TWI323028B - Carbon nanotube composite and method for making same - Google Patents

Carbon nanotube composite and method for making same Download PDF

Info

Publication number
TWI323028B
TWI323028B TW95114389A TW95114389A TWI323028B TW I323028 B TWI323028 B TW I323028B TW 95114389 A TW95114389 A TW 95114389A TW 95114389 A TW95114389 A TW 95114389A TW I323028 B TWI323028 B TW I323028B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite material
carbon
array
nanotube composite
Prior art date
Application number
TW95114389A
Other languages
Chinese (zh)
Other versions
TW200741832A (en
Inventor
Chang-Hong Liu
Yuan Yao
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95114389A priority Critical patent/TWI323028B/en
Publication of TW200741832A publication Critical patent/TW200741832A/en
Application granted granted Critical
Publication of TWI323028B publication Critical patent/TWI323028B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明涉及一種複合材料及其製備方法,尤其涉及一 種奈米碳管複合材料及其製備方法。 【先前技術】 自1991年日本NEC公司之發現奈米碳管 (CarbonNanotube,CNT)以來(IilimaS,__,1991, 354, 56-58),奈米碳管引起了科學界及産業界之極大重 視,成為近年來國際科學研究之熱點。奈米碳管具有與金 剛石相同之熱導與獨特之力學性能,如抗張強度達 l〇〇GP\模量高達1TGPa,且财強酸、強驗·c以下基 本不被氧轉,姻奈米碳管作爲填充物與王程材料複合 成爲奈米碳管研究之一個重要方向。 特別地,奈米碳官與聚合物之複合可實現材料之優勢 互補或加強。奈米碳管具有較大之長徑比與中空之結構, 具有優異之力學性能,可作爲—種超級纖維,對複合材料 起到增強作用。同時由於奈米碳管之特殊電性能,形成之 複。材料可具有抗靜電、微波吸收與電磁遮罩等性能。此 外’奈麵t具紐異之導熱性能,將奈米碳管摻到高分 :基體材料中結成-體,然後通過模壓方式可製成—種複 二材料。财法製成之複合㈣主要應祕發熱元件與散 …、器之間’ _奈米碳管之導熱性能使該複合材料且有 ^之熱料性。㈣,奈米碳管除了具有優異之導執性^ ’其也具有良好之導電性能,如,奈米碳管之電阻率僅 ^ ΙΟΩ.αη。上述方法制得之複合材料僅彻奈米破管之 …性能,而於先前技術之大型積體電 =領域中,奈米碳管作所具有之良好之輸= 旧在之應用前景。b,使用生長於基板上之突出之 管陣列圖形,替代集成糾上之金屬管腳慨,將晶片直 接扣合於奈米碳管陣形上,以實現導電之目的。惟, 實際應料’由於需要根據需求於每錄板上都生長夺米 碳管陣列圖形,工藝複雜、難於控制且不利於大規模應^ 另,突出之奈米碳管陣列圖形與基板結合不牢固,於應用 中奈米石厌管谷易散落並造成晶片短路,造成嚴重損失。 【發明内容】 ' 有鑑於此,有必要提供一種製備方法簡單,能實現大 ^^模製備並應帛’且同時具有優異之導電性能與導熱性能 之奈米碳管複合材料。 ^ b -種奈米碳管複合材料,其包括:―聚合物材料以及 分佈於該聚合物材射之複數奈米碳管,該聚合物材料形 成有一第一表面及相對於第一表面之第二表面,其改進在 於,所述複數奈米碳管於該聚合物材料中按照預定之圖案 均勻分佈,每個奈米碳管之兩端分別伸出所述聚合物材料 之第一表面及第二表面。 所述聚合物材料包括矽膠系列、聚乙烯乙二醇、聚酯、 環氧樹脂系列、缺氧膠系列或壓克力膠系列。 所述複數奈米碳管組成一多壁或單壁奈米碳管陣列。 所述複數奈米碳管垂直於所述聚合物材料之第—表面 興第二表面。 -種奈米碳管複合材料之製備方法,其包括下述 排列上二基底’該基底上形成有按照預定圖案 保護層;(二)於所述奈米碳管陣列之頂端與底端各形. (三)用聚合物材料填充所述奈米碳管陣列; 碳管龄2去除奈米碳之保制,形成奈米 所述步驟(一)進一步包括以下步驟: 提供一基底,該基底至少具有一表面; 於上述基底表面形成預定圖案之催化劑層; 圖 於上述催化劑層上形成奈米碳管陣列,得 案之奈米碳管陣列。 所述基底材料包括玻璃、⑦、金屬或其氧化物。 所述奈米碳管陣列之形成方法包括化學氣 鐳射燒蝕法。 4 所述催化劑包括鐵、鎖、钻、趣或其任意組合之合金。 步驟(二)中以基底作爲奈米石炭管陣列底端之保護層。 步驟(二)進一步包括以下步驟:去除奈米碳管陣曰列 底端之基底;於奈米碳管陣列之底端形成一保護層。 所述所述保護層包括一聚酯片。 所述保護層進一步包括一壓敏膠層。 所述保護層之形成方法包括以下步驟:提供一聚醋 1323028 片,於該聚酯片一表面塗敷一層壓敏膠層;將所述聚酯片 置於所述奈米碳管陣列之上方;輕壓所述聚酯片,使所述 聚酯片上塗覆之壓敏膠層覆蓋所述奈米碳管陣列之頂端, 從而形成保護層。 • 所述聚合物材料包括矽膠系列、聚乙烯乙二醇、聚酯、 環氧樹脂系列、缺氧膠系列或壓克力膠系列。 所述步驟(三)所述聚合物材料填充方法包括將所述 兩端有保護層之碳奈米管陣列浸入所述聚合物材料之溶液 或炼融液中。 進一步包括固化所述兩端有保護層之碳奈米管陣列中 填充之聚合物材料之步驟。 所述奈米碳管複合材料之製備方法還包括進一步對所 述奈米碳管複合材料進行反應離子蝕刻之步驟。 所述反應離子钱刻包括〇2電漿钱刻。IX. Description of the Invention: [Technical Field] The present invention relates to a composite material and a preparation method thereof, and more particularly to a nano carbon tube composite material and a preparation method thereof. [Prior Art] Since the discovery of carbon nanotubes (CNTs) by NEC Corporation in Japan in 1991 (IilimaS, __, 1991, 354, 56-58), carbon nanotubes have attracted great attention from the scientific community and industry. It has become a hot spot in international scientific research in recent years. The carbon nanotubes have the same thermal conductivity and unique mechanical properties as diamonds, such as tensile strength up to l〇〇GP\modulus up to 1TGPa, and strong acidity, strong test · c below basically not converted by oxygen, Nana The carbon tube as a filler and Wangwang material compounded into an important direction of carbon nanotube research. In particular, the combination of nanocarbon and polymer can complement or enhance the advantages of the material. The carbon nanotube has a large aspect ratio and a hollow structure, and has excellent mechanical properties, and can be used as a super fiber to enhance the composite material. At the same time, due to the special electrical properties of the carbon nanotubes, the formation is complex. The material can have properties such as antistatic, microwave absorption and electromagnetic shielding. In addition, the thermal conductivity of Naibi t is different, and the carbon nanotubes are doped into a high-score: matrix-forming material, and then can be made into a composite material by molding. The compound made by the financial method (4) is mainly responsible for the thermal conductivity of the composite material between the heating element and the heat exchanger. (4) In addition to excellent conductivity, the carbon nanotubes also have good electrical conductivity. For example, the electrical resistivity of the carbon nanotubes is only ^ ΙΟΩ.αη. The composite material obtained by the above method only has the performance of the Chennai tube, and in the large-scale integrated electric field of the prior art, the carbon nanotubes have a good output = the old application prospect. b. Using the protruding tube array pattern grown on the substrate, instead of the integrated metal pin, the wafer is directly bonded to the carbon nanotube array for electrical conduction. However, the actual material 'because of the need to grow the carbon nanotube array pattern on each of the recording boards according to the demand, the process is complicated, difficult to control and is not conducive to large-scale application. The protruding carbon nanotube array pattern is not combined with the substrate. It is firm, and in the application, the nano-stone is easy to scatter and cause short circuit of the wafer, causing serious damage. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a carbon nanotube composite material which is simple in preparation method and can realize large-module preparation and which has excellent electrical conductivity and thermal conductivity. ^ b - a carbon nanotube composite material comprising: a polymer material and a plurality of carbon nanotubes distributed on the polymer material, the polymer material forming a first surface and a first surface The second surface is improved in that the plurality of carbon nanotubes are uniformly distributed in the polymer material according to a predetermined pattern, and both ends of each of the carbon nanotubes respectively protrude from the first surface of the polymer material and Two surfaces. The polymer materials include tannin series, polyethylene glycol, polyester, epoxy resin series, anoxic glue series or acrylic series. The plurality of carbon nanotubes form a multi-wall or single-walled carbon nanotube array. The plurality of carbon nanotubes are perpendicular to the first surface of the polymeric material to surface the second surface. - a method for preparing a carbon nanotube composite material, comprising: arranging a second substrate on which a protective layer is formed in a predetermined pattern; and (ii) forming a top end and a bottom end of the carbon nanotube array (3) filling the carbon nanotube array with a polymer material; carbon nanotube age 2 removing nano carbon protection, forming the nano step (1) further comprising the steps of: providing a substrate, the substrate being at least Having a surface; forming a predetermined pattern of catalyst layer on the surface of the substrate; forming a carbon nanotube array on the catalyst layer, and obtaining a carbon nanotube array. The substrate material comprises glass, 7, a metal or an oxide thereof. The method of forming the carbon nanotube array includes a chemical gas laser ablation method. 4 The catalyst comprises an alloy of iron, lock, drill, fun or any combination thereof. In step (2), the substrate is used as a protective layer at the bottom end of the nano-carboniferous tube array. The step (2) further comprises the steps of: removing the substrate at the bottom end of the carbon nanotube array; forming a protective layer at the bottom end of the carbon nanotube array. The protective layer comprises a polyester sheet. The protective layer further includes a pressure sensitive adhesive layer. The method for forming the protective layer comprises the steps of: providing a sheet of polylact 1323028, applying a layer of a pressure sensitive adhesive layer on a surface of the polyester sheet; placing the polyester sheet above the array of carbon nanotubes The polyester sheet is lightly pressed so that the pressure-sensitive adhesive layer coated on the polyester sheet covers the top end of the carbon nanotube array to form a protective layer. • The polymer materials include silicone series, polyethylene glycol, polyester, epoxy series, anoxic glue series or acrylic series. The method of filling the polymer material in the step (3) comprises immersing the carbon nanotube array having the protective layer at both ends in a solution or a smelting liquid of the polymer material. Further included is the step of curing the polymer material filled in the carbon nanotube array having the protective layer at both ends. The method for preparing the carbon nanotube composite material further comprises the step of performing reactive ion etching on the carbon nanotube composite material. The reaction ion money engraving includes 〇2 plasma money engraving.

。。相較於先前技術,奈米碳管複合材料之製備方法簡 早’,可利贱前之奈米碳管陣列之生長卫藝,根據實際需 要幵/成77佈有預定圖案之奈米碳管陣列之奈米碳管複合材 ^。因此,所述奈树管複合材魏實現大規模製備及應 。另’奈米碳管複合材料中奈米碳管之兩端均露出,所 述奈米碳管軸之導電通路可與兩端電極直接電性接觸, 被電阻相對較大之聚合物材料阻隔。同時,由於奈 2官本身具有優異之導熱性能,於應財,奈米碳管複 /料於導電之同時居有良好之熱傳導m,所述夺 a官複合㈣可應奸目前之大_體電路與大功率微 9 電子器件領域巾,能有效地解決其_耗及散_題。另, 奈米碳管複合材射之奈米碳管陣顺過聚合物材料固化 成-薄膜’應㈣單方便’倾合材料中之奈米碳管不會 發生脫落現象。 曰 【實施方式】 下面將結合附圖對本發明作進一步之詳細說明。 —請參閱圖1與圖2 ’本發明實施例提供一種奈米碳管 複合材料1G,其包括-聚合物材料12以及分佈於該聚合 物材料12中之奈米碳管陣列14。該奈米碳管複合材料^ 形成有一第一表面102及相對於第一表面之第二表面 1〇4。該奈米碳管陣列14分別與奈米碳管複合材料ι〇之第 一表面102與第二表面1〇4基本垂直,且每個奈米碳管之 兩端分別於該奈米碳管複合材料10之第一表面1〇2與第二 表面104路出。所述聚合物材料12包括有機材料,如石夕膠 系列、聚乙烯乙二醇'聚酯、樹脂系列、缺氧膠系列或壓 克力膠系列等。 叫參閱圖3,本發明實施例提供一種可根據實際需要 形成預定圖案之奈米碳管複合材料2Q,其包括—聚合物材 料22以及按照預定圖案分佈於該聚合物材料22中之奈米 ,官陣列24,該奈米碳管陣列24之兩端分別露出奈米碳 &複合材料2〇之相對兩表面。根據不同需要,該奈米碳管 複合材料2〇中之奈米碳管陣列24可形成不同圖案如圓 形、方形、矩形、橢圓形等。本發明實施例奈米碳管複合 材料20於實際應用中,可根據集成芯片管腳位置製備形成 預定圖案之奈米碳管陣列24之奈米碳管複人材料2〇 料2〇置於芯片與基板之間,利用奈米 用導紐能電性連接晶片與基板。同時利. . Compared with the prior art, the preparation method of the carbon nanotube composite material is simple, and the growth of the nano carbon tube array can be improved, and the carbon nanotubes having a predetermined pattern are formed according to actual needs. Array of carbon nanotube composites ^. Therefore, the naphthalene tube composite material Wei achieves large-scale preparation and response. In the 'nano carbon nanotube composite material, both ends of the carbon nanotubes are exposed, and the conductive path of the carbon nanotube shaft can be directly electrically contacted with the electrodes at both ends, and is blocked by the relatively large polymer material. At the same time, because the Nai 2 official has excellent thermal conductivity, Yu Yingcai, the carbon nanotubes of the carbon nanotubes have a good heat conduction at the same time as the conduction, and the a-complex (4) can be rapped to the current large body. The circuit and the high-power micro-9 electronic device field towel can effectively solve its _ consumption and dispersion problems. In addition, the nano carbon tube array of the carbon nanotube composite material is cured by the polymer material to form a film--(four) single convenient. The carbon nanotubes in the tilting material do not fall off. [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. Referring to Figures 1 and 2, an embodiment of the present invention provides a carbon nanotube composite 1G comprising a polymer material 12 and a carbon nanotube array 14 distributed in the polymer material 12. The carbon nanotube composite material is formed with a first surface 102 and a second surface 1〇4 relative to the first surface. The carbon nanotube array 14 is substantially perpendicular to the first surface 102 and the second surface 1〇4 of the carbon nanotube composite ι, respectively, and the two ends of each carbon nanotube are respectively combined with the carbon nanotube The first surface 1〇2 of the material 10 exits the second surface 104. The polymer material 12 comprises an organic material such as a Shixi gum series, a polyethylene glycol 'polyester, a resin series, an anoxic glue series or a acryl series. Referring to FIG. 3, an embodiment of the present invention provides a carbon nanotube composite material 2Q which can form a predetermined pattern according to actual needs, and includes a polymer material 22 and a nanometer distributed in the polymer material 22 according to a predetermined pattern. The official array 24, the two ends of the carbon nanotube array 24 respectively expose the opposite surfaces of the nanocarbon & composite material 2〇. The carbon nanotube array 24 of the carbon nanotube composite material 2 can be formed into different patterns such as a circle, a square, a rectangle, an ellipse or the like according to different needs. In the practical application, the carbon nanotube composite material 20 of the present invention can be prepared according to the position of the integrated chip pin to form a carbon nanotube array 24 of a predetermined pattern of carbon nanotube arrays. Between the substrate and the substrate, the wafer and the substrate can be electrically connected by using a nanowire. At the same time

5月一併參閱圖4至圖§, 位注模法(比-此Injecti〇n 合材料30,其包括下述步驟:In May, please refer to Figure 4 to Figure §, Bit Injection Molding (Comparative - This Injecti〇n Material 30, which includes the following steps:

本發明實施例還提供一種原 Molding)製備奈米碳管複 —步驟’提供—基底32,並於所述基底32上形成預 疋圖案之奈米碳管陣列34。所述基底32之材料包括耐高 狐之固體材料’如高溫玻璃1、金屬及其氧化物等。優 k地本實紅例中基底32之材料採用石夕。所述奈米碳管陣 列34之形射法獅先前技術巾用來製僙奈米碳管陣列 之方法如化學氣相沈積法、鐳射燒録α贿 Ablation) 等。本實施例中採用化學氣相沈,首先於基底32上形 成預定圖案之催化㈣(圖未示),織於高溫下通入碳源 氣以形成奈米碳管陣列3.4。所述催化劑包括鐵、鎳、始、 把等過渡金屬或其任意組合之合金。本實施例巾採用鐵。 所述石反源氣包括曱烧、乙烯、丙稀、乙炔、甲醇及乙醇等。 本實施例中採用乙烯。具體方法爲以矽爲基底32,於矽基 底32上通過光刻形成預定圖案厚度爲5nm厚之鐵膜(圖未 示),並於空氣中30(TC之條件下進行退火;然後於化學氣 相 /尤積腔體(Chemical Vapor Deposition Chamber)中 700 c之條件下以乙烯爲碳源氣生長奈米碳管陣列34。所述奈 11 1323-028 米碳管陣列34直立於所述矽基底32上,高度約爲〇. 3麵。 步驟200,於所述奈米碳管陣列34之頂端形成一保護 層36。通過覆蓋一保護層36將所述奈米碳管陣列34中奈 米碳管之頂端保護起來。具體方法爲於一聚能片 364(PolyeSter Film)上塗覆一層約〇 〇5咖厚之壓敏膠 (Pressure Sensitive Adhesive)層 362,將所述聚酯片 3料The embodiment of the present invention further provides an original Molding) preparation of a carbon nanotubes-step-providing substrate 32, and forming a pre-patterned carbon nanotube array 34 on the substrate 32. The material of the substrate 32 includes a solid material resistant to high foxes such as high temperature glass 1, metal and oxides thereof and the like. The material of the base 32 in the real red case of the excellent k is the Shi Xi. The carbon nanotube array 34 is formed by a method of preparing a carbon nanotube array by a prior art towel, such as a chemical vapor deposition method, a laser burn, and an Ablation. In this embodiment, chemical vapor deposition is employed to first form a predetermined pattern of catalysis (4) (not shown) on the substrate 32, and a carbon source gas is introduced at a high temperature to form a carbon nanotube array 3.4. The catalyst comprises an alloy of iron, nickel, a transition metal, or any combination thereof. The towel of this embodiment uses iron. The anti-source gas includes teriyaki, ethylene, propylene, acetylene, methanol, ethanol, and the like. Ethylene is used in this embodiment. The specific method is to form an iron film (not shown) having a predetermined pattern thickness of 5 nm on the germanium substrate 32 by photolithography on the germanium substrate 32, and annealing in the air at 30 (the condition of TC; then, in the chemical gas) The carbon nanotube array 34 is grown with ethylene as a carbon source gas under conditions of 700 c in a Chemical Vapor Deposition Chamber. The naphthalene 11 1323-028 carbon nanotube array 34 stands upright on the crucible substrate. 32, the height is about 3. 3 faces. Step 200, forming a protective layer 36 on the top of the carbon nanotube array 34. The carbon nanotubes in the carbon nanotube array 34 are covered by covering a protective layer 36 The top of the tube is protected. The specific method is to apply a layer of pressure sensitive adhesive (Pressure Sensitive Adhesive) layer 362 on a concentrating sheet 364 (PolyeSter Film).

置於所述奈米碳管㈣34之上方,輕壓所述聚g旨片364, 使所述聚㈣364上塗覆之壓敏膠層362覆蓋所述奈米碳 管陣列34之頂端’從而形成保護層36。本實施例中壓敏 膠層362選用撫順輕工#科學研究所之壓敏膠材料(具體 型號爲Y_l),該壓敏膠層362還可用其他具有雖較高 之材料,如膠水替代,該聚酯片364也可用其他聚合物^ 體材料替代,如聚乙烯片。本實施例中壓敏膠層啦爲可 選擇性層,即’亦可通過將聚則364置於奈米碳管陣列 34上方’並輕壓該聚g旨片綱使該聚g旨片咖與奈米碳其 陣列34之頂端緊密接觸,形成保護層邪^ 步驟300,去除所述基底32,並於所述奈米碳管 34之底端同樣形成—保護層%。揭去所述奈米碳 ,底端之基底32,財職〇之方法於所述奈米碳 4之底端同樣形成—倾層36,從㈣彡成類她模棋[ 上下端都有保護層之奈米碳管陣列34。應指出實施 ==擇性步驟,即利用步_中形成之: 底3 2本身可作爲奈米碳管陣列3 4之另—保護層 12 1323028 步驟400,用聚合物材料38填充所述有保護層之奈卡 碳管陣列34 ^將所述兩端有保護層之奈米碳管陣列%浸 入聚合物材料38之溶液或熔融液中,使所述聚合物材料 38填充所述奈米碳管陣列34之空隙,然後取出所述奈米 石反管陣列34,將所述奈米;ε炭管陣列34中填充之聚合物材 料38固化或凝固。所述聚合物材料38包括能以液態填充 入奈米礙管_ 34中之空隙,然後固化或凝固成固體之有 機材料,如石夕膠系列、聚乙烯乙二醇、聚酷、樹脂系列、 缺氧膠系列或壓克力膠系列。本實施例中,所述聚合物材 料38選用道康寧(Dow Corning)公司之雙組分石烟彈性體Placed above the carbon nanotubes (four) 34, lightly press the poly-grain sheet 364, so that the poly (tetra) 364 coated pressure-sensitive adhesive layer 362 covers the top end of the carbon nanotube array 34 to form protection. Layer 36. In the embodiment, the pressure sensitive adhesive layer 362 is selected from the pressure sensitive adhesive material of the Fushun Light Industry Institute (the specific model is Y_l), and the pressure sensitive adhesive layer 362 can be replaced by other materials having higher materials, such as glue. The polyester sheet 364 can also be replaced with other polymeric materials such as polyethylene sheets. In this embodiment, the pressure-sensitive adhesive layer is a selectable layer, that is, 'can also be placed above the carbon nanotube array 34 by the poly- 364' and lightly pressing the poly-g-shaped film to make the poly-g-shaped tablet In close contact with the top end of the array 34 of nanocarbons, a protective layer is formed, step 300 is removed, and the substrate 32 is removed, and a protective layer % is also formed at the bottom end of the carbon nanotubes 34. Removing the nanocarbon, the bottom substrate 32, the method of the financial operation is also formed at the bottom end of the nanocarbon 4 - the pour layer 36, from the (four) into the class of her mold chess [the upper and lower ends are protected Layer of carbon nanotube array 34. It should be noted that the implementation == optional step, that is, formed using the step _: the bottom 3 2 itself can be used as the other layer of the carbon nanotube array 34 - protective layer 12 1323028 step 400, filled with the polymer material 38 a layer of nanocarbon tube array 34 ^ immersing the carbon nanotube array % with a protective layer at both ends in a solution or melt of the polymer material 38, so that the polymer material 38 fills the carbon nanotube The voids of array 34 are then removed and the nanostructured tube array 34 is removed to solidify or solidify the polymer material 38 filled in the array of carbon nanotubes 34. The polymer material 38 comprises an organic material which can be filled in a liquid state into a void in the tube _ 34 and then solidified or solidified into a solid, such as a series of products, such as a Shijiao series, a polyethylene glycol, a poly, a resin series, Anoxic glue series or acrylic glue series. In this embodiment, the polymeric material 38 is selected from Dow Corning's two component asbestos elastomer.

(具體型號爲Sylgard 160)。Sylgard 160混合前爲A、B 兩部分液體組分域,混合後會@化爲柔轉性體。具體 步驟爲將所述兩端有保護層之奈米碳管陣列私二入 Sy㈣d⑽之溶液中,使溶液填充入奈米碳管陣列^斤 述溶液中Sylgard則之A、B兩部分液體組分與乙酸乙醋 之體積比爲1:1:卜將填充後之奈米碳管陣列34取出後置 於真空財,於室溫下放置24小時,該絲會固化爲羊軟 彈性體材料。本實_填絲之形成之奈米碳管複合材料 中奈米碳管陣列之質量百分比含量爲5wt%。 步驟500 ’去除所述倾層,形成奈純管複合 層可直接揭去,剩餘之壓敏膠362可選用有 機洛劑浴解消去,從㈣成奈米碳管複合材料3q。 ’選用二f苯作财機溶龜解所賴_ 362。此& 時’所述奈米好_34中大部分奈料管之尖端露出所 13 1323028 述奈求碳管複合材料3〇之表面。 本發明實施例還可進一步包括一反應離子敍刻步驟, 以確保所述奈米碳管陣列34中所有奈米碳管之尖端露出 斤述不米碳g複合材料3Q之表^本實施例中採用電漿 於遷力爲6Pa,功率爲聰之條件下對所述奈米碳管 30第-表面及第二表面分別處理15分鐘,所述奈米 碳管複合材料30經過反應離子钱刻後所有奈米碳管之二 端露出所述奈米碳管複合材料30之表面。 大 °月參閱圖9,本發明實施例之奈来碳管複合材料以平 行于奈米碳管陣列之方向爲縱向,以垂直于奈米碳管陣列 之方向爲橫向。由於奈米碳管本身沿其縱向之電導率大於 其橫向之電導率,本發縣麵錢合材料之縱向導 率大於其橫向之電導率。 中太1目^先前技術’本發明實施例之奈米碳管複合材料 :陣列中之奈米碳管兩端均從奈米碳管複合材料 =面:出,所述奈米碳管形成之導電、導熱通路可與熱 材料阻隔,,所述 二二::導電'導熱性能。另,由於本發明實施: 圖案化’其於具有良好導電性能之基礎上 熱性能’且’該奈米碳管複合材料中之奈奸 、 固化之聚合物材料固定形成一薄膜’應:簡::便歹:: 碳管不易脫落。因此,本發明實施例之奈米碳管複合^料 14 ^應用于目前之大型積體電路與大功率爲電子器件領域 T。 综上所述’本發明確已符合發明專狀要件,遂依法 t 申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制杨之”專纖圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆席涵 盍於以下申請專利範圍内。 〜 【圖式簡單說明】 -立圖1爲本發明實細之奈米碳管複合材料之立體結構 複合材料之縱向剖視 種圖案之奈米碳管複 圖2為本發明實施例之奈米碳管 示意圖。 圖3爲本發明實施例同時製造多 合材料之俯視示意圖。 • 4爲本發明實施例之奈米碳管複合材料之製備方法 之流程示意圖。 ^ 圖5爲本發明實施例於基底上生長奈米 意圖。 不 圖6為圖5中奈米碳管陣列頂端形成保護層之示意圖。 圖7為圖6中奈米碳管陣列兩端均形成保護層並於夺 米碳管陣列中注入聚合物材料之示意圖。 ' $ 圖8為圖7中奈米碳管陣列去给保護層後之示意圖。 圖9為本發明實施例之奈米碳管複合材料之導電性外 之示意圖。 % 15 1323028 ' 【主要元件符號說明】 奈米碳管複合材料 10, 20 聚合物材料 12, 22,38 奈米碳管陣列 14, 24,34 第一表面 102 第二表面 104 基底 32 保護層 36 壓敏膠層 362 聚S旨片 364 16(Specific model is Sylgard 160). Sylgard 160 is a liquid component of A and B before mixing. After mixing, it will be turned into a flexible body. The specific step is to insert the carbon nanotube array with the protective layer at both ends into the solution of Sy(4)d(10), and fill the solution into the liquid component of A and B of Sylgard in the solution of the carbon nanotube array. The volume ratio to ethyl acetate was 1:1: After the filled carbon nanotube array 34 was taken out and placed in a vacuum, it was allowed to stand at room temperature for 24 hours, and the silk was solidified into a sheep soft elastomer material. The nanocarbon tube composite formed by the present invention has a mass percentage content of the carbon nanotube array of 5 wt%. Step 500 ‘removing the pour layer, forming a neat tube composite layer can be directly removed, and the remaining pressure sensitive adhesive 362 can be removed by using a machine agent bath, from (4) to a carbon nanotube composite material 3q. 'Select two f benzene for the financial machine solution to solve the problem _ 362. At the time of the &', the tip of most of the tube of the nanometer _34 is exposed. 13 1323028 The surface of the carbon tube composite is 3 。. The embodiment of the present invention may further include a reactive ion characterization step to ensure that the tips of all the carbon nanotubes in the array of carbon nanotubes 34 are exposed to the surface of the carbon-free composite material 3Q. The first surface and the second surface of the carbon nanotube 30 were respectively treated for 15 minutes under the condition that the electric force was 6 Pa and the power was Cong. The carbon nanotube composite material 30 was subjected to reaction ions. Both ends of all of the carbon nanotubes expose the surface of the carbon nanotube composite 30. Referring to Fig. 9, the carbon nanotube composite of the embodiment of the present invention has a longitudinal direction parallel to the direction of the carbon nanotube array and a transverse direction perpendicular to the direction of the carbon nanotube array. Since the conductivity of the carbon nanotube itself along its longitudinal direction is greater than the conductivity of its transverse direction, the longitudinal conductivity of the material of the county is larger than that of the lateral direction. In the prior art, the carbon nanotube composite material of the embodiment of the present invention: the carbon nanotubes in the array are both ends from the carbon nanotube composite material = surface: the carbon nanotube is formed The conductive and thermally conductive paths can be blocked from the thermal material, and the two: two: conductive 'thermal conductivity. In addition, due to the practice of the present invention: patterning 'the thermal performance based on good electrical conductivity' and 'the necrotic, solidified polymeric material in the carbon nanotube composite material is fixed to form a film' should: Jane: : Note: The carbon tube is not easy to fall off. Therefore, the carbon nanotube composite material of the embodiment of the present invention is applied to the current large-scale integrated circuit and high-power electronic device field T. In summary, the present invention has indeed met the requirements of the invention, and is applied according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the "fine fiber" of the present invention. Those skilled in the art will be able to modify the equivalent modification or change according to the spirit of the present invention. It is within the scope of the following patent application. ~ [Simple description of the drawing] - Figure 1 is a longitudinal cross-sectional view of a three-dimensional structural composite material of a solid carbon nanotube composite material of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a schematic plan view of a multi-component material simultaneously manufactured according to an embodiment of the present invention. FIG. 4 is a schematic flow chart of a method for preparing a carbon nanotube composite material according to an embodiment of the present invention. 5 is a schematic diagram of growing a nano-layer on the substrate according to an embodiment of the present invention. FIG. 7 is a schematic view showing a protective layer formed on the top of the carbon nanotube array in FIG. 5. FIG. 7 is a protective layer formed on both ends of the carbon nanotube array of FIG. And a schematic diagram of injecting a polymer material into the carbon nanotube array. ' $ Fig. 8 is a schematic view of the carbon nanotube array in Fig. 7 after the protective layer is applied. Fig. 9 is a carbon nanotube composite material according to an embodiment of the present invention. External conductivity Schematic diagram. % 15 1323028 ' [Main component symbol description] Carbon nanotube composite material 10, 20 Polymer material 12, 22, 38 Carbon nanotube array 14, 24, 34 First surface 102 Second surface 104 Substrate 32 Protective layer 36 pressure sensitive adhesive layer 362

Claims (1)

九七年六月十二日修正頁 十、申請專利範圍 h 碳管複合㈣,其包括:—聚合物㈣以及分佈 二二:物材料中之複數奈米碳管該聚合物材料形成有 所述於第一表面之第二表面’其改進在於, \ s於_合物材料中形成複數個預定之圖 二母固預定之圖案中的奈米碳管均句分佈,每個奈米碳 官之兩端分別伸出所述聚合物材料之第一表面及第二表 面。 2·如申請專利範圍第1項所述之奈米碳管複合材料,其中, 所达聚合物材料包括石夕膠系列、聚乙歸乙二醇、聚醋、環 氧樹脂系列、缺氧膠系列或壓克力膠! 3. 如申請專利範圍第!項所述之奈米碳管複合材料,其中, 所述複數奈米碳管組成一多壁或單壁奈米碳管陣列。 4. 如申請專利範圍第!項所述之奈米碳管複合材料,其中, 所述複數奈来碳管垂直於所述聚合物材料之第一表面與第 二表面0 5. -種奈米碳管複合材料之製備方法,其包括下述步驟: ()提供-基底’該基底上形成有按照預定随排列之 奈米碳管陣列; (=)於職奈純管陣狀了_與底端各軸—保護層; (二)用聚合物材料填充所述奈米碳管陣列; (四)去除奈米碳管陣列兩端之保護層,形成奈米 合材料。 f 6.如申請專利範圍第5項所述之奈米碳管複合材料之製傷方 17 九七年六月十二日修正頁 法,其中,所述步驟(一)進一步包括以下步驟: 提供一基底,該基底至少具有一表面; 於上述基底表面形成預定圖案之催化劑層; 於上述催化劑層上形成奈米碳管陣列,得到預定圖案之奈 米碳管陣列。 7. 如申請專利範圍第6項所述之奈米碳管複合材料之製備 方法’其中,所述基底材料包括玻璃、矽、金屬或其氧化 物。 8. 如申請專利範圍第6項所述之奈米碳管複合材料之製備 方法,其中,所述奈米碳管陣列之形成方法包括化學氣相 沈積法或鐳射燒钱法。 方法,其中,所 意組合之合金。 9. 如申請專利範圍第6項所述之奈米碳管複合材料之製備 所述催化劑包括鐵、鎳、鈷、鈀或其任 項所述之奈米碳管複合材料之製備Amendment Page 10 of June 12, 1997, patent application scope h carbon tube composite (4), which includes: - polymer (four) and distribution 22: complex carbon nanotubes in the material material The improvement of the second surface of the first surface is that the carbon nanotubes in the pattern of the predetermined plurality of predetermined patterns are formed in the composite material, and each nano carbon official The two ends respectively protrude from the first surface and the second surface of the polymer material. 2. The nano carbon tube composite material as claimed in claim 1, wherein the polymer material comprises Shishijiao series, polyethylene glycol, polyester, epoxy resin, anoxic glue Series or acrylic glue! 3. If you apply for a patent scope! The carbon nanotube composite material according to the invention, wherein the plurality of carbon nanotubes constitute a multi-wall or single-walled carbon nanotube array. 4. If you apply for a patent scope! The carbon nanotube composite material according to the invention, wherein the plurality of carbon nanotubes are perpendicular to the first surface of the polymer material and the second surface is prepared by using a carbon nanotube composite material, The method comprises the following steps: () providing a substrate; the substrate is formed with an array of carbon nanotubes arranged according to a predetermined arrangement; (=) in the form of a neat tube and a protective layer; b) filling the carbon nanotube array with a polymer material; (4) removing the protective layer at both ends of the carbon nanotube array to form a nano-composite material. f 6. The method of amending the nanocarbon tube composite according to claim 5 of the scope of claim 5, the revised page method of June 12, 1997, wherein the step (1) further comprises the following steps: a substrate having at least one surface; a catalyst layer having a predetermined pattern formed on the surface of the substrate; and an array of carbon nanotubes formed on the catalyst layer to obtain a carbon nanotube array of a predetermined pattern. 7. The method of preparing a carbon nanotube composite material according to claim 6, wherein the base material comprises glass, ruthenium, a metal or an oxide thereof. 8. The method of preparing a carbon nanotube composite material according to claim 6, wherein the method for forming the carbon nanotube array comprises a chemical vapor deposition method or a laser burn method. A method in which the alloy is specifically combined. 9. Preparation of a carbon nanotube composite material as described in claim 6 wherein the catalyst comprises iron, nickel, cobalt, palladium or the preparation of the carbon nanotube composite material as described in any of the above. 10.如申請專利範圍第5 方法,其中,步驟(. 底端之保護層。10. The method of claim 5, wherein the step (. the bottom of the protective layer. 方法其中,所述保護層進一步包括一壓敏膠層。 14.如申請專利範圍第13項所述之奈来碳管複合材料之製備 方法其中,所述保護層之形成方法包括以下步驟:提供 =醋片;於該聚δ旨表面塗敷-層壓敏縣;將所述 聚酉曰片置於所述奈米碳管陣列之上方;輕壓所述聚醋片, 使所述聚自旨上塗覆之壓敏膠層覆蓋所述奈米碳管陣列 之頂端,從而形成保護層。 15·如申請專利範圍第5項所述之奈米碳管複合材料之製備 方法,其中,所述聚合物材料包括矽膠系列、聚乙烯乙二 醇、聚酯、環氧樹脂系列、缺氧膠系列或壓克力膠系列。 16. 如申請專利範圍第15項所述之奈求碳管複合材料之製備 方法,其中,所述步驟(三)所述聚合物材料填充方法包 括將所述兩射賴層之碳奈米管_浸人所述聚合物 材料之溶液或溶融液中。 17. 如申請專利細第16項所述之奈米碳管複合材料之製備 方法〃、中,進一步包括固化所述兩端有保護層之碳奈米 管陣列中填充之聚合物材料之步驟。 18. 如申請專利範圍第5項所述之奈祕管複合材料之製備 方法,其中,所述奈米碳管複合材料之製備方法還包括進 步對所述不 、米石反管複合材料進行反應離子钱刻之步驟。 19. 如申請專利範圍第18項所述之奈米碳管複合材料之製備 方法,其中,所述反應離子蝕刻包括&電漿蝕刻。 1323028 mi M—M—I .In the method, the protective layer further comprises a pressure sensitive adhesive layer. 14. The method for preparing a carbon nanotube composite material according to claim 13, wherein the method for forming the protective layer comprises the steps of: providing a vinegar sheet; and applying the surface coating to the poly δ Minxian; placing the polythene sheet above the carbon nanotube array; gently pressing the polyester sheet to cover the carbon nanotube with the pressure-sensitive adhesive layer coated by the coating The top of the array forms a protective layer. The method for preparing a carbon nanotube composite material according to claim 5, wherein the polymer material comprises a silicone rubber series, a polyethylene glycol, a polyester, an epoxy resin series, and an anoxic rubber. Series or acrylic adhesive series. 16. The method for preparing a carbon nanotube composite material according to claim 15, wherein the method for filling the polymer material in the step (3) comprises: carbon nanotubes of the two-layered layer _ Soaking in a solution or molten solution of the polymer material. 17. The method of preparing a carbon nanotube composite according to claim 16, further comprising the step of curing the polymer material filled in the carbon nanotube array having the protective layer at both ends. 18. The method for preparing a gelatinous tube composite according to claim 5, wherein the method for preparing the carbon nanotube composite further comprises progressing the reaction to the non-mist stone back tube composite. The step of ion money engraving. 19. The method of preparing a carbon nanotube composite according to claim 18, wherein the reactive ion etching comprises & plasma etching. 1323028 mi M-M-I . (呆/«:'^与蚌)硃蚧一(Stay / «: '^ and 蚌) Zhu Yiyi 5H 0.0 0.5 1.0 1.5 2.0 電壓(單位:伏特)5H 0.0 0.5 1.0 1.5 2.0 voltage (unit: volts)
TW95114389A 2006-04-21 2006-04-21 Carbon nanotube composite and method for making same TWI323028B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95114389A TWI323028B (en) 2006-04-21 2006-04-21 Carbon nanotube composite and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95114389A TWI323028B (en) 2006-04-21 2006-04-21 Carbon nanotube composite and method for making same

Publications (2)

Publication Number Publication Date
TW200741832A TW200741832A (en) 2007-11-01
TWI323028B true TWI323028B (en) 2010-04-01

Family

ID=45074015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95114389A TWI323028B (en) 2006-04-21 2006-04-21 Carbon nanotube composite and method for making same

Country Status (1)

Country Link
TW (1) TWI323028B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494264B (en) * 2010-08-27 2015-08-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite structure and method for making same
US9242443B2 (en) 2010-08-23 2016-01-26 Tsinghua University Method for making carbon nanotube composite hollow structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876177B (en) * 2014-02-28 2016-10-19 清华大学 The transfer method of nanostructured

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242443B2 (en) 2010-08-23 2016-01-26 Tsinghua University Method for making carbon nanotube composite hollow structure
TWI494264B (en) * 2010-08-27 2015-08-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite structure and method for making same

Also Published As

Publication number Publication date
TW200741832A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Zheng et al. Highly stable and conductive microcapsules for enhancement of joule heating performance
US9023477B2 (en) Thermally conductive pad with an array of carbon nanotubes and method for making the same
Kim et al. Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink
Jo et al. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating
TWI299358B (en) Thermal interface material and method for making same
Lee et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel
CN101497437B (en) Method for preparing carbon nano-tube compound film
CN101121497A (en) Carbon nano-tube composite material and preparation method thereof
US20110123776A1 (en) Graphene laminate and method of preparing the same
Xu et al. Highly stretchable, fast thermal response carbon nanotube composite heater
Wu et al. Buckle-delamination-enabled stretchable silver nanowire conductors
JP2009298691A (en) Electrostrictive composite material and method for manufacturing thereof
US20120107591A1 (en) Carbon nanotube composite structure
KR20060011824A (en) Carbon nanotube device, process for producing the same and carbon nanotube transcriptional body
TWI339465B (en) Electromagnetic shielding layer and method for making the same
TW201241843A (en) Method for manufacturing a carbon nanotube composite and application
He et al. Recent development in liquid metal materials
Li et al. Highly conductive Ag paste for recoverable wiring and reliable bonding used in stretchable electronics
US20090029052A1 (en) Method for making composite material with a high-density array of carbon nanotubes
TWI323028B (en) Carbon nanotube composite and method for making same
TW201242892A (en) A method for making carbon nanotube slurry
TWI253898B (en) Thermal interface material and method of making the same
TW200929292A (en) Super capacitor
TWI476147B (en) Carbon nanotube composite and method for making the same
TWI337172B (en) Method of making high-density carbon nanotube array