company, Ltd. Texture evaluation apparatus, texture evaluation method, and computer-readable recording medium
ES2861350T3 (es) * 2016-03-28 2021-10-06 Illumina Inc Micromatrices de planos múltiples
JP7238405B2 (ja) * 2016-12-06 2023-03-14 日本電気硝子株式会社 帯状ガラスフィルムの品質検査方法
US11055858B2 (en) * 2017-03-14 2021-07-06 Jfe Steel Corporation Method and apparatus for measuring meandering amount of strip, and method and apparatus for detecting abnormal meandering of strip
FR3066816B1 (fr) 2017-05-24 2020-09-04 Centre Nat Rech Scient Dispositif optique de mesure de la courbure d'une surface reflechissante
WO2019040805A1 (en) * 2017-08-24 2019-02-28 C&B Tech APPARATUS AND METHODS FOR MEASURING DROUGHT
BR112020023311A2 (pt) * 2018-05-22 2021-02-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation sistema de controle de monitoramento de instalação industrial
CN113615160B (zh) * 2019-03-20 2023-06-09 鲍勃斯脱梅克斯股份有限公司 使用激光线的多摄像头成像系统
CN109909366B (zh) * 2019-04-01 2020-12-29 哈尔滨工业大学 面向超声冲击加工的光路辅助显微视觉检测系统和方法
JP7007324B2 (ja) * 2019-04-25 2022-01-24 ファナック株式会社 画像処理装置、画像処理方法、及びロボットシステム
CN110736751B (zh) * 2019-11-06 2022-04-19 合肥御微半导体技术有限公司 一种表面缺陷检测方法及装置
CN111024712A (zh) * 2019-12-26 2020-04-17 苏州伟信奥图智能科技有限公司 适用于表面缺陷检测方法
CN111229840B (zh) * 2020-01-13 2021-11-16 广东韶钢松山股份有限公司 中厚板轧后超快冷控制系统、方法以及调整水流量比补偿值的方法
CN212623504U (zh) * 2020-06-08 2021-02-26 三赢科技(深圳)有限公司 结构光投影仪
JP6808888B1 (ja) * 2020-11-05 2021-01-06 Primetals Technologies Japan株式会社 不良判断装置および不良判断方法
CN112517646A (zh) * 2020-11-17 2021-03-19 娄底市洪申科技有限公司 一种钢板在线平整度检测设备及其检测方法
CN112880742A (zh) * 2021-01-24 2021-06-01 宝钢工程技术集团有限公司 板坯多功能监测仪及其使用方法
TWI826779B (zh) * 2021-04-23 2023-12-21 達運精密工業股份有限公司 基材平坦度的檢測方法
CN113305170B (zh) * 2021-07-28 2021-10-08 佛山市腾华自动化机械有限公司 一种牵引机
CN116399264B (zh) * 2023-02-01 2024-02-09 台山市鸿材家具制造有限公司 一种家具板材水平度检测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140503A (ja) 1984-07-31 1986-02-26 Sumitomo Metal Ind Ltd 連続搬送鋼板の平坦度測定方法
JPH11104721A (ja) 1997-10-06 1999-04-20 Kawasaki Steel Corp 熱間圧延における板クラウン・形状制御方法
JP2008058036A (ja) 2006-08-29 2008-03-13 Sumitomo Metal Ind Ltd 板材の平坦度測定方法及び板材の平坦度測定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412121A (en) * 1981-08-28 1983-10-25 S R I International Implement positioning apparatus and process
DE69130674T2 (de) * 1990-07-16 1999-07-22 Du Pont Verfahren und gerät zur gewebe-kräuselbestimmung
US5471307A (en) * 1992-09-21 1995-11-28 Phase Shift Technology, Inc. Sheet flatness measurement system and method
DE19758466B4 (de) * 1997-03-11 2007-10-04 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Planheits-Regelungssystem für Metallband
ATE355504T1 (de) * 1998-09-14 2006-03-15 Betr Forsch Inst Angew Forsch Verfahren zum messen der geometrie und planheit von bewegtem metallband
US6711279B1 (en) * 2000-11-17 2004-03-23 Honeywell International Inc. Object detection
JP3681171B2 (ja) * 2002-03-28 2005-08-10 フジノン株式会社 モアレ格子ノイズ除去方法
JP4957586B2 (ja) * 2008-02-29 2012-06-20 住友金属工業株式会社 熱延鋼板の製造方法、及び製造設備配列
CN101422787B (zh) * 2008-12-10 2011-04-20 北京科技大学 基于单步相移法的带钢平坦度测量方法
JP4666272B1 (ja) * 2009-10-19 2011-04-06 住友金属工業株式会社 板材の平坦度測定方法及びこれを用いた鋼板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140503A (ja) 1984-07-31 1986-02-26 Sumitomo Metal Ind Ltd 連続搬送鋼板の平坦度測定方法
JPH11104721A (ja) 1997-10-06 1999-04-20 Kawasaki Steel Corp 熱間圧延における板クラウン・形状制御方法
JP2008058036A (ja) 2006-08-29 2008-03-13 Sumitomo Metal Ind Ltd 板材の平坦度測定方法及び板材の平坦度測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492634A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505039A (ja) * 2011-12-12 2015-02-16 ザイゴ コーポレーションZygo Corporation 変調光を使用した非接触表面形状評価
CN102620663A (zh) * 2012-03-21 2012-08-01 莱芜钢铁集团有限公司 热轧板带坯料在线测长装置及其使用方法
JP2016505133A (ja) * 2012-11-14 2016-02-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated 構造化された光のアクティブ深度検知システムにおける光源電力の動的調整
US10368053B2 (en) 2012-11-14 2019-07-30 Qualcomm Incorporated Structured light active depth sensing systems combining multiple images to compensate for differences in reflectivity and/or absorption
US11509880B2 (en) 2012-11-14 2022-11-22 Qualcomm Incorporated Dynamic adjustment of light source power in structured light active depth sensing systems
JP2015007284A (ja) * 2013-06-24 2015-01-15 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy 陽極鋳造物整形方法および装置
TWI630366B (zh) * 2017-04-28 2018-07-21 中國鋼鐵股份有限公司 鋼板寬度量測系統及其方法

Also Published As

Publication number Publication date
EP2492634B1 (en) 2017-05-10
EP2492634A4 (en) 2016-08-17
US9138790B2 (en) 2015-09-22
JP4666272B1 (ja) 2011-04-06
US20120204614A1 (en) 2012-08-16
US20140007634A1 (en) 2014-01-09
KR101307037B1 (ko) 2013-09-11
US8459073B2 (en) 2013-06-11
EP2492634A1 (en) 2012-08-29
CN102667400A (zh) 2012-09-12
CN102667400B (zh) 2014-11-05
JPWO2011048860A1 (ja) 2013-03-07
IN2012DN03206A (ja) 2015-10-23
KR20120083478A (ko) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4666272B1 (ja) 板材の平坦度測定方法及びこれを用いた鋼板の製造方法
EP2573509B1 (en) Apparatus and method for measuring flatness of sheet material and steel sheet production method utilizing said method
EP0864847B1 (de) Verfahren zum Messen der Planheit eines bewegten Metallbands oder der Stirnfläche eines Coils
KR101734748B1 (ko) 판재의 평탄도 측정 방법, 판재의 평탄도 측정 장치 및 강판의 제조 방법
JP4797887B2 (ja) 板材の平坦度測定方法及び板材の平坦度測定装置
JP4957586B2 (ja) 熱延鋼板の製造方法、及び製造設備配列
JP6772756B2 (ja) 鋼板形状の矯正装置、矯正方法、および、鋼板の連続酸洗装置
JP7222415B2 (ja) 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法
JPH04160304A (ja) 板幅方向反り検出装置
Isei et al. Development of a Shape Meter Employing the LED Dot Pattern Projection Method for a Hot Strip Finishing Mill
JPS6082211A (ja) ロ−ル開度設定方法
JP3010885B2 (ja) H形鋼ウエブ高さの測定方法および測定装置
Trusillo et al. Shapemeter IP-4 on the continuous thermal treatment line of Samara Metallurgical Works

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058029.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010541650

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3206/DELNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010824712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010824712

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127012779

Country of ref document: KR

Kind code of ref document: A