WO2009142138A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2009142138A1
WO2009142138A1 PCT/JP2009/058995 JP2009058995W WO2009142138A1 WO 2009142138 A1 WO2009142138 A1 WO 2009142138A1 JP 2009058995 W JP2009058995 W JP 2009058995W WO 2009142138 A1 WO2009142138 A1 WO 2009142138A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
processing apparatus
plasma processing
discharge part
Prior art date
Application number
PCT/JP2009/058995
Other languages
English (en)
French (fr)
Inventor
克史 岸本
裕介 福岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801185375A priority Critical patent/CN102037791B/zh
Priority to US12/992,327 priority patent/US20110088849A1/en
Priority to EP09750500A priority patent/EP2282619A1/en
Publication of WO2009142138A1 publication Critical patent/WO2009142138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric

Definitions

  • the present invention relates to a plasma processing apparatus, and more particularly to a structure of a plasma processing apparatus in which a plurality of cathode / anode electrode bodies for generating plasma discharge are installed in a chamber.
  • a plasma processing apparatus described in Patent Document 1 As a conventional plasma processing apparatus in which a plurality of sets of cathode / anode electrode bodies for generating plasma discharge are installed in a plurality of upper and lower stages in the chamber, for example, a plasma processing apparatus described in Patent Document 1 can be cited.
  • the uppermost electrode and each electrode jumped one by one from this electrode are cathode electrodes electrically connected to a high frequency power source, and the remaining electrodes are grounded. It is an anode electrode.
  • this plasma processing apparatus is provided with a heater in each stage electrode except the uppermost stage, and a reactive gas is supplied into each stage electrode except the lowermost stage, and a large number of gas jets formed on the lower surface It is comprised so that reactive gas may eject from a hole.
  • the substrate is installed on the electrode body at each stage except the uppermost stage, and plasma discharge is generated between the electrodes having the reactive gas.
  • the film formation or etching process is performed on the substrate surface, there are the following problems. (1) A substrate is installed without distinguishing between a cathode electrode and an anode electrode, and plasma discharge occurs between all adjacent electrodes. Therefore, regarding film formation, a film formed on the substrate on the cathode electrode and a film formed on the substrate on the anode electrode are mixed. On the other hand, with respect to etching, a substrate etched on the cathode electrode and a substrate etched on the anode electrode coexist.
  • FIG. 8 As a plasma processing apparatus for solving such a problem, a structure shown in FIG. 8 has been proposed (see Patent Document 2).
  • a discharge part composed of a cathode electrode 100 connected to a power supply part E and a grounded anode electrode 200 is arranged in a plurality of upper and lower stages in a chamber.
  • the lower anode electrode 200 incorporates a heater 201, and a substrate S1 is installed on the upper surface thereof.
  • the reactive gas G1 indicated by an arrow is introduced into the cathode electrode 100, and the reactive gas is ejected from a large number of holes formed in the lower surface.
  • a film is formed on the surface of the substrate S1 by generating plasma discharge between the cathode and anode electrodes in the reactive gas atmosphere.
  • this plasma processing apparatus is configured as an etching apparatus by disposing the cathode electrode in FIG. 8 below the anode electrode and placing a substrate on the lower cathode electrode. In this case, a reactive gas is introduced into the grounded anode electrode, and the reactive gas is ejected between the cathode and anode electrodes through a number of holes formed in the lower surface.
  • a heater is provided in the cathode electrode connected to the power source.
  • the plasma apparatus described in Patent Document 2 shares the power supply unit E that supplies power to the plurality of cathode electrodes 100 regardless of whether the plasma apparatus is configured as a film forming apparatus or an etching apparatus.
  • the power supply unit E is connected to the cathode electrodes 100 of a plurality of (three in FIG. 8) discharge units adjacent to each other via the same electrical system, and another predetermined plurality ( A power source E is connected to the cathode electrode 100 of the discharge part in FIG. 8 via an electric system different from the electric system.
  • the distance B is set to be twice or more.
  • the power supply unit E includes a high frequency generator and an amplifier that amplifies high frequency power from the high frequency generator and supplies the amplified high frequency power to the cathode electrode 100.
  • the cathode electrodes 100 of the upper three discharge unit groups are respectively connected to the same high-frequency generator via individual amplifiers (see FIG. 8), or connected to different high-frequency generators via amplifiers.
  • the inter-discharge portion distance B is set to be twice or more the inter-electrode distance A.
  • the lower two discharge unit groups are the same as the upper discharge unit group.
  • power is evenly branched in each discharge unit group and supplied to the plurality of cathode electrodes 100. As a result, even if plasma discharge is caused by a plurality of discharge portions in the chamber, they are prevented from interfering with each other, and film formation or etching can be performed uniformly.
  • the distance B between the discharge parts is made smaller than twice the distance A between the electrodes, the plasma discharges at the two adjacent discharge parts interfere with each other to cause power. Cannot be evenly branched. As a result, uniform plasma treatment cannot be performed in the entire apparatus, so that the filling rate of the discharge part into the chamber cannot be increased, or the entire apparatus cannot be reduced in size.
  • the present invention has been made in view of such problems, and provides a plasma processing apparatus capable of increasing the filling rate of the discharge portion into the chamber while realizing uniform plasma processing throughout the apparatus. For the purpose.
  • the reaction chamber, the gas introduction portion for introducing the reaction gas into the reaction chamber, the exhaust portion for exhausting the reaction gas from the reaction chamber, and the reaction chamber are arranged in an opposing manner and in the reaction gas.
  • Three or more sets of discharge parts composed of a set of a first electrode and a second electrode for plasma discharge, and a support part for supporting the first electrode and the second electrode of each set in a horizontal or vertical state and paralleling each other,
  • a power supply unit that supplies power to the entire set of discharge units, and the power supply unit includes a high-frequency generator and an amplifier that amplifies the high-frequency power from the high-frequency generator and supplies it to the first electrode.
  • the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit are connected to the same high-frequency generator via individual amplifiers, Or connected to different high-frequency generators via amplifiers, Plurality of second electrode plasma processing apparatus to be grounded is provided.
  • the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit among all the discharge units are individually amplifiers in the same high frequency generator. Or connected to different high frequency generators via an amplifier.
  • the 1st electrode of adjacent discharge parts is connected to a power supply part via a mutually different electric system.
  • the plasma discharges at the two adjacent discharge parts are less likely to interfere with each other as compared with the conventional plasma processing apparatus shown in FIG. 8, and the distance B between the discharge parts can be made narrower than before.
  • equal power is supplied to each discharge unit connected through the same electrical system as the power supply unit, and uniform plasma processing is performed in each discharge unit.
  • Embodiment 1 of the plasma processing apparatus of this invention It is a schematic block diagram which shows Embodiment 1 of the plasma processing apparatus of this invention. It is explanatory drawing which shows the 1st power supply connection form in Embodiment 1 of this invention. It is explanatory drawing which shows the 2nd power supply connection form in Embodiment 1 of this invention. It is explanatory drawing which shows the electric power feeding position of each 1st electrode in Embodiment 1 of this invention. It is a schematic block diagram which shows Embodiment 2 of the plasma processing apparatus of this invention. It is a schematic block diagram which shows Embodiment 3 of the plasma processing apparatus of this invention. It is a schematic block diagram which shows Embodiment 4 of the plasma processing apparatus of this invention. It is a schematic block diagram which shows the conventional plasma processing apparatus for film-forming.
  • the plasma processing apparatus of the present invention includes a reaction chamber, a gas introduction portion for introducing a reaction gas into the reaction chamber, an exhaust portion for exhausting the reaction gas from the reaction chamber, an opposing arrangement in the reaction chamber, and in the reaction gas
  • Three or more sets of discharge parts composed of a set of a first electrode and a second electrode for plasma discharge, and a support part for supporting the first electrode and the second electrode of each set in a horizontal or vertical state and paralleling each other,
  • a power supply unit that supplies power to the entire set of discharge units, and the power supply unit includes a high-frequency generator and an amplifier that amplifies the high-frequency power from the high-frequency generator and supplies it to the first electrode.
  • the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit are connected to the same high-frequency generator via individual amplifiers, Or connected to different high-frequency generators via amplifiers, The second electrode of the grounded.
  • this plasma processing apparatus includes an upper and lower parallel type in which a plurality of sets of parallel plate type discharge parts (electrode bodies) each including a first electrode and a second electrode are arranged in the vertical direction, and a plurality of sets of parallel plate type discharge parts.
  • the relative positions of the first electrode and the second electrode are not limited. That is, according to the present invention, the substrate, which is an object to be plasma-treated, may be placed on either the first electrode or the second electrode, and when the substrate is placed on the second electrode, the plasma for film formation When the substrate is installed on the first electrode, it is configured as an etching plasma processing apparatus.
  • the first electrode of one discharge part and the first electrode of another discharge part adjacent to the discharge part are (a) the same as described above. Each is connected to a high frequency generator via a separate amplifier, or (b) is connected to a different high frequency generator via an amplifier.
  • the connection forms (a) and (b) between the first electrode and the power supply unit are such that the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit are respectively This means that it is connected to the power supply unit via a different electrical system.
  • the connection form between the first electrode and the power supply unit is the above (a) or (b), so that the first electrodes of the two adjacent discharge units are connected via different electrical systems. Therefore, the plasma discharges at the two adjacent discharge units are less likely to interfere with each other than the conventional plasma processing apparatus shown in FIG. 8, and the distance B between the discharge units is narrower than the conventional one. It becomes possible to do.
  • the cause of the plasma discharge in each discharge part interfering with each other is particularly between the discharge parts connected through the same electrical system as the power supply part. It is related to the distance between the discharge parts, and when the distance between the discharge parts of these discharge parts becomes short, the power cannot be evenly branched, and as a result, each plasma discharge interferes.
  • the discharge parts connected via the same electrical system as the power supply part are not adjacent to each other.
  • the present invention is wider than the prior art (see FIG. 8).
  • the distance B between the discharge parts adjacent to each other is conventionally set to the distance A between the electrodes (see FIG. 8)).
  • the distance B between the discharge parts with respect to the distance A between the electrodes has conventionally been required to be twice or more, but in the present invention, it is 1.5 times or more and can greatly reduce the distance B between the discharge parts. .
  • the first electrode to the second electrode in each set of discharge parts from the viewpoint of increasing the filling rate of the discharge part into the reaction chamber (chamber) or downsizing the entire apparatus.
  • the relationship between the distance A between the electrodes and the distance B between the discharge parts from the second electrode of one discharge part to the first electrode of another adjacent discharge part is B / A ⁇ 1.5 preferable.
  • the distance B between the discharge parts of adjacent discharge parts is less than 1.5 times with respect to the distance A between electrodes, between the discharge parts connected via the electric system different from a power supply part. Since plasma discharge interferes with each other, it is not preferable.
  • the first electrode of one discharge unit is connected to the discharge unit. It is preferable that the first electrodes of other discharge units not adjacent to each other and the same high-frequency generator are connected to the same high-frequency generator through the same amplifier in the same electrical system. According to this connection mode (c), it is possible to share the power supply units of a plurality of discharge units that are not adjacent to each other, and the device configuration can be simplified.
  • the plasma processing apparatus is configured as follows in order to make the plasma discharge of the entire apparatus more uniform, perform more uniform film formation or etching at each discharge part, and facilitate the apparatus design. May be.
  • the power supply unit supplies synchronized high-frequency power to the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit.
  • synchronized high frequency power means high frequency power having the same waveform.
  • the first electrode of one discharge part and the other discharge parts not adjacent to the discharge part have the same shape, size and feeding position of the first electrodes, And the shape, magnitude
  • the first electrode of one discharge unit and the first electrode of another discharge unit adjacent to the discharge unit differ in the feeding position of these first electrodes.
  • the first electrode and the second electrode are parallel plate electrodes having a rectangular planar shape, and are adjacent to the discharge position of the first electrode of one discharge section and all of the discharge sections.
  • the feeding position of the first electrode of the other discharge part is set at the center part of the electrode end face on the opposite side by 180 degrees.
  • fluctuation phenomenon of plasma discharge means a phenomenon in which high-frequency power interferes with each other to cause deformation and resonance in the waveform, thereby making it difficult to supply power with a desired waveform.
  • two or more different power supply units it is necessary to adjust using, for example, a variable delay circuit so that each power supply unit generates high-frequency power having the same waveform in order to prevent the fluctuation phenomenon.
  • the same power supply unit branches to each first electrode more evenly. Power is supplied. Further, when the parallel plate type first electrode and the second electrode are supported horizontally by the support portion, the plurality of first electrodes connected in the same electrical system have the same shape and size, The amount of bending caused by the self-weight is equal, and the relationship between the interelectrode distance A and the discharge portion distance B is not affected.
  • each feeding cable is fixed to the chamber because the feeding position of one discharge section and the feeding position of another discharge section adjacent to the discharge section are not aligned on the same straight line. Can be attached without bringing the flanges close to each other, and the device design becomes easy.
  • the feeding cables can be laid apart to some extent, they can be prevented from interfering with each other electrically and thermally.
  • the configuration (4) can be adopted as such a configuration. In the present invention, it is needless to say that it is preferable to combine the configurations (1) to (4).
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of the plasma processing apparatus of the present invention
  • FIG. 2 is an explanatory diagram showing a first power supply connection mode in the first embodiment
  • FIG. 3 is a second diagram in the first embodiment. It is explanatory drawing which shows the power supply connection form.
  • the plasma processing apparatus according to the first embodiment is a vertically parallel type film forming plasma processing apparatus for forming a desired film on the surface of a substrate S1, which is an object to be processed, and reacts with a reaction chamber R and a reaction chamber R.
  • a power supply unit E that supplies power to the unit.
  • the power supply unit E includes a high frequency generator e1 and an amplifier e2 that amplifies high frequency power from the high frequency generator e1 and supplies the amplified high frequency power to the first electrode 1.
  • the first electrode 1 of one discharge unit 3 and the first electrode 1 of another discharge unit 3 adjacent to the discharge unit 3 have the same high frequency as shown in FIG. Connected to the generator e1 via an individual amplifier e2 or connected to different high frequency generators e1 via an amplifier e2 as shown in FIG. 3, and the plurality of second electrodes 2 are grounded.
  • FIG. 1 two power supply units E are drawn, but this is not necessarily intended to use separate high frequency generators.
  • the first electrode 1 is referred to as a cathode electrode 1 and the second electrode 2 is referred to as an anode electrode 2.
  • the reaction chamber R is configured by a sealable chamber C that houses a plurality of discharge units 3.
  • the chamber C is box-shaped, to which the exhaust part 6 is connected, and a support part 5 that supports the plurality of cathode electrodes 1 and the plurality of anode electrodes 2 is formed on the inner wall surface of the chamber.
  • the exhaust unit 6 includes a vacuum pump 6a, an exhaust pipe 6b connecting the vacuum pump 6a and the reaction chamber R, and a pressure controller 6c disposed between the reaction chamber R and the vacuum pump 6a in the exhaust pipe 6b.
  • the support portion 5 is a support piece that protrudes in a horizontal direction from the inner wall surface of the chamber C, and is provided at a plurality of locations on the inner wall surface at predetermined intervals.
  • a flat plate-like cathode electrode 1 and anode electrode 2 are provided. Support each other in parallel and horizontally.
  • 10 stages of support portions 5 are provided so as to support the four corners of the lower surfaces of the five sets of cathode / anode electrodes 1 and 2 or the vicinity thereof.
  • the support pieces of the respective stages of the support part 5 are arranged at such a height position that the distance B between the discharge parts with the cathode electrode 1 becomes 1.5 times or more.
  • the distance A between the electrodes is set to 2 to 30 mm
  • the distance B between the discharge parts is set to 3 to 45 mm or more.
  • the accuracy of the inter-electrode distance A in the plane is preferably within a few percent, and particularly preferably 1% or less.
  • Each anode electrode 2 has a heater 7 inside, and a substrate S1 is installed on the upper surface thereof, and heats the substrate S1 during film formation under plasma discharge.
  • the substrate S1 is generally a silicon substrate or a glass substrate, but is not particularly limited thereto.
  • Each anode 2 is made of a material having conductivity and heat resistance, such as stainless steel, aluminum alloy, and carbon.
  • the dimension of each anode electrode 2 is determined to an appropriate value according to the dimension of the substrate S1 for forming a thin film.
  • the dimensions of the anode electrode 2 are designed to be 1000 to 1500 mm ⁇ 600 to 1000 mm with respect to the dimensions of the substrate S1 of 900 to 1200 mm ⁇ 400 to 900 mm.
  • each anode electrode 2 controls the heating of the anode electrode 2 to room temperature to 300 ° C., for example, a sealed heating device such as a sheath heater in an aluminum alloy and a sealed temperature sensor such as a thermocouple. Can be used.
  • a sealed heating device such as a sheath heater in an aluminum alloy and a sealed temperature sensor such as a thermocouple. Can be used.
  • Each cathode electrode 1 is made of stainless steel or aluminum alloy.
  • the dimension of each cathode electrode 1 is set to an appropriate value according to the dimension of the substrate S1 on which film formation is performed, and can be designed with the same dimensions (planar size and thickness) as the anode electrode 2.
  • Each cathode electrode 1 has a hollow interior, and a plurality of through holes are drilled in the plasma discharge surface facing the paired anode electrode 2. This drilling process is preferably performed with a circular hole having a diameter of 0.1 mm to 2 mm at a pitch of several mm to several cm.
  • Each cathode electrode 1 is connected to a gas introduction pipe as a gas introduction part 1a at one end face thereof, and a gas supply source (not shown) and the gas introduction part 1a are connected by a connection pipe.
  • the reactive gas G1 is supplied from the gas supply source to the inside of the cathode electrode 2, and is ejected from the many through holes toward the surface of the substrate S1.
  • the source gas for example, SiH 4 (monosilane) gas diluted with H 2 is used.
  • the power source E is a plasma excitation power source. For example, 10 W to 100 kW of power at a frequency of AC 1.00 MHz to 60 MHz, specifically, 10 W to 10 kW of power at 13.56 MHz to 60 MHz is applied to each cathode electrode 1. Supply.
  • the first, third, and fifth level discharge units 3 from the bottom (hereinafter referred to as odd-number group).
  • the first electrode 1 of the second stage and the fourth stage of the discharge part 3 (hereinafter may be referred to as even-numbered group) are the same high-frequency generator e1.
  • the cathode electrodes 1 of the two adjacent discharge sections 3 are connected to the same high frequency generator e1 via individual amplifiers e2. That is, the cathode electrodes 1 of the two adjacent discharge units 3 are connected to the high frequency generator e1 through different electrical systems.
  • the first electrode 1 of the odd-numbered stage group and the first electrode 1 of the discharge part 3 of the even-numbered stage group out of the entire set of discharge parts 3 are different from each other.
  • the cathode electrodes 1 of two adjacent discharge units 3 are connected to individual high-frequency generators e1 via individual amplifiers e2. That is, the cathode electrodes 1 of the two adjacent discharge units 3 are connected to the high frequency generator e1 through different electrical systems.
  • the cathode electrodes 1 of the two adjacent discharge units 3 are connected to the high-frequency generator e1 via different electrical systems. Further, for example, the distance B1 between the discharge sections 3 between the fifth stage and the third stage in the odd stage group and between the third stage and the first stage, and the fourth stage and the second stage in the even stage group.
  • the inter-discharge portion distance B1 between the discharge portions 3 is wider than the inter-discharge portion distance B between the two adjacent discharge portions 3. For this reason, the plasma discharges at the two adjacent discharge portions 3 are unlikely to interfere with each other.
  • the cathode electrode 1 of the odd-numbered stage group is supplied with the power equally branched from the amplifier e2, and the cathode electrode 1 of the even-numbered stage group is supplied with the power evenly branched from the amplifier e2.
  • equivalent plasma treatment can be performed.
  • the distance B between the discharge parts can be made narrower than before.
  • the adjacent two discharge parts 3 with mutually synchronized high frequency power.
  • the high frequency power generated by the same high frequency generator e1 is supplied to both the odd-numbered stage group and the even-numbered stage group.
  • the waveform is basically the same and there is no need to adjust the waveform.
  • the power supply connection form shown in FIG. 3 in order to supply the high-frequency power generated by the different high-frequency generators e1 to both the odd-numbered stage group and the even-numbered stage group, the high-frequency power supplied to the two adjacent discharge units 3 Adjustment is required to match the waveforms. Therefore, it is preferable to adopt the power supply connection form shown in FIG. 2 in addition to supplying high-frequency power having the same waveform synchronized with two adjacent discharge units 3 and simultaneously reducing the number of high-frequency generators e1.
  • the plurality of cathode electrodes 1 have the same shape and size, and The relative positional relationship between the cathode electrode 1 and the feeding position is the same, the shapes and sizes of the plurality of anode electrodes 2 are the same, and the relative positional relationship between each anode electrode 2 and the grounding position is the same. is there. Further, in the first embodiment, the shape and size (excluding thickness) of the cathode electrode 1 and the anode electrode 2 are the same.
  • the parallel plate type cathode electrode 1 and anode electrode 2 are arranged horizontally facing each other.
  • the center position in the X direction (depth direction) and the Z direction (up and down direction) on the right end surface of the cathode electrode 1 is defined as a feeding position f, and the center position in the X direction and Z direction on the left end surface of each cathode electrode 1 in the even-numbered stage group. Is a feeding position f, and a feeding cable (not shown) is connected to each feeding position of each cathode 1.
  • a feeding position f and a feeding cable (not shown) is connected to each feeding position of each cathode 1.
  • line a is a center line passing through the center position in the X direction on the left and right end surfaces of each cathode electrode 1 and each anode electrode 2
  • line b is the upper surface of the uppermost cathode electrode 1 and the lowermost anode. This is a center line passing through the center position in the X direction on the lower surface of the electrode 2.
  • the grounding positions of the anode electrodes 2 are relatively the same and are preferably arranged on the line a.
  • the opposite left end face side is also the same as the cathode electrode 1 on the right end face side. But either is fine.
  • the odd-numbered stage group and the even-numbered stage group may be connected to the same or separate high-frequency generators e1 via two or more amplifiers e2.
  • a reaction gas G1 as a film material is introduced into the gap between the cathode electrode 1 and the anode electrode 2 at a predetermined flow rate and pressure, and the cathode electrode 1 and the anode electrode 2
  • a glow discharge region is generated between the cathode electrode 1 and the anode electrode 2 to form an amorphous film or a crystalline film on the substrate S1.
  • a SiH 4 gas diluted with H 2 as a source gas a silicon thin film having a thickness of 300 nm can be deposited with a thickness distribution within ⁇ 10%.
  • the feeding position f with respect to the cathode electrode 1 is the same for all the cathode electrodes 1, and the even-numbered stage group connected by the same electrical system.
  • the feeding position f with respect to the cathode electrode 1 is the same for all the cathode electrodes 1, plasma discharges at two adjacent discharge portions hardly interfere with each other. As a result, more evenly branched power is supplied from the power supply unit E to each cathode electrode 1 connected via the same electrical system.
  • the cathode electrodes 1 of the odd-numbered stage group and the even-numbered stage group are the same in shape and size, the amount of deflection caused by their own weight is equal, and furthermore, the anodes of the odd-numbered stage group and the even-numbered stage group Since the electrodes 2 have the same shape and size, the amount of bending caused by their own weight is also equal, there is almost no variation in the interelectrode distance A, and the relationship between the interelectrode distance A and the discharge portion distance B is affected. None give. Therefore, even if a plurality of plasma discharges exist in one chamber, they do not interfere with each other, and the plasma processing apparatus of Embodiment 1 efficiently and efficiently performs the film forming process in the semiconductor element manufacturing process. It can be carried out.
  • FIG. 5 is a schematic block diagram showing Embodiment 2 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus of the second embodiment is also a film forming plasma processing apparatus, but is mainly different from the first embodiment (upper and lower parallel type) in that it is a left-right parallel type. That is, the plasma processing apparatus according to the second embodiment has a configuration in which the plasma processing apparatus according to the first embodiment described with reference to FIG. In FIG. 5, the chamber C, the support unit 5, and the exhaust unit 6 depicted in FIG. 1 are omitted, but the plasma processing apparatus of the second embodiment also includes these.
  • the support portion supports the cathode electrode 1 and the anode electrode 2 vertically, and a plurality of support pieces constituting the support portion are formed from the upper inner wall surface and the lower inner wall surface of the chamber. Each electrode is sandwiched from both sides by projecting vertically. Further, on the substrate mounting surface of the anode electrode 2, for example, a protrusion that holds the substrate S ⁇ b> 1 is formed. The substrate S1 may be held by a support piece that supports the anode electrode 2.
  • the plasma processing apparatus of the second embodiment also introduces a reactive gas G1 that is a film material into the gap between the cathode electrode 1 and the anode electrode 2 at a predetermined flow rate and pressure, and the cathode electrode 1 and the anode electrode. 2, a glow discharge region (plasma discharge region) is generated between the cathode electrode 1 and the anode electrode 2 to form an amorphous film or a crystalline film on the substrate S1. can do.
  • a reactive gas G1 that is a film material into the gap between the cathode electrode 1 and the anode electrode 2 at a predetermined flow rate and pressure, and the cathode electrode 1 and the anode electrode. 2
  • a glow discharge region plasma discharge region
  • the power branched from the power supply unit E to each cathode electrode 1 connected via the same electrical system is supplied, and a plurality of plasma discharges exist in one chamber. But they do not interfere with each other.
  • the plasma processing apparatus of the second embodiment is a left-right parallel type in which the cathode electrode 1 and the anode electrode 2 are vertically supported, and the influence of bending as in each electrode in the first embodiment is small. And there is almost no variation in the distance B between each discharge part. For these reasons, the plasma processing apparatus of the second embodiment can also efficiently perform the film forming process in the semiconductor element manufacturing process with high accuracy.
  • FIG. 6 is a schematic block diagram showing Embodiment 3 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus of the third embodiment is an etching plasma processing apparatus of an upper and lower side parallel type, and includes a plurality of sets of the discharge unit 13 including the cathode electrode 11 and the anode electrode 12 as in the first embodiment, and is not illustrated.
  • a chamber, a support part and an exhaust part are provided.
  • the main difference between the third embodiment and the first embodiment is that the cathode electrode 11 and the anode electrode 12 are arranged upside down in each discharge part 13, and the substrate S 2 is placed on the cathode electrode 11 connected to the power supply part E.
  • the anode electrode 12 to be grounded is disposed above the substrate S2.
  • the anode electrode 12 of the third embodiment has a gas introduction part 12a for introducing the reaction gas G2 therein, and the reactive gas G2 is ejected on the lower surface. A number of through holes.
  • the cathode electrode 11 of the third embodiment is provided with a heater 17 in the same manner as the anode electrode 2 of the first embodiment.
  • the distance B between the discharge parts between the other discharge parts 13 adjacent to the part 13 and the anode electrode 12 is set to 1.5 times or more.
  • the distance A between the electrodes is set to 2 to 30 mm
  • the distance B between the discharge parts is set to 3 to 45 mm or more.
  • the accuracy of the inter-electrode distance A in the plane is preferably within a few percent, and particularly preferably 1% or less.
  • a reaction gas G2 which is an etching gas obtained by diluting a fluorine-based gas with an inert gas such as argon, is filled in the gap between the cathode electrode 11 and the anode electrode 12 at a predetermined flow rate and pressure. Then, by applying high frequency power to the cathode electrode 11 and the anode electrode 12, a glow discharge region (plasma discharge region) is generated between the cathode electrode 11 and the anode electrode 12, and the substrate S2 (for example, a silicon substrate) is formed. Etching can be efficiently performed at a rate of 10 nm / s or more.
  • the power branched from the power supply unit E to each cathode electrode 1 connected via the same electrical system is supplied, and a plurality of plasma discharges exist in one chamber. But they do not interfere with each other.
  • the cathode electrodes 1 of the odd-numbered stage group and the even-numbered stage group are the same in shape and size, the amount of deflection caused by their own weight is equal, and furthermore, the anodes of the odd-numbered stage group and the even-numbered stage group Since the electrodes 2 have the same shape and size, the amount of bending caused by their own weight is also equal, there is almost no variation in the interelectrode distance A, and the relationship between the interelectrode distance A and the discharge portion distance B is affected. None give. From these things, the etching process in the manufacturing process of a semiconductor element can be efficiently performed with high accuracy by the plasma processing apparatus of the third embodiment.
  • FIG. 7 is a schematic configuration diagram showing Embodiment 4 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus of the fourth embodiment is also an etching plasma processing apparatus, but is mainly different from the third embodiment (upper and lower parallel type) in that it is a left-right parallel type. That is, the plasma processing apparatus according to the fourth embodiment has a configuration in which the plasma processing apparatus according to the third embodiment described with reference to FIG.
  • the plasma processing apparatus includes a discharge unit 13 including a cathode electrode 11 and an anode electrode 12, and includes a chamber, a support unit, and an exhaust unit (not shown).
  • the support portion has the same configuration as that of the second embodiment.
  • the plasma processing apparatus also uses, for example, a reaction gas G2 that is an etching gas obtained by diluting a fluorine-based gas with an inert gas such as argon at a predetermined flow rate and pressure at a cathode electrode 11 and an anode.
  • a glow discharge region (plasma discharge region) is generated between the cathode electrode 11 and the anode electrode 12 by introducing high-frequency power into the gap with the electrode 12 and applying high frequency power to the cathode electrode 11 and the anode electrode 12.
  • S2 for example, a silicon substrate
  • S2 can be efficiently etched at a rate of 10 nm / s or more.
  • the electric power branched more evenly is supplied from the power supply unit E to each cathode electrode 1 connected through the same electric system, and a plurality of plasma discharges exist in one chamber. But they do not interfere with each other.
  • the plasma processing apparatus of the fourth embodiment is a left-right parallel type in which the cathode electrode 11 and the anode electrode 12 are vertically supported, and since there is little influence of the bending as in each electrode in the third embodiment, the inter-electrode distance A And there is almost no variation in the distance B between each discharge part. For these reasons, the plasma processing apparatus of Embodiment 4 can also efficiently perform the etching process in the semiconductor element manufacturing process with high accuracy.
  • the cathode electrode of the odd-numbered stage group and the cathode electrode of the even-numbered stage group are formed in the same shape and size, and the anode electrode of the odd-numbered stage group and the anode electrode of the even-numbered stage group are the same shape and size.
  • the cathode electrode of the odd-numbered stage group and the cathode electrode of the even-numbered stage group are formed in different shapes and sizes, and the anode electrode of the odd-numbered stage group and the anode electrode of the even-numbered stage group are different shapes. And may be sized.
  • the cathode and anode electrodes between the odd-numbered and even-numbered stage groups have different shapes as described above. It is possible to change the size. Thereby, the discharge conditions of odd-numbered stages and even-numbered stages can be adjusted arbitrarily. If the gas supply systems are made separate, completely different film forming processes can be simultaneously performed in the same chamber.
  • the plasma processing apparatus of the present invention can be applied to, for example, a CVD apparatus used in a film forming process or a RIE apparatus used in an etching process in a manufacturing process of various semiconductor elements such as solar cells, TFTs, and photoreceptors. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 反応室と、反応室に反応ガスを導入するガス導入部と、反応室から反応ガスを排気する排気部と、反応室内に対向状に配置されかつ反応ガス中でプラズマ放電させる第1電極と第2電極の組からなる3組以上の放電部と、各組の前記第1電極および前記第2電極を水平状または垂直状に支持しかつ並列させる支持部と、全組の放電部に電力を供給する電源部とを備え、前記電源部は、高周波発生器と、該高周波発生器からの高周波電力を増幅して第1電極に供給する増幅器とを備えてなり、前記放電部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とが、同一の高周波発生器に個別の増幅器を介して接続されるか、或いは異なる高周波発生器に増幅器を介して接続され、各放電部中の第2電極がそれぞれ接地されるプラズマ処理装置。

Description

プラズマ処理装置
 本発明は、プラズマ処理装置に関し、さらに詳しくは、プラズマ放電を発生させるカソード・アノード電極体がチャンバー内に複数組、設置されてなるプラズマ処理装置の構造に関するものである。
 プラズマ放電を発生させるカソード・アノード電極体がチャンバー内に複数組、上下複数段で設置されてなる従来のプラズマ処理装置としては、例えば特許文献1に記載のプラズマ処理装置が挙げられる。
 このプラズマ処理装置の上下複数の電極のうち、最上段の電極およびこの電極から1個ずつ飛ばした各電極は高周波電源と電気的に接続されたカソード電極であり、残りの各電極は接地されたアノード電極である。
 また、このプラズマ処理装置は、最上段を除く各段の電極内にヒータが設けられ、最下段を除く各段の電極内には反応性ガスが供給されて下面に形成された多数のガス噴出孔から反応性ガスが噴出するように構成されている。
 このように構成された特許文献1に記載のプラズマ処理装置によれば、最上段を除く各段の電極体上に基板が設置され、反応性ガスを有する各電極間でプラズマ放電が生じることによって、基板表面に成膜あるいはエッチング処理が施されるが、以下の問題がある。
 (1)カソード電極とアノード電極とを区別することなく基板が設置され、プラズマ放電が隣り合うすべての電極どうしの間で生じる。そのため、成膜に関しては、カソード電極上の基板に形成された膜とアノード電極上の基板に形成された膜とが混在する。一方、エッチングに関しては、カソード電極上でエッチングされた基板とアノード電極上でエッチングされた基板とが混在する。このことは、カソード電極上の基板に形成された膜質の悪い膜や、エッチングに適さないアノード電極上の基板へのプロセスを用いる結果となり、好ましくない。
 (2)隣り合う電極の間隔がすべて等しくなっていることからプラズマ放電が起きることは避けられないが、成膜に適さないカソード電極上の基板への成膜プロセスおよびエッチングに適さないアノード電極上の基板へのエッチングプロセスを用いないことは可能である。しかしながら、プラズマ放電自体を抑制することはできず、隣接するプラズマ同士の相互干渉が起きるため、放電が極めて不安定になる。
 このような問題を解消するプラズマ処理装置として、図8に示す構造のものが提案されている(特許文献2参照)。
 このプラズマ処理装置は、例えば、電源部Eと接続されるカソード電極100および接地されるアノード電極200からなる放電部が、チャンバー内に上下複数段で配置される。下側のアノード電極200はヒータ201を内蔵すると共に、その上面に基板S1が設置される。一方、カソード電極100は、その内部に矢印で示す反応性ガスG1が導入され、下面に形成された多数の孔から反応性ガスを噴出する。そして、反応性ガス雰囲気下のカソード・アノード電極間でプラズマ放電が発生することにより基板S1の表面に膜が形成される。
 また、このプラズマ処理装置は、図8におけるカソード電極をアノード電極の下に配置し、下のカソード電極上に基板を設置することにより、エッチング装置として構成される。この場合、接地されるアノード電極内に反応性ガスが導入され、下面に形成された多数の孔からカソード・アノード電極間に反応性ガスを噴出する。また、電源と接続されるカソード電極内にヒータが設けられる。
 さらに、特許文献2に記載のプラズマ装置は、成膜装置とエッチング装置のいずれに構成される場合でも、複数のカソード電極100に電力を供給する電源部Eを共有化する。そのために、例えば、相互に隣接する所定複数の(図8では3つの)放電部のカソード電極100に同一の電気系統を介して電源部Eが接続され、相互に隣接する他の所定複数の(図8では2つの)放電部のカソード電極100には前記電気系統とは異なる電気系統を介して電源部Eが接続されている。
 さらに、カソード電極100とアノード電極200の間の電極間距離Aに対して、一の放電部のアノード電極200と、その放電部と隣接する他の放電部のカソード電極100との間の放電部間距離Bを2倍以上に設定している。
 より詳しく説明すると、図8に示すプラズマ処理装置において、電源部Eは、高周波発生器と、該高周波発生器からの高周波電力を増幅してカソード電極100に供給する増幅器とを備えている。
 上方の3つの放電部グループの各カソード電極100は、同一の高周波発生器に個別の増幅器を介してそれぞれ接続される(図8参照)か、或いは異なる高周波発生器に増幅器を介してそれぞれ接続されており(図示省略)、さらに、電極間距離Aに対して放電部間距離Bが2倍以上に設定されている。下方の2つの放電部グループも、上方の放電部グループと同様である。
 このように構成されたプラズマ処理装置は、各放電部グループにおいて電力が均等に分岐して複数のカソード電極100に供給される。その結果、チャンバー内で複数の放電部によるプラズマ放電が存在してもこれらが相互に干渉することが防止され、成膜またはエッチングを均一に行うことができる。
米国特許第4,264,393号明細書 特開2006-120926号公報
 しかしながら、図8で示した成膜用プラズマ処理装置の場合、放電部間距離Bを電極間距離Aの2倍より狭くすると、隣接する2つの放電部でのプラズマ放電が相互に干渉して電力を均等に分岐できなくなる。その結果、装置全体で均一なプラズマ処理を行うことができなくなるため、チャンバー内への放電部の充填率を増加する、或いは装置全体を小型化することができない。
 本発明は、このような問題に鑑みなされたものであり、装置全体での均一なプラズマ処理を実現しながら、チャンバー内への放電部の充填率を増加することができるプラズマ処理装置を提供することを目的とする。
 かくして、本発明によれば、反応室と、反応室に反応ガスを導入するガス導入部と、反応室から反応ガスを排気する排気部と、反応室内に対向状に配置されかつ反応ガス中でプラズマ放電させる第1電極と第2電極の組からなる3組以上の放電部と、各組の前記第1電極および前記第2電極を水平状または垂直状に支持しかつ並列させる支持部と、全組の放電部に電力を供給する電源部とを備え、前記電源部は、高周波発生器と、該高周波発生器からの高周波電力を増幅して第1電極に供給する増幅器とを備えてなり、前記放電部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とが、同一の高周波発生器に個別の増幅器を介して接続されるか、或いは異なる高周波発生器に増幅器を介して接続され、各放電部中の複数の第2電極はそれぞれ接地されるプラズマ処理装置が提供される。
 本発明のプラズマ処理装置は、全ての放電部中、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とは、同一の高周波発生器に個別の増幅器を介して接続されるか、或いは異なる高周波発生器に増幅器を介して接続される。これにより、隣接する放電部同士の第1電極は相互に異なる電気系統を介して電源部と接続される。この結果、隣接する2つの放電部でのプラズマ放電は、図8で示した従来のプラズマ処理装置よりも相互に干渉し難くなり、従来よりも放電部間距離Bを狭くすることが可能となる。さらに、電源部と同じ電気系統を介して接続される各放電部に均等な電力が供給され、各放電部において均等なプラズマ処理が行われる。
本発明のプラズマ処理装置の実施形態1を示す概略構成図である。 本発明の実施形態1における第1の電源接続形態を示す説明図である。 本発明の実施形態1における第2の電源接続形態を示す説明図である。 本発明の実施形態1における各第1電極の給電位置を示す説明図である。 本発明のプラズマ処理装置の実施形態2を示す概略構成図である。 本発明のプラズマ処理装置の実施形態3を示す概略構成図である。 本発明のプラズマ処理装置の実施形態4を示す概略構成図である。 従来の成膜用プラズマ処理装置を示す概略構成図である。
 本発明のプラズマ処理装置は、反応室と、反応室に反応ガスを導入するガス導入部と、反応室から反応ガスを排気する排気部と、反応室内に対向状に配置されかつ反応ガス中でプラズマ放電させる第1電極と第2電極の組からなる3組以上の放電部と、各組の前記第1電極および前記第2電極を水平状または垂直状に支持しかつ並列させる支持部と、全組の放電部に電力を供給する電源部とを備え、前記電源部は、高周波発生器と、該高周波発生器からの高周波電力を増幅して第1電極に供給する増幅器とを備えてなり、前記放電部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とが、同一の高周波発生器に個別の増幅器を介して接続されるか、或いは異なる高周波発生器に増幅器を介して接続され、各放電部中の第2電極はそれぞれ接地される。
 ここで、各組の第1電極および第2電極を水平状に支持しかつ並列させるとは、平行平板型の各電極を水平状に寝かせた状態で上下方向に並べることを意味し、各組の第1電極および第2電極を垂直状に支持しかつ並列させるとは、平行平板型の各電極を垂直状に立てた状態で左右方向に並べることを意味する。すなわち、このプラズマ処理装置は、第1電極および第2電極からなる平行平板型の放電部(電極体)の複数組を上下方向に並べた上下並列タイプと、平行平板型の放電部の複数組を左右方向に並列した左右並列タイプの両方に適用できるプラズマ処理装置である。
 また、本発明において、第1電極と第2電極の相対的な位置は限定されるものではない。つまり、本発明は、プラズマ処理される被処理物である基板が、第1電極と第2電極のどちら側に設置されてもよく、第2電極に基板が設置される場合は成膜用プラズマ処理装置として構成され、第1電極に基板が設置される場合はエッチング用プラズマ処理装置として構成される。
 このプラズマ処理装置において、全ての放電部のうち、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とは、上述のように、(a)同一の高周波発生器に個別の増幅器を介してそれぞれ接続されるか、或いは(b)異なる高周波発生器に増幅器を介してそれぞれ接続される。
 ここで、第1電極と電源部との接続形態(a)および(b)は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とが、それぞれ異なる電気系統を介して電源部と接続されていることを意味する。
 本発明のプラズマ処理装置は、第1電極と電源部との接続形態を前記(a)または(b)とすることによって、隣接する2つの放電部の第1電極は相互に異なる電気系統を介して電源部と接続されるため、隣接する2つの放電部でのプラズマ放電は、図8で示した従来のプラズマ処理装置よりも相互に干渉し難くなり、従来よりも放電部間距離Bを狭くすることが可能となる。
 つまり、反応室内に複数組の放電部が存在する場合、各放電部でのプラズマ放電が相互に干渉する原因は、特に、電源部と同一の電気系統を介してそれぞれ接続される放電部同士の放電部間距離に関係しており、これらの放電部の放電部間距離が短くなると電力を均等に分岐できなくなり、その結果各プラズマ放電が干渉する。
 本発明では、電源部と同一の電気系統を介して接続される放電部同士は隣接しない。隣接しない放電部同士の放電部間距離をB1とすると、隣接する放電部の放電部間距離Bに対してB1>Bとなり、電源部と同一の電気系統を介して接続される放電部同士の間隔を観ると、本発明は従来(図8参照)よりも広くなっている。
 しかしながら、電源部と異なる電気系統を介して接続される放電部同士は相互に干渉し難いため、本発明では隣接する放電部同士の放電部間距離Bを電極間距離Aに対して従来(図8参照)より狭くすることができる。具体的には、電極間距離Aに対する放電部間距離Bは、従来では2倍以上必要であったが、本発明では1.5倍以上であり大幅に放電部間距離Bを縮めることができる。
 よって、本発明のプラズマ処理装置は、反応室(チャンバー)内への放電部の充填率を増加させる、或いは装置全体を小型化させる観点から、各組の放電部における第1電極から第2電極までの電極間距離Aと、一の放電部の第2電極から隣接する他の放電部の第1電極までの放電部間距離Bとの関係が、B/A≧1.5であることが好ましい。
 なお、本発明において、隣接する放電部同士の放電部間距離Bが電極間距離Aに対して1.5倍未満であると、電源部と異なる電気系統を介して接続される放電部同士のプラズマ放電が相互に干渉するため好ましくない。
 本発明のプラズマ処理装置は、第1電極と電源部との接続形態を前記(a)または(b)とすることに加え、(c)一の放電部の第1電極は、その放電部に隣接しない他の放電部の第1電極と、同一の高周波発生器に同一の増幅器を介して同一電気系統で接続されることが好ましい。
 この接続形態(c)によれば、隣接しない複数の放電部の電源部を共有化することができ、装置構成を簡素化することができる。
 本発明において、装置全体のプラズマ放電をより均一化して、各放電部にてより均一な成膜またはエッチングを行い、かつ装置設計を容易とする上で、プラズマ処理装置を次のように構成してもよい。
 (1)電源部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とに、同期した高周波電力を供給する。ここで、「同期した高周波電力」とは、同じ波形の高周波電力を意味する。
 (2)全ての放電部中、一の放電部の第1電極と、その放電部に隣接しない他の放電部とは、それらの第1電極の形状、大きさおよび給電位置が同一であり、かつそれらの第2電極の形状、大きさおよび接地位置が同一である。
 (3)全ての放電部中、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とは、それらの第1電極の給電位置が異なる。
 (4)第1電極および第2電極は平面形状が矩形である平行平板型の電極であり、全ての放電部中、一の放電部の第1電極の給電位置と、その放電部と隣接する他の放電部の第1電極の給電位置とが、互いに180度反対側の電極端面の中央部に設定される。
 前記(1)のように構成することにより、隣接する2つの放電部に異なる波形の高周波電力が供給されることによって生じるプラズマ放電のゆらぎ現象を抑制することができる。ここで、「プラズマ放電のゆらぎ現象」とは、高周波電力が互いに干渉することによって波形に変形および共振が生じ、それによって所望の波形の電力供給が困難となる現象を意味する。なお、異なる2つ以上の電源部を用いる場合、前記ゆらぎ現象を防止するために各電源部が同じ波形の高周波電力を発生するよう、例えば可変遅延回路を用いて調整する必要がある。
 前記(2)のように構成することにより、同一電気系統で接続される複数の第1電極はほぼ同じ条件下で電力供給されるため、同一の電源部から各第1電極へより均等に分岐された電力が供給される。さらに、平行平板型の第1電極および第2電極が支持部にて水平状に支持される場合、同一電気系統で接続される複数の第1電極は形状および大きさが同一であるため、それらの自重によって生じる撓みの量も等しくなり、電極間距離Aおよび放電部間距離Bの関係に影響を与えることがない。
 前記(3)のように構成することにより、一の放電部の給電位置と、その放電部に隣接する他の放電部の給電位置が同一直線上に並ばないため、各給電ケーブルをチャンバーに固定するためのフランジ同士を接近させることなく取り付けることができ、装置設計が容易となる。また、給電ケーブル同士もある程度離して敷設することができるので、それらが相互に電気的および熱的に干渉することを抑制することができる。このような構成としては、具体的には、前記(4)の構成を採用することができる。
 なお、本発明においては、構成(1)~(4)を組み合わせることが好ましいことは言うまでもない。
 以下、図面を参照しながら、本発明のプラズマ処理装置の具体的な実施形態について説明する。
(実施形態1)
 図1は本発明のプラズマ処理装置の実施形態1を示す概略構成図であり、図2は実施形態1における第1の電源接続形態を示す説明図であり、図3は実施形態1における第2の電源接続形態を示す説明図である。
 実施形態1のプラズマ処理装置は、被処理物である基板S1の表面に所望の膜を成膜する上下並列タイプの成膜用プラズマ処理装置であって、反応室Rと、反応室Rに反応ガスG1を導入するガス導入部1aと、反応室Rから反応ガスG1を排気する排気部6と、反応室R内に対向状に配置されかつ反応ガスG1中でプラズマ放電させる第1電極1と第2電極2の組からなる3組以上の放電部3と、各組の第1電極1および第2電極2を水平状または垂直状に支持しかつ並列させる支持部5と、全組の放電部に電力を供給する電源部Eとを備える。
 また、このプラズマ処理装置において、電源部Eは、高周波発生器e1と、高周波発生器e1からの高周波電力を増幅して第1電極1に供給する増幅器e2とを備える。全ての放電部3のうち、一の放電部3の第1電極1と、その放電部3に隣接する他の放電部3の第1電極1とは、図2に示すように、同一の高周波発生器e1に個別の増幅器e2を介して接続されるか、或いは図3に示すように、異なる高周波発生器e1に増幅器e2を介して接続され、複数の第2電極2はそれぞれ接地されている。
 図1では、電源部Eを2つ描いているが、これは必ずしも個別の高周波発生器を用いることを意図しているのではない。また、図1~図3では、放電部3が上下5段で配置されたプラズマ処理装置を例示しているが、放電部3の数は2~4組或いは6組以上でも構わない。
 以下、本発明の各実施形態において、第1電極1をカソード電極1と称し、第2電極2をアノード電極2と称する。
 反応室Rは、複数の放電部3を収容する密封可能なチャンバーCにて構成されている。
 チャンバーCは箱型であり、前記排気部6が接続されると共に、チャンバー内壁面には複数のカソード電極1および複数のアノード電極2を支持する支持部5が形成されている。
 排気部6としては、真空ポンプ6a、真空ポンプ6aと反応室Rとを接続する排気管6bおよび排気管6bにおける反応室Rと真空ポンプ6aとの間に配置された圧力制御器6cとを備える。
 支持部5は、チャンバーCの内壁面から水平方向へ所定寸法突出した支持片であって、内壁面に所定間隔で上下複数箇所に設けられており、平板形状のカソード電極1およびアノード電極2を互いに平行かつ水平状に支持する。実施形態1では、5組のカソード・アノード電極1、2の下面の四隅またはそれらの近傍をそれぞれ支持するよう10段の支持部5が設けられている。
 この際、各放電部3におけるカソード電極1とアノード電極2との間の電極間距離Aに対して、一の放電部3のアノード電極2と、その放電部3に隣接する他の放電部3のカソード電極1との間の放電部間距離Bが1.5倍以上となるような高さ位置に、支持部5の各段の支持片が配置されている。例えば、電極間距離Aは2~30mmに設定され、放電部間距離Bは3~45mmまたはそれ以上に設定される。なお、面内における電極間距離Aの精度は、数%以内であることが好ましく、1%以下であること特に好ましい。
 各アノード電極2は、内部にヒータ7を有すると共に、その上面に基板S1が設置され、プラズマ放電下の成膜時に基板S1を加熱する。なお、基板S1は、シリコン基板やガラス基板などが一般的であるが、特にこれらに限定されるものではない。
 また、各アノード電極2は、ステンレス鋼、アルミニウム合金、カーボンなどの、導電性および耐熱性を備えた材料で製作されている。
 各アノード電極2の寸法は、薄膜を形成するための基板S1の寸法に合わせて適当な値に決定されている。例えば、基板S1の寸法900~1200mm×400~900mmに対して、アノード電極2の寸法を1000~1500mm×600~1000mmにして設計される。
 各アノード電極2に内蔵されたヒータ7は、アノード電極2を室温~300℃に加熱制御するものであり、例えば、アルミニウム合金中にシースヒータなどの密閉型加熱装置と熱電対などの密閉型温度センサとを内蔵したものを用いることができる。
 各カソード電極1は、ステンレス鋼やアルミニウム合金などから作製される。各カソード電極1の寸法は、成膜を行う基板S1の寸法に合わせて適当な値に設定され、アノード電極2と同じ寸法(平面サイズおよび厚み)で設計されることができる。
 各カソード電極1は、内部が空洞であると共に、対となるアノード電極2に面するプラズマ放電面には多数の貫通穴が穴明け加工により明けられている。この穴明け加工は、直径0.1mm~2mmの円形穴を数mm~数cmピッチで行うのが望ましい。
 また、各カソード電極1は、その一端面にガス導入部1aとしてのガス導入管が接続されており、図示しないガス供給源とガス導入部1aとは接続パイプにて接続されている。反応ガスG1は、ガス供給源からカソード電極2の内部に供給され、多数の貫通穴から基板S1の表面に向かって噴出する。なお、原料ガスとしては、例えば、H2で希釈したSiH4(モノシラン)ガスが使用される。
 また、電源部Eはプラズマ励起電源であり、例えば、AC1.00MHz~60MHzの周波数で10W~100kWの電力、具体的には、13.56MHz~60MHzで10W~10kWの電力を各カソード電極1に供給する。
 実施形態1のプラズマ処理装置において、図2に示す電源接続形態では、全組の放電部3のうち、下から1段目、3段目および5段目の放電部3(以下、奇数段グループと称する場合がある)の第1電極1と、2段目および4段目の放電部3(以下、偶数段グループと称する場合がある)の第1電極1とは、同一の高周波発生器e1に個別の増幅器e2を介してそれぞれ接続されている。この場合、隣接する2つの放電部3のカソード電極1は個別の増幅器e2を介して同一の高周波発生器e1と接続されている。つまり、隣接する2つの放電部3のカソード電極1は異なる電気系統を介して高周波発生器e1と接続されている。
 また、図3に示す電源接続形態では、全組の放電部3のうち、奇数段グループの第1電極1と、偶数段グループの放電部3の第1電極1とは、異なる高周波発生器e1に増幅器e2を介してそれぞれ接続されている。この場合、隣接する2つの放電部3のカソード電極1は個別の増幅器e2を介して個別の高周波発生器e1と接続されている。つまり、隣接する2つの放電部3のカソード電極1は異なる電気系統を介して高周波発生器e1と接続されている。
 このように、図2と図3のいずれの電源接続形態においても、隣接する2つの放電部3のカソード電極1は異なる電気系統を介して高周波発生器e1と接続されている。さらに、奇数段グループにおける例えば5段目と3段目の放電部3の間および3段目と1段目の間の放電部間距離B1と、偶数段グループにおける4段目と2段目の放電部3の間の放電部間距離B1は、隣接する2つの放電部3の間の放電部間距離Bよりも広くなっている。そのため、隣接する2つの放電部3でのプラズマ放電は相互に干渉し難くなる。
 よって、奇数段グループのカソード電極1には増幅器e2から均等に分岐された電力が供給されると共に、偶数段グループのカソード電極1には増幅器e2から均等に分岐された電力が供給されることとなり、各放電部3において同等のプラズマ処理を行うことができる。それに加えて、放電部間距離Bを従来よりも狭くすることが可能となる。
 ところで、各放電部3でのプラズマ放電のゆらぎ現象を抑制する上で、隣接する2つの放電部3には、互いに同期した高周波電力を供給することが好ましい。
 図2で示す電源接続形態では、同一の高周波発生器e1にて発生させた高周波電力を奇数段グループと偶数段グループの両方に供給するため、隣接する2つの放電部3に供給する高周波電力の波形は基本的に同じであり、波形を調整する必要がない。一方、図3で示す電源接続形態では、異なる高周波発生器e1にて発生させた高周波電力を奇数段グループと偶数段グループの両方に供給するため、隣接する2つの放電部3に供給する高周波電力の波形を一致させる場合は調整が必要となる。
 したがって、隣接する2つの放電部3に同期した同じ波形の高周波電力を供給すると同時に、高周波発生器e1の数を低減できる上で、図2で示す電源接続形態を採用することが好ましい。
 また、実施形態1のプラズマ処理装置は、図4に示すように、同一電気系統で接続される複数の放電部3において、複数のカソード電極1は形状および大きさが同一であり、かつそれぞれのカソード電極1と給電位置の相対的な位置関係が同一であり、複数のアノード電極2の形状および大きさは同一であり、かつそれぞれのアノード電極2と接地位置の相対的な位置関係が同一である。さらに、本実施形態1では、カソード電極1とアノード電極2の形状および大きさ(厚みを除く)が同一である。
 詳しく説明すると、図1および図4に示すように、上下5段の各放電部3において、平行平板型のカソード電極1とアノード電極2は水平対向状に配置されており、奇数段グループの各カソード電極1の右端面におけるX方向(奥行き方向)およびZ方向(上下方向)の中央位置が給電位置fとされ、偶数段グループの各カソード電極1の左端面におけるX方向およびZ方向の中央位置が給電位置fとされており、図示しない給電ケーブルが各カソード1の各給電位置に接続される。なお、図4において、線aは各カソード電極1および各アノード電極2の左右端面におけるX方向の中央位置を通る中心線であり、線bは最上段のカソード電極1の上面および最下段のアノード電極2の下面におけるX方向の中央位置を通る中心線である。
 なお、奇数段グループにおいて、各アノード電極2の接地位置は相対的に同一であり、かつ線a上に配置されることが好ましいが、各カソード電極1と同じ右端面側でも反対の左端面側でもどちらでもよい。これと同様に、偶数段グループにおいて、各アノード電極2の接地位置は相対的に同一であり、かつ線a上に配置されることが好ましいが、各カソード電極1と同じ左端面側でも反対の右端面側でもどちらでもよい。
 また、図2および図3では、奇数段グループおよび偶数段グループがそれぞれ1つの増幅器e2を介して同一または個別の高周波発生器e1と接続された場合を例示したが、これに限定されるものではい。例えば、奇数段グループが1、3、5および7段目の放電部を有し、偶数段グループが2、4、6および8段目の放電部を有するプラズマ処理装置の場合、1つの増幅器の負荷を軽減するために、奇数段グループおよび偶数段グループがそれぞれ2以上の増幅器e2を介して同一または個別の高周波発生器e1と接続されてもよい。
 このように構成された成膜用プラズマ処理装置において、膜原料である反応ガスG1を所定の流量および圧力でカソード電極1とアノード電極2との間隙に導入し、カソード電極1とアノード電極2とに高周波電力を印加することで、カソード電極1とアノード電極2との間にグロー放電領域(プラズマ放電領域)を発生させ、基板S1上に非晶質の膜または結晶性の膜を形成することができる。例えば、原料ガスとしてH2で希釈したSiH4ガスを使用して、膜厚300nmのシリコン薄膜を膜厚分布±10%以内で堆積させることができる。
 この際、同一電気系統で接続される奇数段グループの3つのカソード電極1において、カソード電極1に対する給電位置fは全てのカソード電極1について同一であり、同一電気系統で接続される偶数段グループの2つのカソード電極1において、カソード電極1に対する給電位置fは全てのカソード電極1について同一であるため、隣接する2つの放電部でのプラズマ放電が相互に干渉し合うことがほとんどない。この結果、電源部Eから同じ電気系統を介して接続された各カソード電極1へより均等に分岐された電力が供給される。さらに、奇数段グループおよび偶数段グループの各カソード電極1は形状および大きさが同一であるため、それらの自重によって生じる撓みの量は等しくなり、さらには、奇数段グループおよび偶数段グループの各アノード電極2は形状および大きさが同一であるため、それらの自重によって生じる撓みの量も等しくなり、電極間距離Aの変動がほとんど無く、電極間距離Aおよび放電部間距離Bの関係に影響を与えることがない。
 したがって、1つのチャンバー内に複数のプラズマ放電が存在してもそれらは相互に干渉することがなく、実施形態1のプラズマ処理装置によって、半導体素子の製造プロセスにおける成膜工程を高精度に効率よく行うことができる。
(実施形態2)
 図5は本発明のプラズマ処理装置の実施形態2を示す概略構成図である。なお、図5において、図1~図4で示した構成要素と同様の構成要素には、同一の符号を付している。
 実施形態2のプラズマ処理装置も成膜用プラズマ処理装置であるが、左右並列タイプである点が主に実施形態1(上下並列タイプ)とは異なる。つまり、実施形態2のプラズマ処理装置は、図1で説明した実施形態1の構成のプラズマ処理装置を概ね横倒しにした構成である。
 図5では、図1で描かれていたチャンバーC、支持部5および排気部6が図示省略されているが、実施形態2のプラズマ処理装置もこれらを備えている。ただし、実施形態2の場合、支持部は、カソード電極1およびアノード電極2を垂直状に支持するものであり、支持部を構成する複数の支持片が、チャンバーの上内壁面および下内壁面から上下方向に突出して各電極を両側から挟持する。また、アノード電極2における基板設置面には、例えば、基板S1を保持する突起部が形成されている。なお、アノード電極2を支持する支持片によって基板S1を保持するようにしてもよい。
 実施形態2のプラズマ処理装置も、実施形態1と同様に、膜原料である反応ガスG1を所定の流量および圧力でカソード電極1とアノード電極2との間隙に導入し、カソード電極1とアノード電極2とに高周波電力を印加することで、カソード電極1とアノード電極2との間にグロー放電領域(プラズマ放電領域)を発生させ、基板S1上に非晶質の膜または結晶性の膜を形成することができる。
 この際、実施形態1と同様に、電源部Eから同じ電気系統を介して接続された各カソード電極1へより均等に分岐された電力が供給され、1つのチャンバー内に複数のプラズマ放電が存在してもそれらは相互に干渉することがない。
 また、実施形態2のプラズマ処理装置はカソード電極1およびアノード電極2が垂直に支持された左右並列タイプであり、実施形態1における各電極のような撓みの影響は少ないため、各電極間距離Aおよび各放電部間距離Bの変動はほとんどない。
 これらのことから、実施形態2のプラズマ処理装置によっても、半導体素子の製造プロセスにおける成膜工程を高精度に効率よく行うことができる。
(実施形態3)
 図6は本発明のプラズマ処理装置の実施形態3を示す概略構成図である。なお、図6において、図1で示した構成要素と同様の構成要素には、同一の符号を付している。
 実施形態3のプラズマ処理装置は、上下並列タイプのエッチング用プラズマ処理装置であって、実施形態1と同様に、カソード電極11とアノード電極12からなる放電部13の複数組を備えると共に、図示しないチャンバー、支持部および排気部を備えている。
 実施形態3が実施形態1と異なる主な点は、各放電部13において、カソード電極11とアノード電極12が上下逆に配置されており、電源部Eと接続されるカソード電極11上に基板S2を設置し、接地されるアノード電極12を基板S2の上方に配置したことである。
 この場合、実施形態3のアノード電極12は、実施形態1のカソード電極1と同様に、内部に反応ガスG2を導入するためのガス導入部12aを有すると共に、下面には反応性ガスG2を噴出する多数の貫通穴を有している。
 また、実施形態3のカソード電極11は、実施形態1のアノード電極2と同様に、内部にヒータ17が設けられている。
 なお、実施形態3も実施形態1と同様に、各放電部13におけるカソード電極11とアノード電極12との間の電極間距離Aに対して、一の放電部13のカソード電極11と、その放電部13に隣接する他の放電部13のアノード電極12との間の放電部間距離Bが、1.5倍以上に設定されている。例えば、電極間距離Aは2~30mmに設定され、放電部間距離Bは3~45mmまたはそれ以上に設定される。なお、面内における電極間距離Aの精度は、数%以内であることが好ましく、1%以下であること特に好ましい。
 実施形態3のプラズマ処理装置では、例えば、フッ素系ガスをアルゴンなどの不活性ガスで希釈したエッチングガスである反応ガスG2を所定の流量および圧力でカソード電極11とアノード電極12との間隙に充填し、カソード電極11とアノード電極12とに高周波電力を印加することで、カソード電極11とアノード電極12との間にグロー放電領域(プラズマ放電領域)を発生させ、基板S2(例えばシリコン基板)を10nm/s以上の速度で効率よくエッチングすることができる。
 この際、実施形態1と同様に、電源部Eから同じ電気系統を介して接続された各カソード電極1へより均等に分岐された電力が供給され、1つのチャンバー内に複数のプラズマ放電が存在してもそれらは相互に干渉することがない。さらに、奇数段グループおよび偶数段グループの各カソード電極1は形状および大きさが同一であるため、それらの自重によって生じる撓みの量は等しくなり、さらには、奇数段グループおよび偶数段グループの各アノード電極2は形状および大きさが同一であるため、それらの自重によって生じる撓みの量も等しくなり、電極間距離Aの変動がほとんど無く、電極間距離Aおよび放電部間距離Bの関係に影響を与えることがない。
 これらのことから、実施形態3のプラズマ処理装置によって、半導体素子の製造プロセスにおけるエッチング工程を高精度に効率よく行うことができる。
(実施形態4)
 図7は本発明のプラズマ処理装置の実施形態4を示す概略構成図である。なお、図7において、図6で示した構成要素と同様の構成要素には、同一の符号を付している。
 実施形態4のプラズマ処理装置もエッチング用プラズマ処理装置であるが、左右並列タイプである点が主に実施形態3(上下並列タイプ)とは異なる。つまり、実施形態4のプラズマ処理装置は、図6で説明した実施形態3の構成のプラズマ処理装置を概ね横倒しにした構成である。
 実施形態4のプラズマ処理装置も、実施形態3と同様に、カソード電極11とアノード電極12からなる放電部13を備えると共に、図示しないチャンバー、支持部および排気部を備えている。ただし、実施形態4の場合、支持部は、実施形態2と同様の構成である。
 実施形態4のプラズマ処理装置も、実施形態3と同様に、例えば、フッ素系ガスをアルゴンなどの不活性ガスで希釈したエッチングガスである反応ガスG2を所定の流量および圧力でカソード電極11とアノード電極12との間隙に導入し、カソード電極11とアノード電極12とに高周波電力を印加することで、カソード電極11とアノード電極12との間にグロー放電領域(プラズマ放電領域)を発生させ、基板S2(例えばシリコン基板)を10nm/s以上の速度で効率よくエッチングすることができる。
 この際、実施形態3と同様に、電源部Eから同じ電気系統を介して接続された各カソード電極1へより均等に分岐された電力が供給され、1つのチャンバー内に複数のプラズマ放電が存在してもそれらは相互に干渉することがない。
 また、実施形態4のプラズマ処理装置はカソード電極11およびアノード電極12が垂直に支持された左右並列タイプであり、実施形態3における各電極のような撓みの影響は少ないため、各電極間距離Aおよび各放電部間距離Bの変動はほとんどない。
 これらのことから、実施形態4のプラズマ処理装置によっても、半導体素子の製造プロセスにおけるエッチング工程を高精度に効率よく行うことができる。
(他の実施形態)
 上述の実施形態1~4では、奇数段グループのカソード電極と偶数段グループのカソード電極は同じ形状および大きさに形成され、奇数段グループのアノード電極と偶数段グループのアノード電極は同じ形状および大きさに形成された場合を例示したが、奇数段グループのカソード電極と偶数段グループのカソード電極は異なる形状および大きさに形成され、奇数段グループのアノード電極と偶数段グループのアノード電極は異なる形状および大きさに形成されてもよい。つまり、それぞれ異なる電気系統を介して接続される隣接する2つの放電部でのプラズマ放電は相互に干渉を受け難いため、上述のように奇数・偶数段グループ間のカソード電極およびアノード電極を異なる形状および大きさに変更することが可能である。
 これにより、奇数段と偶数段の放電条件を任意に調整することができる。ガス供給系を個別とすると、同じチャンバー内でまったく異なる成膜処理が同時に可能となる。
 本発明のプラズマ処理装置は、例えば、太陽電池、TFT、感光体などの各種半導体素子の製造プロセスにおける成膜工程に使用されるCVD装置またはエッチング工程に使用されるRIE装置などに適用可能である。
 1、11 第1電極(カソード電極)
 1a、12a ガス導入部
 2、12 第2電極(アノード電極)
 3、13 放電部
 5 支持部(支持片)
 6 排気部
 7、17 ヒータ
 A 電極間距離
 B 放電部間距離(隣接する放電部間)
 B1 放電部間距離(隣接しない放電部間)
 C チャンバー
 E 電源部
 e1 高周波発生器
 e2 増幅器
 G1、G2 反応ガス
 R 反応室
 S1、S2 基板(被処理物)

Claims (7)

  1.  反応室と、反応室に反応ガスを導入するガス導入部と、反応室から反応ガスを排気する排気部と、反応室内に対向状に配置されかつ反応ガス中でプラズマ放電させる第1電極と第2電極の組からなる3組以上の放電部と、各組の前記第1電極および前記第2電極を水平状または垂直状に支持しかつ並列させる支持部と、全組の放電部に電力を供給する電源部とを備え、
     前記電源部は、高周波発生器と、該高周波発生器からの高周波電力を増幅して第1電極に供給する増幅器とを備えてなり、
     前記放電部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とが、同一の高周波発生器に個別の増幅器を介して接続されるか、或いは異なる高周波発生器に増幅器を介して接続され、各放電部中の第2電極がそれぞれ接地されるプラズマ処理装置。
  2.  前記電源部は、一の放電部の第1電極と、その放電部に隣接する他の放電部の第1電極とに、同期した高周波電力を供給する請求項1に記載のプラズマ処理装置。
  3.  前記放電部中、一の放電部の第1電極は、その放電部に隣接しない他の放電部の第1電極と、同一の高周波発生器に同一の増幅器を介してそれぞれ同一電気系統で接続される請求項1に記載のプラズマ処理装置。
  4.  前記放電部中、一の放電部とその放電部に隣接しない他の放電部とは、それらの第1電極の形状、大きさおよび給電位置が同一であり、かつそれらの第2電極の形状、大きさおよび接地位置が同一である請求項1に記載のプラズマ処理装置。
  5.  前記放電部中、一の放電部とその放電部に隣接する他の放電部とは、それらの第1電極の給電位置が異なる請求項1に記載のプラズマ処理装置。
  6.  前記第1電極および前記第2電極は平面形状が矩形である平行平板型の電極であり、
     前記放電部中、一の放電部の第1電極の給電位置とその放電部と隣接する他の放電部の第1電極の給電位置とが、互いに180度反対側の電極端面の中央部に設定される請求項1に記載のプラズマ処理装置。
  7.  前記放電部において、各放電部の第1電極から第2電極までの電極間距離Aと、一の放電部の第2電極から隣接する他の放電部の第1電極までの放電部間距離Bとの関係が、B/A≧1.5である請求項1に記載のプラズマ処理装置。
PCT/JP2009/058995 2008-05-21 2009-05-14 プラズマ処理装置 WO2009142138A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801185375A CN102037791B (zh) 2008-05-21 2009-05-14 等离子处理装置
US12/992,327 US20110088849A1 (en) 2008-05-21 2009-05-14 Plasma processing apparatus
EP09750500A EP2282619A1 (en) 2008-05-21 2009-05-14 Plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-133073 2008-05-21
JP2008133073A JP4558067B2 (ja) 2008-05-21 2008-05-21 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2009142138A1 true WO2009142138A1 (ja) 2009-11-26

Family

ID=41340071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058995 WO2009142138A1 (ja) 2008-05-21 2009-05-14 プラズマ処理装置

Country Status (6)

Country Link
US (1) US20110088849A1 (ja)
EP (1) EP2282619A1 (ja)
JP (1) JP4558067B2 (ja)
KR (1) KR101215691B1 (ja)
CN (1) CN102037791B (ja)
WO (1) WO2009142138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804932A (zh) * 2010-03-15 2012-11-28 夏普株式会社 等离子处理装置、等离子处理方法和半导体装置制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147993A1 (ja) * 2008-06-02 2009-12-10 シャープ株式会社 プラズマ処理装置、それを用いた成膜方法およびエッチング方法
KR101628918B1 (ko) * 2009-12-22 2016-06-09 주성엔지니어링(주) 기판처리장치
JP5666888B2 (ja) * 2010-11-25 2015-02-12 東京エレクトロン株式会社 プラズマ処理装置及び処理システム
CN102280337B (zh) * 2011-06-03 2014-04-16 星弧涂层新材料科技(苏州)股份有限公司 反应离子刻蚀设备及方法
CN109207965B (zh) * 2017-07-04 2020-11-10 上海稷以科技有限公司 平板电极结构和等离子体沉积设备
JP6845334B2 (ja) * 2017-08-14 2021-03-17 株式会社Kokusai Electric プラズマ生成装置、基板処理装置、半導体装置の製造方法およびプログラム
KR102530934B1 (ko) * 2017-12-08 2023-05-11 현대자동차주식회사 차량의 냉각수 가열장치
CN110042348A (zh) * 2019-03-12 2019-07-23 深圳奥拦科技有限责任公司 等离子表面处理装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264393A (en) 1977-10-31 1981-04-28 Motorola, Inc. Reactor apparatus for plasma etching or deposition
JPH088234A (ja) * 1994-06-23 1996-01-12 M C Electron Kk プラズマ処理装置
JP2001077091A (ja) * 1999-09-03 2001-03-23 Ulvac Japan Ltd プラズマ処理装置
JP2001257098A (ja) * 2000-03-13 2001-09-21 Mitsubishi Heavy Ind Ltd 放電電極への給電方法、高周波プラズマ生成方法および半導体製造方法
JP2006120926A (ja) 2004-10-22 2006-05-11 Sharp Corp プラズマ処理装置
JP2007231424A (ja) * 2007-06-12 2007-09-13 Masayoshi Murata プラズマ発生用電源装置、該電源装置により構成されたプラズマcvd装置及びプラズマcvd法
JP2008004814A (ja) * 2006-06-23 2008-01-10 Sharp Corp プラズマ処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644554B2 (ja) * 1984-03-28 1994-06-08 株式会社富士電機総合研究所 プラズマcvd装置
US4601807A (en) * 1985-01-17 1986-07-22 International Business Machines Corporation Reactor for plasma desmear of high aspect ratio hole
CN1423916A (zh) * 2000-02-24 2003-06-11 Ccr涂敷技术有限责任公司 高频等离子体源
TW507256B (en) * 2000-03-13 2002-10-21 Mitsubishi Heavy Ind Ltd Discharge plasma generating method, discharge plasma generating apparatus, semiconductor device fabrication method, and semiconductor device fabrication apparatus
JP3980314B2 (ja) * 2001-10-01 2007-09-26 シャープ株式会社 プラズマ処理装置およびプラズマ処理方法
JP2006049367A (ja) * 2004-07-30 2006-02-16 Hitachi Kokusai Electric Inc プラズマ処理装置
JP2006196681A (ja) * 2005-01-13 2006-07-27 Sharp Corp プラズマ処理装置および同装置により製造された半導体素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264393A (en) 1977-10-31 1981-04-28 Motorola, Inc. Reactor apparatus for plasma etching or deposition
JPH088234A (ja) * 1994-06-23 1996-01-12 M C Electron Kk プラズマ処理装置
JP2001077091A (ja) * 1999-09-03 2001-03-23 Ulvac Japan Ltd プラズマ処理装置
JP2001257098A (ja) * 2000-03-13 2001-09-21 Mitsubishi Heavy Ind Ltd 放電電極への給電方法、高周波プラズマ生成方法および半導体製造方法
JP2006120926A (ja) 2004-10-22 2006-05-11 Sharp Corp プラズマ処理装置
JP2008004814A (ja) * 2006-06-23 2008-01-10 Sharp Corp プラズマ処理装置
JP2007231424A (ja) * 2007-06-12 2007-09-13 Masayoshi Murata プラズマ発生用電源装置、該電源装置により構成されたプラズマcvd装置及びプラズマcvd法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804932A (zh) * 2010-03-15 2012-11-28 夏普株式会社 等离子处理装置、等离子处理方法和半导体装置制造方法

Also Published As

Publication number Publication date
CN102037791A (zh) 2011-04-27
KR20110010640A (ko) 2011-02-01
JP4558067B2 (ja) 2010-10-06
JP2009283235A (ja) 2009-12-03
CN102037791B (zh) 2013-08-21
EP2282619A1 (en) 2011-02-09
US20110088849A1 (en) 2011-04-21
KR101215691B1 (ko) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2009142138A1 (ja) プラズマ処理装置
US7927455B2 (en) Plasma processing apparatus
WO2011114840A1 (ja) プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法
US20150228461A1 (en) Plasma treatment apparatus and method
JP5443127B2 (ja) プラズマ処理装置
JP2006196677A (ja) プラズマ処理装置および同装置により製造された半導体素子
JP2006196681A (ja) プラズマ処理装置および同装置により製造された半導体素子
JP5377749B2 (ja) プラズマ生成装置
US20100277050A1 (en) Plasma processing apparatus
US20040113287A1 (en) Semiconductor device manufacturing unit and semiconductor device manufacturing method
JP4728345B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP4875527B2 (ja) プラズマ発生装置およびこれを用いた薄膜形成装置
JP5393667B2 (ja) プラズマ処理装置、それを用いた成膜方法およびエッチング方法
JP2009267048A (ja) プラズマ処理装置およびそれを用いたプラズマ処理方法
JP4592576B2 (ja) 放電電極、薄膜製造装置及び太陽電池の製造方法
JP2010182937A (ja) プラズマクリーニング方法
JP2013143287A (ja) プラズマ処理装置およびプラズマ処理方法
JP2013131475A (ja) プラズマ処理装置及び半導体装置
JP3986483B2 (ja) プラズマcvd装置用電極及びプラズマcvd装置
JP4982577B2 (ja) プラズマ処理装置および同装置により製造された半導体素子
JP2006080192A (ja) プラズマプロセス装置
JP2010123628A (ja) 真空処理装置
JP2012054387A (ja) プラズマ処理装置
JP2015109385A (ja) プラズマcvd装置およびプラズマcvd処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118537.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009750500

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12992327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 7414/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107028482

Country of ref document: KR

Kind code of ref document: A