TWI378071B - Thermal interface material and method for making same - Google Patents

Thermal interface material and method for making same Download PDF

Info

Publication number
TWI378071B
TWI378071B TW94129236A TW94129236A TWI378071B TW I378071 B TWI378071 B TW I378071B TW 94129236 A TW94129236 A TW 94129236A TW 94129236 A TW94129236 A TW 94129236A TW I378071 B TWI378071 B TW I378071B
Authority
TW
Taiwan
Prior art keywords
thermal interface
carbon nanotubes
interface material
preparing
electrode
Prior art date
Application number
TW94129236A
Other languages
Chinese (zh)
Other versions
TW200708475A (en
Inventor
Tsai Shih Tung
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW94129236A priority Critical patent/TWI378071B/en
Publication of TW200708475A publication Critical patent/TW200708475A/en
Application granted granted Critical
Publication of TWI378071B publication Critical patent/TWI378071B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

101年.05月29日修正替換頁 Γ378071 六、發明說明: "" 【發明所屬乏技輪領域】 [〇〇〇1] 本發明係關於一種熱介面材料,特別係關於一種具有碳 奈米管之熱介面材料及其製備方法。 【先前技術】 [0002] 近年來,隨著半導體器件集成工藝快速發展,半導體器 件之集成化程度愈來愈高,而器件體積卻變得愈來愈小 ,其散熱成為一個愈來愈重要之問題,其對散熱之要求 也愈來愈高。為滿足這些需要,各種散熱方式被大量運 用,如利用風扇散熱、水冷輔助散熱和熱管散熱等方式 ,並取得一定散熱效果,但由於散熱器與半導體集成器 件之接觸介面並不平整,一般相互接觸只有不到2%面積 ,沒有理想之接觸介面,從根本上極大地影響了半導體 器件向散熱器進行熱傳遞之效果,因此於散熱器與半導 體器·件之接觸介面間增加一導熱係數較高之熱介面材料 來增加介面之接觸程度就顯得十分必要。 [0003] 傳統之熱介面材料係將一些導熱係數較高之顆粒分散到 聚合物材料中形成複合材料,如石墨、氮化硼、氧化矽 、氧化鋁、銀或其他金屬等。此種材料之導熱性能在很 大程度上取決於聚合物載體之性質。其中以油脂、相變 材料為載體之複合材料因其使用時為液態而能與熱源表 面浸潤故接觸熱阻較小,而以矽膠與橡膠為載體之複合 材料之接觸熱阻就比較大。這些材料之普遍缺陷係整個 材料導熱係數比較小,典型值在1瓦/米開爾文(W/raK), 這已經愈來愈不能適應半導體集成化程度之提高對散熱 09412923#單編號 A_ 第3頁/共16頁 1013203202-0 1378071 、 101年05月29日核正替換頁 介·… ^ · 之需求,而增加聚合物載體中導熱顆粒之含量使顆粒與 顆粒儘量相互接觸可以增加整値複合材数·,… 如某些特殊介面材料因此可達到4-8W/mK,但當聚合物載 體中導熱顆粒之含量增加到一定程度時,會使聚合物失 去所需之性能,如油脂會變硬,從而浸潤效果會變差, 橡膠也會變硬,從而失去柔韌性,這都會使熱介面材料 性能大大降低。 [0004] 為改善熱介面材料之性能,提高其導熱係數,奈米碳球 、鑽石粉末以及碳奈米管等具有優良導熱性能之材料被 | 用做導熱填充材料。尤其係研究如何將碳奈米管用於熱 介面材料並充分發揮其優良之導熱性成為提高熱介面材 料性能之一個重要方向。 [0005] 先前技術中有一種利用碳奈米管導熱特性之熱介面材料 ,將碳奈米管摻到聚合物材料中結成一體,然後通過模 壓方式製成熱介面材料,該熱介面材料兩導熱表面之面 積不相等,其中與散熱器接觸之導熱表面之面積大於與 熱源接觸之導熱表面之面積,這樣可有利於散熱器散熱 _ 。惟,該方法製成之熱介面材料,碳奈米管雜亂無序排 列於聚合物材料中,其於聚合物材料中分佈之均勻性較 難得到嘩保,因而熱傳導之均勻性也受到影響,而且沒 有充分利用碳奈米管縱向導熱之優勢,影響熱介面材料 之導熱性能。 [0006] 先前技術亦揭示一種製備陣列碳奈米管熱介面結構之方 法。該方法係將平板電容浸入包含無序分佈碳奈米管之 熱塑性聚合物漿料中,調節電容平板間距並取出;通過 0941292#單编號 A〇101 第4頁/共16頁 1013203202-0 Γ378071 101年.05月29日核正替換百 給平板電容加電壓形成電場,使所述平板電容之碳奈米 管於熱塑性聚舍物漿料.中·定向排列;.聆所述漿斜固化後 ....· 取出即成為熱介面結構。 [0007] 有鑒於此,提供一種具有高導熱係數之熱介面材料及其 製備方法實為必要。 【發明内容】 [0008] 以下,將以若干實施例說明一種熱介面材料。 [0009] 以及通過這些實施例說明一種熱介面材料製備方法。 ® [0010] 為實現上述内容,提供一種熱介面材料,其包括:一基 體材料以及分佈於所述基體材料甲之複數碳奈米管,所 述複數碳奈米管表面具有磁性微粒。 [0011] 所述基體材料包括矽膠系列、石臘、聚乙烯乙二醇、聚 酯、環氧樹脂系列、缺氧膠系列或壓克力膠系列。 [0012] 優選,所述複數碳奈米管形成一碳奈米管陣列。 [0013] 所述磁性微粒之材料包括鐵、鈷、鎳。 [0014] 優選,所述複數碳奈米管於所述基體材料中定向排列。 [0015] 以及,提供一種熱介面材料製備方法,其包括下述步驟 [0016] 提供複數碳奈米管,所述複數碳奈米管生長於一導電基 底; [0017] 將所述形成有複數碳奈米管之導電基底作為工作電極, 鉑鉑為材料作為對電極以及銀/氯化銀為材料作為參考電 09412923#單編號 A〇101 第5頁/共16頁 1013203202-0 1378071 [0018] [0019] [0020] [0021] [0022] [0023] [0024] [0025] [0026] [0027] [0028] 101年05月29日修正替換頁 極,並將該工作電極、對電極與參考電極置於—三極式 嘗解池之奄解液中,通過三橙式電化學反應於所述複數: 碳奈求管表面形成磁性微粒; 將所述八有磁性微粒之複數碳奈米管分散於一基體材料 中; 固化所述基體材料,形成熱介面材科。 所述複數碳奈米管形成於一導電基底。 所述導電基底包括導電玻璃基板、 導電層之破螭基板。 金屬基板或具有金屬101 years. May 29th revised replacement page Γ 378071 VI. Description of the invention: "" [Inventions belong to the field of lack of technology] [〇〇〇1] The present invention relates to a thermal interface material, in particular to a carbon Rice tube thermal interface material and preparation method thereof. [Prior Art] [0002] In recent years, with the rapid development of semiconductor device integration processes, the integration of semiconductor devices has become higher and higher, and the device size has become smaller and smaller, and heat dissipation has become an increasingly important one. The problem is that the requirements for heat dissipation are getting higher and higher. In order to meet these needs, various heat dissipation methods have been widely used, such as fan cooling, water cooling auxiliary heat dissipation, and heat pipe cooling, and have achieved a certain heat dissipation effect, but the contact interface between the heat sink and the semiconductor integrated device is not flat, and generally contacts each other. Only less than 2% of the area, there is no ideal contact interface, which fundamentally greatly affects the heat transfer effect of the semiconductor device to the heat sink, so a higher thermal conductivity is added between the contact surface of the heat sink and the semiconductor device. The thermal interface material is necessary to increase the contact level of the interface. [0003] Conventional thermal interface materials disperse some particles having a higher thermal conductivity into a polymer material to form a composite material such as graphite, boron nitride, tantalum oxide, aluminum oxide, silver or other metals. The thermal conductivity of such materials depends to a large extent on the nature of the polymeric carrier. Among them, the composite material with grease and phase change material as the carrier can be infiltrated with the surface of the heat source because of its liquid state when used, so the contact thermal resistance is small, and the contact thermal resistance of the composite material with the silicone rubber and the rubber carrier is relatively large. The general defect of these materials is that the thermal conductivity of the whole material is relatively small, typically 1 W/m Kelvin (W/raK), which has become increasingly incapable of adapting to the increase in semiconductor integration. Heat dissipation 09412923#Single number A_ Page 3 / Total 16 pages 1013203202-0 1378071, May 29, 101, the nuclear replacement page .... ^ · The need to increase the content of thermal particles in the polymer carrier so that the particles and particles as close to each other as possible can increase the overall composite Number·,... If some special interface materials can reach 4-8W/mK, when the content of the thermal conductive particles in the polymer carrier increases to a certain extent, the polymer will lose the desired properties, such as the oil will harden. Therefore, the wetting effect is deteriorated, the rubber is also hardened, and the flexibility is lost, which greatly degrades the performance of the thermal interface material. [0004] In order to improve the properties of the thermal interface material and improve its thermal conductivity, materials having excellent thermal conductivity such as nanocarbon spheres, diamond powders, and carbon nanotubes are used as thermally conductive filler materials. In particular, it is important to study how to use carbon nanotubes for thermal interface materials and to give full play to their excellent thermal conductivity as an important direction to improve the performance of thermal interface materials. [0005] In the prior art, a thermal interface material utilizing the thermal conductivity of a carbon nanotube is used to incorporate a carbon nanotube into a polymer material, and then a thermal interface material is formed by molding, and the thermal interface material is thermally conductive. The surface area is not equal, wherein the area of the heat conducting surface in contact with the heat sink is larger than the area of the heat conducting surface in contact with the heat source, which is advantageous for heat dissipation of the heat sink. However, in the thermal interface material produced by the method, the carbon nanotubes are disorderly arranged in the polymer material, and the uniformity of distribution in the polymer material is difficult to obtain, and the uniformity of heat conduction is also affected. Moreover, the advantages of longitudinal thermal conduction of the carbon nanotubes are not fully utilized, and the thermal conductivity of the thermal interface materials is affected. The prior art also discloses a method of preparing an arrayed carbon nanotube thermal interface structure. In the method, the flat capacitor is immersed in a thermoplastic polymer slurry containing a disorderly distributed carbon nanotube, and the capacitance plate spacing is adjusted and taken out; by 0941292# single number A〇101 page 4/16 pages 1013203202-0 Γ378071 On the 29th and the 29th of May, the nuclear power is replaced by a plate capacitor and a voltage is applied to form an electric field, so that the carbon nanotubes of the plate capacitor are aligned in the thermoplastic polymer slurry. ....· Take out and become a hot interface structure. In view of the above, it is necessary to provide a thermal interface material having a high thermal conductivity and a method of preparing the same. SUMMARY OF THE INVENTION [0008] Hereinafter, a thermal interface material will be described in several embodiments. [0009] A method of preparing a thermal interface material is illustrated by these examples. In order to achieve the above, a thermal interface material is provided comprising: a matrix material and a plurality of carbon nanotubes distributed over the matrix material, the plurality of carbon nanotubes having magnetic particles on the surface. [0011] The base material comprises a tannin series, a paraffin wax, a polyethylene glycol, a polyester, an epoxy resin series, an anoxic glue series or an acrylic glue series. [0012] Preferably, the plurality of carbon nanotubes form an array of carbon nanotubes. [0013] The material of the magnetic particles includes iron, cobalt, and nickel. [0014] Preferably, the plurality of carbon nanotubes are aligned in the matrix material. [0015] And, a method for preparing a thermal interface material, comprising the following steps: [0016] providing a plurality of carbon nanotubes, the plurality of carbon nanotubes being grown on a conductive substrate; [0017] forming the plurality The conductive substrate of the carbon nanotube is used as the working electrode, the platinum platinum is used as the counter electrode and the silver/silver chloride is used as the reference material. 09412923#单号A〇101 Page 5 of 16 1013203202-0 1378071 [0018] [0025] [0023] [0028] [0028] [0028] [0028] On May 29, 101, the replacement page pole was corrected, and the working electrode and the counter electrode were The reference electrode is placed in the enthalpy of the three-electrode tryout cell, and the magnetic particles are formed by the three-orange electrochemical reaction: the surface of the carbon nanotubes forms magnetic particles; and the plurality of carbon nanotubes having the magnetic particles Dispersing in a matrix material; curing the matrix material to form a thermal interface material. The plurality of carbon nanotubes are formed on a conductive substrate. The conductive substrate comprises a conductive glass substrate and a broken substrate of a conductive layer. Metal substrate or with metal

優選’所述複數碳奈米管形成—碳奈米管陣列。 所述碳奈米管陣列之形成方法包括化 離子辅助化學IU目沈_、杨=目沈積法、等 … 助熱絲化學氣相沈 所述磁性微粒之材料包括鐵、鈷、鎳。 所述磁性微粒係通過電化學還原法形 米管表面。 /戍於所述複數碳奈 所述基體材料包括發移系列、石腦^、真 S旨、環氧樹脂系列、缺氧膠系列或髮缔乙一醇聚 克力膠系列。 優選,所述熱介面材料製備方法進〜 戈~'步· 作用使所述複數碳奈米管於基體持料中 包括,施加磁場 戈向排列。Preferably, the plurality of carbon nanotubes form an array of carbon nanotubes. The method for forming the carbon nanotube array includes a chemical assisted chemical IU, a YANG, a deposition method, and the like. The hot-wire chemical vapor deposition includes materials such as iron, cobalt, and nickel. The magnetic particles are passed through an electrochemical reduction method on the surface of the tube. The matrix material includes a series of transfer, a stone brain, a true epoxy resin, an epoxy resin series, an anoxic rubber series or a copolymerized glycolic acid adhesive series. Preferably, the method for preparing the thermal interface material comprises the step of: the step of causing the plurality of carbon nanotubes to be included in the matrix holding material, and applying a magnetic field to the arrangement.

本技術方案之熱介面材料中碳奈米管表 ,有利於進一步提高所述熱介面材料 面具有磁性微粒 熱性能。另外 09412923#單編號 A〇101 第6頁/共16頁 1013203202-0 1378071 [Ϊ^Ι年.05月29日修正替^頁 ’通過外加於所述熱介面材科之磁場可改變所述碳奈米 管之排列,玄向.,,將所述.碳奈米管"纪需.要背與之方向定向: 排列於所述基體材料中使得碳奈来管之縱向導熱特性 得到最大限度之利用,因而可·得到具有高導熱係數之熱 介面材料》 【實施方式】 []下面將結合附圖對本技術方案作進一步詳細說明。 [0030]明一併參閱第一圖及第五圖,本技術方案提供一種熱介 # 面材料100,其包括一基體材料30以及於所述基體材料3〇 中定向排列之碳奈米管陣列2〇,所述碳奈米管陣列2〇之 碳奈米管表面具有磁性微粒22。 刚所述基體材料30包括石夕膠系列、石服、聚乙歸乙二醇、 聚酯、環氧樹脂系列、缺氧膠系列或壓克力膠系列。 [0032]所述磁性微粒22之材料包括鐵、鈷、鎳等磁性金屬。 圆4-併參閱第一圖及第二圖本技術方案還提供一種熱 • 介面材料製備方法,其包括下述步驟: 圆步驟U),提供複數碳奈米營;步驟⑻,於所述複數碳 奈来管表面形成磁性微粒;步驟(c) ’將所述具有磁性微 粒之複數碳奈米管分散於-基體材料中;步驟⑷,固化 所述基體材料’形成熱介面枓料。 闕請-併參閱第三圖至第六圖,本技術方案結合實施例對 各步驟進行詳細說明。 [0036]步驟(a),提供複數碳奈米管21。首先提供一導電基底1〇 09412923#單編號 A0101 1013203202-0 101年.05月29日修正替換頁 ··' ->· 35 ifcl m / ,然後於所述導電 礙嗓米管陣对2Ό.、 基底10上形成複數碳奈米管21組成之 所述導電基底rot•括導ir玻璃'基板“: 金屬基導電層之玻璃基板。所述碳奈米管 P車歹包括化學氣相沈積法、等離子輔助化 學氣相沈積法f離子輔助減化學氣相沈積法或印刷 法。本實施例中採用化學氣相沈積法 ,首先於導電基底 10上形成催化劑’然後在高溫下通人碳源氣以形成碳奈 求管陣列2G。所述催化劑包括鐵、錄、钻、把等過渡金 屬。所述碳源氣包括甲烷、乙烯、丙烯、乙炔、甲醇及 乙醇等具體方法為以導電玻璃基板為導電基底,於 導電基底10上覆蓋一層5奈来(nm)厚之鐵膜(圖未示), 並於空氣中30『c條件下進行退火;_於化學氣相沈積 腔體(Chemical Vap〇r 一的⑴⑽ Chamber)中 7〇〇 °c條件下以乙料碳源氣,於所述導電基底1()形成碳奈 米管陣列20。 [0037] 步驟⑻’於所述複數碳奈米管21表面形成磁性微粒22。 所述磁性微粒22之材料包括鐵、钻、錄等磁性金屬。為 將所述磁性微粒22形成於所述複數碳奈米管21表面,以 步驟(a)製備之形成有碳奈米管陣列2〇之導電基底1〇作為 工作電極,通過三極式電化學反應在碳奈米管陣列別之 碳奈米管21表面形成磁性金屬。本實施例中以鐵作為磁 性微粒22。具體方法為,將所述形成有碳奈米管陣列2〇 之導電基底10作為工作電極,以鉑(Pt)為材料作為對電 極60以及以銀/氣化銀(Ag/Agci)為材料作為參考電極7〇 。將所述工作電極、對電極60以及參考電極7〇置於三極 _292#單編號 A〇101 第8頁/共16頁 1013203202-0 1378071 flOl年05月29日梭正替換頁 式電解池40之電解液50中。電解液5〇可採用濃度為 0. 001ΠΗ〜1. 〇摩-爾y升(ra0’l/L)之硝酸鐵溶液产本實施例 中選用濃度為〇. 〇lm〇l/L之硝酸鐵溶液。通過電化學還 原反應,將硝酸鐵溶液中之鐵離子於所述碳奈米管陣列 20之碳奈米管21表面還原為奈米級鐵微粒作為磁性微粒 22,如第五圖所示,所述磁性微粒22附著於所述碳奈米 官21表面上。當然,於其他實施例中,亦可採用硫酸鐵 、硝酸鈷或硝酸鎳等溶液作為電解液,而將鐵、鈷、鎳 等磁性金屬之金屬離子還原至所述碳奈米管21表面。 [0038] 步驟(c),將所述具有磁性微粒22之複數碳奈米管21分散 於一基體材料30中。所述基體材料30包括矽膠系列、石 臘、眾乙稀乙二醇、聚酯、環氧樹脂系列、缺氧膠系列 或壓克力膠系列。本實施例中,所述基體材料選用石 臘,將經過步驟(b)處理之所述奈米管陣列2〇從導電基底 10上剝離,形成表面具有磁性微粒22之複數碳奈米管21 ,並使所述複數碳奈米管21均勻散佈於所述液態石臘中 [0039] 步驟(d) ’固化所述基體材料,形成熱介面材料。將所述 散佈有複數碳奈米管21之基體材料3〇固化或凝固。本實 施例中’將所述散佈有複數碳奈米管21之液態石臘於室 溫下冷卻固化,即形成熱介面材料1〇〇。 [0040] 請一併參閱第六圆及第七圖,本技術方案提供之熱介面 材料製備方法還進一步包括,於步驟(C)完成後,將所述 基體材料30置於一磁場中,使所述複數碳奈米管21於基 體材料30中疋向排列。本實施例中,於步驟(c)完成後, 1013203202-0 〇9412923产單編號A〇101 第9頁/共I6頁 1378071 __ ·_ 1101年05月29日梭正替换真 將所述散佈有複數碳奈米管21之液態石臘置於由一第一 ^ 1 -…磁極8Γ及一第二裢極打形成之均勻磁場中π所·遝表面具 有磁性微粒22之複數碳奈米管21於所述均勻磁場之磁力 作用下,以定向排列形式散佈於所述液態石臘中。 [0041] 本技術方案之熱介面材料100中碳奈米管表面形成有磁性 微粒22,可通過外加於所述熱介面材料1〇〇之磁場改變所 述碳奈米管之排列方向,將所述碳奈米管按需要傳熱之 方向定向排列於所述基體材料中,使得碳奈米管之縱向 導熱特性得到最大限度之利用,因而可得到具有高導熱 係數之熱介面材料。 [0042] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本 案技藝之人士援依本發明之精神所作之等效修飾或變化 ’皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [〇〇43] 第一圖係本技術方案實施例中熱介面材料之示意圖。 t0044] 第二圖係本技術方案實施例中熱介面材料之製備流程示 意圖》 [〇〇45] 第三圖係本技術方案實施例中生斧碳奈米管陣列之示意 圖。 [〇〇46] 第四圖係本技術方案實施例中碳奈米管表面形成磁性微 粒之示意圖。 1013203202-0 [0047] 第五圖係第四圖中IV所示部分之放大示意圖。 09412923#單蝙號A0101 第10頁/共16頁 1.378071 101年05月29日核正替換頁 [0048] 第六圖係本技術方案實施例中碳奈米管散佈於基體材料 .之示意圖。 [0049] 第七圖係本技術方案實施例中定向排列複數碳奈米管之 示意圖。 【主要元件符號說明】The carbon nanotube table in the thermal interface material of the technical solution is advantageous for further improving the thermal properties of the magnetic particle surface of the thermal interface material. In addition, 09412923#单号A〇101 Page 6 of 16 pages 1013203202-0 1378071 [Ϊ^Ι年.05月29日修正^页' can change the carbon by the magnetic field applied to the thermal interface material The arrangement of the nanotubes, the direction of the nanotubes, will be described. The carbon nanotubes are required to be oriented in the direction of the backing: the arrangement in the matrix material maximizes the longitudinal thermal conductivity of the carbon nanotubes The use of the thermal interface material having a high thermal conductivity can be obtained. [Embodiment] [The present technical solution will be further described in detail below with reference to the accompanying drawings. [0030] Referring to the first and fifth figures, the present technical solution provides a thermal dielectric material 100 comprising a matrix material 30 and an array of carbon nanotubes aligned in the matrix material 3〇. 2〇, the surface of the carbon nanotube of the carbon nanotube array has magnetic particles 22. The base material 30 just includes the Shixi gum series, the stone clothing, the polyethylene glycol, the polyester, the epoxy resin series, the anoxic glue series or the acrylic glue series. [0032] The material of the magnetic particles 22 includes magnetic metals such as iron, cobalt, nickel, and the like. Circle 4 - and referring to the first and second figures, the technical solution also provides a method for preparing a thermal interface material, comprising the steps of: round step U), providing a plurality of carbon nanotubes; step (8), in the plural The surface of the carbon nanotubes forms magnetic particles; step (c) 'disperses the plurality of carbon nanotubes having magnetic particles in the matrix material; and step (4) cures the matrix material to form a thermal interface coating.阙Please - and referring to the third to sixth figures, the technical solutions are described in detail in conjunction with the embodiments. [0036] In step (a), a plurality of carbon nanotubes 21 are provided. First, provide a conductive substrate 1〇09412923# single number A0101 1013203202-0 101 years. May 29th revised replacement page ··' -> 35 ifcl m /, then in the conductive barrier 管 管 tube array pair 2 Ό. The conductive substrate rot composed of a plurality of carbon nanotubes 21 is formed on the substrate 10, and the glass substrate of the metal-based conductive layer is formed. The carbon nanotubes include the chemical vapor deposition method. , plasma assisted chemical vapor deposition f ion assisted chemical vapor deposition or printing. In this embodiment, chemical vapor deposition is used to first form a catalyst on the conductive substrate 10 and then pass the carbon source gas at a high temperature. To form a carbon nanotube array 2G. The catalyst comprises a transition metal such as iron, recording, drilling, etc. The specific method of the carbon source gas including methane, ethylene, propylene, acetylene, methanol and ethanol is to use a conductive glass substrate. The conductive substrate is covered with a 5 nm thick iron film (not shown) on the conductive substrate 10, and annealed in air at 30 ° C; _ chemical vapor deposition chamber (Chemical Vap〇) r (1)(10) Chamber Forming a carbon nanotube array 20 on the conductive substrate 1 () with a carbon source gas at a temperature of 7 ° C. [0037] Step (8) 'forming a magnetic field on the surface of the plurality of carbon nanotubes 21 The material of the magnetic particles 22 includes a magnetic metal such as iron, drill, recording, etc. To form the magnetic fine particles 22 on the surface of the plurality of carbon nanotubes 21, the carbon nanobes formed by the step (a) are formed. The conductive substrate 1〇 of the rice tube array is used as a working electrode, and a magnetic metal is formed on the surface of the carbon nanotube tube 21 of the carbon nanotube array by a three-pole electrochemical reaction. In the present embodiment, iron is used as the magnetic fine particles 22. Specifically, the conductive substrate 10 on which the carbon nanotube array 2 is formed is used as a working electrode, platinum (Pt) is used as a counter electrode 60, and silver/vaporized silver (Ag/Agci) is used as a material. Reference electrode 7〇. The working electrode, the counter electrode 60 and the reference electrode 7 are placed in a three-pole _292# single number A 〇 101 page 8 / a total of 16 pages 1013203202-0 1378071 flOl year 29th Π 浓度 浓度 浓度 浓度 页 页 页 页 浓度 浓度 浓度 浓度 浓度 浓度 浓度 浓度 浓度 浓度 浓度 浓度Η~1. The iron nitrate solution of 〇摩-尔y (ra0'l/L) is produced in the present embodiment. The iron nitrate solution having a concentration of 〇. 〇lm〇l/L is selected. The electrochemical reduction reaction is carried out by nitric acid. The iron ions in the iron solution are reduced to the nano-scale iron particles as the magnetic particles 22 on the surface of the carbon nanotube 21 of the carbon nanotube array 20, as shown in the fifth figure, the magnetic particles 22 are attached to the On the surface of the carbon nanotubes 21. Of course, in other embodiments, a solution such as iron sulfate, cobalt nitrate or nickel nitrate may be used as the electrolyte, and metal ions of a magnetic metal such as iron, cobalt or nickel may be reduced to the above. The surface of the carbon nanotube tube 21. [0038] In step (c), the plurality of carbon nanotubes 21 having the magnetic particles 22 are dispersed in a matrix material 30. The base material 30 comprises a silicone series, a stone wax, a polyethylene glycol, a polyester, an epoxy resin series, an anoxic glue series or an acrylic glue series. In this embodiment, the base material is selected from paraffin, and the nanotube array 2〇 processed in the step (b) is peeled off from the conductive substrate 10 to form a plurality of carbon nanotubes 21 having magnetic particles 22 on the surface. And the plurality of carbon nanotubes 21 are evenly dispersed in the liquid paraffin. [0039] Step (d) 'curing the base material to form a thermal interface material. The base material 3 of the plurality of carbon nanotubes 21 is solidified or solidified. In the present embodiment, the liquid paraffin in which the plurality of carbon nanotubes 21 are dispersed is cooled and solidified at room temperature to form a thermal interface material. [0040] Please refer to the sixth circle and the seventh figure together. The method for preparing the thermal interface material provided by the technical solution further includes: after the step (C) is completed, placing the base material 30 in a magnetic field, so that The plurality of carbon nanotubes 21 are aligned in the matrix material 30. In this embodiment, after the completion of the step (c), 1013203202-0 〇 9412923 production order number A 〇 101 page 9 / total I6 page 1378071 __ · _ 1 May 1st, the shuttle is replaced by the true The liquid paraffin of the plurality of carbon nanotubes 21 is placed in a uniform magnetic field formed by a first magnetic pole 8 Γ and a second 裢 pole, and the plurality of carbon nanotubes 21 having magnetic particles 22 on the surface of the π 遝 遝 surface Under the magnetic force of the uniform magnetic field, it is dispersed in the liquid paraffin in an oriented arrangement. [0041] The surface of the carbon nanotube in the thermal interface material 100 of the present technical solution is formed with magnetic particles 22, and the arrangement direction of the carbon nanotubes can be changed by a magnetic field applied to the thermal interface material. The carbon nanotubes are oriented in the matrix material in the direction in which heat transfer is required, so that the longitudinal thermal conductivity of the carbon nanotubes is utilized to the utmost extent, so that a thermal interface material having a high thermal conductivity can be obtained. [0042] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [〇〇43] The first figure is a schematic view of a thermal interface material in the embodiment of the present technical solution. T0044] The second drawing is a schematic diagram of the preparation process of the thermal interface material in the embodiment of the present technical solution. [ 第三45] The third figure is a schematic diagram of the array of the raw axe carbon nanotubes in the embodiment of the present technical solution. [ 第四46] The fourth figure is a schematic view showing the formation of magnetic particles on the surface of the carbon nanotube in the embodiment of the present technical solution. 1013203202-0 [0047] The fifth figure is an enlarged schematic view of a portion shown by IV in the fourth figure. 09412923# Single bat number A0101 Page 10 of 16 1.378071 May 29, 2010 Nuclear replacement page [0048] The sixth figure is a schematic diagram of the carbon nanotubes dispersed in the base material in the embodiment of the present technical solution. [0049] The seventh figure is a schematic diagram of aligning the plurality of carbon nanotubes in the embodiment of the present technical solution. [Main component symbol description]

[0050] 熱介面材料:100 [0051] 導電基底:10 [0052] 碳奈米管陣列:20 [0053] 碳奈米管:21 [0054] 磁性微粒:22 [0055] 基體材料:30 [0056] 電解池:40 [0057] 電解液:50 [0058] 對電極:6 0 [0059] 參考電極:70 [0060] 第一磁極:81 [0061] 第二磁極:82 09412923# 單编號 A〇101 第11頁/共16頁 1013203202-0[0050] Thermal interface material: 100 [0051] Conductive substrate: 10 [0052] Carbon nanotube array: 20 [0053] Carbon nanotube: 21 [0054] Magnetic microparticles: 22 [0055] Matrix material: 30 [0056 Electrolytic cell: 40 [0057] Electrolyte: 50 [0058] Counter electrode: 6 0 [0059] Reference electrode: 70 [0060] First magnetic pole: 81 [0061] Second magnetic pole: 82 09412923# Single number A〇 101 Page 11 of 16 1013203202-0

Claims (1)

1378071 七、 1 101年05月29日按正替換頁 •申請專利範圍: • 一i鼽介、面材料之製褚夯法丨寞苞菸下述步驟:· ··,、 .-提供複數碳奈米管,所述複數碳奈米管生長於一導電基底 9 將所述形成有複數後奈米管之導電基底作為工作電極,始 為材料作為對電極以及銀/氣化銀為材料作為參考電極, 並將該工作電極、對電極與參考電極置於一三極式電解池 之電解液中,通過三極式電化學反應於所述複數碳奈米管 表面形成磁性微粒; 將所述具有磁性微粒之複數碳奈米管分散於一基體材料中 ® 9 2 3 4 5 固化所述基體材料’形成熱介面材料D •如申凊專利範圍第1項所述之熱介面材料之製備方法,其 中’所述導電基底包括導電玻璃基板、金屬基板或具有金 屬導電層之玻璃基板。 .如申請專利範圍第1項所述之熱介面材料之製備方法,其 中,所述複數碳奈米管形成一碳奈米管陣列。 1 .如申請專利範圍第3項所述之熱介面材料之製備方法,其 中,所述碳奈米管陣列之形成方法包括化學氣相沈積法、 等離子輔助化學氣相沈積法、等離子輔助熱絲化學氣相沈 積法或印刷法。 .如申請專利範圍第1項所述之熱介面材料之製備方法,其 中,所述磁性微粒之材料包括鐵、鈷、錄。 6 .如申請專利範圍第1項所述之熱介面材料之製備方法,其 中,所述基體材料包括矽膠系列、石臘、聚乙烯乙二醇、 09412923#單編號 Α0101 第12頁/共16頁 1013203202-0 1378071 101年.05月29日核正替換百 聚酯' 環氧樹脂系列、缺氧膠系列或壓克力膠系列。 T .如申請專利範圍第1項至第6項中任意一項所述之熱介面材 ~ 料之製備方法,其中,所述熱介面材料製備方法進一步包 括,施加磁場作用使所述複數碳奈米管於基體材料中定向 排列。1378071 VII, 1 May 29, 2011 According to the replacement page • The scope of application for patents: • The method of making 鼽 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 a nanotube tube, the plurality of carbon nanotubes are grown on a conductive substrate. The conductive substrate on which the plurality of nanotubes are formed is used as a working electrode, and the material is used as a counter electrode and silver/vaporized silver as a reference material. An electrode, and the working electrode, the counter electrode and the reference electrode are placed in an electrolyte of a three-electrode electrolytic cell, and magnetic particles are formed on the surface of the plurality of carbon nanotubes by a three-pole electrochemical reaction; The plurality of carbon nanotubes of the microparticles are dispersed in a matrix material. 9 2 3 4 4 curing the matrix material to form a thermal interface material D. The preparation method of the thermal interface material according to claim 1, wherein The conductive substrate comprises a conductive glass substrate, a metal substrate or a glass substrate having a metal conductive layer. The method of preparing a thermal interface material according to claim 1, wherein the plurality of carbon nanotubes form an array of carbon nanotubes. 1. The method for preparing a thermal interface material according to claim 3, wherein the method for forming the carbon nanotube array comprises a chemical vapor deposition method, a plasma assisted chemical vapor deposition method, a plasma assisted hot wire Chemical vapor deposition or printing. The method of preparing a thermal interface material according to claim 1, wherein the material of the magnetic particles comprises iron, cobalt, and recorded. 6. The method for preparing a thermal interface material according to claim 1, wherein the base material comprises a silicone rubber series, a paraffin wax, a polyethylene glycol, a 09412923# single number Α0101, a 12th page, or a total of 16 pages. 1013203202-0 1378071 101 years. May 29th, the nuclear replacement of the 100 polyester 'epoxy resin series, anoxic glue series or acrylic series. The method for preparing a thermal interface material according to any one of claims 1 to 6, wherein the method of preparing the thermal interface material further comprises: applying a magnetic field to cause the plurality of carbon The rice tubes are oriented in the matrix material. 09412923^^^^ A〇101 第13頁/共16頁 1013203202-009412923^^^^ A〇101 Page 13 of 16 1013203202-0
TW94129236A 2005-08-26 2005-08-26 Thermal interface material and method for making same TWI378071B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94129236A TWI378071B (en) 2005-08-26 2005-08-26 Thermal interface material and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94129236A TWI378071B (en) 2005-08-26 2005-08-26 Thermal interface material and method for making same

Publications (2)

Publication Number Publication Date
TW200708475A TW200708475A (en) 2007-03-01
TWI378071B true TWI378071B (en) 2012-12-01

Family

ID=48087841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94129236A TWI378071B (en) 2005-08-26 2005-08-26 Thermal interface material and method for making same

Country Status (1)

Country Link
TW (1) TWI378071B (en)

Also Published As

Publication number Publication date
TW200708475A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
TWI253467B (en) Thermal interface material and method for making same
US7674410B2 (en) Method for manufacturing a thermal interface material
TWI299358B (en) Thermal interface material and method for making same
US7253442B2 (en) Thermal interface material with carbon nanotubes
JP4653029B2 (en) Thermally conductive material and method for producing the same
CN1837147B (en) Thermal interface material and its production method
CN101768427B (en) Thermal interface material and preparation method thereof
US20060073332A1 (en) Thermal interface material and method for manufacturing same
TW200411038A (en) Thermal interface material
CN105247674B (en) Heat-radiating structure and its manufacture method and electronic device
CN101087987A (en) Nanoengineered thermal materials based on carbon nanotube array composites
JP2010519162A (en) Process for preparing a conductive film and article prepared using the process
CN101864280A (en) Thermal interface material for packaging and radiating chip and preparation method thereof
TW200935569A (en) On-chip temperature gradient minimization using carbon nanotube cooling structures with variable cooling capacityy
CN110255538A (en) A kind of preparation method of graphene cooling fin
CN1919961A (en) Heat interfacial material and method for making the same
TWI331132B (en) Method of fabricating thermal interface material
CN100356556C (en) Thermal interfacial material and method of manufacture
TWI378071B (en) Thermal interface material and method for making same
CN104637898B (en) The heat-conductive composite material layer and electronic device conductive structure packaging method of integrated circuit device
CN100405587C (en) Radiator and its preparation method
CN101423751B (en) Thermal interfacial material and its preparation method
CN1266247C (en) Thermal interface material and its production method
TW200909342A (en) Thermal pad with carbon nanotube array and method of making the same
TWI246879B (en) Thermal interface material and method for making same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees