CN101087987A - 基于碳纳米管阵列复合材料的纳米工程热材料 - Google Patents

基于碳纳米管阵列复合材料的纳米工程热材料 Download PDF

Info

Publication number
CN101087987A
CN101087987A CNA2005800193959A CN200580019395A CN101087987A CN 101087987 A CN101087987 A CN 101087987A CN A2005800193959 A CNA2005800193959 A CN A2005800193959A CN 200580019395 A CN200580019395 A CN 200580019395A CN 101087987 A CN101087987 A CN 101087987A
Authority
CN
China
Prior art keywords
cnt
exposure
array
filler material
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005800193959A
Other languages
English (en)
Inventor
李钧
M·迈亚潘
C·丹吉洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoconduction Inc
National Aeronautics and Space Administration NASA
Original Assignee
Nanoconduction Inc
National Aeronautics and Space Administration NASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoconduction Inc, National Aeronautics and Space Administration NASA filed Critical Nanoconduction Inc
Publication of CN101087987A publication Critical patent/CN101087987A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

使用碳纳米管(CNT)阵列提供导热的方法。在具有高热导率的衬底上生长垂直定向的CNT阵列,阵列中相邻CNT之间的空隙区域部分或全部用具有高热导率的填料材料填充,使得每个CNT的至少一个端被暴露。靠着要移出热的物体的表面挤压每个CNT的暴露端。邻接衬底的CNT-填料复合材料提供了提高的机械强度以固定CNT到合适位置,并还用作热散布器来改善从较小体积(CNT)到较大热沉的热流扩散。

Description

基于碳纳米管阵列复合材料的纳米工程热材料
发明起因
这里描述的发明由美国政府雇员完成,并可出于政府目的被或为政府制造和使用,不用为其支付任何专利权使用费。
技术领域
本发明提供使用碳纳米管阵列的用于小型部件和装置的热导体。
发明背景
现有技术的微处理器集成电路(IC)通常散逸大约50W/cm2的功率密度。这种大的功率是由于在高频下工作的IC的局部加热引起的,为了将来的高频微电子应用,必须被管理。由于用于IC和其它应用的部件和装置的尺寸变得更小,因此更难以为这种部件和装置提供散热和传热。用于大尺寸热导体的热导体通常不能充分供微尺寸部件或装置使用,部分是由于缩放问题。
IC中部件密度和紧凑性增加的一个结果是使其以局部高功率消耗的形式出现。在主流微处理器技术中已观察到与每次先进的技术革新有关的功率密度的令人吃惊的增加。解决这个问题的需要对于下一代IC封装技术势在必行。一个潜在的解决方案是寻找能表现出高的热导率和能从局部热点转移热到较大热沉的新封装材料。
通过连接物体到冷却储存器来冷却物体通常受穿过界面的传热速度限制。除了具有原子上平的表面的物体外,实际物体通常只具有接触其它固体表面的很小一部分表面。共晶结合材料或导热糊/薄膜通常被施加在界面处以增加接触面积。但是,这些共晶结合材料的热导率通常为低于固体材料如Cu和Si的热导率的数量级。界面因此存在散热的瓶颈环节。金属薄膜可用于提高热导率,但只适用于高压负荷。
需要的是顺从性的热界面材料,其能有效和快速地从微尺寸部件或装置优选直到纳米水平系统散热或导热到热沉,其中热沉具有能比得上大尺寸部件和装置传热速度的传热速度。优选地,热导体应可重复使用,并应对任何表面(粗糙的或光滑的)起作用。
发明概述
本发明满足这些需要,本发明使用嵌入的碳纳米管阵列来提供用于要求大量散热的一个或多个高性能热导体。通过利用CNT暴露部分的可逆翘曲和弯曲,该方法还能提高碳纳米管(CNT)的机械强度,从而CNT阵列可保持稳定并与产生大量热的物体的表面有良好接触。利用沿碳纳米管轴的极高的热导率从部件或装置中的热点中将热转出。沉积铜和其它高热导率材料来填充CNT阵列中第一部分中的空隙区域或间隙。这种复合结构提供了保持CNT在合适位置的机械强度,并还用作有效的传热材料,改善了热流从单独CNT到更大周围体积的扩散。
本发明使用垂直定向的CNT阵列以增加有效接触面积(尤其对于粗糙表面而言),同时提供沿CNT轴和跨越界面的极大热导率。制造包括四个步骤:(1)在具有良好热导率的固体衬底(用作热沉)如Si晶片和金属块/薄膜上生长优选长度为1-50微米的基本垂直排列的CNT阵列;(2)通过化学气相沉积(CVD)、物理气相沉积(PVD)、等离子沉积、离子溅射、电化学沉积或由液相浇铸用高导热材料如Cu、Ag、Au、Pt或掺杂Si填充相邻CNT之间空隙空间的第一部分或全部;(3)通过机械抛光(MP)、化学机械抛光(CMP)、湿化学蚀刻、电化学蚀刻或干等离子蚀刻从间隙空间的第二部分除去填充材料,从而CNT阵列的顶部部分被暴露,底部部分保持嵌入在填料材料中;和(4)靠着要被冷却的物体施加嵌入的CNT阵列。CNT能在低负荷压力下可逆地逐一翘曲或弯曲,因而CNT可与要被冷却的物体最大接触,即使物体具有非常粗糙的表面。
热可有效地从接触点沿管轴传递到填料材料和衬底。填料材料起两个关键作用:(a)提高机械稳定性,和(b)使热导率最大。选择高导热材料作为填料基质能使从接触点到衬底(即热沉或冷却储存器)的传热最大。与依赖共晶结合的方法相比,嵌入的CNT阵列可被重复使用,而不会损害或降低其传热特性。
本发明通过将阵列的下部固定在固体基质中提高CNT的机械稳定性,从而当在安装过程中靠着加热的物体挤压时阵列能保持完整性。CNT阵列的可逆翘曲和弯曲性能确保了在低负荷压力下与物体表面的最大物理接触,不管表面是原子上平的还是非常粗糙的。
对于不连续多壁碳纳米管(MWCNT),按照P.Kim等,Phys.Rev.Lett.,vol.87(2001)215502-1,预计沿管轴的热导率超过3000W(m)-1K-1。如B.A.Cruden等在Jour.Appl.,Phys.,vol.94(2003)4070中所示,通过使用DC偏压的等离子增强化学气相沉积(PECVD),可在厚度~500μm的硅晶片上制造垂直排列的MWCNT阵列(有时称为碳纳米纤维阵列),并说明了它们作为热沉装置的可能应用,能从局部区域如IC中的关键“热点”导出大量热。
本发明为早期NASA专利申请的发展产物,早期NASA专利申请使用CNT阵列作为嵌入在SiO2基质中的电互连材料。这里,使用高导热材料如Cu、Ag和/或Si代替SiO2来控制早期发明中的导电。
附图简述
图1图示了根据本发明构建的CNT阵列导热系统。
图2示意地图示了本发明的使用。
图3A和3B图示了用于热阻测量的装置。
图3C图示了现有技术中使用的封装结构。
图4A和4B分别为生长状态的多壁碳纳米管阵列的扫描电镜(SEM)横截面和自顶向下显微照片。
图5A和5B分别为CNT-Cu复合薄膜的SEM横截面和自顶向下显微照片。
图6A和6B为第一对照样品和Microfaze(图6A)以及单独CNT薄膜和两种不同CNT-Cu薄膜(图6B)的热阻对电功率测量值的图。
图7A和7B分别为在压缩热阻测量前和后取得的CNT-Cu薄膜的SEM显微照片。
发明最佳方式描述
图1图示了实施本发明一种实施方案的过程。在步骤11中,在选择的具有良好导热率的衬底表面上生长基本垂直排列的CNT的阵列。衬底可为金属掺杂的硅化物、金刚石薄膜或具有最大电或热导率的金属物质。不管阵列是否被图案化,都优选提供层厚度为2-50纳米(nm)的薄CNT催化剂层(例如Ni、Fe、Co、Pd或Al或它们的组合),如果需要,层厚度可为更大。当在方向基本垂直于所选衬底表面的电场中生长CNT时,可在基本平行于电场方向的方向上生长更大长度(1-50μm或更大)的CNT。
在步骤12中,使用化学气相沉积(CVD)、物理气相沉积(PVD)、等离子沉积、离子溅射、电化学沉积或由液相浇铸用选择的优选为良好热导体的填料材料(如Cu、Ag、Au或掺杂金属的Si)填充相邻CNT之间空隙空间的部分或全部,以增强热的传递。根据阵列中CNT的密度和填料材料,估计系统的热导率在100-3000W/(m)-K的范围内,其比得上取向石墨的热导率。
在步骤13中,通过机械抛光(MP)、化学机械抛光(CMP)、湿化学蚀刻、电化学蚀刻或干等离子蚀刻或它们的组合除去填料材料的顶部部分,从而CNT阵列的顶部部分被暴露,
在步骤14(任选的)中,将步骤11、12和13提供的导热系统挤压或以其它方式施加到要移出热的物体的表面(原子水平上光滑、粗糙或介于两者之间)上,从而CNT的暴露部分将弯曲或翘曲。
图2示意地图示了通过图1的过程产生的系统从物体25移出热的应用。在具有任选催化剂层22的衬底21的所选表面上生长或以其它方式提供CNT 23-i(i=1,...,I(图2中I=8))的阵列。提供深度能允许各个CNT 23-i顶部部分暴露的填料材料层24,用于机械增强CNT,和提高最初只沿CNT(从物体25)行进的热的扩散。挤压CNT23-i靠着要除去热的物体25的表面,从而多数或全部CNT接触(粗糙)物体表面并且弯曲(23-1,23-3和23-7)或翘曲(23-4,23-6和24-8),以便改善从物体的传热。
使用图3A所示的测量装置测量给定材料的热阻,测量装置包括两个铜块31和32、嵌入在上部块中的四个电阻筒式加热器(未示出)和冷却浴33。上部铜块31优选被绝缘体(未示出)包围以使到环境的热损失最小,除了被设计来接触要测量的材料34的1平方英寸段外。通过气动操纵上部块来控制样品上的夹持压力。通过施加恒定功率到筒式加热器上将热输送到系统。测量中间具有样品34的两个块31和32之间的稳态温差(ΔT=TB-TC)。按方程式(1)由这些数据计算样品的热阻R,其中Q为总功率(W),A为样品横截面面积,CL为恒定传热系数,TB、TC和Tamb分别代表上部块31、冷却的下部块32(TC=20℃)和周围环境的温度。在这种测量构造中,使用传热系数CL估计到周围环境的热损失,通过在两个块之间放置厚的绝缘体并测量各种施加功率下的稳态ΔT来测定它。这种分析产生CL=0.0939W/K的恒定传热系数,其作为因子加入到所测热阻R的最后测定中。该系数表示到周围环境的每开尔文度的热功率损失(W)。
R = A ( T B - T C ) Q - C L ( T B - T amb ) - - - ( 1 )
这种测量构造中的主要热阻机理在于样品34和铜块31和32之间的接触界面。为了使这种接触电阻最小,采取两个步骤:(1)抛光两个铜块31和32以减小表面粗糙度的影响和(2)利用高导热的共形材料Microfaze A6(可从AOS Thermal Compounds,LLC,New Jersey得到)以减小硅晶片背面上的接触电阻,在衬底上制造被研究的薄膜。样品制备
使用B.A.Cruden等op cit报道的方法和反应器条件合成碳纳米管。得到的生长状态的管分别在图4A和4B中的横截面图和顶视图中显示。使用扫描电镜(SEM)数据,估计MWCNT的长度为约7.5μm,可能的范围为1-50μm。
在纳米管合成后,使用三电极装置通过电沉积在独立MWCNT(也称为纳米管槽)之间沉积高热导率金属类物质(例如Cu、Ag、Au、Pt或Pd),三电极装置具有一个1cm2的MWCNT阵列作为工作电极,饱和甘汞电极(SCE)作为参比电极,和一个1平方英寸的铂箔作为反电极(CE),其与MWCNT样品平行设置。Cu衬底和MWCNT在电沉积过程中都用作电极。
各种添加剂可任选地被加入到溶液中以实现到高纵横比的树林状MWCNT阵列内的最佳间隙填充。这项研究中所用的电解液配方基于为用于波纹装饰方法的Cu互连深槽填充报道的方法,如K.Kondo等,Jour.Electroanalytical Chem.,vol.559(2003)137所报道。以包括硫酸铜(CuSO4·5H2O)、硫酸(H2SO4)和氯化钠(NaCl)的储备液开始。当存在Cl-离子时,加入聚乙二醇(PEG)以抑制纳米管尖端处的铜沉积。还加入烟鲁绿B(JGB),因为它有沉积抑制性能。还包括双(3-磺丙基)二硫化物(SPS)以增加纳米管槽底部处的局部电流密度,这样增强了高纵横比槽的过填充。最终的溶液,包括浴中使用的浓度,示于表I。通常,Cu在-0.20至-0.30V(相对于SCE)下以约430nm/min的沉积速度沉积。得到的CNT-Cu复合材料显示在图5A和5B中。
图3C图示了典型的封装结构,该结构如R.Viswanath等,IntelTech.Jour Q3(2000)所述,包括邻接薄界面(相变薄膜、油脂等)42的热沉(翅和热散布器)41,薄界面42邻接薄硅层43。散热阵列45通过传导性凝胶或环氧树脂44接触硅阵列背面43。这种系统要求使用油脂、相变薄膜、导热凝胶和/或专门的环氧树脂,相当复杂。
表I.用干铜沉积的电化学浴组成
浴化学物质/添加剂(浓度单位)     浓度
 CuSO4·5H2O(mol/L)     0.6
 H2SO4(mol/L)     1.85
 NaCl(ppm)     100
 PEG,摩尔质量:8000(ppm)     400
 JGB(ppm)     10
 SPS(ppm)     10
结果和讨论
为了总结所用的结构,图3B图示了CNT-Cu复合材料样品的等价热阻模型。通过消去铜块(RCu-块)、硅晶片(RSi)和Microfaze材料(RuFaze)的热阻贡献得到CNT-Cu复合材料的热阻。由于热电偶的放置(离铜块表面大约1英寸),必须考虑铜块的热阻RCu-块。由大量计算知,该结构的RCu-块可被估计为0.95cm2K/W。总之,可通过方程式(2)确定CNT/Cu复合薄膜的热阻。
RCNT/Cu=R-RCu-块-RSi-RμFaze    (2)
使用两次对照测量确定RμFaze。第一次测量涉及测量一片硅连同晶片背面上Microfaze的热阻,得到R对照=RCu-块+R块-Si+RμFaze,其中R块-Si为铜块和硅晶片之间的界面热阻。第二次热阻测量涉及一片双面抛光的硅,得到R对照,2=2R块-Si+RSi。假定第二次对照测量中的两个Si-Cu界面类似,可用该值除以2并使用方程式(3)的简单关系。
RμFaze=R对照,1-(R对照,2-RSi)/2-RCu-块    (3)
对方程式(2)和(3)中热阻的内在硅贡献(RSi)可被忽略。对于该研究中使用的500μm厚硅晶片,内在硅热阻可被计算为0.034cm2K/W,其比CNT-Cu样品的最终测量值小两个数量级,因此可以忽略。对此分析的一个说明是关于相对于施加到上部块的功率数量的Microfaze热阻。第一对照样品的热阻随功率增加大致按指数规律降低,对应于不同的温度梯度,但可在将要说明的最终分析中校正。双面抛光的硅样品没有显示出功率相关性,而是表现出基本恒定的热阻R=11.10cm2K/W,产生5.55cm2K/W每个硅界面。减去硅热阻,其相对于施加的功率是恒定的,还可测定不同功率下的RμFaze。Microfaze的功率相关性图示在图6A中。
既然Microfaze材料的功率相关性被量化,则可继续进行CNT/Si/Microfaze和CNT-Cu/Si/Microfaze堆的分析。从前面的讨论可知,期望这些样品表现出相同的功率相关性,实际上也是这样,并可清楚地在图6B中看到。结合功率相关性和图6B中的测量值,我们在表II中汇总了测量的热阻值。在相同的夹持压力6.8psi下进行全部测量。测量中造成标准偏差的误差可主要归因于两个因素:(1)由于变化的CNT长度分布引起的接触面积差异(见图4A);和(2)总功率、ΔT和环境温度损失测量中的差异。但是,即使在测量的CNT-Cu复合薄膜热阻值的上限下,这种最坏情况也能代表相似于各种商业微处理器系统热预算的值。
表II.热阻测量汇总
材料 热阻(cm2K/W)±STDEV
 CNT薄膜 2.30±0.33
 CNT-Cu复合薄膜(#1) 0.84±0.22
 CNT-Cu复合薄膜(#2) 0.92±0.13
 裸的双面硅 11.10±0.65
在该研究所用MWCNT阵列中沉积的Cu不是实心薄膜。相反,Cu形成具有~70%Cu和CNT以及~30%空隙的多孔薄膜。这种构造提高了机械强度,从而可在不同夹持压力下反复和再现地测量样品。另外,这种构造提供了空间,从而可使复合薄膜变形以与热表面最大接触。但是,H Dai等,Nature,vol.384(1996)147,H.Dai等,Appl.Phys.Lett.Vol.73(1998)1508和J.Li等,Surf.And Interf.Analysis,vol.28(1998)8对不连续MWCNT的翘曲力进行的研究表明了这些结构可承受极大量的力/单位横截面积。基于这种分析,我们推测大多数纳米管在这种初步研究中施加的力下不会翘曲,这种力比计算的CNT翘曲力小大约两个数量级。热阻测量前和后(分别为图7A和7B)的SEM表征表明对压应力后的CNT-Cu复合材料没有影响。这种方法假定大多数CNT被弯曲或翘曲以在低压(在IC封装中不超过20psi)下提供最大接触,这种压力可通过适当选择CNT暴露部分的长度和直径来获得。
通过优化本发明的界面材料和封装技术可进一步降低界面处的热阻。更具体地说,可通过优化暴露CNT的长度(其导致较低的翘曲和弯曲力)增加在低负荷压力(小于20psi)下的接触面积。通过改善Cu材料的完整性还可提高空隙空间中填充的Cu的热导率。通过进行这种优化,预期热阻被降低到0.1cm2K/W以下,其甚至好于目前使用的共晶结合,并可有效地用于未来IC芯片超过100W/cm2的散热。
这些初步结果说明了CNT和CNT-Cu复合薄膜作为有效热导体的基本有效性。我们的分析证实,这些新型的导热层可通过增加接触面积实现有效的导热。另外,CNT提供了高机械稳定性和可重复利用性的额外益处。

Claims (26)

1.一种供从物体传递热能的方法,该方法包括:
在选择的具有高热导率的衬底的选择表面上提供在本文中称为“CNT”的碳纳米管的阵列,其中阵列中至少第一和第二CNT被基本垂直于选择表面定向;
用选择的具有高热导率的填料材料填充阵列中至少两个相邻CNT之间空隙空间的至少一部分,从而填料材料在至少第一和第二CNT各自的第一端处接触选择的衬底表面,至少第一和第二CNT各自的第二端被暴露,并被填料材料不完全覆盖;和
使第一和第二CNT的至少一个的暴露第二端接触要被提供热能传递的物体的表面。
2.权利要求1的方法,还包括使所述至少第一和第二CNT的所述暴露第二端接触所述物体的表面,使得所述CNT的所述暴露第二端的至少一个弯曲或翘曲。
3.权利要求1的方法,还包括选择所述填料材料以包括Cu、Ag、Au、Pt、Pd和金属掺杂的硅化物中的至少一种。
4.权利要求1的方法,还包括提供包含Ni、Fe、Co、Pt和Al中至少一种的所选催化剂的层以在所述催化剂的所述选择表面上生长所述CNT的所述阵列。
5.权利要求1的方法,还包括通过包含化学气相沉积、物理气相沉积、等离子沉积、离子溅射、电化学沉积和由液相浇铸中至少一种的方法用所述填料材料填充所述空隙空间的所述部分。
6.权利要求1的方法,还包括通过包含机械抛光、化学机械抛光、湿化学蚀刻、电化学蚀刻和干等离子蚀刻中至少一种的方法提供所述至少第一和第二CNT的所述暴露第二端。
7.一种供从物体传递热能的装置,该装置包括:
在选择的具有高热导率的衬底的选择表面上的在本文中称为“CNT”的碳纳米管的阵列,其中阵列中至少第一和第二CNT被基本垂直于选择表面定向;
填充阵列中至少两个相邻CNT之间空隙空间至少一部分的高热导率材料,从而填料材料在至少第一和第二CNT各自的第一端处接触选择的衬底表面,至少第一和第二CNT各自的第二端被暴露,并被填料材料不完全覆盖;和
其中第一和第二CNT的至少一个的暴露第二端接触要被提供热能传递的物体的表面。
8.权利要求7的装置,其中所述至少第一和第二CNT的所述暴露第二端接触所述物体的表面,使得所述CNT的所述暴露第二端的至少一个弯曲或翘曲。
9.权利要求7的装置,其中所述填料材料包括Cu、Ag、Au、Pt、Pd和金属掺杂的硅化物中的至少一种。
10.权利要求7的装置,还包括沉积在所述选择的衬底表面上的包含Ni、Fe、Co、Pt和Al中至少一种的所选催化剂的层,以在所述选择衬底上生长所述CNT的所述阵列。
11.权利要求7的装置,其中通过包括化学气相沉积、物理气相沉积、等离子沉积、离子溅射、电化学沉积和由液相浇铸中至少一种的方法用所述填料材料填充所述空隙空间的所述部分。
12.权利要求7的装置,其中通过包括机械抛光、化学机械抛光、湿化学蚀刻、电化学蚀刻和干等离子蚀刻中至少一种的方法提供所述至少第一和第二CNT的所述暴露第二端。
13.权利要求1的方法,还包括提供未被所述填料材料覆盖的分别具有暴露的第一长度和暴露的第二长度的所述阵列中所述第一和第二CNT的所述暴露端,其中暴露的第一长度和暴露的第二长度基本相等。
14.权利要求1的方法,还包括提供未被所述填料材料覆盖的分别具有暴露的第一长度和暴露的第二长度的所述阵列中所述第一和第二CNT的所述暴露端,其中暴露的第一长度大于暴露的第二长度。
15.权利要求1 4的方法,还包括使所述第一CNT的所述暴露第二端接触所述物体的表面,从而所述第一CNT的所述暴露第二端弯曲或翘曲。
16.权利要求14的方法,还包括使所述第一和第二CNT的所述暴露第二端接触所述物体的表面,从而所述第一和第二CNT的所述暴露第二端的每一个弯曲或翘曲。
17.权利要求1的方法,还包括:
通过所述至少第一和第二CNT从要被提供热能传递的所述物体中直接移出热;和
将通过所述至少第一和第二CNT直接移出的热的一部分分布到所述填料材料上。
18.权利要求1的方法,还包括为从所述物体的所述热能传递提供不超过约8cm2-K/W的联合热阻。
19.权利要求1的方法,还包括为从所述物体的所述热能传递提供不超过约0.1cm2-K/W的联合热阻。
20.权利要求7的装置,其中所述阵列中所述第一和第二CNT的所述暴露端分别具有未被所述填料材料覆盖的暴露的第一长度和暴露的第二长度,其中暴露的第一长度和暴露的第二长度基本相等。
21.权利要求7的装置,其中所述阵列中所述第一和第二CNT的所述暴露端分别具有未被所述填料材料覆盖的暴露的第一长度和暴露的第二长度,其中暴露的第一长度大于暴露的第二长度。
22.权利要求21的装置,其中所述第一CNT的所述暴露第二端接触所述物体的表面,从而所述第一CNT的所述暴露第二端弯曲或翘曲。
23.权利要求21的装置,其中所述第一和第二CNT的所述暴露第二端接触所述物体的表面,从而所述第一和第二CNT的所述暴露第二端的每一个弯曲或翘曲。
24.权利要求7的装置,其中:
通过所述至少第一和第二CNT从要被提供热能传递的所述物体中直接移出热;和
将通过所述至少第一和第二CNT直接移出的热的一部分分布到所述填料材料上。
25.权利要求7的装置,其中从所述物体的所述热能传递具有不超过约8cm2-K/W的联合热阻。
26.权利要求7的装置,其中从所述物体的所述热能传递具有不超过约0.1cm2-K/W的联合热阻。
CNA2005800193959A 2004-04-13 2005-04-13 基于碳纳米管阵列复合材料的纳米工程热材料 Pending CN101087987A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/825,795 2004-04-13
US10/825,795 US7273095B2 (en) 2003-03-11 2004-04-13 Nanoengineered thermal materials based on carbon nanotube array composites

Publications (1)

Publication Number Publication Date
CN101087987A true CN101087987A (zh) 2007-12-12

Family

ID=35059376

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005800193959A Pending CN101087987A (zh) 2004-04-13 2005-04-13 基于碳纳米管阵列复合材料的纳米工程热材料

Country Status (6)

Country Link
US (2) US7273095B2 (zh)
EP (1) EP1738129A2 (zh)
JP (1) JP2007532335A (zh)
KR (1) KR101138870B1 (zh)
CN (1) CN101087987A (zh)
WO (1) WO2006043974A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824740A (zh) * 2012-11-16 2014-05-28 上海联影医疗科技有限公司 一种具有吸附薄膜的x射线管
CN110143585A (zh) * 2018-02-11 2019-08-20 中国科学院苏州纳米技术与纳米仿生研究所 一种铜填充碳纳米管阵列基复合材料及其制备方法

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958917B2 (en) 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US7767270B1 (en) * 2002-12-13 2010-08-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Selective functionalization of carbon nanotubes based upon distance traveled
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7538422B2 (en) * 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
US20060231237A1 (en) * 2005-03-21 2006-10-19 Carlos Dangelo Apparatus and method for cooling ICs using nano-rod based chip-level heat sinks
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US7197804B2 (en) * 2005-08-29 2007-04-03 The Aerospace Corporation Method of making copper and carbon nanotube thermal conductor
CN1937094A (zh) * 2005-09-22 2007-03-28 清华大学 扫描热显微镜探针
US20070097648A1 (en) * 2005-11-01 2007-05-03 Kevin Xu Method and apparatus for establishing optimal thermal contact between opposing surfaces
US20090045720A1 (en) * 2005-11-10 2009-02-19 Eun Kyung Lee Method for producing nanowires using porous glass template, and multi-probe, field emission tip and devices employing the nanowires
CN1964028B (zh) * 2005-11-11 2010-08-18 鸿富锦精密工业(深圳)有限公司 散热器
US20070137836A1 (en) * 2005-12-19 2007-06-21 Qnx Cooling Systems, Inc. Heat transfer system
CN101001515B (zh) * 2006-01-10 2011-05-04 鸿富锦精密工业(深圳)有限公司 板式散热管及其制造方法
EP2012574A1 (en) * 2006-04-24 2009-01-07 Sumitomo Electric Industries, Ltd. Heat transfer member, protruding structural member, electronic device, and electric product
JP2009537439A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノチューブを含むナノ構造の生成のための連続処理
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
WO2008000551A2 (de) * 2006-06-27 2008-01-03 Continental Automotive Gmbh Kühlkörper
US7927666B2 (en) * 2006-06-30 2011-04-19 The University Of Akron Aligned carbon nanotube-polymer materials, systems and methods
US20080026505A1 (en) * 2006-07-28 2008-01-31 Nirupama Chakrapani Electronic packages with roughened wetting and non-wetting zones
US8389119B2 (en) * 2006-07-31 2013-03-05 The Board Of Trustees Of The Leland Stanford Junior University Composite thermal interface material including aligned nanofiber with low melting temperature binder
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
US9385065B2 (en) * 2006-10-02 2016-07-05 The Regents Of The University Of California Solid state thermal rectifier
US8220530B2 (en) * 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
DE102007006175A1 (de) * 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
CN103588984A (zh) * 2007-02-22 2014-02-19 道康宁公司 制备导电薄膜的方法和由该方法制得的制品
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US7880298B2 (en) * 2007-12-05 2011-02-01 Raytheon Company Semiconductor device thermal connection
US8262835B2 (en) * 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US20090246507A1 (en) * 2008-01-15 2009-10-01 Georgia Tech Research Corporation Systems and methods for fabrication and transfer of carbon nanotubes
JP5243975B2 (ja) * 2008-02-04 2013-07-24 新光電気工業株式会社 熱伝導部材を有する半導体パッケージ放熱用部品及びその製造方法
EP2269948B1 (en) 2008-02-29 2017-08-02 Fujitsu Limited Sheet structure
US7947331B2 (en) * 2008-04-28 2011-05-24 Tsinghua University Method for making thermal interface material
CN101626674B (zh) * 2008-07-11 2015-07-01 清华大学 散热结构及其制备方法
KR101497412B1 (ko) * 2008-07-16 2015-03-02 주식회사 뉴파워 프라즈마 공유 결합 탄소나노튜브를 갖는 복합 소재로 구성된 히트싱크
US20100021736A1 (en) * 2008-07-25 2010-01-28 Slinker Keith A Interface-infused nanotube interconnect
US20100190023A1 (en) * 2009-01-26 2010-07-29 Adam Franklin Gross Metal bonded nanotube array
CN101826467B (zh) * 2009-03-02 2012-01-25 清华大学 热界面材料的制备方法
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US9257704B2 (en) 2009-07-06 2016-02-09 Zeptor Corporation Carbon nanotube composite structures and methods of manufacturing the same
US8106510B2 (en) 2009-08-04 2012-01-31 Raytheon Company Nano-tube thermal interface structure
US10167572B2 (en) * 2009-08-07 2019-01-01 Guardian Glass, LLC Large area deposition of graphene via hetero-epitaxial growth, and products including the same
US10164135B2 (en) * 2009-08-07 2018-12-25 Guardian Glass, LLC Electronic device including graphene-based layer(s), and/or method or making the same
US8236118B2 (en) * 2009-08-07 2012-08-07 Guardian Industries Corp. Debonding and transfer techniques for hetero-epitaxially grown graphene, and products including the same
US8507797B2 (en) * 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
JP5276565B2 (ja) * 2009-10-14 2013-08-28 新光電気工業株式会社 放熱用部品
KR101602417B1 (ko) * 2009-11-18 2016-03-11 삼성전자주식회사 저항 발열층를 채용한 가열부재 , 이를 채용한 정착장치 및 화상형성장치
US8808810B2 (en) * 2009-12-15 2014-08-19 Guardian Industries Corp. Large area deposition of graphene on substrates, and products including the same
JP5540419B2 (ja) * 2010-02-15 2014-07-02 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
US8518472B2 (en) 2010-03-04 2013-08-27 Guardian Industries Corp. Large-area transparent conductive coatings including doped carbon nanotubes and nanowire composites, and methods of making the same
US8604332B2 (en) 2010-03-04 2013-12-10 Guardian Industries Corp. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
US8460747B2 (en) 2010-03-04 2013-06-11 Guardian Industries Corp. Large-area transparent conductive coatings including alloyed carbon nanotubes and nanowire composites, and methods of making the same
US8587121B2 (en) * 2010-03-24 2013-11-19 International Business Machines Corporation Backside dummy plugs for 3D integration
US8640455B2 (en) * 2010-06-02 2014-02-04 GM Global Technology Operations LLC Controlling heat in a system using smart materials
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
CN102009947A (zh) * 2010-09-30 2011-04-13 中国科学院宁波材料技术与工程研究所 一种具有优异纳米摩擦学表现的规则微、纳织构金表面的加工方法
NL2007834A (en) 2010-12-23 2012-06-27 Asml Netherlands Bv Lithographic apparatus and removable member.
JP5760668B2 (ja) * 2011-05-11 2015-08-12 富士通株式会社 シート状構造体及びその製造方法並びに電子機器及びその製造方法
KR101240662B1 (ko) * 2011-08-05 2013-03-11 성균관대학교산학협력단 탄소나노튜브를 이용한 방열판 및 이의 제조방법
US8995894B2 (en) * 2011-09-08 2015-03-31 Samsung Electronics Co., Ltd. Image fusing apparatus using carbon nano-tube heater
US9776859B2 (en) 2011-10-20 2017-10-03 Brigham Young University Microscale metallic CNT templated devices and related methods
KR101337958B1 (ko) * 2012-02-07 2013-12-09 현대자동차주식회사 전자파 차폐용 복합재와 그 제조 방법
JP2014033104A (ja) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd 放熱部品及びその製造方法
US9111899B2 (en) 2012-09-13 2015-08-18 Lenovo Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
WO2014134484A1 (en) 2013-02-28 2014-09-04 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
US9593019B2 (en) 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
US10431354B2 (en) 2013-03-15 2019-10-01 Guardian Glass, LLC Methods for direct production of graphene on dielectric substrates, and associated articles/devices
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
CN103367275B (zh) * 2013-07-10 2016-10-05 华为技术有限公司 一种界面导热片及其制备方法、散热系统
US10145005B2 (en) 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
US20170198551A1 (en) * 2016-01-12 2017-07-13 Baker Hughes Incorporated Composites containing aligned carbon nanotubes, methods of manufacture and applications thereof
FR3051002B1 (fr) * 2016-05-03 2021-01-22 Nawatechnologies Materiau composite a base de nanotubes de carbone verticalement alignes et d'une matrice metallique
BR112018072800A2 (pt) 2016-05-31 2019-03-12 Massachusetts Inst Technology artigos compósitos compreendendo nanoestruturas alongadas não lineares e métodos associados
TWI640470B (zh) * 2016-06-10 2018-11-11 美國琳得科股份有限公司 奈米纖維片
WO2018044706A1 (en) * 2016-08-30 2018-03-08 TeraDiode, Inc. High-power laser packaging utilizing carbon nanotubes
EP3519352B1 (en) 2016-09-27 2022-07-13 Ohio University Ultra-conductive metal composite forms and the synthesis thereof
TW201821585A (zh) * 2016-11-30 2018-06-16 國立成功大學 具高效率之導熱結構
WO2018156878A1 (en) 2017-02-24 2018-08-30 Lintec Of America, Inc. Nanofiber thermal interface material
US20190085138A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
JP2021501997A (ja) * 2017-11-03 2021-01-21 イェノプティック オプティカル システムズ ゲーエムベーハー ダイオードレーザ
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN109336408A (zh) * 2018-09-19 2019-02-15 上海交通大学 有序掺杂纳米材料强化热导率复合材料及制备方法

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485429A (en) * 1982-06-09 1984-11-27 Sperry Corporation Apparatus for cooling integrated circuit chips
US5316080A (en) * 1990-03-30 1994-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Heat transfer device
US5837081A (en) * 1993-04-07 1998-11-17 Applied Sciences, Inc. Method for making a carbon-carbon composite
JPH11307633A (ja) * 1997-11-17 1999-11-05 Sony Corp 低誘電率膜を有する半導体装置、およびその製造方法
US5852548A (en) * 1994-09-09 1998-12-22 Northrop Grumman Corporation Enhanced heat transfer in printed circuit boards and electronic components thereof
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5725707A (en) * 1995-04-10 1998-03-10 Northrop Grumman Corporation Enhanced conductive joints from fiber flocking
US5818700A (en) * 1996-09-24 1998-10-06 Texas Instruments Incorporated Microelectronic assemblies including Z-axis conductive films
US6231744B1 (en) * 1997-04-24 2001-05-15 Massachusetts Institute Of Technology Process for fabricating an array of nanowires
US6156256A (en) * 1998-05-13 2000-12-05 Applied Sciences, Inc. Plasma catalysis of carbon nanofibers
US6713151B1 (en) * 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US5926370A (en) * 1998-10-29 1999-07-20 Hewlett-Packard Company Method and apparatus for a modular integrated apparatus for multi-function components
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
US6538367B1 (en) * 1999-07-15 2003-03-25 Agere Systems Inc. Field emitting device comprising field-concentrating nanoconductor assembly and method for making the same
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6515339B2 (en) * 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
JP2002050595A (ja) * 2000-08-04 2002-02-15 Hitachi Ltd 研磨方法、配線形成方法及び半導体装置の製造方法
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
JP2002121404A (ja) 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
WO2002079514A1 (en) 2001-01-10 2002-10-10 The Trustees Of Boston College Dna-bridged carbon nanotube arrays
US6783589B2 (en) * 2001-01-19 2004-08-31 Chevron U.S.A. Inc. Diamondoid-containing materials in microelectronics
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
ES2375224T3 (es) * 2001-05-14 2012-02-27 The Procter & Gamble Company Producto de limpieza.
US20040126548A1 (en) * 2001-05-28 2004-07-01 Waseda University ULSI wiring and method of manufacturing the same
US6432740B1 (en) * 2001-06-28 2002-08-13 Hewlett-Packard Company Fabrication of molecular electronic circuit by imprinting
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6965513B2 (en) 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
WO2003072679A1 (en) 2002-02-22 2003-09-04 Carbon Nanotechnologies, Inc. Molecular-level thermal-management materials comprising single-wall carbon nanotubes
TW593730B (en) * 2002-03-25 2004-06-21 Ind Tech Res Inst Process of direct low-temperature growth of carbon nanotubes on a substrate
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6831017B1 (en) * 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices
JP4416376B2 (ja) * 2002-05-13 2010-02-17 富士通株式会社 半導体装置及びその製造方法
US6891724B2 (en) * 2002-06-12 2005-05-10 Intel Corporation Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
US7233101B2 (en) * 2002-12-31 2007-06-19 Samsung Electronics Co., Ltd. Substrate-supported array having steerable nanowires elements use in electron emitting devices
WO2004027822A2 (en) * 2002-09-05 2004-04-01 Nanosys, Inc. Oriented nanostructures and methods of preparing
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
CN1239387C (zh) * 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
US6841002B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with post-treatment step
US6841003B2 (en) * 2002-11-22 2005-01-11 Cdream Display Corporation Method for forming carbon nanotubes with intermediate purification steps
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
TW200500838A (en) * 2003-02-19 2005-01-01 Nisvara Inc System and apparatus for heat removal
US7273095B2 (en) * 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US20040182600A1 (en) * 2003-03-20 2004-09-23 Fujitsu Limited Method for growing carbon nanotubes, and electronic device having structure of ohmic connection to carbon element cylindrical structure body and production method thereof
CN1244491C (zh) * 2003-03-25 2006-03-08 清华大学 一种碳纳米管阵列结构及其制备方法
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US20040266063A1 (en) * 2003-06-25 2004-12-30 Montgomery Stephen W. Apparatus and method for manufacturing thermal interface device having aligned carbon nanotubes
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US6864571B2 (en) * 2003-07-07 2005-03-08 Gelcore Llc Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking
US7416019B2 (en) * 2003-08-13 2008-08-26 The Johns Hopkins University Thermal interface and switch using carbon nanotube arrays
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US6989325B2 (en) * 2003-09-03 2006-01-24 Industrial Technology Research Institute Self-assembled nanometer conductive bumps and method for fabricating
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
JP4339657B2 (ja) * 2003-09-30 2009-10-07 富士通株式会社 半導体装置及びその製造方法
TW200517042A (en) * 2003-11-04 2005-05-16 Hon Hai Prec Ind Co Ltd Heat sink
US7186020B2 (en) * 2003-12-12 2007-03-06 University Of Washington Thermal interface material (TIM) with carbon nanotubes (CNT) and low thermal impedance
TWI253467B (en) * 2003-12-23 2006-04-21 Hon Hai Prec Ind Co Ltd Thermal interface material and method for making same
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050260412A1 (en) * 2004-05-19 2005-11-24 Lockheed Martin Corporation System, method, and apparatus for producing high efficiency heat transfer device with carbon nanotubes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824740A (zh) * 2012-11-16 2014-05-28 上海联影医疗科技有限公司 一种具有吸附薄膜的x射线管
CN103824740B (zh) * 2012-11-16 2017-04-05 上海联影医疗科技有限公司 一种具有吸附薄膜的x射线管
CN110143585A (zh) * 2018-02-11 2019-08-20 中国科学院苏州纳米技术与纳米仿生研究所 一种铜填充碳纳米管阵列基复合材料及其制备方法

Also Published As

Publication number Publication date
WO2006043974A2 (en) 2006-04-27
KR101138870B1 (ko) 2012-05-16
EP1738129A2 (en) 2007-01-03
US7784531B1 (en) 2010-08-31
WO2006043974A3 (en) 2006-06-15
JP2007532335A (ja) 2007-11-15
US7273095B2 (en) 2007-09-25
US20050224220A1 (en) 2005-10-13
US20070163769A9 (en) 2007-07-19
KR20070048135A (ko) 2007-05-08

Similar Documents

Publication Publication Date Title
CN101087987A (zh) 基于碳纳米管阵列复合材料的纳米工程热材料
Razeeb et al. Present and future thermal interface materials for electronic devices
Zhao et al. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials
Loeblein et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material
US7109581B2 (en) System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7538422B2 (en) Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
Zhang et al. High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays
JP4653029B2 (ja) 熱伝導材料及びその製造方法
Yao et al. Effects of nanowire height on pool boiling performance of water on silicon chips
TWI463614B (zh) 使用具有可變冷卻能力之碳奈米管冷卻結構之晶片上溫度梯度最小化
US20070126116A1 (en) Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US20070114658A1 (en) Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
CA2666815A1 (en) Electrothermal interface material enhancer
CA2621924A1 (en) Carbon nanotubes for the selective transfer of heat from electronics
US20100196659A1 (en) Thermal interface material
CN101410685A (zh) 具有纳米结构吸液芯材料的热管
Barako et al. Reactive metal bonding of carbon nanotube arrays for thermal interface applications
Ahmad et al. Engineering interfacial effects in electron and phonon transport of Sb2Te3/MoS2 multilayer for thermoelectric ZT above 2.0
Ngo et al. Thermal conductivity of carbon nanotube composite films
Yan et al. Effect of metal buffer layer on the thermal interface performance of liquid metal alloy on copper plate
US20070048520A1 (en) Thermal interface material and method for making the same
Chow et al. Electroplated copper nanowires as thermal interface materials
Obori et al. Onsite synthesis of thermally percolated nanocomposite for thermal interface material
Tan et al. Liquid metal/metal porous skeleton with high thermal conductivity and stable thermal reliability
TWI378071B (en) Thermal interface material and method for making same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication