JP4957586B2 - 熱延鋼板の製造方法、及び製造設備配列 - Google Patents
熱延鋼板の製造方法、及び製造設備配列 Download PDFInfo
- Publication number
- JP4957586B2 JP4957586B2 JP2008050639A JP2008050639A JP4957586B2 JP 4957586 B2 JP4957586 B2 JP 4957586B2 JP 2008050639 A JP2008050639 A JP 2008050639A JP 2008050639 A JP2008050639 A JP 2008050639A JP 4957586 B2 JP4957586 B2 JP 4957586B2
- Authority
- JP
- Japan
- Prior art keywords
- flatness
- rolling
- target value
- post
- winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
Description
1.巻き取り直前における鋼板の形状が端伸び(鋼板幅方向センター部に比べ、鋼板幅方向エッジ部の方が圧延方向に伸びている状態)である場合、鋼板を巻き取り機に進入しやすいようにガイドする役目をもつサイドガイドと鋼板エッジとが接触しやすくなるため、鋼板エッジにエッジ疵が発生しやすくなる。従って、鋼板の巻き取り前形状が、端伸びよりも中伸び(鋼板幅方向エッジ部に比べ、鋼板幅方向センター部の方が圧延方向に伸びている状態)となるように設定することが好ましい。
2.巻き取り前で鋼板の形状が中伸びとなるように設定すると、巻き取り機までの冷却過程で中伸び部分に水が乗り、その部分が急冷されることで鋼板の結晶構造が変化し、変色する(これをいわゆる水乗りマークという。)。従って、水乗りマークを防ぐためには、鋼板の巻き取り前の形状が中伸びよりも端伸びとなるように設定することが好ましい。
3.鋼板をコイル状にして搬送するときに他設備と接触することで発生するスリ疵については、コイルがタイトに結束されていること、コイル状態での平坦度がフラットであることが好ましい。しかし、巻き取り直前では鋼板幅方向に温度が変化しているため、常温に冷やされる過程で鋼板平坦形状が複雑に変化し、コイル状態での平坦度をフラットにさせるためには、巻き取り直前での鋼板の平坦度を如何にするかは設定が容易ではない。
以上のように、巻き取り直前の鋼板の平坦度が、鋼板の品質不良に与える影響は様々である。
So=f(h,b,CT,M)・・・(1)
ただし、仕上げ圧延機出側から巻き取り機までにおける鋼板の平坦形状の変化は、鋼板の板厚、板幅、巻き取り温度、鋼種等による影響以外にも、仕上げ圧延機出側の鋼板の平坦度、並びに巻き取り機までの冷却工程(冷却位置、冷却量等)が大きく影響する。そのため、鋼板当材と次材との仕上げ圧延機出側の平坦度並びに冷却工程の操業条件が異なるにもかかわらず、当材の結果をそのまま次材に反映させてしまうと、次材の仕上げ圧延機出側の平坦度の設定が不良となってしまい、巻き取り直前の鋼板平坦形状を精度よく制御して製造することが困難であった。
巻き取り直前に平坦度計を設置し、その実績(急峻度)と、鋼板平坦度不良に起因して発生すると考えられているスリ疵、水乗りマークが原因で鋼板をスクラップにした切下げ発生頻度と、を調査した結果、図5のような関係があることを突き止めた。つまり、材料の種類によっては、巻き取り前の鋼板の平坦形状を0(フラット)にするのではなく、若干端伸びに製造するほうが、切下げを最小とする観点からは好ましいということが分かった。また、このような調査を鋼板の材質毎、寸法毎に行ったところ、その最適値の範囲はそれぞれ異なることが判明した。
鋼板の種類、冷却工程の操業条件がほぼ同様であるものを対象に、鋼板の長手方向位置並びに幅方向位置の同一点について、仕上げ圧延機出側並びに巻き取り直前の平坦度計の測定値を調査した結果、図6のように、両者はほぼ直線の関係で近似できることを突き止めた。従って、上記特許文献2に記載されたように、巻き取り直前の平坦度測定値のみに基づき仕上げ圧延機出側の平坦の目標値を変更するのではなく、仕上げ圧延機出側の情報も活用することで、仕上げ圧延機出側から巻き取り前までの鋼板の平坦形状の変化を精度よく予測でき、それによって仕上げ圧延機出側の平坦度の目標値を精度よく設定できることが判明した。
鋼板の幅方向にも平坦形状が変化するため、仕上げ圧延機出側の平坦度測定位置と巻き取り前の平坦度測定位置とを幅方向に合わせる必要がある。しかし、鋼板は仕上げ圧延機を出てから巻き取り機に到達するまでは蛇行しながら搬送されるため、設置する平坦度計は、鋼板の蛇行に追従可能であることが好ましい。
知見2のように、冷却工程出側での鋼板平坦形状は、冷却工程入側の平坦形状と、冷却工程での操業条件(冷却位置、冷却量)によって影響を受ける。しかし、冷却工程は一般に、仕上げ圧延機出側から巻き取り直前まで約100mにも及ぶため、仕上げ圧延機出側から巻き取り前までの鋼板平坦形状について、まとめて数式化するのではなく、冷却工程の中間部分にも平坦度計を設置し、仕上げ圧延機出側から冷却工程中間部分、冷却工程中間部分から巻き取り前、のように数式化する対象範囲を分割することで、冷却工程中間部前後における冷却の操業条件をより明確に分離して設定できるため、鋼板平坦形状の変化を更に精度良く推定できるようになる。
冷却工程出側での鋼板平坦形状は、冷却工程入側の平坦形状及び冷却工程での操業条件の他に、鋼板の幅方向の温度分布によっても影響を受ける。従って、冷却工程の入側と出側の平坦形状の関係を数式化する際には、平坦度計設置近傍に幅方向の温度分布が測定可能である幅方向温度計も設置し、当該温度情報を活用することでより精度良く数式化可能となる。また、鋼板の裏面側の温度分布を測定する場合には、通常の温度計では測定ができないため、例えば、特公平3−69974号公報、特開2005−24303号公報、特開2003−185501号公報に記載されたような水環境でも測定可能な水環境温度計を使用する必要がある。
また、知見3のように鋼板の平坦形状は幅方向にも変化するため、測定した幅方向温度計の結果と平坦度との関係を比較するには、平坦度計が鋼板幅方向の少なくとも7点で平坦度を測定できることが好ましい。
「平坦度計の近傍に幅方向温度計を設置する」とは、上記のように鋼板平坦度測定箇所と鋼板幅方向温度測定箇所とを対応させることが可能なように平坦度計及び幅方向温度計を配置することはもちろんのこと、両測定器間での鋼板の平坦の変化が小さく無視しても差し支えない範囲内に設置することを意味する。両測定器間の距離は約15m以内に設置することが好ましい。
「鋼板裏側」とは、製造工程において鋼板を走行させる場合、水平面に対して鋼板下面側を意味する。
「平坦度計の近傍に水環境温度計を設置する」とは、上記のように鋼板平坦度測定箇所と鋼板温度測定箇所とを対応させることが可能なように平坦度計及び水環境温度計を配置することはもちろんのこと、両測定器間での鋼板の平坦の変化が小さく無視しても差し支えない範囲内に設置することを意味する。両測定器間の距離は約15m以内に設置することが好ましい。
「平坦度計の近傍に幅方向温度計を設置する」とは、上記のように鋼板平坦度測定箇所と鋼板幅方向温度測定箇所とを対応させることが可能なように平坦度計及び幅方向温度計を配置することはもちろんのこと、両測定器間での鋼板の平坦の変化が小さく無視しても差し支えない範囲内に設置することを意味する。両測定器間の距離は約15m以内に設置することが好ましい。
「鋼板裏側」とは、製造工程において鋼板を走行させる場合、水平面に対して鋼板下面側を意味する。
「平坦度計の近傍に水環境温度計を設置する」とは、上記のように鋼板平坦度測定箇所と鋼板温度測定箇所とを対応させることが可能なように平坦度計及び水環境温度計を配置することはもちろんのこと、両測定器間での鋼板の平坦の変化が小さく無視しても差し支えない範囲内に設置することを意味する。両測定器間の距離は約15m以内に設置することが好ましい。
<1.第1実施形態>
図1は、本発明の第1実施形態にかかる製造方法100(以下、「製造方法100」という。)に備えられる各工程を示すフローチャートである。製造方法100は、仕上げ圧延工程S1、圧延後平坦度測定工程S2、冷却工程S3、巻き取り前平坦度測定工程S4、巻き取り工程S5、巻き取り前目標値設定工程S1’、及び圧延後目標値設定工程S2’を備えている。
熱延鋼板1を製造するにあたり、第1実施形態においては、まず、データベース8から鋼板平坦形状起因で発生したスリ疵、水乗りマーク、コイラエッジ疵などの品質不良の実測値と、巻き取り前平坦度計6bにより測定した鋼板平坦度の実績値との相関を調査し、上記品質不良の少なくとも一つが最小となるような巻き取り前平坦度の最適値を見つけ、当該最適値を巻き取り前平坦度目標値(λCaim)として設定する。なお、どの品質不良を最小とするかは、鋼種、向け先、下工程などを考慮しながら、人間により決定されてもよいし、自動演算装置により決定されてもよい。製造ライン200においては、演算装置9が用いられている。このように巻き取り前目標値設定工程S1’では上記巻き取り前平坦度目標値λCaimを設定する。
次に、仕上げ圧延機出側の圧延後平坦度(急峻度λF)と、巻き取り直前の巻き取り前平坦度(急峻度λC)とについて、下記式(2)のように数式化する。なお、A、Bは鋼種、寸法、冷却装置3の操業条件(具体的には、冷却装置の使用率、冷却水量)毎に区分された値とする。
λC = A×λF + B ・・・(2)
λFaim = (λCaim − B)/A・・・(3)
製造方法100における仕上げ圧延工程S1は、粗圧延された熱延鋼板1を仕上げ圧延機により仕上げ圧延する工程である。仕上げ圧延機としては、鋼板の仕上げ圧延に一般的に用いられる仕上げ圧延機であれば特に限定されずに適用可能である。仕上げ圧延工程S1の仕上げ圧延機は、製造ライン200中の連続仕上げ圧延機2と対応している。仕上げ圧延工程S1においては、次工程である圧延後平坦度測定工程S2において測定された平坦度が、上記圧延後目標値設定工程S2’において設定された目標値となるように、熱延鋼板1を仕上げ圧延する。
圧延後平坦度測定工程S2においては、製造ライン200中の圧延後平坦度計6aにより、仕上げ圧延機2出側における熱延鋼板1の圧延後平坦度が測定される。測定された当該圧延後平坦度実測値は、圧延後目標値設定工程S2’に供され、圧延後目標値が逐次修正される。
圧延後平坦度を測定した後、熱延鋼板1は次工程である冷却工程S3に供される。冷却工程S3においては、熱延鋼板1が冷却装置3により冷却される。冷却装置3としては、一般的に使用される冷却装置であれば特に限定されずに適用可能であり、製造ライン200においては、大きく二つに分けられた冷却装置を用いている。
冷却工程S3において冷却された熱延鋼板1は、巻き取り前平坦度測定工程S4に供され、巻き取り前平坦度計6bにより、鋼板1の巻き取り前平坦度が測定される。測定された当該巻き取り前平坦度値は、圧延後目標値設定工程S2’に供され、予め設定された巻き取り前平坦度目標値と照らし合わせて、圧延後目標値設定工程S2’において圧延後目標値が逐次修正される。
巻き取り前平坦度が測定された熱延鋼板1は、サイドガイド4を通り、巻き取り工程S5においてコイル状に巻き取られる。巻き取り工程S5においては、一般的に使用されている巻き取り機5が使用される。また、巻き取り工程S5において巻き取られた熱延鋼板1の製品品質はデータベース8に送られ、巻き取り前目標値設定工程S1’における演算装置9の演算に供される。
図3は本発明の第2実施形態にかかる製造ライン300について示した模式図である。図3において第1実施形態と同様の構成については、同符号を付し、説明を適宜省略する。第2実施形態について、第1実施形態との相違点は、大きく二つに分けられた冷却装置3a、3bの中間位置において、さらなる平坦度計6cを設置するとともに、演算装置10の処理方法に関してより高度化しているところにある。以下演算装置10に着目して説明する。
λC = A1×λM + B1・・・(4)
λM = A2×λF + B2・・・(5)
λFaim = (λCaim−B1−A1×B2)/(A1×A2)・・・(6)
図4は本発明の第3実施形態にかかる製造ライン400ついて示した模式図である。図4において第1、第2実施形態と同様の構成については、同符号を付し、説明を適宜省略する。第3実施形態について、第1実施形態との相違点は、平坦度計6a、6bの近傍に鋼板1の幅方向温度分布を測定できる幅方向温度計11a、11bを設置している点にある。即ち、幅方向温度計11aは平坦度計6aの鋼板平坦度測定箇所と対応する箇所について鋼板幅方向温度を測定し、幅方向温度計11bは平坦度計6bの鋼板平坦度測定箇所と対応する箇所について鋼板幅方向温度を測定するとともに、鋼板平坦度及び当該平坦度と対応する温度情報を演算条件として組み込むことで演算装置10の処理方法をより高度化したところにある。以下演算装置10の処理方法の相違点に着目して説明する。
本発明にかかる平坦度計6a、6b、6c(以下まとめて、単に「平坦度計」という。)は、蛇行追従型であることが好ましく、加えて、鋼板1の幅方向に対して少なくとも7点において鋼板平坦度を測定可能であることが好ましい。そのような平坦度計について以下説明する。
Δε=ΔL/L ・・・(7)
また、急峻度λは、板材の波高さδとそのピッチPを用いて、次の式(8)で表される。
λ=δ/P ・・・(8)
そして、伸び差率Δεと急峻度λとには、次の式(9)の関係がある。
λ=(2/π)(|Δε|)1/2×100 ・・・(9)
工程S12では、鋼板1の高さを測定する。鋼板1は、熱間圧延ラインでの走行時に浮き上がりが生じるため、高さが変化する。フローチャート40では、後述する工程S17で鋼板1の高さを用い、表面角度分布を計算する。そのため、最初に鋼板1の高さを測定することが必要である。図11は、カメラにより撮影された鋼板1表面の線状パターン12を示す図である。紙面左右が鋼板1の幅方向である。線状パターン12は、複数の平行に並べられた線14、14、…と、スリット16a〜16fとを有している。それぞれの線14、14、…は、長手方向において中央部と左右部とに分割され、その間にスリット16a〜16fが配置されている。線状パターン12は、線14、14、…及びスリット16a〜16fの長手方向が鋼板1の幅方向となるように投影されている。なお、図の見易さのために、線14、14、…は、実際より本数を少なく示し、一部の符号を省略する。
工程S13では、鋼板1の幅方向端辺(以下単に「端辺」という。)を検出する。図11において、線状パターン12は、鋼板1の幅方向について、鋼板1より大きくなるように投影されている。これにより、鋼板1の表面では反射により線状パターン12は明るく、鋼板1の表面を外れた位置では、線状パターン12は反射しないため暗くなる。そのため、この輝度の差から鋼板1の端辺を検出することができる。検出方法の一例としては、カメラ15a、15bの画像から、複数の線14、14、…の輝度を鋼板1の長手方向に積算し、積算値を鋼板の幅方向に微分する。微分した結果から、輝度の変化が最大及び最小となる位置が、鋼板1の端辺17a、17bとなる。このように複数の線14、14、…を用いて鋼板1の端辺を検出することで、検出の精度を高めることができる。なお、上記方法によらず、例えば1本の線14について、長手方向の輝度変化から鋼板1の端辺を検出しても良い。
工程S14では、鋼板1の形状測定線を決定する。この形状測定線に沿って、鋼板1の長手方向の表面形状が求められる。ここでは、工程S13で検出された鋼板1の端辺から、図11のとおり鋼板1の長手方向に形状測定線18a〜18eを設定する。形状測定線18a〜18eは線14、14、…の分割部以外に設定される。
工程S15では、形状測定線18a〜18eで輝度分布を作成する。形状測定線18a〜18eは、複数の線14、14、…を横断する。そのため、各形状測定線18a〜18eには輝度の明暗が存在する。最初に、カメラ15a、15bの画像ごとに、この輝度分布を測定する。測定方法の一例としては、カメラ15a、15bの画像から、形状測定線18a〜18eの輝度分布を、PC16において輝度データ列として取り込む。この際、耐ノイズ性能を向上させるために、各形状測定線18a〜18eについて、近傍の幅方向データを測定し、平均化することが好ましい。
工程S16では、形状測定線18a〜18eの輝度分布から、線状パターン間隔Pm(y)を計算する。工程S16の詳細については、後述する。
工程S17では、形状測定線18a〜18eにおける鋼板1の表面角度分布を計算する。図14は、鋼板1を幅方向から見た図であり、工程S16で求めた線状パターン間隔Pm(y)から、鋼板1の表面角度分布を計算する方法を示している。鋼板1の上部には、投影機13とカメラ15a、15bとが設置されている。ここでは、カメラ15bの図示を省略し、以降カメラ15aのみについて説明するが、カメラ15bについても同様である。鋼板1の表面には、投影機13から投影された線状パターン12のうち、2本の線14a、14b、およびこれらの間の暗部14cが図示されている。
工程S18では、工程S17で求めた表面角度分布から、鋼板1の表面形状を計算する。鋼板1の表面形状は、工程S17で求めた表面角度を積分することにより、それぞれの形状測定線18a〜18eについて求めることができる。
工程S19は、工程S18で求めた表面形状から鋼板1の急峻度λを計算する。それぞれの形状測定線18a〜18eの位置において表面形状の表面長さの計算を行うことで、伸び率εを計算する。そして、形状測定線18aでの伸び率ε18aと、他の形状測定線18b〜18eでの伸び率εmから伸び差率△εを求め、鋼板1の急峻度λを計算する。ここで、添字mは18a〜18eであり、形状測定線mにおける値であることを表している。得られた伸び率から、次の式(15)により中心部との差(伸び差率)△εを計算する。
△ε=ε18a−ε18b ・・・(15)
この△εから、式(9)により急峻度λを求めることができる。同様に、形状測定線18aと、形状測定線18c〜18eとによっても急峻度λを測定することが可能である。
工程S16aでは、形状測定線18a〜18eの輝度分布における輝度データ数が2n(nは自然数。以下同じ。)でない場合に、輝度データ数を2nの輝度分布k(x)に再サンプリングする。これにより、輝度分布k(x)に、離散フーリエ変換の高速な計算手法である高速フーリエ変換を適用することが可能となる。図18に、輝度データ数を、6から8に再サンプリングする一例を示す。図18(a)における6点の輝度データD1〜D6において、隣接するデータ同士を線で結ぶ。そして、D1〜D6の間を8等分し、この8等分する線と輝度データを結んだ線の交点を新たな輝度データD1’〜D8’とすると、図18(b)のとおり輝度データ数が8となる。ここで、再サンプリングにより、輝度データD1〜D6とD1’〜D8’では位置に差が生じる。しかし、鋼板1の平坦度測定に使用するのは、式(9)のとおり、線状パターン間隔Pm(y)と線状パターン間隔Ps(y)とであり、Pm(y)、Ps(y)ともに再サンプリングされるため、平坦度の値には影響しない。なお、輝度データの精度を低下させないため、再サンプリングでは、データ数を増やすことが好ましい。
工程S16bでは、再サンプリングした輝度分布k(y)を対称データ化する。離散フーリエ変換は、対象とする信号波形の外側にも同じ波形が繰り返していると仮定する。形状測定線18a〜18eの輝度分布k(y)は、両端において空間周波数(線状パターン間隔)、輝度ともに異なっているため、大きな不連続点を生じる。このことは、線状パターン間隔の計算結果において、輝度分布k(y)の端部に測定誤差を生じることになる。そこで、輝度分布k(y)について、対象とする輝度分布k(y)の輝度データ列を反転させて、元の輝度データ列の後につけくわえて、2倍のデータ点数の輝度分布g(y)とする。これにより、輝度分布g(y)の端部が不連続点でなくなるため、信号端部まで精度良く、線状パターン間隔を計算することが可能となる。図19は、輝度データの対称データ化を示す図である。図19(a)は、対称データ化前の輝度分布k(y)を離散フーリエ変換する場合を示している。k(y)の両端Cは、空間周波数(線状パターン間隔;横軸)、及び輝度(縦軸)の違いにより不連続点となっている。図19(b)では、k(y)を横軸方向に反転させてk(y)の後に結合したg(y)を用いて、離散フーリエ変換を行う。これにより、g(y)の両端Dが不連続点とならないため、端部Dで測定誤差が生じることを防ぐことができる。
工程S16cでは、対称データ化した輝度分布g(y)に対して、高速フーリエ変換
を行う。これにより、輝度の空間分布を空間周波数領域へ変換する。変換後の関数をG(
f)とし、高速フーリエ変換をF[ ]とすると、次の式(16)で表すことができる。
G(f)=F[g(y)] ・・・(16)
工程S16dでは、高速フーリエ変換を行った関数G(f)から空間周波数域を抽出する。抽出は、G(f)にW(f)を積算した後に、fSだけ低周波数側へ移動させる。W(f)は図20に示すように、線状パターン間隔Pm(y)の周波数帯域fL〜fHが1(単位は1/画素)で、それ以外は0の関数である。g(f)にW(f)を積算することにより、g(f)の負の空間周波数域の値は0となり、正の空間周波数帯域に存在する線状パターンのみを残すことができる。これにより、鋼板1表面のスケール生成むらにより生じる模様や、水乗りが、空間周波数に与える影響を抑制することができる。
け低周波側へ移動させる。これにより、後述する工程S16gのアンラッピング処理において、位相角の変化量が大きいのか、不連続点なのか判断できない場合が抑制されるため、不連続点を安定して検出することが可能となる。
H(f)=G(f+fs)・W(f+fs) ・・・(17)
なお、周波数fSの移動は必ず行う必要はないが、線状パターン間隔Pm(y)が狭い(空間周波数が高い)場合は、後述する工程S16gのアンラッピング処理において、不連続点を安定して検出するために実施した方が好ましい。
工程S16eでは、関数H(f)を逆高速フーリエ変換により、空間周波数域のデータから輝度空間分布へ変換する。変換した結果をgan(y)とする。F−1[ ]は空間周波数領域から空間分布への変換である逆高速フーリエ変換を表す。これにより、gan(y)は、次の式(18)で表すことができる。
gan(y)=F−1[H(f)] ・・・(18)
工程S16fでは、gan(y)の実数部Re[gan(y)]と虚数部Im[gan(y)]から位相角φ(y)を計算する。φ(y)は、次の式(19)で表すことができる。
φ(y)=tan−1[Im[gan(y)]/Re[gan(y)]] ・・・(19)
位相角φ(y)は、−π/2〜π/2に折り畳まれている。これをラッピングされているという。そのため、工程S16gでは、位相角φ(y)を微分しつつ、不連続点で滑らかにつながるよう、πを足したり引いたりするアンラッピング処理を行う。これにより、φ(y)を連続した波にする。位相角φ(y)の微分値は線状パターンの空間周波数−fSに比例する。そのため、次の式(20)により、線状パターンの空間周波数分布を得ることができる。
f(y)=−dφ/dx/(2π)+fS ・・・(20)
工程S16hでは、f(y)の逆数を計算して線状パターン間隔Pm(y)を算出する。Pm(y)は、次の式(21)で表すことができる。
Pm(y)=1/f(y) ・・・(21)
ここで、上述した工程S16bにより、データの後半分は反転したデータが結合された部分であるため、前半分を有効なデータとして用いる。
線状パターン12間隔=圧延方向の測定範囲/線14、14、…の本数・・・(22)
これにより、線状パターン12間隔は、35mm〜14mmとなる。なお、さらに測定精度を向上させるためには、カメラ15a、15bで撮影する線状パターン12の線14、14、…の本数を50〜70本とすることが好ましい。
dh’=dh+dh’・tanβ・tanθ
であることから、dh’は次の式(23)で表すことができる。
n・Pm’(y)>dPm(y)’ ・・・(26)
ここで、nは、線14aの大きさPs0’における暗部14cの割合である。上述した式(26)に、式(24)、式(25)を代入すると、次の式(27)のとおりとなる。
本発明の第3実施形態においては、平坦度計とともに、幅方向温度計11a、11b(以下、単に「幅方向温度計」という。)が使用される。幅方向温度計は、平坦度計の近傍に設置され、当該平坦度計によって測定された鋼板1の幅方向平坦度と対応する幅方向温度を測定し、当該温度情報は仕上げ圧延機2の設定、制御のための条件として組み込まれる。
特開2005−024303号公報に記載されたような、被測温鋼材表面と対向する位置に配置された放射温度計と、被測温鋼材と放射温度計との間に光導波路としての水柱を形成するための水柱形成手段とを備え、水柱を介して被測温鋼材表面からの放射光を放射温度計で検出することにより、被測温鋼材の表面温度を測定する装置であって、水柱形成手段に水を供給するための経路に配置され、放射温度計で検出する放射光の波長帯域に対する前記水の透過率を測定する透過率測定手段と、透過率測定手段で測定した透過率を用いて放射温度計の出力値を補正することにより測温値を算出する演算手段と、を更に備えることを特徴とする鋼材の表面温度測定装置や、
特開2003−185501号公報に記載されたような、放射温度計と、被測温鋼板と対向する位置に先端が配置され、後端が前記放射温度計に接続された光ファイバと、被測温鋼板と光ファイバの先端との間に光導波路としての水柱を形成するべく、被測温鋼板表面に向けて温水を噴射するノズルと、ノズルに温水を供給するために水を昇温する昇温手段とを備え、水柱及び光ファイバを介して被測温鋼板表面からの放射光を放射温度計で受光することにより、被測温鋼板の表面温度を測定する表面温度測定装置であって、ノズルは、水柱を形成する温水の水圧を、被測温鋼板表面の測温箇所における沸騰状態が膜沸騰状態を維持する水圧にして噴射し、昇温手段は、水柱を形成する温水の温度を、被測温鋼板表面の測温箇所における沸騰状態が膜沸騰状態を維持する温度に昇温することを特徴とする鋼板の表面温度測定装置としてもよい。
S2 圧延後平坦度測定工程
S3 冷却工程
S4 巻き取り前平坦度測定工程
S5 巻き取り工程
S1’ 巻き取り前目標値設定工程
S2’ 圧延後目標値設定工程
1 鋼板
2 仕上げ圧延機
3 冷却装置
4 サイドガード
5 巻き取り機
6a、6b、6c 平坦度計
7 演算装置
8 データベース
9 演算装置(巻き取り前目標値設定手段)
10 演算装置(圧延後目標値設定手段)
11a、11b 幅方向温度計
100 製造方法
200、300、400 製造ライン(製造設備配列)
Claims (22)
- 粗圧延機にて粗圧延された鋼板を仕上げ圧延機により仕上げ圧延する、仕上げ圧延工程と、仕上げ圧延された前記鋼板を冷却装置にて冷却する、冷却工程と、冷却された前記鋼板を巻き取り機により巻き取る、巻き取り工程と、を備える熱延鋼板の製造方法であって、
前記冷却工程の前記冷却装置と前記巻き取り工程の前記巻き取り機との間に設置された巻き取り前平坦度計を用いて、前記鋼板の巻き取り前平坦度を測定する、巻き取り前平坦度測定工程と、
前記冷却工程から前記巻き取り工程までの間に鋼板の平坦度不良部分に水が乗って該部分が急冷されることにより生じる変色が前記巻き取り前平坦度測定工程後において最小となるように、前記巻き取り前平坦度の目標値を設定する、巻き取り前目標値設定工程と、
を備えることを特徴とする、熱延鋼板の製造方法。 - 前記仕上げ圧延工程の前記仕上げ圧延機と前記冷却工程の前記冷却装置との間に圧延後平坦度計を設置し、該圧延後平坦度計により、前記仕上げ圧延工程の前記仕上げ圧延機と前記冷却工程の前記冷却装置との間における前記鋼板の圧延後平坦度を測定する、圧延後平坦度測定工程と、前記圧延後平坦度の目標値を設定する、圧延後目標値設定工程と、をさらに備え、
前記巻き取り前平坦度測定工程において測定された前記鋼板の巻き取り前平坦度が、前記巻き取り前目標値設定工程において設定された前記目標値となるように、各前記平坦度計により測定された前記圧延後平坦度及び前記巻き取り前平坦度に基づいて、前記圧延後目標値設定工程における前記圧延後平坦度の目標値を修正することを特徴とする、請求項1に記載の熱延鋼板の製造方法。 - 前記圧延後平坦度と前記巻き取り前平坦度との関係を予め数式化するとともに、該数式中のパラメータを、前記圧延後平坦度測定工程における前記圧延後平坦度の測定値と、前記巻き取り前平坦度測定工程における前記巻き取り前平坦度の測定値と、に基づき変更することで、前記圧延後目標値設定工程における前記圧延後平坦度の目標値を修正することを特徴とする、請求項2に記載の熱延鋼板の製造方法。
- 前記圧延後平坦度計により測定された前記圧延後平坦度が、前記圧延後目標値設定工程において設定された前記目標値又は修正された前記目標値となるように、前記仕上げ圧延機のワークロールベンダー、バックアップロールベンダー、ワークロールシフト、中間ワークロールシフト、ペアクロスのうちの少なくとも一つを設定することを特徴とする、請求項2又は3に記載の熱延鋼板の製造方法。
- 前記圧延後平坦度計により測定された前記圧延後平坦度が、前記圧延後目標値設定工程において設定された前記目標値又は修正された前記目標値となるように、前記圧延後平坦度測定工程において測定された圧延後平坦度に基づいて、
前記仕上げ圧延機のワークロールベンダー、バックアップロールベンダー、ワークロールシフト、中間ワークロールシフト、ペアクロスのうちの少なくとも一つを圧延中に制御することを特徴とする、請求項2又は3に記載の熱延鋼板の製造方法。 - 前記仕上げ圧延工程の前記仕上げ圧延機と前記冷却工程の前記冷却装置との間に前記圧延後平坦度計が設置されるとともに、前記圧延後平坦度計と前記巻き取り工程の前記巻き取り機との間に、前記巻き取り前平坦度計を含む少なくとも2つの平坦度計が設置されることを特徴とする、請求項1〜5のいずれか一項に記載の熱延鋼板の製造方法。
- 前記平坦度計が蛇行追従型であることを特徴とする、請求項1〜6のいずれか一項に記載の熱延鋼板の製造方法。
- 前記平坦度計が、幅方向に少なくとも7点の平坦度を同時に測定できることを特徴とする請求項1〜7のいずれか一項に記載の熱延鋼板の製造方法。
- 設置された前記平坦度計の近傍に前記鋼板の幅方向の温度分布が測定可能である幅方向温度計を設置することを特徴とする、請求項1〜8のいずれか一項に記載の熱延鋼板の製造方法。
- 設置された前記平坦度計の近傍に前記鋼板裏側の幅方向の温度分布が測定可能である水環境温度計を設置することを特徴とする、請求項1〜8のいずれか一項に記載の熱延鋼板の製造方法。
- 仕上げ圧延機と、冷却装置と、巻き取り機とを備える、熱延鋼板の製造に用いられる設備配列であって、
前記冷却装置と前記巻き取り機との間に設置された、鋼板の巻き取り前平坦度を測定する巻き取り前平坦度計、及び、前記巻き取り前平坦度計に備えられた、前記巻き取り前平坦度の目標値を設定する巻き取り前目標値設定手段、を備えるとともに、
前記巻き取り前目標値設定手段が、前記冷却装置から前記巻き取り機までの間に鋼板の平坦度不良部分に水が乗って該部分が急冷されることにより生じる前記鋼板の変色が前記巻き取り前平坦度計による平坦度測定後において最小となるように、前記巻き取り前平坦度計の平坦度目標値を設定する手段であることを特徴とする、製造設備配列。 - 前記仕上げ圧延機と前記冷却装置との間に設置された、前記鋼板の圧延後平坦度を測定する、圧延後平坦度計、及び、前記圧延後平坦度の目標値を設定する、圧延後目標値設定手段、を備えるとともに、
前記巻き取り前平坦度計により測定された前記鋼板の巻き取り前平坦度が、前記巻き取り前目標値設定手段において設定された目標値となるように、各前記平坦度計により測定された前記圧延後平坦度及び前記巻き取り前平坦度に基づいて、前記圧延後目標値設定手段によって設定される前記圧延後平坦度の目標値が修正されることを特徴とする、請求項11に記載の製造設備配列。 - 前記圧延後平坦度と前記巻き取り前平坦度との関係を予め数式化するとともに、該数式中のパラメータを、前記圧延後平坦度計による前記圧延後平坦度の測定値と、前記巻き取り前平坦度計による前記巻き取り前平坦度の測定値と、に基づき変更することで、前記圧延後目標値設定手段により設定された前記圧延後平坦度の目標値が修正されることを特徴とする、請求項12に記載の製造設備配列。
- 前記圧延後平坦度計により測定された前記圧延後平坦度が、前記圧延後目標値設定手段により設定された前記目標値又は修正された前記目標値となるように、前記仕上げ圧延機のワークロールベンダー、バックアップロールベンダー、ワークロールシフト、中間ワークロールシフト、ペアクロスのうちの少なくとも一つが設定されることを特徴とする、請求項12又は13に記載の製造設備配列。
- 前記圧延後平坦度計により測定された前記圧延後平坦度が、前記圧延後目標値設定手段により設定された前記目標値又は修正された前記目標値となるように、前記圧延後平坦度計により測定された前記圧延後平坦度に基づいて、
前記仕上げ圧延機のワークロールベンダー、バックアップロールベンダー、ワークロールシフト、中間ワークロールシフト、ペアクロスのうちの少なくとも一つが圧延中に制御されることを特徴とする、請求項12又は13に記載の製造設備配列。 - 前記仕上げ圧延機と前記冷却装置との間に前記圧延後平坦度計が設置されるとともに、前記圧延後平坦度計と前記巻き取り機との間に、前記巻き取り前平坦度計を含む少なくとも2つの平坦度計が設置されることを特徴とする、請求項11〜15のいずれか一項に記載の製造設備配列。
- 前記平坦度計が蛇行追従型であることを特徴とする、請求項11〜16のいずれか一項に記載の製造設備配列。
- 前記平坦度計が、幅方向に少なくとも7点の平坦度を同時に測定できることを特徴とする請求項11〜17のいずれか一項に記載の製造設備配列。
- 設置された前記平坦度計の近傍に前記鋼板の幅方向の温度分布が測定可能である幅方向温度計を設置することを特徴とする、請求項11〜18のいずれか一項に記載の製造設備配列。
- 設置された前記平坦度計の近傍に前記鋼板裏側の幅方向の温度分布が測定可能である水環境温度計を設置することを特徴とする、請求項11〜18のいずれか一項に記載の製造設備配列。
- それぞれの平坦度計間の平坦度の関係を予め数式化するとともに、該数式中のパラメータをそれぞれの前記平坦度計の測定実績に基づき修正する、請求項6に記載の熱延鋼板の製造方法。
- それぞれの平坦度計間の平坦度の関係を予め数式化するとともに、該数式中のパラメータをそれぞれの前記平坦度計の測定実績に基づき修正する、請求項16に記載の製造設備配列。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008050639A JP4957586B2 (ja) | 2008-02-29 | 2008-02-29 | 熱延鋼板の製造方法、及び製造設備配列 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008050639A JP4957586B2 (ja) | 2008-02-29 | 2008-02-29 | 熱延鋼板の製造方法、及び製造設備配列 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009208086A JP2009208086A (ja) | 2009-09-17 |
JP4957586B2 true JP4957586B2 (ja) | 2012-06-20 |
Family
ID=41181751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008050639A Active JP4957586B2 (ja) | 2008-02-29 | 2008-02-29 | 熱延鋼板の製造方法、及び製造設備配列 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4957586B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658298A (zh) * | 2012-04-29 | 2012-09-12 | 北京科技大学 | 一种适用于热轧薄规格带钢的板形质量在线判定方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101307037B1 (ko) * | 2009-10-19 | 2013-09-11 | 신닛테츠스미킨 카부시키카이샤 | 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법 |
US9186710B2 (en) | 2011-06-07 | 2015-11-17 | Nippon Steel & Sumitomo Metal Corporation | Method for cooling hot-rolled steel sheet |
US9566625B2 (en) | 2011-06-07 | 2017-02-14 | Nippon Steel & Sumitomo Metal Corporation | Apparatus for cooling hot-rolled steel sheet |
WO2014087516A1 (ja) * | 2012-12-06 | 2014-06-12 | 新日鐵住金株式会社 | 鋼板製造方法 |
US9211574B2 (en) | 2011-07-27 | 2015-12-15 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing steel sheet |
CN103128099B (zh) * | 2013-02-25 | 2016-01-06 | 南通职业大学 | 一种热轧系统和方法 |
KR101482460B1 (ko) | 2013-12-20 | 2015-01-13 | 주식회사 포스코 | 데이터베이스를 이용한 후판의 평탄도 제어 장치 및 방법 |
CN104006832B (zh) * | 2014-06-09 | 2017-02-08 | 广西玉柴机器股份有限公司 | 一种钢丝绳磨损程度的辅助诊断装置 |
JP6295932B2 (ja) * | 2014-12-03 | 2018-03-20 | Jfeスチール株式会社 | 金属帯の形状制御方法及び形状制御装置 |
JP7059990B2 (ja) * | 2019-08-27 | 2022-04-26 | Jfeスチール株式会社 | 形状予測モデルの生成方法、圧延形状予測方法、金属板の圧延方法、金属板の製造方法、及び金属板の圧延設備 |
CN111889514B (zh) * | 2020-07-27 | 2022-05-17 | 苏州博恩普特测控科技有限公司 | 一种冷轧板形目标曲线的优化计算方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54110158A (en) * | 1978-02-17 | 1979-08-29 | Kawasaki Steel Co | Shape control of steel plate in hot rolling mill |
JPH10137830A (ja) * | 1996-11-08 | 1998-05-26 | Kobe Steel Ltd | 圧延制御装置 |
JP3818501B2 (ja) * | 2001-12-13 | 2006-09-06 | 住友金属工業株式会社 | 鋼板の表面温度測定方法およびその装置 |
JP4103077B2 (ja) * | 2003-06-30 | 2008-06-18 | 住友金属工業株式会社 | 鋼材の表面温度測定装置 |
JP4065251B2 (ja) * | 2004-04-23 | 2008-03-19 | 新日本製鐵株式会社 | 絞り疵発生を防止した熱間仕上圧延方法 |
JP4701742B2 (ja) * | 2005-02-21 | 2011-06-15 | Jfeスチール株式会社 | 金属帯の形状予測方法ならびに予測形状に基づく形状判定方法および形状矯正方法 |
JP4504874B2 (ja) * | 2005-06-17 | 2010-07-14 | 三菱日立製鉄機械株式会社 | 形状検出装置及びその方法 |
-
2008
- 2008-02-29 JP JP2008050639A patent/JP4957586B2/ja active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102658298A (zh) * | 2012-04-29 | 2012-09-12 | 北京科技大学 | 一种适用于热轧薄规格带钢的板形质量在线判定方法 |
CN102658298B (zh) * | 2012-04-29 | 2014-07-23 | 北京科技大学 | 一种适用于热轧薄规格带钢的板形质量在线判定方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2009208086A (ja) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4957586B2 (ja) | 熱延鋼板の製造方法、及び製造設備配列 | |
JP4797887B2 (ja) | 板材の平坦度測定方法及び板材の平坦度測定装置 | |
US8459073B2 (en) | Method for measuring sheet material flatness and method for producing steel sheet using said measuring method | |
EP2573509B1 (en) | Apparatus and method for measuring flatness of sheet material and steel sheet production method utilizing said method | |
US6286349B1 (en) | Flatness measurement system for metal strip | |
JP5994937B2 (ja) | 板材の平坦度測定方法、板材の平坦度測定装置及び鋼板の製造方法 | |
EP4005693B1 (en) | Meandering control method, meandering control device, and hot rolling equipment for hot rolled steel strip | |
JP2018065190A (ja) | 鋼板形状の矯正装置、矯正方法、および、鋼板の連続酸洗装置 | |
KR101290424B1 (ko) | 열화상을 이용한 압연소재의 변형량측정장치 및 그 제어방법 | |
WO2021014811A1 (ja) | 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備 | |
JP7222415B2 (ja) | 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法 | |
JP7571923B1 (ja) | 帯状物体の形状測定方法、帯状物体の形状制御方法、帯状物体の製造方法、帯状物体の品質管理方法、帯状物体の形状測定装置および帯状物体の製造設備 | |
JP3599013B2 (ja) | 圧延金属帯のキャンバ形状測定方法、キャンバ形状測定装置及び圧延装置 | |
WO2022163177A1 (ja) | 鋼板の蛇行量測定装置、鋼板の蛇行量測定方法、熱間圧延鋼帯の熱間圧延設備、及び熱間圧延鋼帯の熱間圧延方法 | |
WO2024190035A1 (ja) | 帯状物体の形状測定方法、帯状物体の形状制御方法、帯状物体の製造方法、帯状物体の品質管理方法、帯状物体の形状測定装置および帯状物体の製造設備 | |
KR100381098B1 (ko) | 컬러 영상을 이용한 슬라브의 캠버 측정시스템 | |
KR20240030629A (ko) | 전기강판용 열연소재의 온도 측정장치 및 이를 이용한 전기강판용 열연소재의 온도 측정방법 | |
Trusillo et al. | Shapemeter IP-4 on the continuous thermal treatment line of Samara Metallurgical Works |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100223 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20101101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4957586 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |