1362429 六 [0001] 100年.09月29日修正春换頁發明說明: 【發明所屬之技術領域】 本發明涉及一種奈杀殘管陣列複合材料的製備方法,尤 其涉及一種高密度奈米碳管陣列複合材料的製備方法。 [0002] 【先前技術】 自1991年日本NEC公司的j 土 jima發現奈米碳管(Carb〇nNanotube,CNT)以來(IiHma s, 354, p56(1991 )) ’立即引起科學界及產業界的極大重視 。奈米碳管具有優良的機械和光電性能,被視為複合材 料的理想添加物。“碳管/聚合物複合材料首次報導後 已成為世界科學研究的熱點(Ajayan P.Μ., Stephan 0., Colliex C., Tranth D. , Science, vol1362429 六 [0001] 100 years. September 29th revised spring page description: [Technical Field] The present invention relates to a method for preparing a nano-killing tube array composite material, in particular to a high-density carbon nanotube A method of preparing an array composite. [Prior Art] Since the discovery of carbon nanotubes (Carb〇n Nanotube, CNT) by J. Jima of Japan NEC Corporation in 1991 (IiHma s, 354, p56 (1991)), it immediately caused the scientific and industrial circles. Great attention. Nano carbon tubes have excellent mechanical and optoelectronic properties and are considered an ideal addition to composite materials. “Carbon/polymer composites have become a hot topic in world science research since their first report (Ajayan P.Μ., Stephan 0., Colliex C., Tranth D., Science, vol
265,p1 212(1994),:p, Nature,vol 399,p210(1999)) 〇奈米碳管作為增強體和導電體形 成的複。材料具有抗靜電,吸收微波和遮罩電磁等性能 ’具有廣泛的應用前景。 [0003] 不、米炭s複β材料的製備方法通常有原位聚合法 、溶液 m和炫體共混法。原位聚合法為利用奈米碳管表面 的官能團參與聚合或利用引發劑打開奈米碳管的續, 使其參與聚合反應而達到與有機相 的良好相容。溶液共 在般為把奈来碳管分散到聚合物的溶劑中 ,再將聚合 物其加工成型後將溶劑清除從而制得複合材 料。融體共混法為把奈錢管與聚合物基體材料在大於 基體材料熔點的溫度下熔融並均勻混合而得到奈米碳管 複合材料。 096128629 表單编號A0101 第4頁/共20頁 1003356361-0 1362429 100年.09月29日·^正§^頁丨 圃由於奈米碳管具有優異的機械強度和熱導率利用定向 排列的奈米碳管陣列結構,可製備性能優異的奈米碳管 導熱材料和奈米碳管複合增強材碳管對複合材 料的導熱性能和機械性能增強效果與奈米碳管在複合材 料中的密度相關。 [0005]目前,採用化學氣相沈積(CVD)方法製備奈米碳管陣列的 技術已經相當成熟◊然,CVD方法直接生長所得到的奈米 碳管陣列的密度小於0.01克每立方厘米(g/cm3),在微 觀上看較為鬆散,奈米碳管之間的間距大於奈米碳管自 身直徑的數倍》CVD法直接生長所得到的奈米碳管陣列受 CVD方法生長的限制,在其陣列中奈米碳管的密度基本上 為確定的,無法任意調控。以該低密度奈米碳管陣列製 備的複合材料,由於其中奈米碳管導熱通道的密度太低 ,從而使得其在導熱或複合材料等應用中並沒有達到理 想的效果。 [0006] Don N.Futaba等人(請參見 “Shape-Engineer-able • and highly densely packed single-walled car bon nanotubes and their application as super-capacitor electrodes" , Don N.Futaba et al·, Nature Materials, vol 5, p987(2006))利 用收縮效應把單壁奈米碳管收縮成高密度奈米碳管陣列 ’且證實了其所製備的高密度奈米碳管陣列,具有單個 奈米碳管的固有特性,例如大的比表面積、優異的柔勒 性以及導電性等。高密度奈米碳管陣列可應用於彈性加 熱器和密閉能量記憶體件的超級電容器的電極上,然, 096128629 表單編號 A0101 第 5 頁/共 20 頁 1003356361-0 1362429 ΐοϋ年09月29日修正替換頁· 該方法製備的工序較複雜,且製備的奈米碳管陣列的密 度也不可以任意調控。 [0007] 有鑒於此,提供一種工序簡單、密度可控的高密度奈米 碳管陣列複合材料的製備方法實為必要。 【發明内容】 [0008] 一種奈米碳管陣列複合材料的製備方法,其包括以下步 驟:提供一形成於一基底的奈米碳管陣列和一高分子前 驅體溶液;將奈米碳管陣列和高分子前驅體溶液混合, 形成一高分子前驅體/第一奈米碳管陣列混合體;沿著平 行於基底的方向擠壓該高分子前驅體/第一奈米碳管陣列 混合體,形成一高分子前驅體/第二奈米碳管陣列混合體 ,其中,第二奈米碳管陣列的密度高於第一奈米碳管陣 列的密度;聚合高分子前驅體/第二奈米碳管陣列混合體 中的高分子前驅體,從而形成奈米碳管陣列複合材料。 [0009] 與先前技術相比,利用本發明所提供的方法製備的奈米 碳管陣列複合材料中,奈米碳管陣列的密度可根據需要 控制為CVD法直接生長所得到的奈米碳管陣列複合材料的 10〜200倍,即複合材料中奈米碳管導熱通道的密度提高 了 10〜20 0倍,從而該奈米碳管陣列複合材料具有良好的 導熱性能。其次,由於奈米碳管之間緊密地填充高分子 材料,使得奈米碳管之間連接穩定,比純奈米碳管陣列 的力學性能更為優良。 【實施方式】 [0010] 下面將結合附圖及具體實施例,對本技術方案作進一步 的詳細說明。 096128629 表單編號Α0101 第6頁/共20頁 1003356361-0 1362429 * 4 [0011] , 100年.09月29日梭正替換頁 請參閱圖1,本技術方案實施例提供了一種高分子/高密 度奈米碳管陣列複合材料的製備方法,其具體包括以下 步驟: [0012] ( —)提供一形成於一基底的奈米碳管陣列和一高分子 前驅體溶液。 [0013] . 製備該奈米碳管陣列的方法為化學氣相沈積法。本實施 例中奈米碳管陣列的製備過程具體為: [0014] 首先,提供一基底,該基底可選用P型或N型矽基底,或 選用石英片,此外還可選用玻璃,本實施例優選為採用4 英寸的矽基底; [0015] 其次,在基底上沈積一個催化劑層,催化劑可以選用鐵 (Fe)、鈷(Co)、鎳(Ni)或者其任意組合的合金之 一,本實施例優選為鐵作催化劑,所形成的催化劑薄膜 的厚度為0. 5〜5納米(nm),本實施例優選為lnm厚度鐵 催化劑薄膜,此外,形成催化劑層的方法還可以是電子 束蒸發或磁控濺射; [0016] 再次,將沈積有催化劑層的基底放置在空氣中,在300°C 下退火0.2〜12h,催化劑層經退火後形成氧化顆粒; [0017] 再次,將基底放置在低壓反應爐中,通入保護氣體,在 保護氣體的保護下加熱至一個預定溫度,一般為600〜 1 000°C。保護氣體為惰性氣體或氮氣,優選地,保護氣 體為氮氣;以及 [0018] 再次,通入碳源氣與載氣的混合氣體,反應0. 1〜2小時 096128629 表單編號A0101 第7頁/共20頁 1003356361-0 1362429 100年.09月29日核正替換頁 生長出奈米碳管陣列。其中,碳源氣為碳氫化合物,可 為乙炔、乙烯、曱烷等,優選地,碳源氣為乙炔;載氣 為惰性氣體或者氫氣,優選地,載氣為氫氣。 "" [0019] 該奈米碳管陣列為多個彼此平行且垂直於基底生長的奈 米碳管形成的純奈米碳管陣列,由於生成的奈米碳管長 度較長,部分奈米碳管會相互纏繞。通過控制上述生長 條件,該超順排奈米碳管陣列中基本不含有雜質,如無 定型碳或殘留的催化劑金屬顆粒等。可以理解,本實施 例提供的奈米碳管陣列不限於上述製備方法。本實施例 提供的奈米碳管陣列包括單壁奈米碳管陣列、雙壁奈米 碳管陣列以及多壁奈米碳管陣列中的一種。 [0020] 其中,高分子前驅體溶液為由矽橡膠、灌封膠、環氧樹 脂或石臘中的一種組成的溶液。可以理解,本技術方案 中所涉及的高分子前驅體溶液並不僅限於上述的溶液, 通過低黏度的前驅體固化方式聚合的、可以溶解以及熔 化形成的低黏度液體的高分子材料均可。 [0021] 本實施方式採用的高分子前驅體溶液為矽橡膠溶液。該 矽橡膠溶液的製備方法為在矽橡膠中加入適量乙酸乙酯 稀釋,攪拌均勻後,形成一種矽橡膠的溶液。 [0022] (二)將奈米碳管陣列和高分子前驅體溶液混合,形成 一高分子前驅體/奈米碳管陣列混合體。 [0023] 其中,將奈米碳管陣列和高分子前驅體溶液混合為在一 擠壓裝置中進行混合。請參閱圖2,本實施例中所述的擠 壓裝置10包括一上壓板12,一下壓板14,兩個第一側板 096128629 表單编號Α0101 第8頁/共20頁 1003356361-0 1362429 1 j 100年09月29日梭正替k頁 16,兩個第二側板18。上述的兩個第一側板16與上述的 兩個第二側板18設置於上壓板12和下壓板14之間,並在 上壓板12和下壓板14之間的中心位置形成一空腔22。上 壓板12通過螺絲24對稱地固定於下壓板14上,上壓板12 的面積與下壓板14相等。進一步地,兩個第一側板16沿 第一方向對稱地分佈在空腔22的兩侧;兩個第二侧板18 沿第二方向對稱地分佈在空腔22的另外兩側,其中,上 述的第一方向與第二方向相互垂直。 [0024] 本實施例中,將奈米碳管陣列40和高分子前驅體溶液50 混合包括以下步驟:將上述奈米碳管陣列40連同基底30 放置於擠壓裝置10的空腔22中,之後,將高分子前驅體 溶液50倒入放置有奈米碳管陣列40的擠壓裝置10空腔22 中進行混合後,形成一高分子前驅體/奈米碳管陣列混合 體60。 [0025] 其中,將一奈米碳管陣列40連同基底30直接放置於上述 擠壓裝置10的空腔22中,具體的,先將上述的兩個第一 側板16和兩個第二侧板18放置在下壓板14上,在下壓板 14的中心位置形成一空腔22,再將奈米碳管陣列40連同 基底30直接放置到上述的空腔22中,再將高分子前驅體 溶液50倒入放置有奈米碳管陣列40的擠壓裝置空腔22中 ,之後將再將上壓板12固定到下壓板14上。 [0026] 其中,將高分子前驅體溶液50倒入擠壓裝置10空腔22中 後,進一步還包括一抽真空的過程。其包括以下步驟: 首先將放置於擠壓裝置10空腔22中的奈米碳管陣列40浸 沒在高分子前驅體溶液50中;之後,將擠壓裝置10放入 096128629 表單編號A0101 第9頁/共20頁 1003356361-0 1362429 ιού年.09月29日修正替換頁 真空室抽真空,真空度小於0.2大氣壓(atm),真空度和 抽真空的時間可根據實際需要進行選擇,抽真空過程可 以使得奈米碳管陣列40中的氣泡膨脹,從而浮出液面; ' 待奈米碳管陣列40中的空氣排淨後,高分子前驅體溶液 50便可充分填充奈米碳管之間的間隙,使得高分子前驅 體溶液50和奈米碳管陣列40形成良好的混合,從而形成 一種高分子前驅體/奈米碳管陣列混合體60。 [0027] 可以理解,本發明所述的將奈米碳管陣列40和高分子前 驅體溶液50混合並不限於本實施例所述的採用在擠壓裝 置10中進行混合的方式。只要能保證將奈米碳管陣列40 浸沒在高分子前驅體溶液50中,使高分子前驅體溶液50 充分填充奈米碳管之間的間隙的混合方式均可。 [0028] (三)沿著平行於基底的方向擠壓高分子前驅體/奈米碳 管陣列混合體60,形成一高分子前驅體/高密度奈米碳管 陣列混合體70。 [0029] 請參閱圖3,本實施例中所述的沿著平行於基底的方向擠 壓高分子前驅體/奈米碳管陣列混合體60為採用上述的擠 壓裝置10進行擠壓。該擠壓過程包括以下步驟:用第一 側板16沿著第一方向相對移動,對高分子前驅體/奈米碳 管陣列混合體60進行擠壓;之後,用第二側板18沿著第 二方向相對移動,對高分子前驅體/奈米碳管陣列混合體 60進行擠壓。 [0030] 所述的用第一侧板16沿著第一方向相對移動,對高分子 前驅體/奈米碳管陣列混合體60進行擠壓,包括以下步驟 096128629 表單编號A0101 第10頁/共20頁 1003356361-0 13.62429 .. Ido年_09月29日修正_頁 :首先通過兩個第二側板18固定設置在擠壓裝置10的空 腔22中的高分子前驅體/奈米碳管陣列混合體60,之後通 過兩個第一側板16沿著第一方向相對移動,對高分子前 驅體/奈米碳管陣列混合體60進行擠壓,隨著擠壓形變程 度的增大,上述高分子前驅體/奈米碳管陣列混合體60中 的奈米碳管之間的間距在第一方向上減小。所述的用第 二側板18沿著第二方向相對移動,對高分子前驅體/奈米 碳管陣列混合體60進行擠壓,包括以下步驟:用兩個第 • 一側板16把上述擠壓後的高分子前驅體/奈米碳管陣列混 合體60固定,通過兩個第二側板18沿著第二方向相對移 動,對上述擠壓後的高分子前驅體/奈米碳管陣列混合體 60進行擠壓,隨著擠壓形變程度的增大,上述擠壓後的 高分子前驅體/奈米碳管陣列混合體60中的奈米碳管之間 的間距在第二方向上減小。 [0031] 其中,通過對上述的高分子前驅體/奈米碳管陣列混合體 60的擠壓使得高分子前驅體/奈米碳管陣列混合體60中的 • 奈米碳管陣列的密度達到預先設定的密度,從而形成高 分子前驅體/高密度奈米碳管陣列混合體70。該預先設定 的密度可根據實際需要進行選擇。可以理解,奈米碳管 陣列40中的奈米碳管之間的間距隨著擠壓形變的增大而 減小;奈米碳管陣列40的密度隨著擠壓形變的增大而增 加。因此,本實施例可通過控制對奈米碳管陣列40施加 的擠壓形變的程度的大小,進而控制所述的高分子前驅 體/高密度奈米碳管陣列混合體70中奈米碳管陣列的密度 096128629 表單編號A0101 第11頁/共20頁 1003356361-0 1362429 100年09月29日按正替換頁· [0032] 本實施例獲得的高分子前驅體/高密度奈米碳管陣列混合 體70的奈米碳管陣列的密度為CVD法直接生長所得到的奈 米碳管陣列40密度的50倍;該高分子前驅體/高密度奋米 碳管陣列混合體70中的奈米碳管排列緊密,且定向排列 〇 [0033] 另外,本發明中所採用的擠壓裝置10並不限於採用圖2所 示的結構,進一步,本發明高分子前驅體/高密度奈米碳 管陣列混合體70的製備並不限於採用特定的擠壓裝置10 壓縮的方式,其關鍵在於能沿著平行於基底的方向對奈 φ 米碳管陣列40施加一機械壓力,通過擠壓使奈米碳管陣 列40中的奈米碳管之間的間距減小,密度增大,從而獲 得高分子前驅體/高密度奈米碳管陣列混合體70,因此舉 凡熟悉本案技藝之人士援依本發明之精神所作之等效修 飾或變化,皆應涵蓋於以下申請專对範圍内。 [0034] (四)聚合高分子前驅體/高密度奈米碳管陣列混合體70 中的高分子前驅體溶液50,從而形成高密度奈米碳管陣 列複合材料80。 鲁 [0035] 其中,高分子前驅體溶液50固化步驟包括:在高分子前 驅體溶液5 0中預先加入少量固化劑,控制固化劑的添加 量以使高分子前驅體溶液50的固化時間多於兩個小時為 准;按該高分子材料的適當固化方法,如加熱,使高分 子前驅體溶液50聚合固化。此外,高分子前驅體溶液50 為單組分的高分子前驅體50時,還可以採用室溫靜置固 化的方式進行聚合,即在室溫下,靜置該單組分的高分 子前驅體溶液50進行固化聚合。 096128629 表單編號Α0101 第12頁/共20頁 1003356361-0 1362429 ίο。年〇9月29曰核正替4頁 [0036] 固化劑包括環氧樹脂固化劑、鹼性類固化劑及酸性類固 化劑,其中鹼性類固化劑包括脂肪族二胺、芳香族多胺 、改;性脂肪胺及其它含氮化合物,酸性類固化劑包括有 機酸、酸酐、三氟化硼及其絡合物。 [0037] 本實施例所得到的矽橡膠/高密度奈米碳管陣列複合材料 的熱導率為3瓦/米·Κ(\ν/ιηΚ),而CVD法直接生長所得 到的矽橡膠/奈米碳管陣列複合材料的熱導率僅為lW/mK ,因此,本實施例的矽橡膠/高密度奈米碳管陣列複合材 料與CVD法直接生長所得到的矽橡膠/奈米碳管陣列複合 材料相比,導熱性能更好。 [0038] 所製備的高密度奈米碳管陣列複合材料中,奈米碳管陣 列的密度可達到CVD法直接生長所得到的奈米碳管陣列密 度的10〜200倍。 [0039] 本實施例所製備的高密度奈米碳管陣列複合材料,因為 其中的奈米碳管陣列的密度可根據需要控制為CVD法直接 生長所得到的奈米碳管陣列複合材料的50倍,從而該高 奈米碳管陣列複合材料具有良好的導熱性能;另,本實 施例所製備的矽橡膠/高密度奈米碳管陣列複合材料,由 於其中的奈米碳管之間緊密填充有矽橡膠材料,使得奈 米碳管之間連接穩定,比純奈米碳管陣列的力學性能更 為優良,在導熱領域具有很好的應用。 [0040] 可以理解,本發明所述的高密度奈米碳管陣列複合材料 的製備方法並不只限於上述的製備步驟,也可是先對奈 米碳管陣列進行擠壓,之後將高分子前驅體溶液灌入擠 096128629 表單編號A0101 第13頁/共20頁 1003356361-0 1362429 ιού年09月29日核正春换頁 壓後的奈米碳管陣列中,聚合高分子前驅體溶液,形成 高密度奈米碳管複合材料。 [0041] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依.本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0042] 圖1係本發明實施例高密度奈米碳管陣列複合材料的製備 方法的流程示意圖。 [0043] 圖2係本發明實施例高密度奈米碳管陣列複合材料的擠壓 裝置的結構示意圖。 [0044] 圖3係本發明實施例高密度奈米碳管陣列複合材料的具體 製備過程的示意圖。 【主要元件符號說明】 [0045] 無 096128629 表單编號Α0101 第14頁/共20頁 1003356361-0265, p1 212 (1994),: p, Nature, vol 399, p210 (1999)) The carbon nanotubes are formed as reinforcements and conductors. The material has antistatic properties, absorption of microwave and mask electromagnetic properties, and has broad application prospects. [0003] The preparation methods of the no-methane s complex β material generally include an in-situ polymerization method, a solution m, and a spheroid blending method. In-situ polymerization is a process in which a functional group on the surface of a carbon nanotube is used to participate in polymerization or an initiator is used to open a carbon nanotube to participate in a polymerization reaction to achieve good compatibility with an organic phase. The solution is generally prepared by dispersing the carbon nanotubes in a solvent of the polymer, and then processing the polymer to remove the solvent to obtain a composite material. The melt blending method is to melt and uniformly mix the nylon tube with the polymer matrix material at a temperature greater than the melting point of the matrix material to obtain a carbon nanotube composite material. 096128629 Form No. A0101 Page 4 / Total 20 Page 1003356361-0 1362429 100 years. September 29th ·^正§^Page 丨圃Because of the excellent mechanical strength and thermal conductivity of the carbon nanotubes The carbon nanotube array structure can prepare the carbon nanotube thermal conductive material with excellent performance and the carbon nanotube composite reinforcing carbon tube to enhance the thermal conductivity and mechanical properties of the composite material and the density of the carbon nanotube in the composite material. . [0005] At present, the technology for preparing a carbon nanotube array by chemical vapor deposition (CVD) has been quite mature. The density of the carbon nanotube array obtained by direct growth of the CVD method is less than 0.01 gram per cubic centimeter (g). /cm3), which is relatively loose at the microscopic level, and the spacing between the carbon nanotubes is larger than the diameter of the carbon nanotube itself. The carbon nanotube array obtained by direct growth of the CVD method is limited by the growth of the CVD method. The density of the carbon nanotubes in the array is substantially determined and cannot be arbitrarily regulated. The composite material prepared by the low-density carbon nanotube array has no ideal effect in applications such as heat conduction or composite materials because the density of the carbon nanotube heat conduction passage is too low. [0006] Don N. Futaba et al. (see "Shape-Engineer-able and and highly densely packed single-walled car bon nanotubes and their application as super-capacitor electrodes", Don N. Futaba et al., Nature Materials, Vol 5, p987 (2006)) shrinking single-walled carbon nanotubes into high-density carbon nanotube arrays using shrinkage effect and confirming the prepared high-density carbon nanotube arrays with single carbon nanotubes Intrinsic properties, such as large specific surface area, excellent flexibility, conductivity, etc. High-density carbon nanotube arrays can be applied to the electrodes of elastic heaters and supercapacitors of closed energy memory devices, however, 096128629 form number A0101 Page 5 of 20 1003356361-0 1362429 09οϋ年09月29日 Revision replacement page · The process of this method is more complicated, and the density of the prepared carbon nanotube array can not be arbitrarily regulated. In view of this, it is necessary to provide a method for preparing a high-density carbon nanotube array composite with simple process and controllable density. [Abstract] [0008] The method for preparing a carbon tube array composite material comprises the steps of: providing a carbon nanotube array formed on a substrate and a polymer precursor solution; mixing the carbon nanotube array and the polymer precursor solution to form a a polymer precursor/first carbon nanotube array mixture; pressing the polymer precursor/first carbon nanotube array mixture in a direction parallel to the substrate to form a polymer precursor/secondary a carbon nanotube array hybrid wherein the density of the second carbon nanotube array is higher than the density of the first carbon nanotube array; the polymer precursor in the polymeric polymer precursor/second carbon nanotube array mixture Body, thereby forming a carbon nanotube array composite. [0009] Compared with the prior art, in the carbon nanotube array composite prepared by the method provided by the invention, the density of the carbon nanotube array can be controlled as needed 10 to 200 times of the carbon nanotube array composite material obtained by direct growth of the CVD method, that is, the density of the heat conduction channel of the carbon nanotube in the composite material is increased by 10 to 20 times, so that the carbon nanotube array composite The material has good thermal conductivity. Secondly, because the carbon nanotubes are tightly packed with the polymer material, the connection between the carbon nanotubes is stable, and the mechanical properties of the carbon nanotube array are better than those of the pure carbon nanotube array. [0010] The technical solution will be further described in detail below with reference to the accompanying drawings and specific embodiments. 096128629 Form No. 1010101 Page 6 of 20 1003356361-0 1362429 * 4 [0011] , 100 years. September 29th, please refer to Figure 1. The embodiment of the present invention provides a polymer/high density. The method for preparing a carbon nanotube array composite material comprises the following steps: [0012] (-) A carbon nanotube array and a polymer precursor solution formed on a substrate are provided. [0013] The method of preparing the carbon nanotube array is a chemical vapor deposition method. The preparation process of the carbon nanotube array in this embodiment is specifically: [0014] First, a substrate is provided, and the substrate may be a P-type or N-type germanium substrate, or a quartz plate may be used, and a glass may also be selected. Preferably, a 4-inch germanium substrate is used; [0015] Next, a catalyst layer is deposited on the substrate, and the catalyst may be one of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. 5〜5纳米(nm), the thickness of the catalyst film is preferably 1 nm thick iron catalyst film, and the method of forming the catalyst layer may also be electron beam evaporation or Magnetron sputtering; [0016] Again, the substrate on which the catalyst layer is deposited is placed in air, annealed at 300 ° C for 0.2 to 12 h, and the catalyst layer is annealed to form oxidized particles; [0017] Again, the substrate is placed In the low-pressure reactor, a protective gas is introduced and heated to a predetermined temperature under the protection of the shielding gas, generally 600 to 1 000 °C. The protective gas is an inert gas or a nitrogen gas, preferably, the protective gas is nitrogen gas; and [0018] again, a mixed gas of the carbon source gas and the carrier gas is introduced, and the reaction is 0. 1~2 hours 096128629 Form No. A0101 Page 7 / Total 20 pages 1003356361-0 1362429 100 years. September 29th Nuclear replacement page grows a carbon nanotube array. The carbon source gas is a hydrocarbon, and may be acetylene, ethylene, decane or the like. Preferably, the carbon source gas is acetylene; the carrier gas is an inert gas or hydrogen, and preferably, the carrier gas is hydrogen. "" [0019] The carbon nanotube array is a pure carbon nanotube array formed by a plurality of carbon nanotubes which are parallel to each other and perpendicular to the substrate, and the length of the formed carbon nanotubes is long, part of the nai The carbon nanotubes will entangle each other. By controlling the above growth conditions, the super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. The carbon nanotube array provided in this embodiment comprises one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. [0020] wherein the polymer precursor solution is a solution composed of one of ruthenium rubber, potting rubber, epoxy resin or paraffin wax. It is to be understood that the polymer precursor solution according to the present invention is not limited to the above solution, and a low viscosity liquid polymer material which can be dissolved and melted by a low-viscosity precursor solidification method can be used. [0021] The polymer precursor solution used in the present embodiment is a ruthenium rubber solution. The ruthenium rubber solution is prepared by adding an appropriate amount of ethyl acetate to the ruthenium rubber and diluting it to form a solution of ruthenium rubber. [0022] (2) mixing the carbon nanotube array and the polymer precursor solution to form a polymer precursor/carbon nanotube array mixture. [0023] wherein the carbon nanotube array and the polymer precursor solution are mixed to be mixed in a press apparatus. Referring to FIG. 2, the pressing device 10 described in this embodiment includes an upper pressing plate 12, a lower pressing plate 14, and two first side plates 096128629. Form No. 1010101 Page 8/20 pages 1003356361-0 1362429 1 j 100 On September 29th, the shuttle was replaced by k page 16, two second side panels 18. The two first side plates 16 and the two second side plates 18 described above are disposed between the upper platen 12 and the lower platen 14, and a cavity 22 is formed at a central position between the upper platen 12 and the lower platen 14. The upper platen 12 is symmetrically fixed to the lower platen 14 by screws 24, and the area of the upper platen 12 is equal to that of the lower platen 14. Further, the two first side plates 16 are symmetrically distributed on both sides of the cavity 22 in the first direction; the two second side plates 18 are symmetrically distributed on the other sides of the cavity 22 in the second direction, wherein The first direction and the second direction are perpendicular to each other. [0024] In this embodiment, mixing the carbon nanotube array 40 and the polymer precursor solution 50 includes the steps of: placing the carbon nanotube array 40 described above together with the substrate 30 in the cavity 22 of the extrusion device 10, Thereafter, the polymer precursor solution 50 is poured into the cavity 22 of the extrusion device 10 in which the carbon nanotube array 40 is placed and mixed to form a polymer precursor/carbon nanotube array mixture 60. [0025] wherein, a carbon nanotube array 40 is placed directly in the cavity 22 of the pressing device 10 together with the substrate 30. Specifically, the two first side plates 16 and the two second side plates are firstly described. 18 is placed on the lower platen 14, a cavity 22 is formed at the center of the lower platen 14, and the carbon nanotube array 40 is placed directly into the cavity 22 together with the substrate 30, and the polymer precursor solution 50 is poured into the place. In the extrusion chamber cavity 22 of the carbon nanotube array 40, the upper platen 12 will then be secured to the lower platen 14. [0026] wherein, after the polymer precursor solution 50 is poured into the cavity 22 of the extrusion device 10, a vacuum process is further included. It comprises the following steps: First, the carbon nanotube array 40 placed in the cavity 22 of the extrusion device 10 is immersed in the polymer precursor solution 50; thereafter, the pressing device 10 is placed in 096128629 Form No. A0101 Page 9 / Total 20 pages 1003356361-0 1362429 ιού年. September 29 revised replacement page vacuum chamber vacuum, vacuum less than 0.2 atmosphere (atm), vacuum and vacuum time can be selected according to actual needs, vacuum process can be The bubbles in the carbon nanotube array 40 are expanded to float the liquid surface; 'After the air in the carbon nanotube array 40 is drained, the polymer precursor solution 50 can be sufficiently filled between the carbon nanotubes. The gap causes the polymer precursor solution 50 and the carbon nanotube array 40 to form a good mixture to form a polymer precursor/carbon nanotube array mixture 60. It is to be understood that the mixing of the carbon nanotube array 40 and the polymer precursor solution 50 according to the present invention is not limited to the manner of mixing in the extrusion apparatus 10 as described in the present embodiment. As long as it is ensured that the carbon nanotube array 40 is immersed in the polymer precursor solution 50, the polymer precursor solution 50 can be sufficiently filled in the gap between the carbon nanotubes. [0028] (3) The polymer precursor/carbon nanotube array hybrid 60 is extruded in a direction parallel to the substrate to form a polymer precursor/high density carbon nanotube array hybrid 70. Referring to FIG. 3, the polymer precursor/carbon nanotube array assembly 60 is extruded in a direction parallel to the substrate in the embodiment to be extruded by the above-described extrusion device 10. The extrusion process includes the steps of: relatively moving the first side panel 16 in a first direction to squeeze the polymeric precursor/carbon nanotube array hybrid 60; then, using the second side panel 18 along the second The polymer precursor/nanocarbon nanotube array hybrid 60 is extruded by relatively moving in the direction. [0030] The first side plate 16 is relatively moved along the first direction, and the polymer precursor/carbon nanotube array mixture 60 is extruded, including the following step 096128629. Form No. A0101, page 10 / A total of 20 pages 1003356361-0 13.62429 .. Ido year _ September 29 revision _ page: first fixed by the two second side plates 18 in the cavity 22 of the extrusion device 10 polymer precursor / carbon nanotube The array hybrid 60 is then relatively moved in the first direction by the two first side plates 16 to press the polymer precursor/carbon nanotube array mixture 60, as the degree of extrusion deformation increases, The spacing between the carbon nanotubes in the polymer precursor/carbon nanotube array hybrid 60 decreases in the first direction. The second side plate 18 is relatively moved along the second direction, and the polymer precursor/carbon nanotube array mixture 60 is extruded, including the following steps: pressing the two side plates 16 After the polymer precursor/carbon nanotube array hybrid 60 is fixed, the two second side plates 18 are relatively moved in the second direction, and the extruded polymer precursor/carbon nanotube array mixture is extruded. 60 is extruded, and the pitch between the carbon nanotubes in the extruded polymer precursor/carbon nanotube array hybrid 60 is decreased in the second direction as the degree of extrusion deformation increases. . [0031] wherein the density of the nanocarbon nanotube array in the polymer precursor/carbon nanotube array hybrid 60 is achieved by extrusion of the above polymer precursor/carbon nanotube array hybrid 60 The density is set in advance to form a polymer precursor/high density carbon nanotube array hybrid 70. This preset density can be selected according to actual needs. It will be appreciated that the spacing between the carbon nanotubes in the carbon nanotube array 40 decreases as the extrusion deformation increases; the density of the carbon nanotube array 40 increases as the extrusion deformation increases. Therefore, the present embodiment can control the carbon nanotubes in the polymer precursor/high-density carbon nanotube array hybrid 70 by controlling the magnitude of the extrusion deformation applied to the carbon nanotube array 40. Array Density 096128629 Form No. A0101 Page 11 / Total 20 Page 1003356361-0 1362429 September 29, 100 Pressing the Replacement Page · [0032] The polymer precursor/high density carbon nanotube array obtained in this example is mixed The density of the carbon nanotube array of the body 70 is 50 times the density of the carbon nanotube array 40 obtained by direct growth of the CVD method; the nanocarbon of the polymer precursor/high density carbon nanotube array hybrid 70 The tube is closely arranged and aligned. [0033] In addition, the extrusion device 10 used in the present invention is not limited to the structure shown in FIG. 2, and further, the polymer precursor/high density carbon nanotube array of the present invention. The preparation of the mixture 70 is not limited to the compression using a specific extrusion device 10, and the key is to apply a mechanical pressure to the carbon nanotube array 40 in a direction parallel to the substrate, and to make the nanocarbon by extrusion. In tube array 40 The spacing between the carbon nanotubes is reduced and the density is increased to obtain a polymer precursor/high density carbon nanotube array hybrid 70, so that those skilled in the art will be able to modify the equivalent modification according to the spirit of the present invention. Changes or changes should be covered in the scope of the application below. (4) The polymer precursor solution 50 in the polymer precursor/high-density carbon nanotube array mixture 70 is polymerized to form a high-density carbon nanotube array composite 80. Lu [0035] wherein the curing step of the polymer precursor solution 50 comprises: pre-adding a small amount of a curing agent to the polymer precursor solution 50 to control the addition amount of the curing agent to make the curing time of the polymer precursor solution 50 more than Two hours is normal; the polymer precursor solution 50 is polymerized and cured according to a suitable curing method of the polymer material, such as heating. In addition, when the polymer precursor solution 50 is a one-component polymer precursor 50, it can also be polymerized by static curing at room temperature, that is, the single component polymer precursor is allowed to stand at room temperature. The solution 50 is subjected to curing polymerization. 096128629 Form number Α0101 Page 12 of 20 1003356361-0 1362429 ίο. The new curing agent includes an epoxy resin curing agent, a basic curing agent and an acidic curing agent, and the basic curing agent includes an aliphatic diamine and an aromatic polyamine. , modified; fatty amines and other nitrogen-containing compounds, acidic curing agents include organic acids, acid anhydrides, boron trifluoride and their complexes. [0037] The thermal conductivity of the ruthenium rubber/high-density carbon nanotube array composite obtained in this example is 3 watt/m·Κ(\ν/ιηΚ), and the ruthenium rubber obtained by direct growth of CVD method/ The thermal conductivity of the carbon nanotube array composite is only lW/mK. Therefore, the tantalum rubber/high density carbon nanotube array composite of the present embodiment and the ruthenium rubber/nanocarbon tube obtained by direct growth of the CVD method. Thermal conductivity is better compared to array composites. [0038] In the prepared high-density carbon nanotube array composite, the density of the carbon nanotube array can be 10 to 200 times that of the carbon nanotube array obtained by direct growth of the CVD method. [0039] The high-density carbon nanotube array composite prepared in this embodiment, because the density of the carbon nanotube array therein can be controlled as needed to directly grow the carbon nanotube array composite obtained by the CVD method. Double, so that the high carbon nanotube array composite has good thermal conductivity; in addition, the tantalum rubber/high density carbon nanotube array composite prepared in this embodiment is closely packed between the carbon nanotubes The enamel rubber material makes the connection between the carbon nanotubes stable, and has better mechanical properties than the pure carbon nanotube array, and has a good application in the field of heat conduction. [0040] It can be understood that the preparation method of the high-density carbon nanotube array composite material of the present invention is not limited to the above preparation steps, but the carbon nanotube array is first extruded, and then the polymer precursor is used. Solution pouring into 096128629 Form No. A0101 Page 13 / Total 20 pages 1003356361-0 1362429 ι ύ 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 聚合 09 聚合 09 09 聚合 聚合 09 聚合 聚合Carbon tube composite. [0041] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art of the present invention should be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0042] FIG. 1 is a flow chart showing a method of preparing a high density carbon nanotube array composite according to an embodiment of the present invention. 2 is a schematic structural view of an extrusion device of a high-density carbon nanotube array composite according to an embodiment of the present invention. 3 is a schematic view showing a specific preparation process of a high density carbon nanotube array composite according to an embodiment of the present invention. [Main component symbol description] [0045] None 096128629 Form number Α0101 Page 14 of 20 1003356361-0