JP2007532335A - カーボンナノチューブ・アレイ複合材料をベースにするナノ加工熱材料 - Google Patents

カーボンナノチューブ・アレイ複合材料をベースにするナノ加工熱材料 Download PDF

Info

Publication number
JP2007532335A
JP2007532335A JP2007508505A JP2007508505A JP2007532335A JP 2007532335 A JP2007532335 A JP 2007532335A JP 2007508505 A JP2007508505 A JP 2007508505A JP 2007508505 A JP2007508505 A JP 2007508505A JP 2007532335 A JP2007532335 A JP 2007532335A
Authority
JP
Japan
Prior art keywords
exposed
cnts
array
filler
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007508505A
Other languages
English (en)
Inventor
リー,ジュン.
メイヤッパン,メッヤ
ダンジェロ,カルロス
Original Assignee
ユナイテッド ステイツ オブ アメリカ アズ リプリゼンティッド バイ ザ アドミニストレイター オブ ザ ナサ
ナノコンダクション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユナイテッド ステイツ オブ アメリカ アズ リプリゼンティッド バイ ザ アドミニストレイター オブ ザ ナサ, ナノコンダクション インコーポレイテッド filed Critical ユナイテッド ステイツ オブ アメリカ アズ リプリゼンティッド バイ ザ アドミニストレイター オブ ザ ナサ
Publication of JP2007532335A publication Critical patent/JP2007532335A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

カーボンナノチューブ(CNT)のアレイを用いる熱伝導の提供方法。垂直に配向したCNTのアレイが高い熱伝導率を有する基材上に成長させられ、アレイ中の隣接するCNT間の隙間領域は、各CNTの少なくとも一端が露出するように、高い熱伝導率を有する充填材で部分的に又は完全に充填される。各CNTの露出端は、それから熱が除去されるべきである物体の表面に押し付けられる。基材に隣接したCNT−充填材複合材料は、CNTを適所に固定するための向上した機械的強度を提供し、そしてまたより小さな体積(CNT)からより大きなヒートシンクへの熱流束の拡散を改善するためのヒートスプレッダーとしても機能する。

Description

発明の起源
本明細書に記載される発明は、米国政府の職員によって行われたものであり、それについて又はそのためにいかなる特許権使用料の支払いもなしに政府目的のために政府によってまたは政府のために製品化され、用いられてもよい。
技術分野
本発明は、カーボンナノチューブ・アレイを用いた、小さな部品及びデバイスのための熱伝導体を提供する。
発明の背景
マイクロプロセッサ用の最先端の集積回路(IC)は、50ワット/cmのオーダーで電力密度を通常放散する。この大電力は、高周波数で動作するICの局所的加熱のためであり、将来の高周波数マイクロエレクトロニクス応用のために対処されなければならない。IC及び他の電気製品用の部品及びデバイスのサイズがより小さくなるにつれて、かかる部品及びデバイスに熱放散および熱輸送を提供することはより困難になる。マクロサイズ熱伝導体用の熱伝導体は、一つにはスケーリング問題のために、ミクロサイズ部品又はデバイスでの使用に一般には不適切である。
ICでの増加した部品密度、及びそのコンパクトさの一結果は、局所的に高い電力消費の形で現れる。各発展中の技術世代に関して電力密度の憂慮すべき上昇が主流のマイクロプロセッサ技術で観察されてきた。この問題に対処する必要性は、次世代ICパッケージング技術には避けられないものである。一潜在的解決策は、高い熱伝導性を示し、かつ、熱を局所的なホットスポットからより大きなヒートシンクに移すことができる新規パッケージング材料を見いだすことである。
物体を冷たいリザーバに付けることによるその冷却は、界面を横切る伝熱速度によって普通は制限される。原子的に平らな表面の物体を除いて、実際の物体は、通常、他の固体表面と接触した非常に小さな部分の表面を有するにすぎない。共晶接合材料又は熱伝導性ペースト/フィルムが普通は接触面積を増やすために界面に付けられる。しかしながら、これらの共晶接合材料の熱伝導率は、通常、Cu及びSiなどの固体材料の熱伝導率より桁ちがいに低い。界面はこうして熱放散にとってボトルネックのままである。金属フィルムは、熱伝導率を向上させるために使用することができるが、高圧負荷に適用できるにすぎない。
必要とされるものは、マクロサイズ部品及びデバイスについての速度に匹敵する伝熱速度で、ミクロサイズ部品又はデバイスから、好ましくはナノメートルスケールのシステムまで下がって、ヒートシンクへ熱を効率的に及び迅速に放散する又は伝導するコンプライアントな熱界面材料である。好ましくは、熱伝導体は再使用可能であるべきであり、かつ、粗いまたは平滑な、いかなる表面でも作動するべきである。
発明の概要
これらのニーズは、大きな熱放散を必要とする用途向けに1つ若しくはそれ以上の高性能熱伝導体を提供するために内蔵カーボンナノチューブ・アレイを用いる本発明によって満たされる。また、このアプローチは、カーボンナノチューブ(CNT)の露出部分の可逆的な座屈および曲げを利用して、CNTアレイが安定のままであることができ、かつ、大量の熱を発生する物体の表面に良好な接触をすることができるように、CNTの機械的強度をも向上させる。カーボンナノチューブ軸に沿った極めて高い熱伝導性が部品又はデバイス中のホットスポットから熱を移動させるために用いられる。銅及び他の高熱伝導率材料がCNTアレイの第1部分中の隙間領域又はギャップを充填するために堆積される。この複合構造体は、CNTを適所に維持するために機械的強度を提供し、そしてまた効率的な伝熱材料として機能して個々のCNTからより大きな周辺体積への熱流束の拡散を改善する。
本発明は、CNT軸に沿って及び界面を横切って極めて大きな熱伝導率を提供しながら有効接触面積(特に粗い表面について)を増やすために垂直に配向したCNTアレイを用いる。製造は、(1)1〜50ミクロンの好ましい長さの実質的に垂直に整列したCNTアレイが、Siウェーハ及び金属ブロック/フィルムなどの、良好な熱伝導率を有する固体基材(ヒートシンクとして機能する)上に成長させられる工程、(2)隣接するCNT間の隙間空間の第1部分、またはすべてが、化学蒸着(CVD)、物理蒸着(PVD)、プラズマ蒸着、イオンスパッタリング、電気化学析出、又は液相からのキャスティングによってCu、Ag、Au、Pt又はドープSiなどの高熱伝導性材料で充填される工程、(3)底部部分は充填材に内蔵されたままである状態で、CNTアレイの最上部部分が露出されるように、充填材が、機械研磨(MP)、化学−機械研磨(CMP)、湿式化学エッチング、電気化学エッチング、又は乾式プラズマエッチングによって隙間空間の第2部分から除去される工程、ならびに(4)内蔵CNTアレイが冷却されるべきである物体に付けられる工程の4工程を含む。非常に粗い表面の物体でさえ、冷却されるべき物体にCNTが最大接触することができるように、CNTは低い負荷圧力下に一つずつ可逆的に座屈する又は曲がることができる。
熱は、接触スポットからチューブ軸に沿って基材だけでなく充填材へ効果的に移動させることができる。充填材は2つの決定的に重要な役割:(a)機械的安定性を向上させること、及び(b)熱伝導率を最大にすることを果たす。充填材マトリックスのような高熱伝導性材料の選択は、接触スポットから基材(すなわち、ヒートシンク又は冷却リザーバ)への伝熱を最大にする。内蔵CNTアレイは、共晶接合に依存するアプローチとは対照的に、その熱輸送特性の損傷又は譲歩なしに再使用することができる。
本発明は、アレイが取り付け過程中に加熱された物体に押し付けられる時に完全性を保持するように、アレイのより低い部分を固体マトリックスに固定することによってCNTアレイの機械的安定性を向上させる。CNTアレイの可逆的な座屈及び曲げ特性は、表面が原子的に平らであろうと非常に粗かろうと、低い負荷圧力下で物体表面との最大物理的接触を確実にする。
別個の多重カーボンナノチューブ(MWCNT)について、熱伝導率は、ピー.キム(P.Kim)ら、Phys.Rev.Lett.、87(2001)、215502−1によれば、チューブ軸に沿って3000ワット(メートル)−1−1を上回ると予期される。ビー.エイ.クルーデン(B.A.Cruden)ら、Jour.Appl.Phys.、94(2003)、4070ページによって実証されているような、DCバイアスのプラズマ強化化学蒸着(PECVD)を用いて、垂直に配列したMWCNTアレイ(時々カーボンナノファイバー・アレイと言われる)を厚さ約500μmのシリコンウェーハ上に製造し、IC中の決定的に重要な「ホットスポット」などの、局部から大量の熱を伝導するヒートシンク・デバイスとしてのそれらの可能な適用を実証することができる。
本発明は、CNTアレイをSiOマトリックス中に内蔵された電気相互接続材料として用いている先行するNASA特許出願の当然の結果である。ここでは、Cu、Ag及び/又はSiなどの高熱伝導性材料が、該先行発明では電気伝導を制御するために使用されたSiOに置き換わっている。
発明の最良の形態の説明
図1は、本発明の実施形態の実施手順を例示する。工程11では、実質的に垂直に配向したCNTのアレイが、良好な熱伝導率を有する基材の選択された表面上に成長させられる。基材は、金属ドープケイ化物、ダイヤモンドフィルム、又は最大の電気若しくは熱伝導率を有する金属物質であってもよい。アレイがパターン化されているか否かにかかわらず、2〜50ナノメートル(nm)、又は必要ならばそれ以上の層厚さを有する薄いCNT触媒層(例えば、Ni、Fe、Co、Pd若しくはAl又はそれらの組合せ)を提供することが好ましい。CNTが選択された基材表面と実質的に垂直に配向した電場中で成長させられる時、CNTは、電場方向と実質的に平行な方向により大きな長さ(1〜50μmもしくはそれ以上)で成長させることができる。
工程12では、熱の輸送を増やすために、化学蒸着(CVD)、物理蒸着(PVD)、プラズマ蒸着、イオンスパッタリング、電気化学析出、又は液相からのキャスティングを用いて、隣接するCNT間の隙間空間が、好ましくは良好な熱伝導体(例えば、Cu、Ag、Au又は金属ドープシリコン)である選択された充填材で部分的に又は完全に充填される。アレイ中のCNTの密度および充填材に依存して、システムの熱伝導率は、配向グラファイトの熱伝導率に匹敵する、100〜3000ワット/(メートル)−Kの範囲にあると推定される。
工程13では、CNTアレイの最上部部分が露出されるように、充填材の最上部部分が機械研磨(MP)、化学−機械研磨(CMP)、湿式化学エッチング、電気化学エッチング、乾式プラズマエッチング、又はそれらの組合せによって除去される。
工程14(任意の)では、工程11、12及び13によって提供された熱伝導システムは、CNTの露出部分が曲がるまたは座屈するように、それから熱が除去されるべきである物体の表面(原子的に平滑な、粗いまたはどこかでは中間の)に押し付けられる又は別のやり方で付けられる。
図2は、物体25から熱を除去するための図1の手順によって製造されたシステムの使用を概略的に例示する。CNT23−i(i=1、…、I(図2ではI=8)のアレイは、任意の触媒層22を有する基材21の選択された表面上に成長させられる又は別のやり方で提供される。各CNT23−iの上部の露出を可能にする深さを有する充填材の層24が、CNTの機械的強化のために及び(物体25から)CNTに沿ってのみ初めには移動する熱の改善された拡散のために提供される。CNT23−iは、それから熱が除去されるべきである物体25の表面に押し付けられ、その結果、CNTの多く又はすべてが(粗い)物体表面と接触し、そして物体からの熱輸送を向上させるために曲がる(23−1、23−3及び23−7)か又は座屈する(23−4、23−6及び24−8)かのどちらかである。
2つの銅ブロック31及び32、上方ブロックに内蔵された4つの抵抗カートリッジ・ヒーター(示されていない)、並びに冷却浴33を含む、図3Aに例示された測定装置は、所与の材料の熱抵抗を測定するために用いられる。上方銅ブロック31は、測定されるべき材料34と接触するようにデザインされた1平方インチ区域を除いて、周囲への熱損失を最小限にするために断熱材(示されていない)によって好ましくは取り囲まれる。サンプルへの締め付け圧力は、上方ブロックを空気圧で操作することによって制御される。熱は、一定の電力をカートリッジ・ヒーターに加えることによってシステムに供給される。介在するサンプル34ありで、2つのブロック31と32との間の定常状態温度差(ΔT=T−T)が測定された。これらのデータから、サンプルの熱抵抗Rは、方程式(1)(ここで、Qは総電力(ワット単位の)であり、Aはサンプル断面積であり、Cは一定の伝熱係数であり、T、T、及びT周囲は、それぞれ、上方ブロック31の温度、冷却された下方ブロック32の温度(T=20℃)、及び周囲環境の温度を表す)のように計算される。伝熱係数Cは、この測定配置における周囲環境への熱損失を推定するために用いられ、2つのブロックの間に厚い断熱材を置き、様々な印可電力で定常状態ΔTを測定することによって求められる。この分析は、C=0.0939ワット/Kの一定の伝熱係数をもたらし、それは測定された熱抵抗Rの最終決定の要素に入れられる。この係数Cは、周囲環境に度ケルビン当たり失われたヒートパワー(ワット単位の)を表す。
Figure 2007532335
この測定配置における支配的な熱抵抗機構は、サンプル34と銅ブロック31及び32との間の接触界面のそれである。この接触抵抗を最小限にするために、2つの措置:(1)両方の銅ブロック31及び32を研磨して表面粗さの影響を低減すること、及び(2)シリコンウェーハ(その上で研究されるフィルムが製造された基材)の裏面上での接触抵抗を下げるために、高い熱伝導性のコンフォーマルな材料、マイクロフェイズ(Microfaze)A6(AOSサーマル・コンパウンズ社、ニュージャージー州(AOS Thermal Compounds,LLC,New Jersey)から入手可能な)を使用することが講じられた。
サンプル調製
カーボンナノチューブは、ビー.エイ.クルーデンら(前掲)によって報告された手順及び反応器条件を用いて合成された。生じた成長したままのチューブは、それぞれ、図4A及び4Bに断面図および平面図で示される。走査電子顕微鏡(SEM)データを用いて、本発明者らは、MWCNTの長さが1〜50μmの可能な範囲で、約7.5μmであると推定する。
ナノチューブ合成後に、個々のMWCNT間(ナノチューブ溝とも言われる)の高い熱伝導率の金属様の物質(例えば、Cu、Ag、Au、Pt又はPd)が、作用電極として1cmMWCNTアレイ、参照電極として飽和カロメル電極(SCE)、及びMWCNTサンプルと平行にセットされた、対極(CE)として1平方インチ白金箔を使った3電極セットアップを用いて、電着によって堆積された。Cu基材及びMWCNTの両方が電着中に電極として機能する。
様々な添加剤が場合により、高アスペクト比の森林様のMWCNTアレイ中への最適ギャップ充填を達成するために溶液に加えられる。本研究に使用される電解質溶液のレシピは、ケイ.コンドー(K.Kondo)ら、Jour.Electroanalytical Chem.、559(2003)、137ページによって報告されているような、ダマシン法のためのCu相互接続の深い溝充填について報告された方法論に基づいている。本発明者らは、硫酸銅(CuSO・5HO)、硫酸(HSO)、及び塩化ナトリウム(NaCl)よりなる原液から始める。ポリエチレングリコール(PEG)がClイオンの存在時にナノチューブの先端での銅堆積を防ぐために加えられる。ヤーヌスグリーンB(JGB)もまたその堆積防止性のために加えられる。ビス(3−スルホプロピル)ジスルフィド(SPS)がナノチューブ溝の底部での局所電流密度を上げるために含められ、こうして高アスペクト比溝の超充填を高める。浴に用いられる濃度をはじめとする、最終溶液は表Iに示される。典型的には、Cuは−0.20〜−0.30V(対SCE)で、約430nm/分の堆積速度で堆積される。生じたCNT−Cu複合材料は図5Aおよび5Bに示される。
図3Cは、アール.ヴィスワナス(R.Viswanath)ら、Intel Tech.Jour Q3(2000)に記載されるような、薄いシリコン層43に接触する、薄い界面(相変化フィルム、グリースなど)42に接触するヒートシンク(フィン及びヒートスプレッダー)41を含む、典型的なパッケージングアーキテクチャを例示する。熱供給アレイ45が、伝導性ゲル又はエポキシ44を通してシリコン・アレイ裏面43に接触する。このシステムは、グリース、相変化フィルム、熱伝導性ゲル及び/又は特別のエポキシドの使用を必要とし、実に複雑である。
Figure 2007532335
結果及び考察
用いられた構造についてまとめると、図3Bは、CNT−Cu複合材料サンプルについての相当熱抵抗モデルを例示する。CNT−Cu複合材料の抵抗は、銅ブロックの熱抵抗寄与(R銅−ブロック)、シリコンウェーハの熱抵抗寄与(RSi)、及びマイクロフェイズ材料の熱抵抗寄与(Rμフェイズ)をバラバラにすること(de−embedding)によって得ることができる。銅ブロックの熱抵抗R銅−ブロックは、熱電対の配置(銅ブロック表面から約1インチ)のために考慮されなければならない。バルク計算から、この構造についてのR銅−ブロックは0.95cmK/ワットと推定することができる。まとめると、CNT/Cu複合フィルムの抵抗は方程式(2)によって求めることができる。
CNT/銅=R合計−R銅−ブロック−RSi−Rμフェイズ (2)
μフェイズは、2つの対照測定を用いて求められる。第1の測定は、ウェーハの裏側上にマイクロフェイズありでシリコンの小片の熱抵抗を測定し、R対照=R銅−ブロック+Rブロック−Si+Rμフェイズ(ここで、Rブロック−Siは、銅ブロックとシリコンウェーハとの間の界面抵抗である)をもたらすことを含む。第2の抵抗測定は、両面研磨シリコンの小片を含み、R対照2=2Rブロック−Si+RSiをもたらす。第2の対照測定での両Si−Cu界面が似ていると仮定すると、この値を半分に割り、方程式(3)の簡単な関係を用いることができる。
μフェイズ=R対照1−(R対照2−RSi)/2−R銅−ブロック (3)
方程式(2)及び(3)での熱抵抗への固有シリコン寄与(RSi)は無視することができる。本研究に使用される500μm厚さシリコンウェーハについて、固有のシリコン熱抵抗は0.034cmK/ワットと計算することができ、それはCNT−Cuサンプルの最終測定値より2桁小さく、したがって無視してよい。この分析についての一の警告は、上方ブロックに付けられた粉末の量についてのマイクロフェイズの熱抵抗に関するものである。第1の対照サンプルの熱抵抗は、異なる温度勾配に対応して、増加する粉末と共にほぼ指数関数的に減少するが、実証されるであろうように最終分析で補正することができる。両面研磨シリコンサンプルは、電力依存性を全く示さず、R=11.10cmK/ワットの実質的に一定の抵抗を示し、シリコン界面当たり5.55cmK/ワットをもたらす。印可電力について一定である、シリコン抵抗を差し引くと、異なる電力でRμフェイズを求めることができる。マイクロフェイズの電力依存性は図6Aに例示される。
マイクロフェイズ材料の電力依存性は定量化されるので、CNT/Si/マイクロフェイズ及びCNT−Cu/Si/マイクロフェイズスタックの分析が進められる。前の説明から、これらのサンプルは同じ電力依存性を示すと予期され、それは実際にその通りであり、図6Bに明らかにわかる。図6Bで電力依存性を測定値と組み合わせて、本発明者らは、測定された熱抵抗の値を表IIにまとめる。すべての測定は、類似の締め付け圧力、6.8psiで行われた。測定値での標準偏差に寄与する誤差は主として2つの要因:(1)様々なCNT長さ分布による接触面積での変動(図4Aを参照されたい)、及び(2)総電力、ΔT、及び周囲温度損失の測定での変動に起因すると考えることができる。しかしながら、CNT−Cu複合フィルムについての測定された熱抵抗値の上限においてでさえ、この最悪のシナリオは、様々な商業用マイクロプロセッサ・システムについての熱量と類似した値を示す。
Figure 2007532335
本研究に使用されるMWCNTアレイに堆積されたCuは固体フィルムではなかった。その代わりに、Cuは、約70%Cu及びCNTと約30%空洞との多孔質フィルムを形成する。この構造は、サンプルが異なる締め付け圧力下に繰り返し、再現性よく測定できるように、機械的強度を上げる。さらに、この構造は、複合フィルムが熱い表面と最大接触するために変形することができるように空間を提供する。しかしながら、エッチ.ダイ(H.Dai)ら、Nature、384(1996)、147ページによって、エッチ.ダイら、Appl.Phys.Lett.、73(1998)、1508ページによって、およびジェー.リ(J.Li)ら、Surf.And Interf.Analysis、28(1999)、8ページによって、別個のMWCNTの座屈力に関して行われた研究は、これらの構造体が耐えることができる単位断面積当たりの途方もなく大きい量の力を実証する。この分析に基づき、本発明者らは、計算されたCNT座屈力よりほぼ2桁小さい、この予備研究で加えられた力の下ではほとんどのナノチューブが座屈しないと推測する。熱抵抗測定の前後のSEMキャラクタリゼーション(それぞれ、図7A及び7B)は、圧縮応力後のCNT−Cu複合材料に影響を全く示さない。このアプローチは、ほとんどのCNTが低圧(ICパッケージングで20psi以下)下で曲がりまたは座屈して最大接触を与えると仮定しており、その圧力はCNTの露出部分の長さ及び直径の好適な選択によって達成することができる。
界面での熱抵抗は、発明された界面材料及びパッケージング技術を最適化することによってさらに下げることができる。より具体的には、低い負荷圧力(20psi未満)での接触面積は、露出CNTの長さを最適化することによって増やすことができる(それはより低い座屈および曲げ力をもたらす)。また、隙間空間に充填されたCuの熱伝導率は、Cu材料の完全性を向上させることによって上げることができる。実施されたかかる最適化で、熱抵抗は、今日用いられる共晶接合よりさらに良好である0.1cmK/ワット未満に下げられると予期され、将来ICチップ向けの100ワット/cmを越える熱放散のために効率的に使用することができる。
これらの予備結果は、効率的な熱伝導体としてのCNT及びCNT−Cu複合フィルムの基本的な有用性を実証する。本発明者らの分析は、これらの新規な熱伝導層が接触面積を増やすことによって効果的な熱伝導を成し遂げ得ることを裏付ける。さらに、CNTは、高い機械的安定性および再使用可能性のさらなる利益を提供する。
本発明により構築されるCNTアレイ熱伝導システムを例示する。 本発明の使用を概略的に例示する。 熱抵抗測定のために用いられる装置を例示する。 先行技術で用いられたパッケージングアーキテクチャを例示する。 それぞれ、成長したままの多重カーボンナノチューブ・アレイの走査電子顕微鏡(SEM)断面及びトップダウン顕微鏡写真である。 それぞれ、CNT−Cu複合フィルムのSEM断面及びトップダウン顕微鏡写真である。 第1の対照サンプル及びマイクロフェイズについての(図6A)並びにCNTのみのフィルムについての、及び2つの異なるCNT−Cuフィルムについての(図6B)熱抵抗対電力測定のグラフ図である。 それぞれ、圧縮熱抵抗測定前および後に撮られた、CNT−CuフィルムのSEM顕微鏡写真である。

Claims (26)

  1. 物体からの熱エネルギーの輸送の提供方法であって、
    本明細書では「CNT」という、カーボンナノチューブのアレイを、高い熱伝導率を有する選択された基材の選択された表面上に提供する工程であって、前記アレイ中の少なくとも第1の及び第2のCNTが選択された表面に実質的に垂直に配向している工程と、
    充填材が少なくとも第1の及び第2のCNTのそれぞれの第1端で選択された基材表面と接触し、かつ、少なくとも第1の及び第2のCNTのそれぞれの第2端が露出され、前記充填材によって完全にカバーされないように、前記アレイ中の少なくとも2つの隣接するCNT間の隙間空間の少なくとも一部を、高い熱伝導率を有する選択された充填材で充填する工程と、
    第1の及び第の2CNTの少なくとも1つの前記露出第2端を、熱エネルギーの輸送が提供されるべきである物体の表面と接触させる工程と
    を含む方法。
  2. 前記CNTの前記露出第2端の少なくとも1つが曲がる又は座屈するように、前記少なくとも第1の及び第の2CNTの前記露出第2端を前記物体の表面と接触させる工程をさらに含む、請求項1に記載の方法。
  3. Cu、Ag、Au、Pt、Pd及び金属ドープケイ化物の少なくとも1つを含めるために、前記充填材を選択する工程をさらに含む、請求項1に記載の方法。
  4. 前記CNTの前記アレイの成長のために、Ni、Fe、Co、Pt及びAlの少なくとも1つを含む、選択された触媒の層を前記触媒の前記選択された表面上に提供する工程をさらに含む、請求項1に記載の方法。
  5. 化学蒸着、物理蒸着、プラズマ蒸着、イオンスパッタリング、電気化学析出及び液相からのキャスティングの少なくとも1つを含むプロセスによって前記隙間空間の前記部分を前記充填材で充填する工程をさらに含む、請求項1に記載の方法。
  6. 機械研磨、化学−機械研磨、湿式化学エッチング、電気化学エッチング及び乾式プラズマエッチングの少なくとも1つを含むプロセスによって前記少なくとも第1の及び第2のCNTの前記露出第2端を提供する工程をさらに含む、請求項1に記載の方法。
  7. 物体からの熱エネルギーの輸送を提供するための装置であって、
    高い熱伝導率を有する選択された基材の選択された表面上の、本明細書では「CNT」という、カーボンナノチューブのアレイであって、アレイ中の少なくとも第1の及び第2のCNTが選択された表面に実質的に垂直に配向しているアレイと、
    充填材が少なくとも第1の及び第2のCNTのそれぞれの第1端で選択された基材表面と接触し、かつ、少なくとも第1の及び第2のCNTのそれぞれの第2端が露出され、充填材によって完全にカバーされないように、前記アレイ中の少なくとも2つの隣接するCNT間の隙間空間の少なくとも一部を充填する高熱伝導率材料と
    を備え、
    前記第1の及び第2のCNTの少なくとも1つの露出第2端が、熱エネルギーの輸送が提供されるべきである物体の表面と接触する、装置。
  8. 前記CNTの前記露出第2端の少なくとも1つが曲がる又は座屈するように、前記少なくとも第1の及び第2のCNTの前記露出第2端が前記物体の表面と接触する、請求項7に記載の装置。
  9. 前記充填材が、Cu、Ag、Au、Pt、Pd及び金属ドープケイ化物の少なくとも1つを含む、請求項7に記載の装置。
  10. 前記CNTの前記アレイの成長のために前記選択された基材表面上に堆積されたNi、Fe、Co、Pt及びAlの少なくとも1つを含む、選択された触媒の層を前記選択された基材上にさらに含む、請求項7に記載の装置。
  11. 化学蒸着、物理蒸着、プラズマ蒸着、イオンスパッタリング、電気化学析出及び液相からのキャスティングの少なくとも1つを含むプロセスによって前記隙間空間の前記部分が前記充填材で充填される、請求項7に記載の装置。
  12. 機械研磨、化学−機械研磨、湿式化学エッチング、電気化学エッチング及び乾式プラズマエッチングの少なくとも1つを含むプロセスによって前記少なくとも第1の及び第2のCNTの前記露出第2端が提供される、請求項7に記載の装置。
  13. 前記アレイ中の前記第1の及び第2のCNTの前記露出端に、それぞれ、前記充填材によってカバーされない、露出第1長さ及び露出第2長さを提供する工程であって、該露出第1長さ及び露出第2長さが実質的に等しい工程をさらに含む、請求項1に記載の方法。
  14. 前記アレイ中の前記第1の及び第2のCNTの前記露出端に、それぞれ、前記充填材によってカバーされない、露出第1長さ及び露出第2長さを提供する工程であって、該露出第1長さが該露出第2長さよりも大きい工程をさらに含む、請求項1に記載の方法。
  15. 前記第1のCNTの前記露出第2端が曲がる又は座屈するように、前記第1のCNTの前記露出第2端を前記物体の表面と接触させる工程をさらに含む、請求項14に記載の方法。
  16. 前記第1の及び第2のCNTの前記露出第2端のそれぞれが曲がる又は座屈するように、前記第1の及び第2のCNTの前記露出第2端を前記物体の表面と接触させる工程をさらに含む、請求項14に記載の方法。
  17. 熱エネルギーの輸送が前記少なくとも第1の及び第2のCNTを通して提供されるべきである、前記物体から熱を直接除去させる工程と、
    前記少なくとも第1の及び第2のCNTを通して直接除去される熱の一部を前記充填材に分配させる工程と、
    をさらに含む、請求項1に記載の方法。
  18. 約8cm−K/ワット以下の関連熱抵抗で、前記物体からの前記熱エネルギーの前記輸送を提供する工程をさらに含む、請求項1に記載の方法。
  19. 約0.1cm−K/ワット以下の関連熱抵抗で、前記物体からの前記熱エネルギーの前記輸送を提供する工程をさらに含む、請求項1に記載の方法。
  20. 前記アレイ中の前記第1の及び第2のCNTの前記露出端が、それぞれ、前記充填材によってカバーされない、露出第1長さ及び露出第2長さを有し、ここで該露出第1長さ及び該露出第2長さが実質的に等しい、請求項7に記載の装置。
  21. 前記アレイ中の前記第1の及び第2のCNTの前記露出端が、それぞれ、前記充填材によってカバーされない、露出第1長さ及び露出第2長さを有し、ここで該露出第1長さが該露出第2長さよりも大きい、請求項7に記載の装置。
  22. 前記第1のCNTの前記露出第2端が曲がる又は座屈するように、前記第1のCNTの前記露出第2端が前記物体の表面と接触する、請求項21に記載の装置。
  23. 前記第1の及び第2のCNTの前記露出第2端のそれぞれが曲がる又は座屈するように、前記第1の及び第2のCNTの前記露出第2端が前記物体の表面と接触する請求項21に記載の装置。
  24. 熱エネルギーの輸送が前記少なくとも第1の及び第2のCNTを通して提供されるべきである前記物体から熱が直接除去され、
    前記少なくとも第1の及び第2のCNTを通して直接除去された熱の一部が前記充填材に分配される、請求項7に記載の装置。
  25. 前記物体からの前記熱エネルギーの前記輸送が、約8cm−K/ワット以下の関連熱抵抗で起こる、請求項7に記載の装置。
  26. 前記物体からの前記熱エネルギーの前記輸送が、約0.1cm−K/ワット以下の関連熱抵抗で起こる、請求項7に記載の装置。
JP2007508505A 2004-04-13 2005-04-13 カーボンナノチューブ・アレイ複合材料をベースにするナノ加工熱材料 Pending JP2007532335A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/825,795 US7273095B2 (en) 2003-03-11 2004-04-13 Nanoengineered thermal materials based on carbon nanotube array composites
PCT/US2005/012574 WO2006043974A2 (en) 2004-04-13 2005-04-13 Nanoengineered thermal meterials based on carbon nanotube array composites

Publications (1)

Publication Number Publication Date
JP2007532335A true JP2007532335A (ja) 2007-11-15

Family

ID=35059376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007508505A Pending JP2007532335A (ja) 2004-04-13 2005-04-13 カーボンナノチューブ・アレイ複合材料をベースにするナノ加工熱材料

Country Status (6)

Country Link
US (2) US7273095B2 (ja)
EP (1) EP1738129A2 (ja)
JP (1) JP2007532335A (ja)
KR (1) KR101138870B1 (ja)
CN (1) CN101087987A (ja)
WO (1) WO2006043974A2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107229A1 (ja) * 2008-02-29 2009-09-03 富士通株式会社 シート状構造体、半導体装置及び炭素構造体の成長方法
JP2009267419A (ja) * 2008-04-28 2009-11-12 Qinghua Univ 熱界面材料の製造方法
JP2012236739A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP2014033104A (ja) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd 放熱部品及びその製造方法
JP2015526904A (ja) * 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム
JP2019532497A (ja) * 2016-08-30 2019-11-07 テラダイオード, インコーポレーテッド カーボンナノチューブを利用した高出力レーザパッケージング
JP2021501997A (ja) * 2017-11-03 2021-01-21 イェノプティック オプティカル システムズ ゲーエムベーハー ダイオードレーザ

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US7767270B1 (en) * 2002-12-13 2010-08-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Selective functionalization of carbon nanotubes based upon distance traveled
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7538422B2 (en) * 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
US20060231237A1 (en) * 2005-03-21 2006-10-19 Carlos Dangelo Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US7197804B2 (en) * 2005-08-29 2007-04-03 The Aerospace Corporation Method of making copper and carbon nanotube thermal conductor
CN1937094A (zh) * 2005-09-22 2007-03-28 清华大学 扫描热显微镜探针
US20070097648A1 (en) * 2005-11-01 2007-05-03 Kevin Xu Method and apparatus for establishing optimal thermal contact between opposing surfaces
US20090045720A1 (en) * 2005-11-10 2009-02-19 Eun Kyung Lee Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires
CN1964028B (zh) * 2005-11-11 2010-08-18 鸿富锦精密工业(深圳)有限公司 散热器
US20070137836A1 (en) * 2005-12-19 2007-06-21 Qnx Cooling Systems, Inc. Heat transfer system
CN101001515B (zh) * 2006-01-10 2011-05-04 鸿富锦精密工业(深圳)有限公司 板式散热管及其制造方法
EP2012574A1 (en) * 2006-04-24 2009-01-07 Sumitomo Electric Industries, Ltd. Heat transfer member, protruding structural member, electronic device, and electric product
JP2009537439A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノチューブを含むナノ構造の生成のための連続処理
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
WO2008000551A2 (de) * 2006-06-27 2008-01-03 Continental Automotive Gmbh Kühlkörper
US7927666B2 (en) * 2006-06-30 2011-04-19 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US20080026505A1 (en) * 2006-07-28 2008-01-31 Nirupama Chakrapani Electronic packages with roughened wetting and non-wetting zones
US8389119B2 (en) * 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
US9385065B2 (en) * 2006-10-02 2016-07-05 The Regents Of The University Of California Solid state thermal rectifier
US8220530B2 (en) * 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
DE102007006175A1 (de) * 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
CN103588984A (zh) * 2007-02-22 2014-02-19 道康宁公司 制备导电薄膜的方法和由该方法制得的制品
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US7880298B2 (en) * 2007-12-05 2011-02-01 Raytheon Company Semiconductor device thermal connection
US8262835B2 (en) * 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US20090246507A1 (en) * 2008-01-15 2009-10-01 Georgia Tech Research Corporation Systems and methods for fabrication and transfer of carbon nanotubes
JP5243975B2 (ja) * 2008-02-04 2013-07-24 新光電気工業株式会社 熱伝導部材を有する半導体パッケージ放熱用部品及びその製造方法
CN101626674B (zh) * 2008-07-11 2015-07-01 清华大学 散热结构及其制备方法
KR101497412B1 (ko) * 2008-07-16 2015-03-02 주식회사 뉴파워 프라즈마 공유 결합 탄소나노튜브를 갖는 복합 소재로 구성된 히트싱크
US20100021736A1 (en) * 2008-07-25 2010-01-28 Slinker Keith A Interface-infused nanotube interconnect
US20100190023A1 (en) * 2009-01-26 2010-07-29 Adam Franklin Gross Metal bonded nanotube array
CN101826467B (zh) * 2009-03-02 2012-01-25 清华大学 热界面材料的制备方法
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US9257704B2 (en) 2009-07-06 2016-02-09 Zeptor Corporation Carbon nanotube composite structures and methods of manufacturing the same
US8106510B2 (en) 2009-08-04 2012-01-31 Raytheon Company Nano-tube thermal interface structure
US10167572B2 (en) * 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US10164135B2 (en) * 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US8236118B2 (en) * 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
US8507797B2 (en) * 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
JP5276565B2 (ja) * 2009-10-14 2013-08-28 新光電気工業株式会社 放熱用部品
KR101602417B1 (ko) * 2009-11-18 2016-03-11 삼성전자주식회사 저항 발열층를 채용한 가열부재 , 이를 채용한 정착장치 및 화상형성장치
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
JP5540419B2 (ja) * 2010-02-15 2014-07-02 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
US8518472B2 (en) 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US8604332B2 (en) 2010-03-04 2013-12-10 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
US8460747B2 (en) 2010-03-04 2013-06-11 Guardian Industries Corp. Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
US8587121B2 (en) * 2010-03-24 2013-11-19 International Business Machines Corporation Backside dummy plugs for 3D integration
US8640455B2 (en) * 2010-06-02 2014-02-04 GM Global Technology Operations LLC Controlling heat in a system using smart materials
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
CN102009947A (zh) * 2010-09-30 2011-04-13 中国科学院宁波材料技术与工程研究所 一种具有优异纳米摩擦学表现的规则微、纳织构金表面的加工方法
NL2007834A (en) 2010-12-23 2012-06-27 Asml Netherlands Bv Lithographic apparatus and removable member.
KR101240662B1 (ko) * 2011-08-05 2013-03-11 성균관대학교산학협력단 탄소나노튜브를 이용한 방열판 및 이의 제조방법
US8995894B2 (en) * 2011-09-08 2015-03-31 Samsung Electronics Co., Ltd. Image fusing apparatus using carbon nano-tube heater
US9776859B2 (en) 2011-10-20 2017-10-03 Brigham Young University Microscale metallic CNT templated devices and related methods
KR101337958B1 (ko) * 2012-02-07 2013-12-09 현대자동차주식회사 전자파 차폐용 복합재와 그 제조 방법
US9111899B2 (en) 2012-09-13 2015-08-18 Lenovo Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks
CN103824740B (zh) * 2012-11-16 2017-04-05 上海联影医疗科技有限公司 一种具有吸附薄膜的x射线管
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
WO2014134484A1 (en) 2013-02-28 2014-09-04 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
US9593019B2 (en) 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
US10431354B2 (en) 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
US20170198551A1 (en) * 2016-01-12 2017-07-13 Baker Hughes Incorporated Composites containing aligned carbon nanotubes, methods of manufacture and applications thereof
FR3051002B1 (fr) * 2016-05-03 2021-01-22 Nawatechnologies Materiau composite a base de nanotubes de carbone verticalement alignes et d'une matrice metallique
BR112018072800A2 (pt) 2016-05-31 2019-03-12 Massachusetts Inst Technology artigos compósitos compreendendo nanoestruturas alongadas não lineares e métodos associados
TWI640470B (zh) * 2016-06-10 2018-11-11 美國琳得科股份有限公司 奈米纖維片
EP3519352B1 (en) 2016-09-27 2022-07-13 Ohio University Ultra-conductive metal composite forms and the synthesis thereof
TW201821585A (zh) * 2016-11-30 2018-06-16 國立成功大學 具高效率之導熱結構
WO2018156878A1 (en) 2017-02-24 2018-08-30 Lintec Of America, Inc. Nanofiber thermal interface material
US20190085138A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN110143585B (zh) * 2018-02-11 2021-03-16 中国科学院苏州纳米技术与纳米仿生研究所 一种铜填充碳纳米管阵列基复合材料及其制备方法
CN109336408A (zh) * 2018-09-19 2019-02-15 上海交通大学 有序掺杂纳米材料强化热导率复合材料及制备方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485429A (en) * 1982-06-09 1984-11-27 Sperry Corporation Apparatus for cooling integrated circuit chips
US5316080A (en) * 1990-03-30 1994-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Heat transfer device
US5837081A (en) * 1993-04-07 1998-11-17 Applied Sciences, Inc. Method for making a carbon-carbon composite
JPH11307633A (ja) * 1997-11-17 1999-11-05 Sony Corp 低誘電率膜を有する半導体装置、およびその製造方法
US5852548A (en) * 1994-09-09 1998-12-22 Northrop Grumman Corporation Enhanced heat transfer in printed circuit boards and electronic components thereof
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5725707A (en) * 1995-04-10 1998-03-10 Northrop Grumman Corporation Enhanced conductive joints from fiber flocking
US5818700A (en) * 1996-09-24 1998-10-06 Texas Instruments Incorporated Microelectronic assemblies including Z-axis conductive films
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US6713151B1 (en) * 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US5926370A (en) * 1998-10-29 1999-07-20 Hewlett-Packard Company Method and apparatus for a modular integrated apparatus for multi-function components
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US6538367B1 (en) * 1999-07-15 2003-03-25 Agere Systems Inc. Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6515339B2 (en) * 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
JP2002050595A (ja) * 2000-08-04 2002-02-15 Hitachi Ltd 研磨方法、配線形成方法及び半導体装置の製造方法
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
JP2002121404A (ja) 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
WO2002079514A1 (en) 2001-01-10 2002-10-10 The Trustees Of Boston College Dna-bridged carbon nanotube arrays
US6783589B2 (en) * 2001-01-19 2004-08-31 Chevron U.S.A. Inc. Diamondoid-containing materials in microelectronics
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
ES2375224T3 (es) * 2001-05-14 2012-02-27 The Procter & Gamble Company Producto de limpieza.
US20040126548A1 (en) * 2001-05-28 2004-07-01 Waseda University ULSI wiring and method of manufacturing the same
US6432740B1 (en) * 2001-06-28 2002-08-13 Hewlett-Packard Company Fabrication of molecular electronic circuit by imprinting
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6965513B2 (en) 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
WO2003072679A1 (en) 2002-02-22 2003-09-04 Carbon Nanotechnologies, Inc. Molecular-level thermal-management materials comprising single-wall carbon nanotubes
TW593730B (en) * 2002-03-25 2004-06-21 Ind Tech Res Inst Process of direct low-temperature growth of carbon nanotubes on a substrate
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6831017B1 (en) * 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices
JP4416376B2 (ja) * 2002-05-13 2010-02-17 富士通株式会社 半導体装置及びその製造方法
US6891724B2 (en) * 2002-06-12 2005-05-10 Intel Corporation Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
US7233101B2 (en) * 2002-12-31 2007-06-19 Samsung Electronics Co., Ltd. Substrate-supported array having steerable nanowires elements use in electron emitting devices
WO2004027822A2 (en) * 2002-09-05 2004-04-01 Nanosys, Inc. Oriented nanostructures and methods of preparing
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
CN1239387C (zh) * 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
US6841002B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with post-treatment step
US6841003B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with intermediate purification steps
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
TW200500838A (en) * 2003-02-19 2005-01-01 Nisvara Inc System and apparatus for heat removal
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US20040182600A1 (en) * 2003-03-20 2004-09-23 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
CN1244491C (zh) * 2003-03-25 2006-03-08 清华大学 一种碳纳米管阵列结构及其制备方法
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US20040266063A1 (en) * 2003-06-25 2004-12-30 Montgomery Stephen W. Apparatus and method for manufacturing thermal interface device having aligned carbon nanotubes
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
US7416019B2 (en) * 2003-08-13 2008-08-26 The Johns Hopkins University Thermal interface and switch using carbon nanotube arrays
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US6989325B2 (en) * 2003-09-03 2006-01-24 Industrial Technology Research Institute Self-assembled nanometer conductive bumps and method for fabricating
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
JP4339657B2 (ja) * 2003-09-30 2009-10-07 富士通株式会社 半導体装置及びその製造方法
TW200517042A (en) * 2003-11-04 2005-05-16 Hon Hai Prec Ind Co Ltd Heat sink
US7186020B2 (en) * 2003-12-12 2007-03-06 University Of Washington Thermal interface material (TIM) with carbon nanotubes (CNT) and low thermal impedance
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050260412A1 (en) * 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107229A1 (ja) * 2008-02-29 2009-09-03 富士通株式会社 シート状構造体、半導体装置及び炭素構造体の成長方法
US8258060B2 (en) 2008-02-29 2012-09-04 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
US8350391B2 (en) 2008-02-29 2013-01-08 Fujitsu Limited Sheet structure, semiconductor device and method of growing carbon structure
JP2009267419A (ja) * 2008-04-28 2009-11-12 Qinghua Univ 熱界面材料の製造方法
JP2012236739A (ja) * 2011-05-11 2012-12-06 Fujitsu Ltd シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP2014033104A (ja) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd 放熱部品及びその製造方法
JP2015526904A (ja) * 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム
JP2019532497A (ja) * 2016-08-30 2019-11-07 テラダイオード, インコーポレーテッド カーボンナノチューブを利用した高出力レーザパッケージング
JP2021501997A (ja) * 2017-11-03 2021-01-21 イェノプティック オプティカル システムズ ゲーエムベーハー ダイオードレーザ

Also Published As

Publication number Publication date
WO2006043974A2 (en) 2006-04-27
KR101138870B1 (ko) 2012-05-16
EP1738129A2 (en) 2007-01-03
US7784531B1 (en) 2010-08-31
CN101087987A (zh) 2007-12-12
WO2006043974A3 (en) 2006-06-15
US7273095B2 (en) 2007-09-25
US20050224220A1 (en) 2005-10-13
US20070163769A9 (en) 2007-07-19
KR20070048135A (ko) 2007-05-08

Similar Documents

Publication Publication Date Title
KR101138870B1 (ko) 카본 나노튜브 어레이 복합체를 기초로 하는나노엔지니어드 열 물질
Razeeb et al. Present and future thermal interface materials for electronic devices
US7538422B2 (en) Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
Yao et al. Effects of nanowire height on pool boiling performance of water on silicon chips
US7109581B2 (en) System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US11291139B2 (en) Carbon nanotube-based thermal interface materials and methods of making and using thereof
US20070126116A1 (en) Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US20070114658A1 (en) Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US8093715B2 (en) Enhancement of thermal interface conductivities with carbon nanotube arrays
Warzoha et al. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials
US8703271B2 (en) Thermal interface material
Ji et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates
US20100302740A1 (en) Methods of cooling semiconductor dies
TW200935569A (en) On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacityy
JP2007251002A (ja) ヒートシンク、電子デバイス、ヒートシンクの製造方法及び電子デバイスの製造方法
Ngo et al. Thermal conductivity of carbon nanotube composite films
Peng et al. Fabrication of reduced graphene oxide nanosheets reinforced Sn–Bi nanocomposites by electro-chemical deposition
Chow et al. Electroplated copper nanowires as thermal interface materials
Kuang et al. Enhanced interface heat transfer based on gallium-based liquid metal infiltrated into vertically aligned copper nanowire arrays
Nylander Fundamental Characterization of Low Dimensional Carbon Nanomaterials for 3D Electronics Packaging
Marconnet et al. Nanoscale conformable coatings for enhanced thermal conduction of carbon nanotube films
Gong Engineered Nanostructured Material for High Performance Thermal Interface Material Application
Chiang Design and characterization of nanowire array as thermal interface material for electronics packaging