TWI337172B - Method of making high-density carbon nanotube array - Google Patents

Method of making high-density carbon nanotube array Download PDF

Info

Publication number
TWI337172B
TWI337172B TW96128627A TW96128627A TWI337172B TW I337172 B TWI337172 B TW I337172B TW 96128627 A TW96128627 A TW 96128627A TW 96128627 A TW96128627 A TW 96128627A TW I337172 B TWI337172 B TW I337172B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube array
elastic film
high elastic
density
Prior art date
Application number
TW96128627A
Other languages
Chinese (zh)
Other versions
TW200906711A (en
Inventor
Ding Wang
Peng-Cheng Song
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96128627A priority Critical patent/TWI337172B/en
Publication of TW200906711A publication Critical patent/TW200906711A/en
Application granted granted Critical
Publication of TWI337172B publication Critical patent/TWI337172B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

1337172 [0001] [0002] [0003] [0004] 096128627 099年11月26日核正替換頁 發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米碳管陣列的製備方法,尤其涉及一 種高密度奈米碳管陣列的製備方法。 【先前技術】 奈米碳管為九十年代初才發現的一種新型一維奈米材料 。奈米碳管的特殊結構決定了其具有特殊的性質,如高 抗張強度和高熱穩定性;隨著奈米碳管螺旋方式的變化 ,奈米碳管可呈現出金屬性或半導體性等。由於奈米碳 管具有理想的一維結構及於力學、電學、熱學等領域優 良的性質,其於材料科學、'化李、物理學等交叉學科領 域已展現出廣闊的應用前景,於科學研究以及產業應用 上也受到越來越多的關注。 先前比較成熟的製備奈米碳管的方法主要包括電弧放電 法(Arc discharge)、錯射燒敍法(Laser Ablation) 及化學氣相沈積法(Chemical Vapor Deposition, CVD)。其中,化學氣相沈積法和前兩種方法相比具有產 量高、可控性強、與先前的積體電路工藝相容等優點, 利於工業上進行大規模合成,因此近幾年備受關注。 目前,採用CVD方法製備奈米碳管陣列的技術已經相當成 熟,然直接生長得到的奈米碳管陣列受CVD方法生長的限 制,於其陣列中奈米碳管的密度基本上為確定的,無法 任意調控。此外,該方法直接生長的奈米碳管陣列中奈 米碳管的密度在微觀上看為較為鬆散的,奈米碳管之間 的間距大於奈米碳管自身直徑的數倍,所製備的奈米碳 表單編號A0101 第3頁/共12頁 0993425784-0 1337172 099年11月26日修正替換ΐ~| 管陣列的密度最大也只於1 〇_2克每立方厘米Cg/cm3)量級 上。因此C V D方法直接生長得到的奈米碳管陣列中奈米石炭 管的密度較低。這種密度較低的奈米碳管陣列於電子、 導熱等方面的性質還不能達到比較理想的要求。 [0005]BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a carbon nanotube array, and more particularly to a method for preparing a carbon nanotube array. A method of preparing a high density carbon nanotube array. [Prior Art] A carbon nanotube is a new type of one-dimensional nanomaterial discovered only in the early 1990s. The special structure of the carbon nanotubes determines its special properties, such as high tensile strength and high thermal stability. With the change of the helical mode of the carbon nanotubes, the carbon nanotubes can exhibit metallic or semiconducting properties. Because carbon nanotubes have ideal one-dimensional structure and excellent properties in mechanics, electricity, heat and other fields, they have shown broad application prospects in the fields of materials science, 'chemical Li, physics and other interdisciplinary fields. And industrial applications are also receiving more and more attention. Previously mature methods for preparing carbon nanotubes mainly include Arc discharge, Laser Ablation, and Chemical Vapor Deposition (CVD). Among them, the chemical vapor deposition method has the advantages of high yield, strong controllability, compatibility with the previous integrated circuit process, and the like, which is advantageous for industrial large-scale synthesis, and thus has received much attention in recent years. . At present, the technology for preparing a carbon nanotube array by the CVD method is quite mature, but the directly grown carbon nanotube array is limited by the growth of the CVD method, and the density of the carbon nanotubes in the array is substantially determined. Unable to regulate. In addition, the density of the carbon nanotubes in the carbon nanotube array directly grown by the method is microscopically loose, and the spacing between the carbon nanotubes is greater than several times the diameter of the carbon nanotube itself. Nano carbon form number A0101 Page 3 / Total 12 pages 0993425784-0 1337172 Modified on November 26, 099 ΐ~| The density of the tube array is only on the order of 1 〇 2 gram per cubic centimeter Cg/cm 3 ) on. Therefore, the density of the carbon nanotubes in the carbon nanotube array directly grown by the C V D method is low. The low-density carbon nanotube arrays do not meet the ideal requirements in terms of electrons, heat conduction and the like. [0005]

Don N.Futaba等(請參見 “Shape-engineerable and [0006] highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes" , Don N.Futaba et al.,Don N. Futaba et al. (see "Shape-engineerable and [0006] highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes", Don N. Futaba et al.,

Nature Materials’ vol 5,p987(2006))利用收縮 籲 效應把單壁奈米碳管收縮成高密度奈米碳管陣列,且證 實了其所製備的高密度單壁爹..米具有單個奈 米碳管的固有特性,例如大:,出案:面^>:優&的柔韌性 以及導電性等。高密度單壁奈米碳管陣列可應用於彈性 加熱器和密閉能量記憶體件的超級電容器的電極上然 ,該方法製備的工序較複雜„ [0007] 有鑒於此’提供-種簡單易行的製備高密度、均勻地定 向排列的奈米碳管陣列的製備方法實為必要。 · 【發明内容】 [0008] -種高密度奈米碳管陣列製備方法,包括:提供一形成 於一基底的奈米碳管陣列;提供—高彈㈣膜;均句/拉 伸上述的高彈性薄膜後,附着在上述奈米碳管陣列上, 同時對該高彈性薄膜均勾地施加遷力;保持壓力並收縮 高彈性薄膜,縣壓力後,分離奈米碳管陣列與高· 薄膜,從而得到高密度奈米碳管陣列 096128627 表單編號A0101 第4頁/共12頁 0993425784-0 1337172 099年11月26日核:正替換頁 [0009] 與先前技術相比,本發明所提供的高密度奈米碳管陣列 的製備方法具有以下優點:其一,所述的製備方法簡單 易行,有利於用於實際生產;其二,所製備的的高密度奈 米碳管陣列中的奈米碳管均勻地定向排列,其密度可根 據需要控制為CVD方法直接生長所得到的奈米碳管陣列密 度的5〜50倍。由於該奈米碳管陣列在電、熱等方面都有 較好的特性,可以廣泛地應用在催化電極、電池電極、 電磁遮罩、導電材料、導熱材料、發光材料以及複合材 料等方面。 【實施方式】 [0010] 以下將結合附圖詳細說明本實施例高密度奈米碳管陣列 • 的製備方法。請參閱圖1及圖2,本實施例高密度奈米碳 管陣列40的製備方法主要包括以下步驟:步驟一:提供 一形成於一基底的奈米碳管陣列20,優選地,該陣列為 超順排奈米碳管陣列。本實施例中,奈米碳管陣列20的 製備方法採用化學氣相沈積法,其具體步驟包括:(a) 提供一平整基底,該基底可選用P型或N型矽基底,或選 用形成有氧化層的矽基底,本實施例優選為採用4英寸的 矽基底;(b)在基底表面均勻形成一催化劑層,該催化 劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任 意組合的合金之一;(C)將上述形成有催化劑層的基底 在700〜900°C的空氣中退火約30分鐘〜90分鐘;(d) 將處理過的基底置於低壓反應爐中,大氣壓強約0. 2托 (Torr),在保護氣體環境下加熱到705°C,然後通入碳 源氣體反應約20分鐘,生長得到奈米碳管陣列。該奈米 096128627 碳管陣列為多個彼此平行且垂直於基底生長的奈米碳管 表單編號A0101 第5頁/共12頁 0993425784-0 B37172 099年11月26日核正替换頁 形成的純奈米碳管陣列,由於生成的奈米碳管長度較長 ,部分奈米碳管會相互纏繞。通過控制上述生長條件,Nature Materials' vol 5, p987 (2006)) used a shrinkage-calling effect to shrink a single-walled carbon nanotube into a high-density carbon nanotube array, and confirmed that it produced a high-density single-walled ruthenium. The inherent characteristics of the carbon nanotubes, for example, large:, the case: surface ^>: excellent & flexibility and electrical conductivity. High-density single-walled carbon nanotube arrays can be applied to the electrodes of flexible heaters and supercapacitors of closed energy memory devices. The process of this method is complicated. [0007] In view of this, it is simple and easy to implement. The preparation method of the carbon nanotube array with high density and uniform orientation is necessary. [0008] A method for preparing a high-density carbon nanotube array includes: providing a substrate formed on a substrate a carbon nanotube array; providing a high-elastic (four) film; after uniformly stretching/stretching the above-mentioned high elastic film, attaching to the above-mentioned carbon nanotube array, and applying a relocation force to the high elastic film; Pressure and shrink the high elastic film, after the county pressure, separate the carbon nanotube array with the high film to obtain the high density carbon nanotube array 096128627 Form No. A0101 Page 4 / Total 12 Page 0993425784-0 1337172 November 099 26th core: positive replacement page [0009] Compared with the prior art, the preparation method of the high-density carbon nanotube array provided by the invention has the following advantages: First, the preparation method is simple and easy, For practical production; second, the carbon nanotubes in the prepared high-density carbon nanotube array are uniformly aligned, and the density thereof can be controlled as needed to directly grow the carbon nanotube array obtained by the CVD method. The density of carbon nanotubes is 5 to 50 times. Since the carbon nanotube array has good characteristics in electricity and heat, it can be widely applied to catalytic electrodes, battery electrodes, electromagnetic masks, conductive materials, heat conductive materials, and luminescent materials. And a composite material, etc. [Embodiment] [0010] Hereinafter, a method for preparing a high-density carbon nanotube array of the present embodiment will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, the high-density nano-in this embodiment The method for preparing the carbon tube array 40 mainly comprises the following steps: Step 1: providing a carbon nanotube array 20 formed on a substrate, preferably the array is a super-sequential carbon nanotube array. In this embodiment, The carbon nanotube array 20 is prepared by a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or may be formed to be oxidized. The crucible substrate is preferably a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co), nickel (Ni) or (C) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a low pressure reactor, The atmospheric pressure is about 0.2 Torr, heated to 705 ° C in a protective gas atmosphere, and then passed through a carbon source gas for about 20 minutes to grow to obtain a carbon nanotube array. The nano 096128627 carbon tube array is more Carbon nanotubes, which are parallel to each other and perpendicular to the substrate, form number A0101, page 5, total 12 pages, 0993425784-0, B37172, November 26, 1999, the replacement of the pure carbon nanotube array formed by the nuclear replacement sheet, due to the formation of the nai The carbon nanotubes are long in length, and some of the carbon nanotubes are entangled with each other. By controlling the above growth conditions,

該超順排奈米碳管陣列中基本不含有雜質,如無定型碳 或殘留的催化劑金屬顆粒等。本實施例中碳源氣可選用 乙炔等化學性質較活潑的碳氫化合物,保護氣體可選用 氮氣、氨氣或惰性氣體。可以理解,本實施例提供的奈 米碳管陣列不限於上述製備方法,所述的奈米碳管陣列 包括單壁奈米碳管陣列、雙壁奈米碳管陣列或多壁奈米 碳管陣列中的一種。 IThe super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, and the protective gas may be nitrogen, ammonia or an inert gas. It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method, and the carbon nanotube array comprises a single-walled carbon nanotube array, a double-walled carbon nanotube array or a multi-walled carbon nanotube. One of the arrays. I

[0011] 步驟二:提供一高彈性薄膜30。 [0012] 其中,高彈性薄膜30材料可:為,高彈性的高分子聚合物t 的一種,如矽橡膠、順丁橡膠、天然橡膠、異戊橡膠或 丁笨橡膠。本實施例中採用的高彈性薄膜30為矽橡膠薄 膜。步驟三:均勻拉伸上述的高彈性薄膜3 0後,將拉伸 後的高彈性薄膜30附着在上述奈米碳管陣列20上,同時 對該高彈性薄膜30均勻地施加壓力。 [0013] 其中,均勻拉伸上述的高彈性薄膜30為一維拉伸或者二 維拉伸,一維拉伸為在高彈性薄膜30的長度或寬度方向 上拉伸。二維拉伸為在高彈性薄膜30的長度和寬度兩個 方向上同時拉伸。 [0014] 本實施例中採用二維拉伸高彈性薄膜30。將高彈性薄膜 30進行二維拉伸後,直接將拉伸後的高彈性薄膜30附着 在奈米碳管陣列20上,具體地,將拉伸後的高彈性薄膜 30附着在奈米碳管陣列20遠離基底的一端,同時對該高 096128627 表單編號A0101 第6頁/共12頁 0993425784-0 1337172 099年11月26日核正替換頁 彈性薄膜3 0均勻地施加壓力,以增加高彈性薄膜3 0和奈 米碳管陣列20之間的附着力。施加於上述的高彈性薄膜 30的表面的壓力的方向為垂直於基底10方向。上述的施 加壓力的大小不限,可根據實際需要進行選擇,只需保 證對高彈性薄膜30均勻地施加壓力。 [0015] 步驟四:保持壓力並收縮高彈性薄膜30,撤去壓力後, 分離奈米碳管陣列20和高彈性薄膜30,從而得到高密度 奈米碳管陣列40。收縮高彈性薄膜30時,奈米碳管陣列 20隨著高彈性薄膜30—起均勻收縮,由於高彈性薄膜30 和奈米碳管陣列2 0之間的附着力大於奈米碳管陣列2 0和 基底10的附着力,隨著高彈性薄膜30的收縮,奈米碳管 陣列20從基底10上脫離;撤去壓力後,將奈米碳管陣列 20與高彈性薄膜30分離,從而得到高密度奈米碳管陣列 40。 [0016] 其中,收縮高彈性薄膜30為一維收縮高彈性薄膜30或者 二維收縮高彈性薄膜30。一維收縮高彈性薄膜30為通過 在高彈性薄膜的長度或寬度方向上收縮高彈性薄膜30。 二維收縮高彈性薄膜30為通過在高彈性薄膜30的長度和 寬度兩個方向上同時收縮高彈性薄膜30。本實施例採用 二維收縮矽橡膠薄膜。 [0017] 其中,本實施例採用機械法將奈米碳管陣列20與高彈性 薄膜30分離。即對高彈性薄膜30施加一機械拉力,直接 將高彈性薄膜30與奈米碳管陣列20分離。由於奈米碳管 陣列20中的奈米碳管間的密度高、結合力強,能夠使得 奈米碳管陣列20自支撐而不散開,從而得到高密度奈米 096128627 表單編號A0101 第7頁/共12頁 0993425784-0 1337172 099年11月26日核正替換頁 碳管陣列40。還可採用其他方法將奈米碳管陣列20與高 彈性薄膜30分離。 [0018] 所製備的高密度奈米碳管陣列4 0的密度可達到C V D法直接 生長所得到的奈米碳管陣列密度的5-50倍。 [0019] 本實施例中獲得的高密度奈米碳管陣列40中的奈米碳管 均勻緊密地定向排列,密度為CVD法直接生長所得的奈米 碳管陣列20的15倍。本實施例可通過控制對奈米碳管陣 列20進行的高彈性薄膜30收縮程度的大小,進而控制所 述的高密度奈米碳管陣列40的密度。 [0020] 本實施例中高密度奈米碳管陣列.的黎備、友;法具有以下優 -V' 點:其一,所述的製備方法簡單讀府#有利於用於實際 生產;其二,所製備的高密皮奈来凌管列中的奈米碳管 均勻地定向排列,其密度可根據需要控制為CVD方法直接 生長所得到的奈米碳管陣列密度的5〜50倍。由於該奈米 碳管陣列在電、熱等方面都有較好的特性,可以廣泛地 應用在催化電極、電池電極、電磁遮罩、導電材料、導 熱材料、發光材料以及複合材料等方面。 [0021] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0022] 圖1係本發明實施例高密度奈米碳管陣列的製備方法的流 096128627 表單編號A0101 第8頁/共12頁 0993425784-0 1337172 099年11月26日梭正替換頁 程示意圖。 [0023] 圖2係本發明實施例高密度奈米碳管陣列的製備過程中奈 米碳管陣列隨著高彈性薄膜收縮的形變示意圖。 【主要元件符號說明】 [0024] 基底:10 [0025] 奈米碳管陣列:20 [0026] 高彈性薄膜:30 [0027] 高密度奈米碳管陣列:40 參 096128627 表單編號A0101 第9頁/共12頁 0993425784-0[0011] Step 2: A high elastic film 30 is provided. [0012] wherein, the material of the high elastic film 30 can be: a kind of high elastic polymer t, such as ruthenium rubber, butadiene rubber, natural rubber, isoprene rubber or butyl rubber. The high elastic film 30 used in this embodiment is a silicone rubber film. Step 3: After uniformly stretching the above-mentioned high elastic film 30, the stretched high elastic film 30 is attached to the above carbon nanotube array 20 while uniformly applying pressure to the high elastic film 30. [0013] wherein the above-mentioned high elastic film 30 is uniformly stretched in one-dimensional stretching or two-dimensional stretching, and one-dimensional stretching is stretching in the length or width direction of the high elastic film 30. The two-dimensional stretching is simultaneous stretching in both the length and the width of the high elastic film 30. [0014] In the present embodiment, a two-dimensionally stretched high elastic film 30 is employed. After the high elastic film 30 is two-dimensionally stretched, the stretched high elastic film 30 is directly attached to the carbon nanotube array 20, specifically, the stretched high elastic film 30 is attached to the carbon nanotube. The array 20 is away from the end of the substrate, and at the same time the high 096128627 form number A0101 page 6 / 12 pages 0993425784-0 1337172 0199 November 26 nuclear replacement page elastic film 30 uniformly applied pressure to increase the high elastic film Adhesion between the 30 and the carbon nanotube array 20. The direction of the pressure applied to the surface of the above-mentioned high elastic film 30 is perpendicular to the direction of the substrate 10. The above-mentioned application pressure is not limited in size, and can be selected according to actual needs, and it is only required to uniformly apply pressure to the highly elastic film 30. [0015] Step 4: Maintaining the pressure and shrinking the high elastic film 30, after removing the pressure, separating the carbon nanotube array 20 and the high elastic film 30, thereby obtaining a high density carbon nanotube array 40. When the high elastic film 30 is shrunk, the carbon nanotube array 20 uniformly shrinks with the high elastic film 30, since the adhesion between the high elastic film 30 and the carbon nanotube array 20 is greater than that of the carbon nanotube array 20 The adhesion to the substrate 10, the carbon nanotube array 20 is detached from the substrate 10 as the high elastic film 30 shrinks; after the pressure is removed, the carbon nanotube array 20 is separated from the high elastic film 30, thereby obtaining a high density. Nano carbon tube array 40. [0016] wherein the shrinkable high elastic film 30 is a one-dimensional shrinkable high elastic film 30 or a two-dimensional shrinkable high elastic film 30. The one-dimensional shrinkable high elastic film 30 is formed by shrinking the high elastic film 30 in the length or width direction of the high elastic film. The two-dimensionally contracted high elastic film 30 is formed by simultaneously shrinking the high elastic film 30 in both the length and the width of the high elastic film 30. This embodiment employs a two-dimensional shrink 矽 rubber film. [0017] wherein, in this embodiment, the carbon nanotube array 20 is separated from the high elastic film 30 by a mechanical method. That is, a mechanical pulling force is applied to the high elastic film 30 to directly separate the high elastic film 30 from the carbon nanotube array 20. Due to the high density and strong bonding force between the carbon nanotubes in the carbon nanotube array 20, the carbon nanotube array 20 can be self-supported without being scattered, thereby obtaining a high-density nano 096128627 Form No. A0101 Page 7 / A total of 12 pages 0993425784-0 1337172 November 26, 099 nuclear replacement page carbon tube array 40. The carbon nanotube array 20 can also be separated from the highly elastic film 30 by other methods. [0018] The density of the prepared high-density carbon nanotube array 40 can be 5 to 50 times the density of the carbon nanotube array obtained by direct growth of the C V D method. [0019] The carbon nanotubes in the high-density carbon nanotube array 40 obtained in the present embodiment are uniformly and closely aligned, and the density is 15 times that of the carbon nanotube array 20 directly grown by the CVD method. This embodiment can control the density of the high-density carbon nanotube array 40 by controlling the degree of contraction of the high elastic film 30 to the carbon nanotube array 20. [0020] The high-density carbon nanotube array of the present embodiment has the following excellent-V' points: First, the preparation method is simple and easy to use for actual production; The prepared carbon nanotubes in the high-density Pylon tube array are evenly aligned, and the density thereof can be controlled to be 5 to 50 times the density of the carbon nanotube array obtained by direct growth of the CVD method as needed. Since the carbon nanotube array has good characteristics in terms of electricity and heat, it can be widely applied to catalytic electrodes, battery electrodes, electromagnetic masks, conductive materials, heat conductive materials, luminescent materials, and composite materials. [0021] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0022] FIG. 1 is a flow of a method for preparing a high-density carbon nanotube array according to an embodiment of the present invention. 096128627 Form No. A0101 Page 8 of 12 0993425784-0 1337172 November 26, 2008 The page history diagram is being replaced. 2 is a schematic view showing deformation of a carbon nanotube array with shrinkage of a high elastic film during preparation of a high density carbon nanotube array according to an embodiment of the present invention. [Main Component Symbol Description] [0024] Substrate: 10 [0025] Carbon nanotube array: 20 [0026] High elastic film: 30 [0027] High-density carbon nanotube array: 40 Ref. 096128627 Form No. A0101 Page 9 / Total 12 pages 0993425784-0

Claims (1)

出 7172 ㈣年11月26日梭正躲頁 七、申請專利範圍: 1 種高密度奈米碳管陣列的製備方法,包括以下步驟: 提供一形成於一基底的奈米碳管陣列; 提供—高彈性薄膜; · 均勻拉伸上述的高彈性薄膜後,附着在上述奈米碳管陣列 上,同時對該高彈性薄膜均勻地施加壓力; 保持壓力並收縮高彈性薄膜,撤去墨力後,分離奈米碳管 陣列與高彈性薄膜,從而得到高密度奈米碳管陣列。 2 .如申請專利範圍第1項所述的高密度奈米碳管陣列的製備 方法’其中’所述的高彈性薄膜材料為石夕橡勝、順丁橡膠鲁 、天然橡膠、異戊橡膠或丁苯’橡膠.。 3 .如申請專利圍第w所述的密度奈求碳管:妹列的製備 方法,其中,所述的均勻拉伸為一維拉伸或者二維拉伸。 4 .如申請專利範圍第3項所述的的高密度奈米碳管陣列的製 備方法,其中,所述的一維拉伸為在上述的高彈性薄臈的 長度或寬度方向上拉伸。 5 .如申請專利範圍第3項所述的的高密度奈求碳管陣列的製 參 備方法,其中,所述的二維拉伸為在上述的高彈性薄膜的 長度和寬度兩個方向上同時拉伸。 6 .如申請專利範圍第1項所述的高密度奈米碳管陣列的製備 方法,其中,所述的將高彈性薄臈附着在奈米碳管陣列上 ,其具體製備過程為將高彈性薄膜附着在奈米碳管陣列遠 離基底的一端。 7 .如申請專利範圍第1項所述的高密度奈米碳管陣列的製備 方法,其中,所述的施加壓力的方向為垂直於基底方向。 096128627 表單編號A0101 第10頁/共12頁 0993425784-0 Ο [ο卯年11月日步正替換頁I •如申請專利範圍第1項所述的高密度奈米碳^^- 方法,其中’所述的收縮高彈性薄膜為一維收縮高彈性薄 . 膜或二維收縮高彈性薄膜。 _ 9 ’ Μ請專利額第8項所料高密度奈米碳管陣列的製備 方法,其t,所述的一維收縮高彈性薄膜為通過在高彈性 薄臈的長度或寬度方向上收縮高彈性薄膜。 10 .如申請專利範圍第8項所述的高密度奈米碳管陣列的製備 方法,其令,所述的二維收縮高彈性薄膜為通過在高彈性 % 薄祺的長度和寬度兩個方向上同時收縮高彈性薄骐。 U .如申請專利範圍第1項所述的高密度奈米碳管陣列的製備 方法,其中,所述的分離奈米碳管陣列和高彈性薄膜的方 去為機械法》 鳙 卯6丨28627 表·單鸪珑A0101 第11頁/共丨2頁 0993425784-07172 (4) On November 26th, the shuttle is hiding. 7. Patent application scope: The preparation method of a high-density carbon nanotube array includes the following steps: providing an array of carbon nanotubes formed on a substrate; a highly elastic film; · uniformly stretching the above-mentioned high elastic film, adhering to the above-mentioned carbon nanotube array, and uniformly applying pressure to the high elastic film; maintaining pressure and shrinking the high elastic film, and removing the ink force, separating The carbon nanotube array is combined with a highly elastic film to obtain a high density carbon nanotube array. 2. The method for preparing a high-density carbon nanotube array according to claim 1, wherein the high elastic film material is Shixia Rubber, Butadiene Rubber, Natural Rubber, Isoprene Rubber or Butyl Benzene 'rubber. 3. A method of preparing a density carbon nanotube as described in the patent application, wherein the uniform stretching is one-dimensional stretching or two-dimensional stretching. 4. The method of producing a high-density carbon nanotube array according to claim 3, wherein the one-dimensional stretching is stretching in a length or width direction of the high elastic thin crucible. 5. The method of preparing a high-density carbon nanotube array according to claim 3, wherein the two-dimensional stretching is in both the length and the width of the high elastic film described above. Stretch while stretching. 6. The method for preparing a high-density carbon nanotube array according to claim 1, wherein the high elastic thin crucible is attached to the carbon nanotube array, and the specific preparation process is high elasticity. The film is attached to the end of the carbon nanotube array away from the substrate. The method of producing a high-density carbon nanotube array according to claim 1, wherein the direction of applying the pressure is perpendicular to the direction of the substrate. 096128627 Form No. A0101 Page 10 / Total 12 Page 0993425784-0 Ο [Ov. November Day Steps Replacement Page I • High-density nanocarbon ^^- method as described in claim 1 of the patent scope, where ' The shrinkable high elastic film is a one-dimensional shrinkage high elastic thin film or a two-dimensional shrinkage high elastic film. _ 9 ' The method for preparing a high-density carbon nanotube array according to Item 8 of the patent, wherein the one-dimensional shrinkage high elastic film is high in shrinkage in the length or width direction of the high elastic thin crucible Elastic film. 10. The method of preparing a high-density carbon nanotube array according to claim 8, wherein the two-dimensional shrinkage high elastic film is passed in both directions of length and width of the high elastic % thin crucible At the same time, the upper elastic contraction is high. U. The method for preparing a high-density carbon nanotube array according to claim 1, wherein the method for separating the carbon nanotube array and the high elastic film is a mechanical method 鳙卯6丨28627 Table·鸪珑鸪珑A0101 Page 11/Total 2 Page 0993425784-0
TW96128627A 2007-08-03 2007-08-03 Method of making high-density carbon nanotube array TWI337172B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96128627A TWI337172B (en) 2007-08-03 2007-08-03 Method of making high-density carbon nanotube array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96128627A TWI337172B (en) 2007-08-03 2007-08-03 Method of making high-density carbon nanotube array

Publications (2)

Publication Number Publication Date
TW200906711A TW200906711A (en) 2009-02-16
TWI337172B true TWI337172B (en) 2011-02-11

Family

ID=44723248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96128627A TWI337172B (en) 2007-08-03 2007-08-03 Method of making high-density carbon nanotube array

Country Status (1)

Country Link
TW (1) TWI337172B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758540B2 (en) 2008-11-14 2014-06-24 Tsinghua University Method for laying carbon nanotube film
US8795461B2 (en) 2008-11-14 2014-08-05 Tsinghua University Method for stretching carbon nanotube film
US8815398B2 (en) 2008-11-14 2014-08-26 Tsinghua University Carbon nanotube film
US8815397B2 (en) 2008-11-14 2014-08-26 Tsinghua University Carbon nanotube film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758540B2 (en) 2008-11-14 2014-06-24 Tsinghua University Method for laying carbon nanotube film
US8795461B2 (en) 2008-11-14 2014-08-05 Tsinghua University Method for stretching carbon nanotube film
US8815398B2 (en) 2008-11-14 2014-08-26 Tsinghua University Carbon nanotube film
US8815397B2 (en) 2008-11-14 2014-08-26 Tsinghua University Carbon nanotube film

Also Published As

Publication number Publication date
TW200906711A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
CN101353164B (en) High-density carbon nano-tube array preparation
JP5065336B2 (en) Method for producing carbon nanotube film
US8580132B2 (en) Method for making strip shaped graphene layer
JP5470610B2 (en) Graphene sheet manufacturing method
Dervishi et al. Carbon nanotubes: synthesis, properties, and applications
TWI272245B (en) A method for making carbon nanotube device
TWI312337B (en) Method for making the carbon nanotubes silk
US20130266729A1 (en) Method for making strip shaped graphene layer
CN101870463A (en) Carbon nano tube Poisson ratio material
CN101338452B (en) High-density carbon nanotube array and method for preparing same
US20130264193A1 (en) Method for making strip shaped graphene layer
US20100285300A1 (en) Nano-materials
TWI339465B (en) Electromagnetic shielding layer and method for making the same
US9393767B2 (en) Method for making strip shaped graphene layer
JP2010222244A (en) Carbon nanotube particle composite material and method for producing the same
US9216908B2 (en) Method for making strip shaped graphene layer
CN105439114A (en) Carbon fiber film and preparation method thereof
JP4851496B2 (en) Method for producing a composite comprising a high density carbon nanotube array
TWI337172B (en) Method of making high-density carbon nanotube array
US20130264748A1 (en) Method for making strip shaped graphene layer
TW201125814A (en) Method for making carbon nanotube structure
CN107400872B (en) The preparation method of carbon-fiber film
Turano et al. Chemical vapor deposition synthesis of self-aligned carbon nanotube arrays
Liu et al. Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties
Kim et al. Cone-type multi-shell in the hollow core of multi-wall carbon nanotube