200909342 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米碳管複合熱界面材料及其 ' 製備方法,尤其涉及一種奈米碳管陣列複合導熱片及 其製備方法。 【先前技術】 自1991年日本NEC公司的Iijima發現奈米碳管 (Carbon Nanotube,CNT)以來(Ii lima S·,Nature,, vol 354,p56(1991)),立即引起科學界及産業界的 極大重視。奈米碳管具有優良的機械和光電性能,被 認爲係複合材料的理想添加物。奈米碳管/聚合物複 合材料首次報道後已成爲世界科學研究的熱點 (A jayan Ρ. Μ. , Stephan 0. , ColliexC. , Tranth D., ' Science., vol 265,pi212(1994): Calvert Ρ., Nature, vol 399,p210(1999))。奈米碳管作爲增强 體和導電體,形成的複合材料具有抗靜電,吸收微波 和屏蔽電磁等性能,具有廣泛的應用前景。 奈米碳管複合材料的製備方法通常有原位聚合 法、溶液共混法和熔體共混法。原位聚合法係利用奈 米碳管表面的官能團參與聚合或利用引發劑打開奈 ' 米碳管的7Γ鍵,使其參與聚合反應而達到與有機相的 良好相容。溶液共混一般係把奈米碳管分散到聚合物 的溶劑中,再將聚合物溶入其中,加工成型後將溶劑 清除,從而製得複合材料。融體共混法係把奈米碳管 200909342 4 與聚合物基體材料在大于基體材料熔點的溫度下熔 融幷均勻混合而得到奈米碳管複合材料。 , —由于奈米碳管具有優异的機械强度和熱導率,利 . 収向排列的奈米碳管㈣結構,可製備性能優异的 ,米碳管導熱材料和奈米碳管複合增强材料。奈米碳 官對複合材料的導熱性能和機械性能增强效果與奈 米碳管在複合材料中的密度相關。 、丁 先前技術中,奈米碳管複合熱界面材料中的夺米 碳管陣列一般采用化學氣相沈積(c V D)方法製備Γ然 而,CVD方法直接生長所得到的奈米碳管陣列中的夺 米碳管的密度小于0.01克每立方厘米(g/cm3),在: 觀上係較爲鬆散的,奈米碳管之間的間距大于奈米碳 管自身直徑的數倍。而且c V D法直接生長所得到的^ '米碳管陣列受CVD方法生長的限制,在其陣列中奈米 石厌官的岔度基本上為確定的,無法任意調控。以該低 密度奈米碳管陣列製備的奈米碳管複合熱界面材 料’由于其中奈米碳管導熱通道的密度太低,從而使 知其在導熱或複合材料等應用中並沒有達到理想的 效果。 對上述的低密度奈米碳管陣列複合熱界面材料 • 進行切片,所製備的奈米碳管陣列複合導熱片,同樣 由于其中的奈米碳管導熱通道的密度較低,所以該奈 米碳管陣列複合導熱片的導熱係數較低,從而阻礙了 奈米碳管陣列複合導熱片在導熱領域的廣泛應用。 200909342 有鑒於此,確有必要提供一種奈米$炭管陣列複合 導熱片及其製備方法,該奈米碳管陣列複合導熱片中 的奈米碳管的密度較高、排列緊密且定向排列;所述 的製備方法工序簡單且製備的奈米碳管陣列複合導 熱片中的奈米碳管的密度可以控制。 【發明内容】 一種奈米碳管陣列複合導熱片,該奈米碳管陣列 複合導熱片包括多個奈米碳管和高分子材料,其中的 多個奈米碳管以陣列形式排列,高分子材料填充在上 述的多個奈米碳管之間的間隙中,上述的奈米碳管排 列緊密且定向排列,奈米碳管陣列複合導熱片中的奈 米碳管的密度爲0.1〜2. 2g/cm3。 所述的奈米碳管陣列複合導熱片的厚度爲20微 米〜5毫米。在奈米碳管陣列複合導熱片中的奈米碳管 兩端開口,且奈米碳管的兩端從奈米碳管陣列複合導 熱片中露出。 一種奈米碳管陣列複合導熱片的製備方法,其包 括以下步驟:提供一形成于一基底的奈米碳管陣列和 一高分子前驅體溶液;將奈米碳管陣列和高分子前驅 體溶液混合,形成一高分子前驅體/奈米碳管陣列混 合體;沿著平行于基底的方向擠壓該高分子前驅體/ 奈米碳管陣列混合體,形成一高分子前驅體/高密度 奈米碳管陣列混合體;聚合高分子前驅體/高密度奈 米碳管陣列混合體中的高分子前驅體,形成高密度奈 10 200909342 米灰官陣列複合材料;對該高密度奈米碳管陣列複合 材料進行切片,從而形成奈米碳管陣列複合導熱片。 • 與先前技術相比較,所述的奈米碳管陣列複合導 . Μ片及其製備方法具有以下優點:其-,所述的奈米 碳管陣列複合導熱片中,奈米碳管排列緊密且定向排 列’其中的奈米碳管的密度可根據需要控制爲CVD法 直接生長所得到的奈米碳管陣列複合導熱片的 ^ 咖倍’即導熱片中奈米碳管導熱通道的密度提高 了 1 〇 2GG倍’ k而該奈米碳管陣列複合導熱片具有 優异的導熱性能,可廣泛地應用于導熱領域;其二, 所述的奈米碳管陣職合導熱片中,由于奈米碳管之 ^緊密地填充高分子材料’使得奈米碳管之間連接穩 疋,比純奈米碳管陣列的力學性能更爲優良;其三, .所述的奈米碳管陣列複合導熱片中的奈米碳管兩端 開:’且奈米碟管的兩端從奈米碳管陣列複合導熱片 I ^露出;其四’所述的製備方法工序簡單且製備的太 米碳管陣列複合導熱片中的奈米碳管的密度可以押 制。 【貫施方式】 、下面將結合附圖及具體實施例,對本技術方案作 • 進—步的詳細說明。 山—4參閱圖1,本技術方案實施例提供了一種奈米 奴督陣列複合導熱片的製備方法,其具體包括以下牛 驟: Γ父 11 200909342 (一)提供一形成于一基底的奈米碳管陣列和一 高分子前驅體溶液。 製備該奈米碳管陣列的方法爲化學氣相沈積 法。本實施例中奈米碳管陣列的製備過程具體爲: 首先,果供一基底,該基底可選用p型或N型石夕 基底,或選用石英片,另,還可選用玻璃,本實施例 優選爲采用4英寸的石夕基底; 其次,在基底上沈積一個催化劑層,催化劑可以 k用鐵(Fe)、録((:〇)、鎳(Ni)或者其任意組合的 合金之一,本實施例優選爲鐵作催化劑,所形成的催 化劑溥膜的厚度爲〇· 5〜5奈米(nm),本實施例優選爲 Inm厚度鐵催化劑薄膜,另,形成催化劑層的方法還 可為電子束蒸發或磁控濺射; 再次,將沈積有催化劑層的基底放置在空氣中, 在30(TC下退火0·2〜12h,催化劑層經退火後形成氧 化顆粒; 再次,將基底放置在低壓反應爐十,通入保護氣 體,在保護氣體的保護下加熱至一個預定溫度,一般 爲60(M00(TC。保護氣體爲惰性氣體或氮氣,優選 地’保護氣體爲氬氣; 再次’通入碳源氣與載氣的混合氣體,反應0 ·丨〜2 小時生長出奈米碳管陣列。其中,碳源氣爲碳氮化合 物’可爲乙炔、乙稀、甲烧等,優選地,碳源氣爲乙 炔;載氣爲惰性氣體或者氫氣,優選地,載氣爲氮氣。 12 200909342 該奈米碳管陣列爲多個彼此平行且垂直于基底 ^長?奈米碳管形成的純奈米碳管陣列,由于生成的 二只厌s長度較長,部分奈米碳管會相互纏繞。通過 =制上述生長條件,該超順排奈米碳管陣列中基本不 T有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 ^以理解’本實施例提供的奈米碳管㈣不限于上述 製備ί法。本實施例提供的奈米碳管陣列包括單壁奈 米石厌&陣列、雙壁奈米碳管陣列及多^奈米碳管陣列 中的一種。 其中,局分子前驅體溶液爲由矽橡膠、灌封膠、 J哀氧樹脂及石臘中的一種或它們的組合組成的溶液 之-。可以理解’本技術方案中所涉及的高分子前驅 體溶液幷不僅限于上述的溶液,只要為通過㈣度的 前驅體固化方式聚合的高分子材料、或者通過溶解或 熔化的方式形成的低粘度液體的高分子材料均可。 本實施方式采用的高分子前驅體溶液爲矽橡膠 溶液。該矽橡膠溶液的製備方法爲在矽橡膠中加入適 量乙酸乙轉釋,㈣均㈣,形成—㈣橡膠的溶 液。 (二)將奈求碳管陣列和高分子前驅體溶液混 合,形成一高分子前驅體/奈米碳管陣列 其中,將綱管陣列和高分子前混合 爲在’壓裝置中進打混合。請參閱目2,本實施例 中所述的擠壓裝置10包括一上壓板12,一下壓板 13 200909342 14兩個第—侧板16,兩個第二側板。上述的兩 個第側板16與上述的兩個第二側板18設置于上壓 板12和下屋板14之間,幷在上壓板12和下壓板η 之間的中心位置形成-空腔22。上壓板12通過螺絲 2續稱地固定于下壓板14上,上壓板12的面積與下 壓板14相等。進-步地,兩個第-侧板16沿第—方 _地分布在空腔22的兩側;兩個第二側板18沿 第二方向對稱地分布在空腔22 @另外兩側,其中, 上述的第一方向與第二方向相互垂直。 本實施例令,將奈米碳管陣列4〇和高分子前驅 體溶液50混合包括以下步驟:將上述奈米碟管陣列 40連同基底30放置于擠壓裝置1〇的空腔22中,之 後,將问分子前驅體溶液5〇倒入放置有奈米碳管陣 列40 _壓裝£ 10空腔22巾進行混錯,形成— 高分子前驅體/奈米碳管陣列混合體6〇。 其中,將一奈米碳管陣列4〇連同基底3〇直接放 置于上述擠壓裝置10的空腔22中’具體的,先將上 述的兩個第一侧板16和兩個第二側板18放置在下壓 板14上,在下壓板14的中心位置形成一空腔22,再 將奈米碳管陣列40連同基底30直接放置到上述的空 腔22中,再將高分子前驅體溶液5〇倒入放置有奈米 碳管陣列40的擠壓裝置空腔22中,之後將再將上壓 板12固定到下壓板14上。200909342 IX. Description of the Invention: [Technical Field] The present invention relates to a carbon nanotube composite thermal interface material and a method for preparing the same, and more particularly to a carbon nanotube array composite thermally conductive sheet and a preparation method thereof. [Prior Art] Since Iijima of NEC Corporation of Japan discovered the Carbon Nanotube (CNT) in 1991 (Ii lima S·, Nature, vol 354, p56 (1991)), it immediately caused the scientific and industrial circles. Great attention. Nano carbon tubes have excellent mechanical and optoelectronic properties and are considered to be ideal additives for composite materials. Nanocarbon tubes/polymer composites have become the hotspot of scientific research in the world since their first report (A jayan Ρ. Μ. , Stephan 0. , ColliexC. , Tranth D., ' Science., vol 265, pi212 (1994): Calvert Ρ., Nature, vol 399, p210 (1999)). As a reinforcement and an electrical conductor, the carbon nanotubes have a composite material with antistatic properties, absorption of microwaves and shielding electromagnetic properties, and have broad application prospects. The preparation method of the carbon nanotube composite material generally includes an in-situ polymerization method, a solution blending method, and a melt blending method. The in-situ polymerization method utilizes a functional group on the surface of the carbon nanotube to participate in polymerization or an initiator to open the 7-membered bond of the carbon nanotube to participate in the polymerization reaction to achieve good compatibility with the organic phase. Solution blending generally involves dispersing a carbon nanotube into a solvent of a polymer, dissolving the polymer therein, and removing the solvent after processing to obtain a composite material. The melt blending method uniformly melts the carbon nanotubes 200909342 4 and the polymer matrix material at a temperature greater than the melting point of the matrix material to obtain a carbon nanotube composite material. ,——Because of the excellent mechanical strength and thermal conductivity of the carbon nanotubes, the nano-carbon tube (four) structure of the aligned arrangement can produce excellent performance, and the carbon nanotube heat conductive material and the carbon nanotube composite reinforcement material. The thermal conductivity and mechanical properties of the nanocarbons are related to the density of the carbon nanotubes in the composite. In the prior art, the array of carbon nanotubes in the carbon nanotube composite thermal interface material is generally prepared by chemical vapor deposition (c VD) method. However, the CVD method directly grows the obtained carbon nanotube array. The density of the carbon nanotubes is less than 0.01 gram per cubic centimeter (g/cm3). In the view, the spacing is relatively loose, and the spacing between the carbon nanotubes is greater than several times the diameter of the carbon nanotubes themselves. Moreover, the ''m carbon tube array' obtained by direct growth of the c V D method is limited by the growth of the CVD method, and the twist of the nano-stone in the array is basically determined and cannot be arbitrarily regulated. The carbon nanotube composite thermal interface material prepared by the low-density carbon nanotube array is incapable of being ideal in applications such as heat conduction or composite materials due to the low density of the heat conduction channel of the carbon nanotubes. effect. The above-mentioned low-density carbon nanotube array composite thermal interface material is sliced, and the prepared carbon nanotube array composite thermal conductive sheet is also because the carbon nanotube heat conduction channel has a low density, so the nano carbon The thermal conductivity of the tube array composite thermal conductive sheet is low, which hinders the wide application of the carbon nanotube array composite thermal conductive sheet in the field of heat conduction. In view of this, it is indeed necessary to provide a nanometer carbon tube array composite thermal conductive sheet and a preparation method thereof, wherein the carbon nanotubes in the carbon nanotube array composite thermal conductive sheet have a high density, a tight arrangement and an orientation arrangement; The preparation method is simple in process and the density of the carbon nanotubes in the prepared carbon nanotube array composite thermally conductive sheet can be controlled. SUMMARY OF THE INVENTION A carbon nanotube array composite thermally conductive sheet comprising a plurality of carbon nanotubes and a polymer material, wherein the plurality of carbon nanotubes are arranged in an array, the polymer The material is filled in the gap between the plurality of carbon nanotubes, wherein the carbon nanotubes are closely arranged and aligned, and the carbon nanotubes in the carbon nanotube array composite thermally conductive sheet have a density of 0.1 to 2. 2g/cm3. The carbon nanotube array composite thermally conductive sheet has a thickness of 20 micrometers to 5 millimeters. The carbon nanotubes in the carbon nanotube array composite thermally conductive sheet are open at both ends, and both ends of the carbon nanotubes are exposed from the carbon nanotube array composite heat guide. A method for preparing a carbon nanotube array composite thermally conductive sheet, comprising the steps of: providing a carbon nanotube array and a polymer precursor solution formed on a substrate; and disposing the carbon nanotube array and the polymer precursor solution Mixing to form a polymer precursor/nanocarbon nanotube array mixture; extruding the polymer precursor/nanocarbon nanotube array mixture in a direction parallel to the substrate to form a polymer precursor/high density naphthalene a carbon nanotube array hybrid; a polymer precursor in a polymeric high molecular precursor/high density carbon nanotube array mixture to form a high density nano 10 200909342 m ash array composite; the high density carbon nanotube The array composite is sliced to form a carbon nanotube array composite thermally conductive sheet. • Compared with the prior art, the carbon nanotube array composite lead and the preparation method thereof have the following advantages: in the carbon nanotube array composite thermal conductive sheet, the carbon nanotubes are closely arranged And the orientation of the carbon nanotubes in which the density of the carbon nanotubes can be controlled as needed to directly grow the carbon nanotube array composite thermally conductive sheet obtained by the CVD method, that is, the density of the carbon nanotube heat conduction channel in the thermal conductive sheet is increased. The carbon nanotube array composite thermal conductive sheet has excellent thermal conductivity and can be widely used in the field of heat conduction; secondly, the carbon nanotube array thermal conductive sheet is The carbon nanotubes are tightly packed with the polymer material', so that the connection between the carbon nanotubes is stable, and the mechanical properties of the carbon nanotube array are better than those of the pure carbon nanotube array. Third, the carbon nanotube array is described. The carbon nanotubes in the composite thermally conductive sheet are opened at both ends: 'and the two ends of the nanotube are exposed from the carbon nanotube array composite thermal conductive sheet I ^; the preparation method described in the four' is simple and the prepared rice is prepared. Carbon nanotube array composite thermal conductive sheet of carbon nanotube Density can be imposed. [Complex Mode] The following is a detailed description of the technical solution in conjunction with the drawings and specific embodiments. 4 - FIG. 1 , the embodiment of the present invention provides a method for preparing a nano slave array composite thermal conductive sheet, which specifically includes the following bovine steps: Uncle 11 200909342 (1) Providing a nanometer formed on a substrate Carbon tube array and a polymer precursor solution. The method of preparing the carbon nanotube array is a chemical vapor deposition method. The preparation process of the carbon nanotube array in this embodiment is specifically as follows: First, a substrate is provided, and the substrate may be a p-type or an N-type stone substrate, or a quartz plate may be used, and a glass may also be selected. Preferably, a 4-inch Shi Xi substrate is used; secondly, a catalyst layer is deposited on the substrate, and the catalyst may be one of iron (Fe), recorded ((: 〇), nickel (Ni) or any combination thereof. The embodiment preferably uses iron as a catalyst, and the formed catalyst ruthenium film has a thickness of 〇·5 to 5 nanometers (nm). In this embodiment, the Inm thickness iron catalyst film is preferred, and the method of forming the catalyst layer may also be an electron. Beam evaporation or magnetron sputtering; again, the substrate on which the catalyst layer is deposited is placed in the air, annealed at 30 (TC for 0·2 to 12 h, and the catalyst layer is annealed to form oxidized particles; again, the substrate is placed at a low pressure In the reaction furnace, the protective gas is introduced and heated to a predetermined temperature under the protection of the shielding gas, generally 60 (M00 (TC. The shielding gas is an inert gas or nitrogen gas, preferably the 'protective gas is argon gas; again' access carbon a mixed gas of a source gas and a carrier gas, and a reaction of 0·丨~2 hours to grow a carbon nanotube array. The carbon source gas is a carbonitride compound, which may be acetylene, ethylene, methyl or the like, preferably, a carbon source. The gas is acetylene; the carrier gas is an inert gas or hydrogen gas, preferably, the carrier gas is nitrogen. 12 200909342 The carbon nanotube array is a plurality of pure nanocarbons formed parallel to each other and perpendicular to the substrate In the tube array, due to the long length of the generated two anaes, some of the carbon nanotubes are entangled with each other. By the above growth conditions, the super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon. Or residual catalyst metal particles, etc. ^ To understand that the carbon nanotube (four) provided in the present embodiment is not limited to the above preparation. The carbon nanotube array provided in the present embodiment includes a single-walled nano-stone barrier array. A double-walled carbon nanotube array and one of a plurality of carbon nanotube arrays, wherein the local molecular precursor solution is composed of one or a combination of ruthenium rubber, potting compound, J oxidizing resin and paraffin wax. Solution - can understand 'this technical solution The polymer precursor solution 中 involved in the above is not limited to the above solution, and may be a polymer material polymerized by a (four) degree precursor curing method or a low viscosity liquid polymer material formed by dissolution or melting. The polymer precursor solution used in the embodiment is a ruthenium rubber solution, and the ruthenium rubber solution is prepared by adding an appropriate amount of acetic acid to the ruthenium rubber, and (4) uniformly (four) to form a solution of the (four) rubber. The carbon tube array and the polymer precursor solution are mixed to form a polymer precursor/carbon nanotube array, wherein the tube array and the polymer are mixed before mixing into the pressure device. The pressing device 10 described in this embodiment includes an upper pressing plate 12, a lower pressing plate 13 200909342 14, two first side plates 16, and two second side plates. The above-mentioned two first side plates 16 and the above-mentioned two second side plates 18 are disposed between the upper pressing plate 12 and the lower roofing plate 14, and a hollow portion 22 is formed at a central position between the upper pressing plate 12 and the lower pressing plate n. The upper platen 12 is continually fixed to the lower platen 14 by screws 2, and the area of the upper platen 12 is equal to that of the lower platen 14. Further, the two first side plates 16 are distributed along the first side of the cavity 22 on both sides; the two second side plates 18 are symmetrically distributed in the second direction on the cavity 22 @the other side, wherein The first direction and the second direction are perpendicular to each other. In this embodiment, mixing the carbon nanotube array 4 and the polymer precursor solution 50 includes the steps of: placing the above-described nanodisk array 40 together with the substrate 30 in the cavity 22 of the pressing device 1 The molecular precursor solution was poured into a carbon nanotube array 40 _ press-fit 10 cavity 22 towel for mixing, forming a polymer precursor/nanocarbon nanotube array mixture 6 〇. Wherein, a carbon nanotube array 4〇 is placed directly in the cavity 22 of the extrusion device 10 together with the substrate 3〇. Specifically, the two first side plates 16 and the two second side plates 18 are first introduced. Placed on the lower platen 14, a cavity 22 is formed at the center of the lower platen 14, and the carbon nanotube array 40 is placed directly into the cavity 22 together with the substrate 30, and the polymer precursor solution 5 is poured into the cavity. In the extrusion chamber cavity 22 of the carbon nanotube array 40, the upper platen 12 will then be secured to the lower platen 14.
其中,將高分子前驅體溶液倒入擠壓裝置1Q 14 200909342 空腔22中後,進一步還包括一抽真空的過程。其包 括以下步驟:首先將放置于擠壓裝置10空腔22中的 奈米碳管陣列40浸沒在高分子前驅體溶液50中;之 後,將擠壓裝置10放入真空室抽真空,真空度小于 0. 2大氣壓(atm),真空度和抽真空的時間可根據實際 需要進行選擇,抽真空過程可以使得奈米碳管陣列40 中的氣泡膨脹,從而浮出液面;待奈米碳管陣列40 中的空氣排淨後,高分子前驅體溶液50便可充分填 充奈米碳管之間的間隙,使得高分子前驅體溶液50 和奈米碳管陣列40形成良好的混合,從而形成一種 高分子前驅體/奈米碳管陣列混合體60。 可以理解,本發明所述的製備高分子前驅體/奈 米碳管陣列混合體的步驟幷不僅限于上述的製備步 驟,其還可爲將奈米碳管陣列40和高分子前驅體溶 液50放入其他裝置如表面孤等淺碟狀容器中進行混 合、抽真空等步驟,在上述混合及抽真空步驟完成 後,高分子前驅體溶液50會充分浸入奈米碳管陣列 40,形成一高分子前驅體/奈米碳管陣列混合體60。 (三)沿著平行于基底的方向擠壓高分子前驅體 /奈米碳管陣列混合體60,形成一高分子前驅體/高密 度奈米碳管陣列混合體70。 本實施例中,根據製備的高分子前驅體/奈米碳 管陣列混合體60的方法不同,形成一高分子前驅體/ 高密度奈米碳管陣列混合體70的具體製備過程也不 15 200909342 同。在一擠壓裝置10中將奈米碳管陣列40和高分子 前驅體溶液50混合,製備得到高分子前驅體/奈米碳 管陣列混合體60,可以在該擠壓裝置10中直接沿著 平行于基底的方向擠壓高分子前驅體/奈米碳管陣列 混合體60,從而得到高分子前驅體/高密度奈米碳管 陣列混合體70。另,還可將奈米碳管陣列40和高分 子前驅體溶液50放入其他裝置如表面m等淺碟狀容 器中進行混合、抽真空等步驟,形成一高分子前驅體 /奈米碳管陣列混合體60 ;之後,將上述的高分子前 驅體/奈米碳管陣列混合體60放入擠壓裝置10中, 沿著平行于基底的方向擠壓高分子前驅體/奈米碳管 陣列混合體60,從而得到高分子前驅體/高密度奈米 碳管陣列混合體70。 請參閱圖3,對擠壓裝置10中的高分子前驅體/ 奈米碳管陣列混合體60進行擠壓的過程包括:用第 一侧板16沿著第一方向相對移動,對高分子前驅體/ 奈米碳管陣列混合體60進行擠壓;之後,用第二侧 板18沿著第二方向相對移動,對高分子前驅體/奈米 碳管陣列混合體60進行擠壓。 所述的用第一侧板16沿著第一方向相對移動, 對高分子前驅體/奈米碳管陣列混合體60進行擠壓, 包括以下步驟:首先通過兩個第二侧板18固定設置 在擠壓裝置10的空腔22中的高分子前驅體/奈米碳 管陣列混合體60,之後通過兩個第一侧板16沿著第 16 200909342 :體1相對移動:對高分子前驅體/奈米碳管陣列混 古八"進仃擠壓,隨著擠壓形變程度的增大,上述 驅體/奈米竣管陣列混合體6G中的奈米碳管 之間的間距在第—方向上减小。 古:述:用第二側板1δ沿著第二方向相對移動, ^刀子前驅體/奈米碳管陣列混合體6G進行播麼,. 古八=步驟·用兩個第—側板16把上述擠壓後的 =子別驅體/奈米碳管陣列混合體6()固定,通過兩 弟—側板18沿著第二方向相對移動,對上述擠壓 ,的局分子前驅體/奈米破管陣列混合體⑼進行擠 :’隨著擠壓形變程度的增大,上述擠壓後的高分子 别驅體/奈米碳管陣列混合體6〇中的奈米碳管之間的 間距在第二方向上减小。 、其中,通過對上述的高分子前驅體/奈米碳管陣 j此cr體60的擠壓使得高分子前驅體/奈米碳管陣列 此合/體6G中的奈米碳管的密度達到預先設定的密 土’從而形成高分子前驅體/高密度奈米碳管陣列混 口體70。該帛先設定的密度可根據實際需要進行選 擇。 可以理解,奈米碳管陣列4〇中的奈米碳管之間 的間距隨著擠壓形變的增大而减小;奈米碳管陣列 中的奈米碳管的密度隨著擠壓形變的增大而增加。 故,本實施例可通過控制對奈米碳管陣列4〇施加的 擠壓形ϋ的程度的大小,進而控制所述的高分子前驅 17 200909342 * 體/高密度奈米碳管陣列混合體70中奈米碳管的密 度。 * 本實施例獲得的高分子前驅體/高密度奈米碳管 . 陣列混合體70的奈米碳管的密度爲CVD法直接生長 所得到的奈米碳管密度的50倍;該高分子前驅體/高 密度奈米碳管陣列混合體70中的奈米碳管排列緊密 且定向排列。 另外,本發明中所采用的擠壓裝置10幷不限于 " 采用圖2所示的結構,進一步,本發明高分子前驅體 /高密度奈米碳管陣列混合體70的製備幷不限于采用 特定的擠壓裝置10壓縮的方式,其關鍵在于能沿著 平行于基底的方向對奈米碳管陣列40施加一機械壓 力,通過擠壓使奈米碳管陣列40中的奈米碳管之間 . 的間距减小,密度增大,從而獲得高分子前驅體/高 密度奈米碳管陣列混合體70,故,依據本發明精神對 本發明所述擠壓裝置作其它非實質性變化,都應包含 " 在本發明所要求的保護範圍内。 (四)聚合高分子前驅體/高密度奈米碳管陣列 混合體70中的高分子前驅體溶液50,從而形成高密 • 度奈米碳管陣列複合材料8 0。 . 其中,高分子前驅體溶液50固化步驟包括:在 高分子前驅體溶液50中預先加入少量固化劑,控制 固化劑的添加量以使高分子前驅體溶液50的固化時 間多于兩個小時爲准;按該南分子材料的適當固化方 18 200909342 法,如加熱,使高分子前驅體溶液5〇聚合固化。另, 高分子前驅體溶液50爲單組分的高分子前驅體5〇 ' 時,還可以釆用室溫靜置固化的方式進行聚合,即在 . I溫下’靜置該單組分的高分子前驅體溶液5〇進行 固化聚合。 固化劑包括環氧樹脂固化劑、驗性類固化劑或酸 性類固化劑,其中驗性類固化劑包括脂肪族二胺、芳 香族多胺、改性脂肪胺或其它含氮化合物,酸性類固 化劑包括有機酸、g复酐、三氟化蝴或其絡合物。 本實施例所得到的高密度奈米碳管陣列複合材 料80的熱導率爲3瓦/米.K (w/mK),而⑽法直接 生長所得到的奈米碳管陣列複合材料的熱導率僅爲 lW/mK ’故’本實施例的高密度奈米碳管陣列複合材 •料80與CVD法直接生長所得到的奈米碳管陣列複合 材料相比,導熱性能更好。 —利用本發明所提供的方法,製備的高密度奈米碳 官陣列複合材料80中,奈米碳管的密度可達到CVD ^直接生長所得到的奈米碳管密度的1〇_倍。本 實施例所製備的高密度奈米碳管陣列複合材料8〇,因 爲”中的不米石厌官的密度根據需要控制爲㈣法直接 生長所得到的奈米碳管陣列複合材料的5〇倍,從而 奈米碳管陣列複合材料8〇具有良好的導熱性 :’另’本只施例所製備的高密度奈米碳管陣列複合 材料8〇’由于其中的奈米碳管之間緊密填充有石夕橡膠 19 200909342 材料’使得奈米碳營之間g — 列的力學性能更爲優/,在』I疋,比純奈米碳管陣 用。 ^在泠熱領域具有很好的應 人材解,本發明所述的高密度奈米碳管陣列複 也可係弁斜太止—幷 于上述的製備步驟’ 子么驅官陣列40進行擠塵,之後將 _灌入擠壓後的奈米碳管陣列4", 驅體溶液5°中的高分子前驅體,形成 问在度不、米碳管複合材料8〇。 (五)對高密度奈米碳管陣列複合材料8〇進 刀片k而形成奈米碳管陣列複合導熱片⑽。 其中’對高密度奈米碳管陣列複合材料8〇進行 爲用-刀…割,其切割的方向 者垂直于奈米碳管陣列40軸向的方向,切割後, 即可彳于到奈米碳管陣列複合導熱片1〇〇。 本發明所得到的奈米碳料顺合導熱4 1〇〇包 括多個奈米碳管和高分子材料,射的多個奈米碳管 以陣列形式㈣,且高分子㈣填充在乡個奈米碳管 之^間隙中。奈米碳管陣列複合導熱片100中的奈 米碳管排列緊密且定向排列,且奈米碳管的密度爲 〇· 1〜2.2g/cm3。在上述的奈米碳管陣列複合導熱片1〇〇 :的奈米碳管兩端開口,且奈米碳管的兩端從奈米碳 官陣列複合導熱片100中露出。 另,還可以對上述的奈米碳管陣列複合導熱片 20 200909342 100々進行進—步的表面處理,其中,表面處理方法包 括等離子顧、化學修飾、金屬沈積或它們的任意組 合的方式之一。 、表面處理的具體方法不同’其産生作用的具體方 不同。如,采用等離子刻蝕處理奈米碳管陣列複 _ 、片10 0,可以使得奈米碳管的兩端從奈米碳管 陣列複合導熱片100中更加充分的露出,從而使得夺 米碳管複合導熱片⑽具有更加優异的導熱性能。采 用化學修飾處理奈米碳管陣列複合導熱y⑽,可以 使侍奈米碳管的兩端根據需要選擇吸附的化學基 團Y從而使得奈米碳管陣列複合導熱片100在導熱應 用時’具有更加優异的導熱性能。釆用錢沈積處理 奈=碳管陣列複合導熱片100,可以使得奈米碳管陣 列複合導熱片100的表面在導熱應用時具有更大的接 觸面積,且沈積的金屬與奈米碳管陣列複合導熱片 100的奈米碳管具有很好的連接,從而使得奈米碳管 陣列複合導熱片100導熱性能更加優异。 本實施例中奈米碳管陣列複合導熱片1〇〇及其製 備方法具有以下優點:其一,所述的奈米碳管陣列複 合導熱片100中,奈米碳管排列緊密且定向排列,本 發明所製備的奈米碳管陣列複合導熱片1〇0中,奈米 碳管的密度可根據需要控制爲CVD法直接生長所得到 的奈米碳管陣列複合導熱片的10〜200倍,即導熱片 中奈米碳管導熱通道的密度提高了 1〇〜2〇〇倍,從而 21 200909342 該奈米碳管陣列複合導熱片100具有優异的導熱性 能,可廣泛地應用于導熱材料等方面;其二,所述的 奈米碳管陣列複合導熱片100,由于奈米碳管之間緊 密地填充高分子材料,使得奈米碳管之間連接穩定, 比純奈米碳管陣列的力學性能更爲優良;其三,在奈 米碳管陣列複合導熱片100中的奈米碳管兩端開口, 且從奈米碳管的兩端從奈米碳管陣列複合導熱片100 中露出;其四,所述的製備方法工序簡單且製備的奈 米碳管陣列複合導熱片100中的奈米碳管的密度可以 控制。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施例奈米碳管陣列複合導熱片的製備 方法的流程示意圖。 圖2係本發明實施例奈米碳管陣列複合導熱片的擠壓 裝置的結構示意圖。 圖3係本發明實施例奈米碳管陣列複合導熱片的製備 過程的示意圖。 22 200909342 【主要元件符號說明】 10 擠壓裝置 • 12 上壓板 • 14 下壓板 16 第一侧板 18 第二側板 22 空腔 24 螺絲 3 0 基底 40 奈米碳管陣列 5 0 尚分子前驅體溶液 60 高分子前驅體/奈米碳管陣列混 合體 70 高分子前驅體/高密度奈米碳管 陣列混合體 80 高密度奈米碳管陣列複合材料 k 90 刀片 100 奈米碳管陣列複合導熱片 23Wherein, after pouring the polymer precursor solution into the cavity 22 of the extrusion device 1Q 14 200909342, a vacuum process is further included. It comprises the steps of first immersing the carbon nanotube array 40 placed in the cavity 22 of the extrusion device 10 in the polymer precursor solution 50; after that, the pressing device 10 is placed in a vacuum chamber to evacuate the vacuum. Less than 0.2 atmospheric pressure (atm), the degree of vacuum and the time of vacuuming can be selected according to actual needs. The vacuuming process can cause the bubbles in the carbon nanotube array 40 to expand, thereby floating out of the liquid surface; After the air in the array 40 is drained, the polymer precursor solution 50 can sufficiently fill the gap between the carbon nanotubes, so that the polymer precursor solution 50 and the carbon nanotube array 40 form a good mixture, thereby forming a kind of Polymer precursor/carbon nanotube array hybrid 60. It can be understood that the step of preparing the polymer precursor/carbon nanotube array mixture according to the present invention is not limited to the above preparation steps, and the carbon nanotube array 40 and the polymer precursor solution 50 can also be placed. After mixing and vacuuming into other devices such as a shallow dish in a surface, after the mixing and vacuuming steps are completed, the polymer precursor solution 50 is fully immersed in the carbon nanotube array 40 to form a polymer. Precursor/carbon nanotube array hybrid 60. (3) The polymer precursor/carbon nanotube array mixture 60 is extruded in a direction parallel to the substrate to form a polymer precursor/high density carbon nanotube array mixture 70. In this embodiment, according to the method for preparing the polymer precursor/carbon nanotube array hybrid 60, the specific preparation process of forming a polymer precursor/high-density carbon nanotube array hybrid 70 is also not 15 200909342 with. The carbon nanotube array 40 and the polymer precursor solution 50 are mixed in a pressing device 10 to prepare a polymer precursor/carbon nanotube array mixture 60 which can be directly along the extrusion device 10. The polymer precursor/carbon nanotube array hybrid 60 is extruded in a direction parallel to the substrate to obtain a polymer precursor/high density carbon nanotube array hybrid 70. In addition, the carbon nanotube array 40 and the polymer precursor solution 50 may be placed in other devices such as a shallow dish container such as a surface m for mixing, vacuuming, etc. to form a polymer precursor/carbon nanotube. Array hybrid 60; thereafter, the above-described polymer precursor/carbon nanotube array hybrid 60 is placed in a pressing device 10, and the polymer precursor/carbon nanotube array is extruded in a direction parallel to the substrate. The mixture 60 is obtained to obtain a polymer precursor/high density carbon nanotube array hybrid 70. Referring to FIG. 3, the process of extruding the polymer precursor/carbon nanotube array mixture 60 in the extrusion apparatus 10 includes: relatively moving the first side plate 16 along the first direction, and the polymer precursor The body/nanotube array hybrid 60 is extruded; thereafter, the second side plate 18 is relatively moved in the second direction to press the polymer precursor/carbon nanotube array mixture 60. The first side panel 16 is relatively moved along the first direction, and the polymer precursor/carbon nanotube array hybrid 60 is extruded, including the following steps: firstly, the two second side panels 18 are fixedly disposed. The polymer precursor/carbon nanotube array hybrid 60 in the cavity 22 of the extrusion apparatus 10 is then moved relative to the body 1 through the two first side plates 16 along the 16th 200909342: the polymer precursor /Nanocarbon tube array mixed with the ancient eight " extrusion extrusion, as the degree of extrusion deformation increases, the spacing between the carbon nanotubes in the above-mentioned body/nanotube array hybrid 6G is - Decrease in direction. Ancient: Say: Use the second side panel 1δ to move relative to each other along the second direction. ^The knife precursor/carbon nanotube array hybrid 6G is broadcasted. Gu Ba=Step·Squeeze the above with two first side plates 16 After pressing, the sub-driver/nanocarbon tube array hybrid 6() is fixed, and the two brothers-side plates 18 are relatively moved in the second direction, and the local molecular precursor/nano-tube is pressed against the above-mentioned extrusion. The array mixture (9) is squeezed: 'As the degree of extrusion deformation increases, the spacing between the carbon nanotubes in the extruded polymer/carbon nanotube array hybrid 6〇 is The second direction is reduced. The density of the carbon nanotubes in the polymer precursor/carbon nanotube array of the polymer precursor/carbon nanotube array is achieved by the extrusion of the above-mentioned polymer precursor/carbon nanotube array j. The pre-set dense soil 'to form a polymer precursor/high-density carbon nanotube array mixing body 70. The density of this preset can be selected according to actual needs. It can be understood that the spacing between the carbon nanotubes in the carbon nanotube array 4〇 decreases as the extrusion deformation increases; the density of the carbon nanotubes in the carbon nanotube array changes with the extrusion deformation. Increase and increase. Therefore, in this embodiment, the polymer precursor 17 can be controlled by controlling the degree of the extrusion shape applied to the carbon nanotube array 4, thereby controlling the polymer precursor 17 200909342 * body / high density carbon nanotube array hybrid 70 The density of carbon nanotubes in the medium. * The polymer precursor/high-density carbon nanotube obtained in this embodiment. The density of the carbon nanotubes of the array hybrid 70 is 50 times the density of the carbon nanotubes obtained by direct growth of the CVD method; the polymer precursor The carbon nanotubes in the bulk/high density carbon nanotube array hybrid 70 are closely aligned and oriented. In addition, the extrusion apparatus 10 used in the present invention is not limited to the structure shown in FIG. 2, and further, the preparation of the polymer precursor/high-density carbon nanotube array hybrid 70 of the present invention is not limited to the adoption. The key to the compression of the particular extrusion device 10 is that a mechanical pressure can be applied to the carbon nanotube array 40 in a direction parallel to the substrate, and the carbon nanotubes in the carbon nanotube array 40 are extruded by extrusion. The spacing between the two is reduced, and the density is increased to obtain the polymer precursor/high density carbon nanotube array hybrid 70. Therefore, according to the spirit of the present invention, the non-substantial change of the extrusion device of the present invention is performed. It should contain " within the scope of protection required by the present invention. (4) Polymer precursor precursor/high-density carbon nanotube array The polymer precursor solution 50 in the mixture 70 is formed to form a high-density carbon nanotube array composite 80. The curing step of the polymer precursor solution 50 includes: pre-adding a small amount of a curing agent to the polymer precursor solution 50, and controlling the addition amount of the curing agent to make the curing time of the polymer precursor solution 50 more than two hours. According to the appropriate curing method of the southern molecular material 18 200909342 method, if heated, the polymer precursor solution is polymerized and cured. In addition, when the polymer precursor solution 50 is a one-component polymer precursor 5〇', it can also be polymerized by static curing at room temperature, that is, the one component is allowed to stand at a temperature of . The polymer precursor solution was solidified and polymerized at 5 Torr. The curing agent includes an epoxy resin curing agent, an organic curing agent or an acidic curing agent, wherein the curing agent includes an aliphatic diamine, an aromatic polyamine, a modified aliphatic amine or other nitrogen-containing compound, and an acidic curing agent. The agent includes an organic acid, g re-anhydride, a trifluoride butterfly or a complex thereof. The high-density carbon nanotube array composite 80 obtained in this embodiment has a thermal conductivity of 3 W/m·K (w/mK), and the heat of the carbon nanotube array composite obtained by the direct growth method (10) is obtained. The conductivity is only lW/mK. Therefore, the high-density carbon nanotube array composite material 80 of the present embodiment has better thermal conductivity than the carbon nanotube array composite material obtained by direct growth of the CVD method. By using the method provided by the present invention, the density of the carbon nanotubes in the high-density nanocarbon array composite 80 prepared can reach 1 〇_fold of the density of the carbon nanotubes obtained by direct growth of CVD ^. The high-density carbon nanotube array composite material prepared in this embodiment is 8〇, because the density of the non-meterite in the middle of the carbon nanotube array composite obtained by direct growth of the (four) method is controlled as needed. Double, thus the carbon nanotube array composite 8〇 has good thermal conductivity: 'another' only the high-density carbon nanotube array composite prepared by the application is 8〇' due to the close relationship between the carbon nanotubes Filled with Shixi rubber 19 200909342 The material 'make the mechanical properties of the g-column between the nano carbon camps better/, in the case of 疋I疋, than the pure carbon nanotube array. ^It is very good in the field of heat According to the human body solution, the high-density carbon nanotube array according to the present invention can also be skewed too far--in the above-mentioned preparation step, the sub-driver array 40 is used for dusting, and then the _ is poured into the extrusion. The carbon nanotube array 4", the polymer precursor in the 5° solution of the body solution, forms a carbon nanotube composite of 8〇. (5) 8高 for the high-density carbon nanotube array composite Into the blade k to form a carbon nanotube array composite thermal conductive sheet (10). The high-density carbon nanotube array composite material is cut by a knife-cutting method, and the direction of the cutting is perpendicular to the axial direction of the carbon nanotube array 40, and after cutting, it can be folded into the carbon nanotube array. The composite thermal conductive sheet 1〇〇. The nano carbon material obtained by the invention is compliant with heat conduction 41 1 〇〇 including a plurality of carbon nanotubes and a polymer material, and the plurality of carbon nanotubes shot in an array form (four), and high The molecules (4) are filled in the gaps of the carbon nanotubes of the town. The carbon nanotubes in the carbon nanotube array composite thermally conductive sheet 100 are closely arranged and oriented, and the density of the carbon nanotubes is 〇·1~2.2g. /cm3. The carbon nanotube array composite thermally conductive sheet 1〇〇: the carbon nanotubes are open at both ends, and both ends of the carbon nanotubes are exposed from the nanocarbon array composite thermal conductive sheet 100. It is also possible to carry out further surface treatment on the above-mentioned carbon nanotube array composite thermally conductive sheet 20 200909342 100, wherein the surface treatment method comprises one of plasma, chemical modification, metal deposition or any combination thereof. The specific method of surface treatment is different The specific method is different. For example, the plasma etching treatment of the carbon nanotube array complex _, the sheet 10, can make the two ends of the carbon nanotubes more fully exposed from the carbon nanotube array composite thermal conductive sheet 100, thereby making The carbon nanotube composite thermal conductive sheet (10) has more excellent thermal conductivity. The chemical modification of the carbon nanotube array composite thermal conductivity y (10) allows the two ends of the carbon nanotube to be selected as needed to adsorb the chemical group Y. The carbon nanotube array composite thermal conductive sheet 100 has more excellent thermal conductivity when used for heat conduction. The surface of the carbon nanotube array composite thermal conductive sheet 100 can be made by depositing the carbon nanotube array composite thermal conductive sheet 100. It has a larger contact area in thermal conduction applications, and the deposited metal has a good connection with the carbon nanotubes of the carbon nanotube array composite thermal conductive sheet 100, thereby making the carbon nanotube array composite thermal conductive sheet 100 more thermally conductive. Excellent. The carbon nanotube array composite thermal conductive sheet 1〇〇 and the preparation method thereof have the following advantages: First, in the carbon nanotube array composite thermal conductive sheet 100, the carbon nanotubes are arranged closely and oriented, In the carbon nanotube array composite thermal conductive sheet 1〇0 prepared by the invention, the density of the carbon nanotubes can be controlled by 10 to 200 times of the carbon nanotube array composite thermal conductive sheet obtained by direct growth of the CVD method according to requirements. That is, the density of the heat conduction channel of the carbon nanotube in the heat conducting sheet is increased by 1 〇 to 2 〇〇, so that 21 200909342 The carbon nanotube array composite thermally conductive sheet 100 has excellent thermal conductivity and can be widely applied to heat conductive materials and the like. Secondly, the carbon nanotube array composite thermal conductive sheet 100 has a stable connection between the carbon nanotubes due to the tight filling of the polymer material between the carbon nanotubes, compared with the pure carbon nanotube array. The mechanical properties are more excellent; thirdly, the carbon nanotubes in the carbon nanotube array composite thermal conductive sheet 100 are open at both ends, and are exposed from the carbon nanotube array composite thermal conductive sheet 100 from both ends of the carbon nanotubes. Fourth, the preparation described Preparation method Step a simple and Nai meter tube array composite carbon nanotube density of the thermally conductive sheet 100 can be controlled. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a carbon nanotube array composite thermally conductive sheet according to an embodiment of the present invention. Fig. 2 is a schematic view showing the structure of an extrusion apparatus for a carbon nanotube array composite thermally conductive sheet according to an embodiment of the present invention. Fig. 3 is a schematic view showing the preparation process of a carbon nanotube array composite thermally conductive sheet according to an embodiment of the present invention. 22 200909342 [Explanation of main component symbols] 10 Extrusion device • 12 Upper platen • 14 Lower platen 16 First side plate 18 Second side plate 22 Cavity 24 Screw 3 0 Base 40 Carbon nanotube array 5 0 Molecular precursor solution 60 polymer precursor/nanocarbon nanotube array hybrid 70 polymer precursor/high density carbon nanotube array hybrid 80 high density carbon nanotube array composite k 90 blade 100 carbon nanotube array composite thermal sheet twenty three