JP2008004814A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2008004814A
JP2008004814A JP2006173848A JP2006173848A JP2008004814A JP 2008004814 A JP2008004814 A JP 2008004814A JP 2006173848 A JP2006173848 A JP 2006173848A JP 2006173848 A JP2006173848 A JP 2006173848A JP 2008004814 A JP2008004814 A JP 2008004814A
Authority
JP
Japan
Prior art keywords
plasma
power
plasma processing
reaction chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006173848A
Other languages
English (en)
Inventor
Takanori Nakano
孝紀 中野
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006173848A priority Critical patent/JP2008004814A/ja
Priority to CN2011102154852A priority patent/CN102347402A/zh
Priority to US12/306,209 priority patent/US20090183771A1/en
Priority to PCT/JP2007/061855 priority patent/WO2007148569A1/ja
Priority to EP07745138A priority patent/EP2037721A1/en
Publication of JP2008004814A publication Critical patent/JP2008004814A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】同一のプラズマ反応室内において、少なくとも2のプラズマ処理工程を行う場合、その装置構成によりプラズマ処理の条件が制限される工程においてもより多様なプラズマ処理を行うことができるプラズマ処理装置を提供する。
【解決手段】少なくとも2のプラズマ処理工程を同一のプラズマ反応室内で行う場合に、各工程においてプラズマ処理用の電力としてCW交流電力またはパルス変調された交流電力を適宜選択する。これにより、装置構成によりプラズマ処理の条件が制限される工程においてもより多様なプラズマ処理を行うことができるプラズマ処理装置。
【選択図】なし

Description

本発明は、プラズマ処理装置に関するものであり、より詳しくは、同一のプラズマ反応室に対してCW交流電力とパルス変調された交流電力を供給する手段を備えたプラズマ処理装置に関するものである。
従来、半導体薄膜層を成膜するプラズマCVD装置として、複数のプラズマ反応室(チャンバとも呼ばれる、以下同じ)を直線状に連結したインライン方式、または中央に中間室を設け、その周りに複数のプラズマ反応室を配置するマルチチャンバ方式が採用されている。しかし、インライン方式では、基板搬送の動線が直線状であるため、部分的にメンテナンスの必要が生じた場合でも、装置全体を停止させなければならない。
一方、マルチチャンバ方式は、成膜されるべき基板が中間室を経由して各プラズマ反応室に移動させられる方式であり、それぞれのプラズマ反応室と中間室との間に気密を維持し得る可動仕切りが設けられているため、ある1つのプラズマ反応室に不都合が生じた場合でも、他のプラズマ反応室は使用可能であり、生産が全体的に停止させられるということはない。しかし、このマルチチャンバ方式の生産装置では、中間室を介した基板の動線が複数あり、中間室の機械的な構造が複雑になることは避けられない。たとえば、中間室と各プラズマ反応室との間の気密性を維持しつつ基板を移動させる機構が複雑であって高価になる。また、中間室の周りに配置されるプラズマ反応室の数が空間的に制限されるという問題もある。
このような問題点を鑑みて、特許文献1には、p型半導体層、i型結晶性シリコン系光電変換層およびn型半導体層が、同一のプラズマCVDプラズマ反応室内で順に引続いて成膜され、かつp型半導体層は、プラズマ反応室内の圧力が5Torr(667Pa)以上の条件で成膜されることを特徴とするシリコン系薄膜光電変換装置の製造方法が提案されている。この方法によれば、良好な性能および品質を有する光電変換装置を簡易な装置により低コストかつ高効率で製造できるとされている。
このように、プラズマCVD装置の効率的利用による装置コスト低減のため、同一プラズマ反応室内において異なった成膜工程を実施する試みがなされている。
特開2000−252495号公報
しかしながら、同一のプラズマ反応室内において、少なくとも2のプラズマ処理工程を行う場合には、以下のような問題が生じる。すなわち、従来のプラズマ処理装置は一種類の交流波形を出力する電力供給手段を備えるだけであり、同一のプラズマ反応室内において、少なくとも2のプラズマ処理工程を行う場合、その装置構成を全ての工程に適したように設計することはできず、少なくとも一つの工程においては、その装置構成によりプラズマ処理の条件が制限されるといった問題がある。
本発明は、上記の点に鑑みてなされたものであり、少なくとも2工程のプラズマ処理工程を同一のプラズマ反応室内で行う場合に、装置構成によりプラズマ処理の条件が制限される工程においてもより多様なプラズマ処理を行うことができるプラズマ処理装置を提供することを目的とする。
本発明は、プラズマ反応室と、前記プラズマ反応室内に設置されたカソード・アノード電極対と、CW交流電力およびパルス変調された交流電力を切換えて前記カソード電極に供給する電力供給手段と、を備えてなるプラズマ処理装置である。
本装置によれば、少なくとも2のプラズマ処理工程を同一のプラズマ反応室内において行う場合に、プラズマ処理用の電力としてCW交流電力またはパルス変調された交流電力を適宜選択することができる。これにより、装置構成によりプラズマ処理の条件が制限される工程においてもより多様なプラズマ処理を行うことができる。
さらに、本発明は、前記プラズマ反応室内のガス圧力可変手段を備えてなるプラズマ処理装置である。
さらに、本発明は、前記電力供給手段は、交流電力を出力する電力出力手段と、前記電力出力手段から出力された電力を変調する変調手段と、からなるプラズマ処理装置である。
さらに、本発明は、前記電力供給手段は、CW交流電力を出力するCW電力出力手段と、パルス変調された交流電力を出力するパルス電力出力手段と、前記CW電力出力手段と前記パルス電力出力手段の出力を切換えて前記電力供給手段の外部に出力する切換え手段と、からなるプラズマ処理装置である。
さらに、本発明は、前記プラズマ反応室内には、複数のカソード・アノード電極対を備えているプラズマ処理装置である。
さらに、本発明は、前記複数のカソード・アノード電極対は、1つのインピーダンス整合回路を介して1つの前記電力供給手段に接続されてなるプラズマ処理装置である。
さらに、本発明は、前記カソード・アノード電極対のそれぞれは、1つのインピーダンス整合回路を介して1つの前記電力供給手段に接続されてなるプラズマ処理装置である。
本装置によれば、同一のプラズマ反応室内で少なくとも2のプラズマ処理工程が行われる場合に、1の工程ではCW交流電力を用いてプラズマ処理を行うことができ、他の工程ではパルス変調された交流電力を用いてプラズマ処理を行うことができる。これにより、装置構成によりプラズマ処理の条件が制限される工程においてもより多様なプラズマ処理を行うことができる。
本発明の実施形態を図面を参照して説明する。図1は、本実施形態に係るプラズマ処理装置の概略断面図である。
図1のプラズマ処理装置は、密閉可能なプラズマ反応室101内に、カソード電極102・アノード電極103対が設置された平行平板型の電極構造を有するプラズマCVD法による半導体層成膜装置である。カソード電極102とアノード電極103の電極間距離は、所望の処理条件に従って決定され、数mmから数十mm程度とされのが一般的である。プラズマ反応室101外には、カソード電極102に電力を供給する電力供給手段108と、電力供給手段108とカソード電極102・アノード電極103対の間のインピーダンス整合を行うインピーダンス整合回路105が設置されている。
電力供給手段108は、電力導入線106aの一端に接続され、他端は、インピーダンス整合回路105に接続されている。インピーダンス整合回路105には電力導入線106bの一端が接続され、他端は、カソード電極102に接続されている。
電力供給手段108は、CW(連続波形)交流出力とパルス変調(オンオフ制御)された交流出力が可能であれば良い。例えば、図2および図3は、電力供給手段108の構成例を等価的に表した図である。
図2において、電力供給手段108は、電力出力手段108aと変調手段108bにより構成されており、電力出力手段108aから出力された交流電力が変調手段108bにより変調されて電力供給手段108の外部に出力される構成である。ここで、出力の切換えは、変調手段108bで変調をかけないことによりCW交流をそのまま出力すること、変調手段108bによりパルス変調をかけた交流を出力することにより行われる。この構成により、交流電力を出力する電力出力手段108aをCW及びパル変調出力時に共用して使用され、電力供給手段108の構成を簡単にできる利点がある。
また、図3のように、電力供給手段108は、CW電力出力手段108c、パルス電力出力手段108dおよびこれらの出力を切換える切換え手段108eにより構成されており、CW電力出力手段108cとパルス電力出力手段108dからの出力を切換え手段108eにより適宜選択して、電力供給手段108の外部に出力する構成としても良い。
電力供給手段108から出力される交流電力の周波数は、13、56MHzが一般的であるが、これに限られるものではなく、数kHzからVHF帯、さらにマイクロ波帯の周波数を使用しても良い。また、パルス変調時のオン時間・オフ時間は任意に設定可能であり、数μ秒から数m秒程度の範囲で設定される。
一方、アノード電極103は電気的に接地されており、アノード電極103上には、ワーク107が載置される。
ワーク107は、カソード電極102上に載置されても良いが、プラズマ中のイオンダメージによる膜質低下を低減するためアノード電極103上に設置されることが一般的である。
プラズマ反応室101には、ガス導入口110が設けられている。ガス導入口110からは、希釈ガス、材料ガス、ドーピングガス等のガス118が導入される。
また、プラズマ反応室101には、真空ポンプ116と圧力調整用バルブ117が直列に接続され、プラズマ反応室101内のガス圧力が略一定に保たれる。
(実施形態1)
本実施形態に係るプラズマ処理装置は、pin構造を有する薄膜非晶質シリコン光電変換素子の半導体層を同一プラズマ反応室101内においてプラズマCVD法によりワーク107上に成膜するものである。
ここで、p型非晶質シリコン層およびi型非晶質シリコン層は、パルス変調された交流電力をプラズマ処理用の電源として用いることにより成膜され(第2のプラズマ処理工程)、n型非晶質シリコン層は、CW交流電力を用いて成膜される(第1のプラズマ処理工程)。
p型非晶質シリコン層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、200Pa以上3000Paであることが望ましく、本実施形態では400Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、パルス変調された周波数13.56MHzの交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.01W/cm2以上0.3W/cm2以下とすることが望ましく、本実施形態では0.1W/cm2とした。パルス変調時のオン時間・オフ時間は所望の成膜速度に応じて設定可能であり、通常数μ秒から数m秒程度の範囲で設定される。本実施形態では、オン時間を50μs、オフ時間を100μsとした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、ジボランガスを含むものを使用する。シランガスに対する水素ガスの流量は、数倍から数十倍程度が望ましく、本実施形態では10倍とした。
p型非晶質シリコン層の厚さは、i型非晶質シリコン層に十分な内部電界を与えるため2nm以上が望ましく、非活性層であるp型非晶質シリコン層の光吸収量を抑えi型非晶質シリコン層へ到達する光を増大するため、できる限り薄いことが望ましく、通常50nm以下とされる。本実施形態では、p型非晶質シリコン層の厚さを20nmとした。
p型非晶質シリコン層の厚さは50nm以下と非常に薄く、光吸収量を低減するためにその厚みの制御は重要である。本実施形態においては、プラズマ処理用にパルス変調された交流電力を使用し、成膜速度を低下させることにより、p型非晶質シリコン層の厚みを容易に制御することができる。
また、i型非晶質シリコン層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、200Pa以上3000Paであることが望ましく、本実施形態では400Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、パルス変調された周波数13.56MHzの交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.01W/cm2以上0.3W/cm2以下とすることが望ましく、本実施形態では0.1W/cm2とした。パルス変調時のオン時間・オフ時間は所望の成膜速度に応じて設定可能であり、通常数μ秒から数m秒程度の範囲で設定される。本実施形態では、オン時間を50μs、オフ時間を100μsとした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガスを含むものを使用する。シランガスに対する水素ガスの流量は、5倍以上20倍以下が好ましく、良好な膜質のi型非晶質シリコン層を成膜することができる。本実施形態では10倍とした。
i型非晶質シリコン層の厚さは、光吸収量、光劣化による特性低下を考慮して、0.1μmから0.5μmの値に設定される。本実施形態では、i型非晶質シリコン層の厚さを0.3μmとした。
ここで、i型非晶質シリコン層は、その成膜速度が速すぎると膜中の欠陥密度増大等の膜質低下が起こることが一般的に知られており、成膜速度の制御が重要であり、本実施形態においては、成膜速度低下のため、プラズマ処理用にパルス変調された交流電力を使用した。
また、n型非晶質シリコン層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、200Pa以上3000Paであることが望ましく、本実施形態では400Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.02W/cm2以上0.5W/cm2以下とすることが望ましく、本実施形態では0.3W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、ホスフィンガスを含むものを使用する。シランガスに対する水素ガスの流量は、5倍以上20倍以下が好ましく、本実施形態では10倍とした。
n型非晶質シリコン層の厚さは、i型非晶質シリコン層に十分な内部電界を与えるため2nm以上が好ましく、非活性層であるn型非晶質シリコン層の光吸収量を抑えるためできる限り薄いことが好ましく、通常50nm以下とされる。本実施形態では、n型非晶質シリコン層の厚さを40nmとした。
以上により、薄膜非晶質シリコン光電変換素子の半導体層が成膜される。
同一のプラズマ反応室101内において、少なくとも2のプラズマ処理工程を実施する場合、各工程において装置構成が同一であることから、その処理条件が装置構成によりに制限される場合がある。そこで、本実施形態のように、パルス変調された交流電力とCW交流電力を切換えて各プラズマ処理工程で使用することにより、多様なプラズマ処理が可能となる。
(実施形態2)
本実施形態に係るプラズマ処理装置は、プラズマCVD法によりワーク107上に薄膜を成膜するプラズマCVD工程(第1のプラズマ処理工程を含む工程)と、別のワーク107をエッチング処理するプラズマエッチング工程(第2のプラズマ処理工程)を同一プラズマ反応室101内において行うものである。
プラズマCVD工程は、CW交流電力を用いる第1のプラズマ処理工程を少なくとも1工程含むものであれば良く、パルス変調された交流電力を用いるプラズマCVD工程を含んでいても良い。プラズマCVD工程は、単層の膜を成膜する工程でも良く、複数層の膜を成膜する工程であっても良い。本実施形態においては、プラズマCVD工程により複数層の膜を成膜した。
一方、プラズマエッチング工程は、第1のプラズマ処理工程より放電開始電圧が高く、パルス変調された交流電力を用いてプラズマエッチングを行う工程である。
以下に本実施形態について詳述する。
プラズマCVD工程としては、例えば、材料ガスとしてH2ガスで希釈されたSiH4ガス、ドーピングガスとしてB2H6、PH3を用い、pin構造を有するシリコン系薄膜光電変換素子の半導体層成膜工程が挙げられる。本プラズマCVD工程に含まれる第1のプラズマ処理工程においては、プラズマ反応室101内の圧力は圧力調整用バルブ117により一定値(例えば約500Pa)に調節され、カソード電極102には電力供給手段108から出力されたCW交流電力が投入される。ここで、カソード電極102、アノード電極103の電極間距離は数mmから数十mm程度とされる。この電極間距離は、所望の成膜条件により決定される。この工程によって、ワーク107にシリコン系薄膜が成膜される。
一方、プラズマエッチング工程においては、ワーク107をして、部分的にマスキングされたシリコン基板をセットし、エッチングガスとして例えば数倍の流量のArガスで希釈されたNF3ガスを使用する。本工程において、プラズマ反応室101内の圧力は一定値(例えば約500Pa)に調節され、カソード電極102には電力供給手段108から出力されたパルス変調された交流電力が投入される。エッチングガスとしては、NF3ガス以外にCF4ガス等のフッ素系エッチングガスをArガス等の不活性ガスにより希釈したものを用いることができる。この工程により、マスキングされていない部分のシリコン基板表面に所望のエッチング処理を施すことができる。
上記プラズマCVD工程およびプラズマエッチング工程は同一プラズマ反応室101において実施され、両工程において、カソード電極102・アノード電極103の電極間距離は一定とし、設定ガス圧力も略同一とした。この場合、前述したpd積は各工程において略一定であるが、プラズマエッチング工程で使用するNF3ガス、Arガスの混合ガスは、プラズマCVD工程で使用するSiH4ガス、H2ガスの混合ガスと比較して電離し難いため、プラズマエッチング工程における放電開始電圧がプラズマCVD工程の場合より大きくなる。したがって、プラズマエッチング工程において電極間に均一なプラズマを発生および維持させるためには、より大きな電圧を印加する必要がある。この工程においてCW交流電力を使用した場合には、プラズマを発生および維持させる際に投入される電力量が過大となり、カソード電極102・アノード電極103の電極間以外の絶縁部分にプラズマが発生し、その部分に損傷を与える可能性がある。
本実施形態では、プラズマエッチング工程において、カソード電極102にパルス変調された交流電力を投入しているため、カソード電極102・アノード電極103間に大きな電圧を印加し均一なプラズマを容易に発生させることができ、かつ、パルスのデューティー比を調整することにより、投入電力量を小さく抑えることができる。これにより、エッチング速度を低減し、エッチング速度の制御を容易にすることができ、また、装置損傷を防止することが可能となる。
本発明の実施形態は、これに限られるものではなく、プラズマエッチング工程とこの工程より放電開始電圧が小さな第1のプラズマ処理工程を有するプラズマCVD工程を含んでいれば良い。通常、プラズマCVD工程で使用されるガスはプラズマエッチング工程で使用されるガスと異なるものであり、両工程における放電開始電圧に差異が生じるため、本発明のプラズマ処理方法が適用できる。また、各工程におけるプラズマ反応室101内の設定圧力条件が異なる場合にも、放電開始電圧の差が大きくなることが考えられ、本発明のプラズマ処理装置が有効である。
(実施形態3)
本実施形態に係るプラズマ処理装置は、放電開始電圧の異なる少なくとも2のプラズマCVD工程が同一のプラズマ反応室101内で実施されるものであり、一例として、シリコン系薄膜光電変換素子の半導体層を成膜するプラズマ処理装置を以下に記載する。
本実施形態が行われるプラズマ処理装置は、図1と同様である。図1のプラズマ処理装置において、アノード電極103上には、ワーク107として透明導電膜202が成膜された透明基板201が載置されている。透明基板201は、カソード電極102上に設置されていても良いが、プラズマ中のイオンダメージによる膜質低下を低減するためアノード電極103上に設置されることが一般的である。
ガス導入口110からは、希釈ガス、材料ガス、ドーピングガスが導入される。希釈ガスとしては水素ガスを含むガス、材料ガスとしてはシラン系ガス、メタンガス、ゲルマンガス等、p型不純物ドーピングガスとしてはジボランガス等、n型不純物ドーピングガスとしてはホスフィンガス等が使用される。
図4は、本実施形態に係るプラズマ処理装置により製造されるシリコン系薄膜光電変換素子の概略断面図である。基板201上に第一電極202が成膜され、第一電極202上に、第一p型半導体層211、i型非晶質シリコン系光電変換層212、第一n型半導体層213が順次積層され、第一pin構造積層体214が成膜される。続いて、第二p型半導体層221、i型結晶質シリコン系光電変換層222および第二n型半導体層223が順次積層され、第二pin構造積層体224が成膜される。第一pin構造積層体214および第二pin構造積層体224により二重pin構造積層体230が構成され、二重pin構造積層体230上には第二電極203が成膜され、シリコン系薄膜光電変換素子206が完成する。
基板201としては、プラズマCVD成膜プロセスにおける耐熱性および透光性を有するガラス基板、ポリイミド等の樹脂基板が一般的に使用される。本実施形態においては、基板201としてガラス基板を使用した。
第一電極202としては、SnO2、ITO、ZnOなどの透明導電膜が使用される。これらは、CVD、スパッタ、蒸着等の方法により成膜することが一般的である。本実施形態においては、第一電極202として、SnO2を使用した。
二重pin構造積層体230は、同一のプラズマ反応室101内においてプラズマCVD法により成膜される。本実施形態においては、基板201からp型、i型、n型の半導体を順に二重に積層した二重pin構造とした。
本実施形態においては、第一p型半導体層211をボロンドーピングしたp型非晶質シリコンカーバイド半導体層とし、i型非晶質シリコン系光電変換層212をi型非晶質シリコン半導体層とし、第一n型半導体層213をリンドーピングしたn型結晶質シリコン半導体層とした。シリコン系半導体層としては、シリコン、シリコンカーバイド、シリコンゲルマニウム等が一般的に用いられ、導電型半導体層のドーピング材料としては、p型にはボロン、アルミニウム等、n型にはリン等が用いられることが一般的である。
第二電極203としては、銀,アルミニウム等の金属やSnO2、ITO、ZnOなどの透明導電膜あるいはこれらを積層したものが使用される。これらは、CVD、スパッタ、蒸着等の方法により成膜することが一般的である。本実施形態においては、第二電極203として、ZnOと銀をこの順に積層した。
以下に二重pin構造積層体230の成膜方法について詳述する。
二重pin構造積層体230は、同一のプラズマ反応室101内においてプラズマCVD法により成膜される。
第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、200Pa以上3000Paであることが望ましく、本実施形態では400Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、パルス変調された周波数13.56MHzの交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.01W/cm2以上0.3W/cm2以下とすることが望ましく、本実施形態では0.1W/cm2とした。パルス変調時のオン時間・オフ時間は所望の成膜速度に応じて設定可能であり、通常数μ秒から数m秒程度の範囲で設定される。本実施形態では、オン時間を50μs、オフ時間を100μsとした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、メタンガスおよびジボランガスを含むものを使用する。プラズマ反応室101内に導入する原料ガスは、シラン系ガスと、水素ガスを含有する希釈ガスとを含むことが好ましく、さらに、メタンあるいはトリメチルジボランを含むものであれば良い。シランガスに対する水素ガスの流量は、数倍から数十倍程度が望ましく、本実施形態では10倍とした。
第一p型半導体層211の厚さは、i型非晶質シリコン系光電変換層212に十分な内部電界を与えるため2nm以上が望ましく、非活性層である第一p型半導体層211の光吸収量を抑えi型非晶質シリコン系光電変換層212へ到達する光を増大するため、できる限り薄いことが望ましく、通常50nm以下とされる。本実施形態では、第一p型半導体層211の厚さを20nmとした。
i型非晶質シリコン系光電変換層212であるi型非晶質シリコン半導体層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、200Pa以上3000Paであることが望ましく、本実施形態では400Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.01W/cm2以上0.3W/cm2以下とすることが望ましく、本実施形態では0.1W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガスを含むものを使用する。シランガスに対する水素ガスの流量は、5倍以上20倍以下が好ましく、良好な膜質の非晶質i型光電変換層を成膜することができる。本実施形態では10倍とした。
i型非晶質シリコン系光電変換層212の厚さは、光吸収量、光劣化による特性低下を考慮して、0.1μmから0.5μmの値に設定される。本実施形態では、i型非晶質シリコン系光電変換層212の厚さを0.3μmとした。
ここで、i型非晶質シリコン系光電変換層212は、その成膜速度が速すぎると膜中の欠陥密度増大等の膜質低下が起こることが一般的に知られており、成膜速度の制御が重要である。本実施形態において、厚さ設定の関係から膜質向上が必要な場合には、成膜速度低下のため、プラズマ処理用にパルス変調された交流電力を使用しても良い。
第一n型半導体層213であるn型結晶質シリコン半導体層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、240Pa以上3600Pa以下であることが望ましく、本実施形態では2000Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.02W/cm2以上0.5W/cm2以下とすることが望ましく、本実施形態では0.3W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、ホスフィンガスを含むものを使用する。シランガスに対する水素ガスの流量は、30倍から数100倍程度が望ましく、本実施形態では100倍とした。
第一n型半導体層213の厚さは、i型非晶質シリコン系光電変換層212に十分な内部電界を与えるため2nm以上が好ましく、非活性層である第一n型半導体層213の光吸収量を抑えるためできる限り薄いことが好ましく、通常50nm以下とされる。本実施形態では、第一n型半導体層213の厚さを40nmとした。
以上により、第一pin構造積層体214が成膜される。
次に、第二pin構造積層体224の成膜方法について説明する。
第二p型半導体層221であるp型結晶質シリコン半導体層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、240Pa以上3600Pa以下であることが望ましく、本実施形態では2000Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.02W/cm2以上0.5W/cm2以下とすることが望ましく、本実施形態では0.3W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、ジボランガスを含むものを使用する。シランガスに対する水素ガスの流量は、30倍から数100倍程度が望ましく、本実施形態では100倍とした。
第二p型半導体層221の厚さは、i型結晶質シリコン系光電変換層222に十分な内部電界を与えるため2nm以上が好ましく、非活性層である第二p型半導体層221の光吸収量を抑えi型結晶質シリコン系光電変換層222へ到達する光を増大するため、できる限り薄いことが望ましく、通常50nm以下とされる。本実施形態では、第二p型半導体層221の厚さを40nmとした。
第二p型半導体層221は、非晶質および結晶質のシリコンカーバイドまたは非晶質のシリコンゲルマニウムなどの合金材料からなる層で成膜されていてもよい。また、第二p型半導体層221は、異なる複数の薄膜を積層したものでも良い。
i型結晶質シリコン系光電変換層222は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、240Pa以上3600Pa以下であることが望ましく、本実施形態では2000Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.02W/cm2以上0.5W/cm2以下とすることが望ましく、本実施形態では0.3W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガスを含むものを使用する。シランガスに対する水素ガスの流量は、30倍から100倍程度が望ましく、本実施形態では100倍とした。
i型結晶質シリコン系光電変換層222の厚さは、光電変換層として十分な光吸収量を確保するため0.5μm以上が好ましく、1μm以上がより好ましい。また、i型結晶質シリコン系光電変換層222の厚さは、装置の生産性を確保することが必要であるため20μm以下が好ましく15μm以下がより好ましい。本実施形態では、i型結晶質シリコン系光電変換層222の厚さを2μmとした。
なお、本実施形態において、i型結晶質シリコン系光電変換層222として良質な膜をより高い成膜速度で成膜する必要があることから、プラズマ処理装置の構成を本工程の成膜条件に最も適したように設定した。具体的には、カソード電極102・アノード電極103の電極間距離を15mmとし、他の全ての工程において同一の構成とした。
このようにして、ラマン分光法により測定される480nm-1におけるピークに対する520nm-1におけるピークのピーク強度比I520/I480が5以上10以下である十分な結晶化率を有するi型結晶質シリコン系光電変換層222が得られる。また、i型結晶質シリコン系光電変換層222として、i型結晶質シリコン薄膜または微量の不純物を含む弱p型もしくは弱n型で、光電変換機能を十分に備えている結晶質シリコン薄膜が用いられてもよい。さらに、i型結晶質シリコン系光電変換層222は、上記結晶質シリコン薄膜に限定されず、合金材料であるシリコンカーバイドまたはシリコンゲルマニウムなどの薄膜が用いられてもよい。
第二n型半導体層223であるn型結晶質シリコン半導体層は、以下の成膜条件において成膜することができる。成膜時のプラズマ反応室101内の圧力は、240Pa以上3600Pa以下であることが望ましく、本実施形態では2000Paとした。また、基板201の下地温度は、250℃以下の条件とすることが望ましく、本実施形態では180℃とした。また、カソード電極102に投入されるプラズマ処理用の電力として、周波数13.56MHzのCW交流電力を使用した。カソード電極102単位面積あたりの電力密度は0.02W/cm2以上0.5W/cm2以下とすることが望ましく、本実施形態では0.3W/cm2とした。
プラズマ反応室101内に導入される混合ガスは、シランガス、水素ガス、ホスフィンガスを含むものを使用する。シランガスに対する水素ガスの流量は、30倍から数100倍程度が望ましく、本実施形態では100倍とした。
第二n型半導体層223の厚さは、i型結晶質シリコン系光電変換層222に十分な内部電界を与えるため2nm以上が好ましく、非活性層である第二n型半導体層223の光吸収量を抑えるためできる限り薄いことが好ましく、通常50nm以下とされる。本実施形態では、第二n型半導体層223の厚さを40nmとした。
第二のn型半導体層223は、結晶質のシリコンカーバイドまたはシリコンゲルマニウムなどの合金材料で成膜されていてもよい。
以上のようにして、第一pin構造積層体214および第二pin構造積層体224を同一のプラズマ反応室101内において連続して成膜する。
この後、ZnOなどの導電膜とアルミニウム、銀などの金属膜をスパッタ法や蒸着法などにより成膜し第二電極203を成膜することにより、シリコン系薄膜光電変換素子206を製造することができる。
本実施形態において、第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層の成膜工程ではプラズマ処理用の電源としてパルス変調された交流電力を用い(第2のプラズマ処理工程)、i型結晶質シリコン系光電変換層222の成膜工程(第1のプラズマ処理工程)においては、パルス変調された交流電力を用いた。
このi型結晶質シリコン系光電変換層222の成膜工程において、成膜される膜の結晶化率、結晶粒径等の膜質を所望のものに維持するためには、カソード電極102・アノード電極103間距離等の装置構成を本工程に適したように設定する必要がある。例えば、i型結晶質シリコン系光電変換層222の成膜工程においては、非晶質シリコン系半層体層(例えば非晶質シリコンカーバイド半導体層)を成膜する場合より、カソード電極102・アノード電極103間距離を狭くし、プラズマ反応室101内の圧力を高く設定することが一般的である。
このように、i型結晶質シリコン系光電変換層222の成膜工程に適したように設定された装置の同一プラズマ反応室101内において、第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層を成膜する場合、成膜条件(特にプラズマ反応室101内の設定圧力)が異なるためi型結晶質シリコン系光電変換層222の成膜工程の場合より放電開始電圧が高くなる。
したがって、放電開始電圧が相対的に高い第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層の成膜工程において、均一なプラズマを発生および維持させるためには、より大きな投入電力を投入する必要があり、投入電力を大きくすると、プラズマ処理速度が大きくなり、成膜速度が速くなる。第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層は、その厚みが50nm以下と非常に薄く、その厚みの制御を行うためには成膜速度を低下させる必要がある。
そこで、本実施形態では、第一p型半導体層211であるp型非晶質シリコンカーバイド半導体層を成膜する工程において、プラズマ処理用の電源としてパルス変調された交流電力を使用した。これより、成膜速度の低下と均一なプラズマの発生および維持を両立することができる。すなわち、パルス変調された交流電力を用いることにより、投入電力量を抑えて成膜速度を低減させ、かつ瞬時の投入電力および電圧を大きくでき、電極間に均一なプラズマを発生および維持させることが可能となる。
(実施形態4)
本実施形態のプラズマ処理装置は、プラズマ反応室101内のアノード電極103に基板201をセットし、基板201上に二重pin構造積層体230を成膜するプラズマCVD工程を実施した後に、この二重pin構造積層体230が成膜された基板201をプラズマ反応室101から取り出し、プラズマ反応室101内のカソード電極102・アノード電極103およびプラズマ反応室101内面壁の残留膜をエッチングするプラズマエッチング工程をこの順に行うものである。
プラズマCVD工程は、CW交流電力を用いて結晶質シリコン系光電変換層を成膜する第1のプラズマ処理工程を含む。また、プラズマエッチング工程は、第1のプラズマ処理工程より放電開始電圧が高く、パルス変調された交流電力を用いてプラズマエッチングを行う工程であり、プラズマCVD工程においてプラズマ反応室101内のカソード電極102・アノード電極103およびプラズマ反応室101内面壁に付着したシリコン系半導体膜をエッチングするものである。
本実施形態のように、プラズマCVD工程は、CW交流電力を用いる第1のプラズマ処理工程を少なくとも含んでいれば良く、パルス変調された交流電力を用いる成膜工程を含んでいても構わない。また、プラズマエッチング工程は、第1のプラズマ処理工程より放電開始電圧が高く、パルス変調された交流電力を用いてプラズマエッチングを実施する工程であれば良い。
本実施形態について以下に詳述する。
本実施形態のプラズマ処理装置の構成は、図1と同様である。
基板201上には、実施形態3と同様の条件により二重pin構造積層体230が形成される。
二重pin構造積層体230を成膜するプラズマCVD工程を複数回実施した後、プラズマ反応室101内のカソード電極102・アノード電極103およびプラズマ反応室101内面壁の残留膜をエッチングするプラズマエッチング工程を行うことにより、装置のクリーニングを行うことができる。プラズマエッチング工程の条件は、実施形態2のプラズマエッチング工程と同条件とすることができる。
一般的に、良質な結晶質シリコン系薄膜層の成膜条件および装置構成は、その設定範囲が狭く制限されるため、その条件に適したように装置構成が設計される。
本実施形態のように、結晶質シリコン系薄膜層をCW交流電力を用いて成膜する第1のプラズマ処理工程がプラズマCVD工程に含まれている場合には、電極間距離等の装置構成がその工程に適したように設定されている。この装置において、第2のプラズマ処理工程であるプラズマエッチング工程を行う場合、使用ガスが電離し難いため放電開始電圧が大きくなる。本実施形態においては、プラズマエッチング工程において、カソード電極102にパルス変調された交流電力を投入しているため、電極間に大きな電圧を印加し電極間に均一なプラズマを発生および維持させ、かつ、投入電力量を小さく抑えることができる。また、この方法により、電極間以外の部分にプラズマが発生した場合であっても、装置の絶縁部分に損傷を与える可能性を低減することができる。
(実施形態5)
本実施形態のプラズマ処理装置について以下に説明する。
本実施形態のプラズマ処理装置は、図1に示した構成と同様である。
本実施形態は、実施形態2のプラズマエッチング工程を実施した後、基板201をセットし、二重pin構造積層体230を成膜する実施形態4のプラズマCVD工程を実施し、基板201を取出す工程を繰り返し行うものである。
プラズマエッチング工程は、第一pin構造積層体214を成膜する前に実施され、カソード電極102・アノード電極103およびプラズマ反応室101内壁に付着した半導体膜が最表面層からエッチングされる。二重pin構造積層体230を再現性良く成膜するためには、その成膜開始の時点においてプラズマ反応室101内の環境が略同一であることが好ましく、また、プラズマの安定および不純物の混入防止のためには、カソード電極102・アノード電極103およびプラズマ反応室101内壁に一定の膜表面を有する膜が成膜されていることが望ましく、その残留膜最表面には、i型半導体層が露出していることがさらに望ましい。
この工程により、良好な品質を有する二重pin構造積層体230を同一プラズマ反応室101内で繰返し成膜することができる。
当該プラズマエッチング工程において、カソード電極102・アノード電極103およびプラズマ反応室101内壁にそれ以前に成膜された残留膜をエッチングしてi型半導体層を表面に露出させるためには、エッチング厚さの制御が重要であり、エッチング速度を低下させる必要がある。
本実施形態のプラズマ処理装置のカソード電極102・アノード電極103間距離は、i型結晶性シリコン系光電変換層を成膜するプラズマCVD工程に適するように設計されている。このため、不活性ガスとフッ素系エッチングガスの混合ガスを用いるプラズマエッチング工程においては、エッチングガスが電圧印加により電離し難いため、プラズマの発生により高い印加電圧を必要とする。
プラズマエッチング工程においては、実施形態2と同様にプラズマ発生用にパルス変調された交流電力を使用する。これにより、電極間に均一なプラズマを発生および維持する目的で高電圧を印加した場合においても、投入される電力量を低減でき、エッチング速度を低減することができる。また、パルスのデューティー比を調整することにより、投入電力量を調節することができ、エッチング厚さの制御が容易となる。
(実施形態6)
本実施形態に係るプラズマ処理装置を図面を参照して説明する。図5は、本実施形態に係るプラズマ処理装置の概略図であり、プラズマ反応室101内に複数のアノード電極103・カソード電極102対を有している。複数のアノード電極103・カソード電極102対は一つのインピーダンス整合回路105を介して電力供給手段108に接続されている。
この構造の場合、複数のアノード電極103・カソード電極102対にグロー放電プラズマを同時に発生させることが難しくなる。すなわち、複数の電極対のうちの一部にグロー放電プラズマが発生してしまうと、その電極間のインピーダンスが小さくなり、他の電極間に供給される電力が小さくなり、それらの電極間にプラズマが発生しないといった問題が生じる。
ここで、各電極対間により大きな電圧を同時に印加することにより、各電極間にプラズマを発生させる確率を向上させることができるが、各電極対間に大きな電圧を印加すると、そのプラズマ処理速度が大きくなってしまう。すなわち、プラズマ処理速度を低下させることが必要な工程において上記事項が問題となる。
本実施形態では、電力供給手段108からカソード電極102に、パルス変調された交流電力を供給することができるため、各電極対間に大きな電圧を印加した場合でも、プラズマ処理速度を大きくすることなく、電極間に均一なプラズマを発生および維持させることができる。
(実施形態7)
本実施形態に係るプラズマ処理装置を図面を参照して説明する。図6は、本実施形態に係るプラズマ処理装置の概略図であり、プラズマ反応室101内に複数のアノード電極103・カソード電極102対を有している。それぞれのアノード電極103・カソード電極102対は、インピーダンス整合回路105を介して電力供給手段108に接続されている。
この構造の場合、アノード電極103・カソード電極102対と電力供給手段108のインピーダンス整合をそれぞれ個別に行うことができ、アノード電極103・カソード電極102が大面積である場合でも、各電極間に、均一なプラズマを発生および維持させることが容易となる。
本発明の実施形態1から実施形態5に係るプラズマ処理装置の概略断面図である。 本発明のプラズマ処理装置の電力供給手段を等価的に示した概略図である。 本発明のプラズマ処理装置の電力供給手段を等価的に示した概略図である。 本発明の実施形態3から実施形態5に係るシリコン系薄膜光電変換素子の概略断面図である。 本発明の実施形態6に係るプラズマ処理装置の概略断面図である。 本発明の実施形態7に係るプラズマ処理装置の概略断面図である。
符号の説明
101 プラズマ反応室
102 カソード電極
103 アノード電極
105 インピーダンス整合回路
107 ワーク
108 電力供給手段
108a 電力出力手段
108b 変調手段
108c CW電力出力手段
108d パルス電力出力手段
108e 切換え手段
201 基板
206 シリコン系薄膜光電変換素子
211 第一p型半導体層
212 i型非晶質シリコン系光電変換層
213 第一n型半導体層
214 第一pin構造積層体
221 第二p型半導体層
222 i型結晶質シリコン系光電変換層
223 第二n型半導体層
224 第二pin構造積層体

Claims (7)

  1. プラズマ反応室と、
    前記プラズマ反応室内に設置されたカソード・アノード電極対と、
    CW交流電力およびパルス変調された交流電力を切換えて前記カソード電極に供給する電力供給手段と、
    を備えてなることを特徴とするプラズマ処理装置。
  2. 前記プラズマ反応室内のガス圧力可変手段を備えてなることを特徴とする請求項1に記載のプラズマ処理装置。
  3. 前記電力供給手段は、交流電力を出力する電力出力手段と、前記電力出力手段から出力された電力を変調する変調手段と、からなることを特徴する請求項1に記載のプラズマ処理装置。
  4. 前記電力供給手段は、CW交流電力を出力するCW電力出力手段と、パルス変調された交流電力を出力するパルス電力出力手段と、前記CW電力出力手段と前記パルス電力出力手段の出力を切換えて前記電力供給手段の外部に出力する切換え手段と、からなることを特徴する請求項1に記載のプラズマ処理装置。
  5. 前記プラズマ反応室内には、複数のカソード・アノード電極対を備えていることを特徴とする請求項1から請求項4の何れか1項に記載のプラズマ処理装置。
  6. 前記複数のカソード・アノード電極対は、1つのインピーダンス整合回路を介して1つの前記電力供給手段に接続されてなることを特徴とする請求項5に記載のプラズマ処理装置。
  7. 前記カソード・アノード電極対のそれぞれは、1つのインピーダンス整合回路を介して1つの前記電力供給手段に接続されてなることを特徴とする請求項5に記載のプラズマ処理装置。
JP2006173848A 2006-06-23 2006-06-23 プラズマ処理装置 Withdrawn JP2008004814A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006173848A JP2008004814A (ja) 2006-06-23 2006-06-23 プラズマ処理装置
CN2011102154852A CN102347402A (zh) 2006-06-23 2007-06-13 等离子体处理装置、等离子体处理方法及光电转换元件
US12/306,209 US20090183771A1 (en) 2006-06-23 2007-06-13 Plasma processing apparatus, plasma processing method and photoelectric conversion element
PCT/JP2007/061855 WO2007148569A1 (ja) 2006-06-23 2007-06-13 プラズマ処理装置、プラズマ処理方法、および光電変換素子
EP07745138A EP2037721A1 (en) 2006-06-23 2007-06-13 Plasma processing apparatus, plasma processing method and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173848A JP2008004814A (ja) 2006-06-23 2006-06-23 プラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2008004814A true JP2008004814A (ja) 2008-01-10

Family

ID=39008944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173848A Withdrawn JP2008004814A (ja) 2006-06-23 2006-06-23 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP2008004814A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263778A (ja) * 2008-03-31 2009-11-12 Ngk Insulators Ltd シリコン系薄膜成膜装置及びその方法
WO2009142138A1 (ja) * 2008-05-21 2009-11-26 シャープ株式会社 プラズマ処理装置
JP2010140944A (ja) * 2008-12-09 2010-06-24 Tokyo Electron Ltd プラズマエッチング装置及びプラズマクリーニング方法
JP2012033903A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 半導体膜の作製方法、半導体装置の作製方法、及び光電変換装置の作製方法
JP2013258412A (ja) * 2008-03-31 2013-12-26 Ngk Insulators Ltd シリコン系薄膜量産装置
JP2014112697A (ja) * 2014-01-15 2014-06-19 Hitachi High-Technologies Corp プラズマ処理方法
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737818A (ja) * 1993-07-16 1995-02-07 Ulvac Japan Ltd プラズマcvd成膜方法と装置
JPH10209479A (ja) * 1997-01-21 1998-08-07 Canon Inc 半導体薄膜及び光起電力素子の作製装置
JP2004285388A (ja) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc 薄膜形成装置
JP2005050905A (ja) * 2003-07-30 2005-02-24 Sharp Corp シリコン薄膜太陽電池の製造方法
JP2008004813A (ja) * 2006-06-23 2008-01-10 Sharp Corp シリコン系薄膜光電変換素子の製造方法、製造装置およびシリコン系薄膜光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737818A (ja) * 1993-07-16 1995-02-07 Ulvac Japan Ltd プラズマcvd成膜方法と装置
JPH10209479A (ja) * 1997-01-21 1998-08-07 Canon Inc 半導体薄膜及び光起電力素子の作製装置
JP2004285388A (ja) * 2003-03-20 2004-10-14 Konica Minolta Holdings Inc 薄膜形成装置
JP2005050905A (ja) * 2003-07-30 2005-02-24 Sharp Corp シリコン薄膜太陽電池の製造方法
JP2008004813A (ja) * 2006-06-23 2008-01-10 Sharp Corp シリコン系薄膜光電変換素子の製造方法、製造装置およびシリコン系薄膜光電変換素子

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263778A (ja) * 2008-03-31 2009-11-12 Ngk Insulators Ltd シリコン系薄膜成膜装置及びその方法
JP2013258412A (ja) * 2008-03-31 2013-12-26 Ngk Insulators Ltd シリコン系薄膜量産装置
KR101215691B1 (ko) * 2008-05-21 2012-12-26 샤프 가부시키가이샤 플라즈마 처리 장치
WO2009142138A1 (ja) * 2008-05-21 2009-11-26 シャープ株式会社 プラズマ処理装置
JP2009283235A (ja) * 2008-05-21 2009-12-03 Sharp Corp プラズマ処理装置
JP4558067B2 (ja) * 2008-05-21 2010-10-06 シャープ株式会社 プラズマ処理装置
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016006772A (ja) * 2008-08-04 2016-01-14 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. プラズマ源、及びプラズマ強化化学蒸着を利用して薄膜被覆を堆積させる方法
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9659756B2 (en) 2008-12-09 2017-05-23 Tokyo Electron Limited Plasma etching apparatus and plasma cleaning method
JP2010140944A (ja) * 2008-12-09 2010-06-24 Tokyo Electron Ltd プラズマエッチング装置及びプラズマクリーニング方法
US9450139B2 (en) 2010-07-02 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device
US9443989B2 (en) 2010-07-02 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device
JP2012033903A (ja) * 2010-07-02 2012-02-16 Semiconductor Energy Lab Co Ltd 半導体膜の作製方法、半導体装置の作製方法、及び光電変換装置の作製方法
JP2014112697A (ja) * 2014-01-15 2014-06-19 Hitachi High-Technologies Corp プラズマ処理方法
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source

Similar Documents

Publication Publication Date Title
JP2008004814A (ja) プラズマ処理装置
EP2037721A1 (en) Plasma processing apparatus, plasma processing method and photoelectric conversion element
JP5259189B2 (ja) シリコン系薄膜光電変換装置の製造方法
KR101512761B1 (ko) 플라즈마 cvd 장치, 미(微)결정 반도체층의 제조방법, 및 박막 트랜지스터의 제조방법
US20100024872A1 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
JP2004006537A (ja) 薄膜形成方法及び装置並びに太陽電池の製造方法並びに太陽電池
JP2011023655A (ja) 窒化シリコン薄膜成膜方法および窒化シリコン薄膜成膜装置
KR20020021337A (ko) 플라즈마처리 방법 및 장치
US6531654B2 (en) Semiconductor thin-film formation process, and amorphous silicon solar-cell device
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
US20090166328A1 (en) Plasma etching method
JP2000109979A (ja) 直流アーク放電プラズマによる表面処理方法
JP5053595B2 (ja) Dlc膜の形成方法及びdlc膜の製造装置
JP2008004815A (ja) プラズマ処理方法およびその方法を用いて製造された光電変換素子
JP2008004813A (ja) シリコン系薄膜光電変換素子の製造方法、製造装置およびシリコン系薄膜光電変換素子
WO2011099205A1 (ja) 成膜装置
US20020056415A1 (en) Apparatus and method for production of solar cells
US20100173448A1 (en) High frequency plasma enhanced chemical vapor deposition
JP4326419B2 (ja) プラズマ処理装置及び太陽電池の製造方法
JP4515440B2 (ja) 薄膜トランジスタの作製方法
JP2009004702A (ja) 光電変換装置の製造方法
JP2012507133A (ja) 基板上にプロセシングされる材料の均一性を改善する堆積装置及びこれを使用する方法
JP4470227B2 (ja) 成膜方法及び薄膜トランジスタの作製方法
JP2003059840A (ja) プラズマ処理装置およびプラズマ処理方法
JP2006100551A (ja) プラズマ製膜方法、プラズマ処理装置、太陽電池及び太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120316