TWI422524B - Method for making carbon nanotube composite - Google Patents

Method for making carbon nanotube composite Download PDF

Info

Publication number
TWI422524B
TWI422524B TW96150104A TW96150104A TWI422524B TW I422524 B TWI422524 B TW I422524B TW 96150104 A TW96150104 A TW 96150104A TW 96150104 A TW96150104 A TW 96150104A TW I422524 B TWI422524 B TW I422524B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
film structure
nanotube film
composite material
preparing
Prior art date
Application number
TW96150104A
Other languages
Chinese (zh)
Other versions
TW200927647A (en
Inventor
Jia-Ping Wang
Qun-Feng Cheng
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96150104A priority Critical patent/TWI422524B/en
Publication of TW200927647A publication Critical patent/TW200927647A/en
Application granted granted Critical
Publication of TWI422524B publication Critical patent/TWI422524B/en

Links

Description

奈米碳管複合材料的製備方法 Method for preparing nano carbon tube composite material

本發明涉及一種複合材料的製備方法,尤其涉及一種奈米碳管複合材料的製備方法。 The invention relates to a preparation method of a composite material, in particular to a preparation method of a carbon nanotube composite material.

自1991年日本NEC公司的Iijima發現奈米碳管(Carbon Nanotube,CNT)以來(請參見Helical microtubules of graphitic carbon,Nature,Sumio Iijima,vol 354,p56(1991)),奈米碳管引起了科學界及產業界的極大重視,係近年來國際科學研究的熱點。奈米碳管具有與金剛石相同的熱導和獨特的力學性能,如抗張強度達100千兆帕,模量高達1800千兆帕,且耐強酸、強鹼,600℃以下基本不氧化等。 Since the discovery of Carbon Nanotube (CNT) by Iijima of NEC Corporation in Japan in 1991 (see Helical microtubules of graphitic carbon, Nature, Sumio Iijima, vol 354, p56 (1991)), carbon nanotubes have caused science. The great attention of the industry and the industry is a hot topic in international scientific research in recent years. The carbon nanotubes have the same thermal conductivity and unique mechanical properties as diamond, such as tensile strength up to 100 gigapascals, modulus up to 1800 gigapascals, resistance to strong acids and alkalis, and basic non-oxidation below 600 °C.

由於奈米碳管具有如此優異的性能,利用奈米碳管作為填充物與其他材料複合已成為奈米碳管應用的一個重要方向。特別地,奈米碳管與其他材料,如金屬、半導體或者高分子材料等的複合可以實現材料的優勢互補或加強。奈米碳管具有較大的長徑比和中空的結構,具有優異的力學性能,可作為一種超級纖維,對複合材料起到增強作用。此外,奈米碳管具有優異的導熱性能,利用奈米碳管的導熱性能使該複合材料具有良好的熱傳導性。 Due to the excellent performance of carbon nanotubes, the use of carbon nanotubes as fillers in combination with other materials has become an important direction for carbon nanotube applications. In particular, the combination of carbon nanotubes with other materials, such as metals, semiconductors or polymer materials, can complement or enhance the advantages of the materials. The carbon nanotube has a large aspect ratio and a hollow structure, and has excellent mechanical properties, and can be used as a super fiber to enhance the composite material. In addition, the carbon nanotubes have excellent thermal conductivity, and the thermal conductivity of the carbon nanotubes makes the composite have good thermal conductivity.

先前技術多以粒子填充高分子材料的形式來製備奈米碳管複合材料,由於奈米碳管容易團聚,需先對奈米碳管進行表面改性和功能化處理,而後採用溶液或熔融的方 法與高分子材料複合。先前技術中一種製備奈米碳管複合材料的方法包括以下步驟:(一)將0.3重量份的多壁奈米碳管粉末投入到10重量份的濃硝酸中,在100℃攪拌回流20小時,用蒸餾水洗去酸液,90℃下真空乾燥10小時;(二)將上述產物羧酸化奈米碳管加入到10重量份草醯氯中,在90℃下攪拌10小時,蒸除未反應的草醯氯,從而得到醯氯化的奈米碳管;(三)將醯氯化的奈米碳管放入冰浴中慢速攪拌,並滴加10重量份的乾燥乙二胺,在100℃下抽真空乾燥10小時;(四)將上述醯胺化奈米碳管加入到20重量份的乙醇溶劑中,超聲波處理15分鐘,加入2重量份環氧樹脂,高速攪拌分散20分鐘,蒸除溶劑,加熱至60℃,按照環氧樹脂的環氧基團與固化劑中胺基氫原子物質的摩爾比為1:1的比例加入固化劑苯二胺,使奈米碳管分散均勻;(五)將複合體系倒入模具中,升溫至80℃後固化2小時,然後在150℃下固化2小時,得到奈米碳管/環氧樹脂複合材料。 In the prior art, the carbon nanotube composite material is prepared in the form of a particle-filled polymer material. Since the carbon nanotube is easily agglomerated, the surface modification and functionalization of the carbon nanotube must be performed first, followed by solution or melting. square The method is compounded with a polymer material. A method for preparing a carbon nanotube composite material in the prior art includes the following steps: (1) 0.3 part by weight of the multi-walled carbon nanotube powder is put into 10 parts by weight of concentrated nitric acid, and stirred under reflux at 100 ° C for 20 hours. The acid solution was washed with distilled water and dried under vacuum at 90 ° C for 10 hours. (2) The above product carboxylated carbon nanotubes were added to 10 parts by weight of chlorophyll chloride, stirred at 90 ° C for 10 hours, and the unreacted was distilled off. The grass is chlorinated to obtain a ruthenium chloride carbon nanotube; (3) the ruthenium chlorided carbon nanotube is placed in an ice bath and stirred slowly, and 10 parts by weight of dry ethylenediamine is added dropwise at 100 Vacuum drying at °C for 10 hours; (4) Adding the above guanamined carbon nanotubes to 20 parts by weight of ethanol solvent, sonicating for 15 minutes, adding 2 parts by weight of epoxy resin, stirring at high speed for 20 minutes, steaming In addition to the solvent, the mixture is heated to 60 ° C, and the curing agent phenylenediamine is added in a ratio of 1:1 of the epoxy group of the epoxy resin to the amine hydrogen atom in the curing agent to uniformly disperse the carbon nanotubes; (5) Pour the composite system into the mold, heat it to 80 ° C and cure for 2 hours, then at 1 Curing at 50 ° C for 2 hours gave a carbon nanotube/epoxy composite.

上述奈米碳管/環氧樹脂複合材料的製備方法存在以下缺點:其一,在奈米碳管複合材料的製備過程中,為使奈米碳管在高分子材料中能夠更好的分散,需將奈米碳管粉末與高分子材料混合並對奈米碳管進行表面修飾,這種表面修飾會嚴重地破壞奈米碳管的結構,從而影響了奈米碳管複合材料的性能;其二,在製備奈米碳管複合材料的過程中需要添加溶劑,而所添加的溶劑很難除去,從而使得奈米碳管複合材料成分不純;其三,該方法無法實現奈米碳管在複合材料中的固定取向,使得奈米 碳管在複合材料中不能發揮其軸向性優勢,從而影響了奈米碳管複合材料的性能;其四,所述奈米碳管複合材料的製備方法需要對奈米碳管進行表面修飾,並採用添加溶劑對其進行分散,工藝複雜且成本較高。 The preparation method of the above carbon nanotube/epoxy composite material has the following disadvantages: First, in the preparation process of the carbon nanotube composite material, in order to better disperse the carbon nanotube in the polymer material, The carbon nanotube powder needs to be mixed with the polymer material and the surface modification of the carbon nanotubes, which will seriously damage the structure of the carbon nanotubes, thereby affecting the performance of the carbon nanotube composite; Second, in the process of preparing the carbon nanotube composite material, it is necessary to add a solvent, and the added solvent is difficult to remove, so that the composition of the carbon nanotube composite material is impure; thirdly, the method cannot realize the carbon nanotube composite in the composite Fixed orientation in the material, making the nano The carbon tube cannot exert its axial advantage in the composite material, thereby affecting the performance of the carbon nanotube composite material. Fourth, the preparation method of the carbon nanotube composite material requires surface modification of the carbon nanotube tube. It is dispersed by adding a solvent, and the process is complicated and the cost is high.

有鑒於此,提供一種具有優良特性的奈米碳管複合材料的製備方法實為必要,且該製備方法簡單、易於實現、成本低廉。 In view of this, it is necessary to provide a method for preparing a carbon nanotube composite material having excellent characteristics, and the preparation method is simple, easy to implement, and low in cost.

一種奈米碳管複合材料的製備方法,其包括以下步驟:製備一自支撐的奈米碳管薄膜結構;提供一液態熱固性高分子材料;將所述液態熱固性高分子材料浸潤所述奈米碳管薄膜結構;固化上述被液態熱固性高分子材料浸潤的奈米碳管薄膜結構,得到一奈米碳管複合材料。 A method for preparing a carbon nanotube composite material, comprising the steps of: preparing a self-supporting carbon nanotube film structure; providing a liquid thermosetting polymer material; and impregnating the nanocarbon with the liquid thermosetting polymer material The film structure of the tube; curing the carbon nanotube film structure infiltrated by the liquid thermosetting polymer material to obtain a carbon nanotube composite material.

與先前技術相比,本技術方案採用一拉伸工具從奈米碳管陣列中直接拉取獲得一奈米碳管薄膜,該奈米碳管薄膜中奈米碳管均勻分佈且擇優取向排列。故該奈米碳管複合材料的製備方法具有以下優點:其一,採用奈米碳管均勻分佈的奈米碳管薄膜與液態熱固性高分子材料複合,無需對奈米碳管進行表面修飾,不會破壞奈米碳管的結構,提高了所製備的奈米碳管複合材料的性能;其二,奈米碳管薄膜的製備過程中無需使用添加劑,使得所製備的奈米碳管複合材料成分較純、性能良好;其三,採用將液態熱固性高分子材料浸潤所述奈米碳管薄膜結構的方法製備奈米碳管複合材料,簡化了製備過程,降低了生產成本。 Compared with the prior art, the technical solution adopts a stretching tool to directly pull a carbon nanotube film from the carbon nanotube array, and the carbon nanotube film in the carbon nanotube film is uniformly distributed and arranged in a preferred orientation. Therefore, the preparation method of the carbon nanotube composite material has the following advantages: First, the carbon nanotube film uniformly distributed by the carbon nanotubes is combined with the liquid thermosetting polymer material, and the surface modification of the carbon nanotubes is not required, It will destroy the structure of the carbon nanotubes and improve the performance of the prepared carbon nanotube composites. Second, the preparation of the carbon nanotube composites without the use of additives during the preparation of the carbon nanotube film. It is relatively pure and has good performance. Thirdly, the carbon nanotube composite material is prepared by infiltrating the carbon nanotube film structure with the liquid thermosetting polymer material, which simplifies the preparation process and reduces the production cost.

下面將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.

請參考圖1,本技術方案實施例提供一種奈米碳管複合材料10的製備方法,其具體包括以下步驟: Referring to FIG. 1 , an embodiment of the present technical solution provides a method for preparing a carbon nanotube composite material 10 , which specifically includes the following steps:

步驟一:製備一自支撐的奈米碳管薄膜結構12。 Step 1: Prepare a self-supporting carbon nanotube film structure 12.

該自支撐的奈米碳管薄膜結構12的製備方法具體包括以下步驟: The preparation method of the self-supporting carbon nanotube film structure 12 specifically includes the following steps:

(1)提供一奈米碳管陣列,優選地,該陣列為超順排奈米碳管陣列。 (1) Providing an array of carbon nanotubes, preferably the array is a super-sequential carbon nanotube array.

本實施例中,超順排奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)在基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底在700℃~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,在保護氣體環境下加熱到500℃~740℃,然後通入碳源氣體反應約5分鐘~30分鐘,生長得到超順排奈米碳管陣列,其高度為200微米~400微米。該超順排奈米碳管陣列為多個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述控制生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米 碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米碳管陣列面積與上述基底面積基本相同。 In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or selected The tantalum substrate is formed with an oxide layer. In this embodiment, a 4-inch tantalum substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel ( Ni) or one of alloys of any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in the reaction In the furnace, it is heated to 500 ° C ~ 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow a super-aligned carbon nanotube array having a height of 200 μm to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. Nano in the carbon nanotube array The carbon tubes are in close contact with each other to form an array by van der Waals forces. The area of the carbon nanotube array is substantially the same as the area of the substrate described above.

本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon.

可以理解,本實施例提供的奈米碳管陣列不限於上述製備方法。也可為石墨電極恒流電弧放電沈積法、鐳射蒸發沈積法等。 It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like.

(2)從上述奈米碳管陣列中拉取獲得一奈米碳管薄膜。 (2) A carbon nanotube film is obtained by drawing from the above carbon nanotube array.

從上述奈米碳管陣列拉取獲得一奈米碳管薄膜的過程具體包括以下步驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈米碳管束片斷,本技術方案實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的多個奈米碳管束片斷;(b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該多個奈米碳管束片斷,獲得一連續的奈米碳管薄膜,該奈米碳管薄膜中奈米碳管的排列方向平行於上述拉伸的方向。 The process of extracting a carbon nanotube film from the carbon nanotube array comprises the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array, the technical solution is implemented. Preferably, the tape is contacted with a tape having a width to select a plurality of carbon nanotube bundle segments of a certain width; (b) the plurality of carbon nanotube bundle segments are stretched at a constant speed along a direction substantially perpendicular to the growth direction of the carbon nanotube array. The carbon nanotube bundle segment obtains a continuous carbon nanotube film in which the arrangement of the carbon nanotubes is parallel to the direction of stretching.

在上述拉伸過程中,該多個奈米碳管束片斷在拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的多個奈米碳管束片斷分別與其他奈米碳管片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film.

本技術方案實施例中,由於採用CVD法在4英寸的基底生 長超順排奈米碳管陣列,並進行進一步地處理所得一奈米碳管薄膜,故該奈米碳管薄膜的寬度為0.01厘米~10厘米,厚度為10奈米~100微米。上述奈米碳管薄膜中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈米碳管。當奈米碳管薄膜中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0.5奈米~50奈米。當奈米碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直徑為1.0奈米~50奈米。當奈米碳管薄膜中的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1.5奈米~50奈米。 In the embodiment of the technical solution, since the CVD method is used on the 4-inch base The long super-sequential carbon nanotube array is further processed to obtain a carbon nanotube film, so the carbon nanotube film has a width of 0.01 cm to 10 cm and a thickness of 10 nm to 100 μm. The carbon nanotubes in the above carbon nanotube film are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotube in the carbon nanotube film is a single-walled carbon nanotube, the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube film are double-walled carbon nanotubes, the double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm. When the carbon nanotubes in the carbon nanotube film are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm.

進一步地,將至少兩個奈米碳管薄膜平行且無間隙鋪設得到一奈米碳管層,將至少兩個奈米碳管層重疊鋪設得到一奈米碳管薄膜結構12。可以理解,該奈米碳管薄膜結構12也可由至少兩個奈米碳管薄膜重疊鋪設得到。 Further, at least two carbon nanotube films are laid in parallel and without gaps to obtain a carbon nanotube layer, and at least two carbon nanotube layers are overlapped to form a carbon nanotube film structure 12. It can be understood that the carbon nanotube film structure 12 can also be obtained by overlapping at least two carbon nanotube films.

所述奈米碳管薄膜結構12包括一奈米碳管層或者至少兩個重疊設置的奈米碳管層,相鄰兩個奈米碳管層之間通過凡德瓦爾力緊密結合。該奈米碳管層包括一奈米碳管薄膜或者至少兩個平行且無間隙鋪設的奈米碳管薄膜。所述奈米碳管薄膜包括多個首尾相連且擇優取向排列的奈米碳管束。所述奈米碳管薄膜中的奈米碳管束的長度基本相同,奈米碳管束之間通過凡德瓦爾力緊密連接。該奈米碳管束包括多個長度相等且相互平行排列的奈米碳管,該奈米碳管之間通過凡德瓦爾力緊密連接。所述至少兩個重疊設置的奈米碳管層中奈米碳管沿同一方向擇優取向排列,相鄰兩個奈米碳管層中的奈米碳管之間 具有一交叉角度α,0度≦α≦90度,具體可依據實際需求製備。 The carbon nanotube film structure 12 comprises a carbon nanotube layer or at least two overlapping carbon nanotube layers, and the adjacent two carbon nanotube layers are tightly bonded by van der Waals force. The carbon nanotube layer comprises a carbon nanotube film or at least two parallel and gap-free carbon nanotube films. The carbon nanotube film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation. The lengths of the carbon nanotube bundles in the carbon nanotube film are substantially the same, and the nanotube bundles are closely connected by van der Waals force. The carbon nanotube bundle includes a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and the carbon nanotubes are closely connected by a van der Waals force. The carbon nanotubes in the at least two overlapping carbon nanotube layers are arranged in a preferred orientation in the same direction, and between the adjacent carbon nanotubes in the two carbon nanotube layers It has a cross angle α, 0 degree ≦α≦90 degrees, which can be prepared according to actual needs.

另外,上述奈米碳管薄膜結構12可直接使用,或者也可使用有機溶劑處理後再使用。使用有機溶劑處理所述奈米碳管薄膜結構12的過程包括:通過試管將有機溶劑滴落在奈米碳管薄膜結構12表面浸潤整個奈米碳管薄膜結構12,或者將整個奈米碳管薄膜結構12浸入盛有有機溶劑的容器中浸潤。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷和氯仿中一種或者幾種的混合,本技術方案實施例中採用乙醇。所述的奈米碳管薄膜結構12經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的作用下,奈米碳管薄膜中平行的奈米碳管片斷會部分聚集成奈米碳管束。因此,該奈米碳管薄膜結構12表面體積比小,無粘性,且具有良好的機械強度及韌性。 Further, the above-mentioned carbon nanotube film structure 12 may be used as it is, or may be used after being treated with an organic solvent. The process of treating the carbon nanotube film structure 12 with an organic solvent comprises: dropping an organic solvent onto the surface of the carbon nanotube film structure 12 by a test tube to infiltrate the entire carbon nanotube film structure 12, or the entire carbon nanotube tube The film structure 12 is immersed in a container containing an organic solvent to infiltrate. The organic solvent is a volatile organic solvent such as a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform, and ethanol is used in the embodiment of the present invention. After the carbon nanotube film structure 12 is infiltrated by an organic solvent, the parallel carbon nanotube segments in the carbon nanotube film are partially aggregated into the carbon nanotube bundle under the surface tension of the volatile organic solvent. . Therefore, the carbon nanotube film structure 12 has a small surface volume ratio, is non-tacky, and has good mechanical strength and toughness.

請參閱圖2,本技術方案實施例優選的奈米碳管薄膜結構12包括一第一奈米碳管層121、一第二奈米碳管層122、一第三奈米碳管層123和一第四奈米碳管層124。該第一奈米碳管層121、第二奈米碳管層122、第三奈米碳管層123和第四奈米碳管層124重疊設置,且每個奈米碳管層中的奈米碳管沿一固定方向擇優取向排列。相鄰兩個奈米碳管層中奈米碳管之間的排列方向為90度,並形成多個微孔結構,該微孔的直徑為1奈米~0.5微米。所述奈米碳管薄膜結構12的製備方法包括:首先,採用步驟一中的方法製備得到一第一奈米碳管層121、一第二奈米碳管 層122、一第三奈米碳管層123和一第四奈米碳管層124;其次,將該第一奈米碳管層121、第二奈米碳管層122、第三奈米碳管層123和第四奈米碳管層124重疊設置,使第二奈米碳管層122中奈米碳管的排列方向與第一奈米碳管層121和第三奈米碳管層123中奈米碳管的排列方向成90度,第三奈米碳管層123中奈米碳管的排列方向與第二奈米碳管層122和第四奈米碳管層124中奈米碳管的排列方向成90度。 Referring to FIG. 2, a preferred carbon nanotube film structure 12 of the embodiment of the present invention includes a first carbon nanotube layer 121, a second carbon nanotube layer 122, a third carbon nanotube layer 123, and A fourth carbon nanotube layer 124. The first carbon nanotube layer 121, the second carbon nanotube layer 122, the third carbon nanotube layer 123 and the fourth carbon nanotube layer 124 are overlapped, and each nanocarbon layer The carbon nanotubes are arranged in a preferred orientation along a fixed direction. The arrangement direction of the carbon nanotubes in the adjacent two carbon nanotube layers is 90 degrees, and a plurality of microporous structures are formed, and the diameter of the micropores is 1 nm to 0.5 μm. The preparation method of the carbon nanotube film structure 12 includes: firstly, a first carbon nanotube layer 121 and a second carbon nanotube are prepared by the method in the first step. a layer 122, a third carbon nanotube layer 123 and a fourth carbon nanotube layer 124; secondly, the first carbon nanotube layer 121, the second carbon nanotube layer 122, the third nanocarbon The tube layer 123 and the fourth carbon nanotube layer 124 are disposed to overlap each other such that the arrangement of the carbon nanotubes in the second carbon nanotube layer 122 is different from the first carbon nanotube layer 121 and the third carbon nanotube layer 123. The alignment direction of the carbon nanotubes is 90 degrees, the arrangement direction of the carbon nanotubes in the third carbon nanotube layer 123 and the nano carbon in the second carbon nanotube layer 122 and the fourth carbon nanotube layer 124 The arrangement of the tubes is 90 degrees.

步驟二:提供一液態熱固性高分子材料14。 Step 2: providing a liquid thermosetting polymer material 14.

所述液態熱固性高分子材料14的製備方法包括以下步驟:首先,將一高分子材料置於一容器中,在不高於300℃下,加熱該高分子材料,並對該高分子材料進行攪拌,使所述高分子材料混合均勻,攪拌的時間由所述高分子材料的種類及質量所決定;其次,將一添加物或者多種添加物的混合物加入到所述攪拌均勻的高分子材料中進行化學反應;接著,在不高於300℃下,加熱所述混合有添加物的高分子材料,並對所述混合有添加物的高分子進行攪拌,使所述高分子材料和添加物混合均勻,攪拌的時間由所述高分子材料和添加物的種類及質量所決定,從而得到一液態熱固性高分子材料14。 The method for preparing the liquid thermosetting polymer material 14 comprises the following steps: first, placing a polymer material in a container, heating the polymer material at not higher than 300 ° C, and stirring the polymer material. , the polymer material is uniformly mixed, and the stirring time is determined by the type and quality of the polymer material; secondly, an additive or a mixture of a plurality of additives is added to the uniformly stirred polymer material. a chemical reaction; then, heating the polymer material mixed with the additive at not higher than 300 ° C, and stirring the polymer mixed with the additive to uniformly mix the polymer material and the additive The stirring time is determined by the type and quality of the polymer material and the additive, thereby obtaining a liquid thermosetting polymer material 14.

所述液態熱固性高分子材料14的粘度低於5帕.秒,並能在室溫下保持該粘度在30分鐘以上。可以理解,若所述熱固性高分子材料14在室溫下呈固態,則需先對所述熱固性高分子材料14進行加熱,使其轉變成液態的熱固性高分子材料14。 The liquid thermosetting polymer material 14 has a viscosity of less than 5 Pa. Seconds, and can maintain this viscosity for more than 30 minutes at room temperature. It can be understood that if the thermosetting polymer material 14 is in a solid state at room temperature, the thermosetting polymer material 14 is first heated to be converted into a liquid thermosetting polymer material 14.

所述熱固性高分子材料14包括高分子材料和固化劑、改性劑、填料或者稀釋劑等添加物。其中,高分子材料的含量占所述熱固性高分子材料質量的70%~95%,所述添加物的含量占所述熱固性高分子材料質量的5%~30%。 The thermosetting polymer material 14 includes an additive such as a polymer material and a curing agent, a modifier, a filler, or a diluent. The content of the polymer material accounts for 70% to 95% of the mass of the thermosetting polymer material, and the content of the additive accounts for 5% to 30% of the mass of the thermosetting polymer material.

所述高分子材料為酚醛樹脂、環氧樹脂、雙馬來醯亞胺樹脂、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂、聚氨酯、聚甲基丙烯酸甲酯和不飽和聚醯樹脂等中一種或者幾種混合。 The polymer material is phenolic resin, epoxy resin, bismaleimide resin, polybenzoxazine resin, cyanate resin, polyimine resin, polyurethane, polymethyl methacrylate and unsaturated One or a mixture of polyfluorene resins and the like.

所述固化劑用於促進所述熱固性高分子材料14的固化。常用固化劑包括脂肪胺、脂環胺、芳香胺、聚醯胺、酸酐、樹脂類和叔胺中一種或者幾種混合。所述改性劑用於改善所述熱固性高分子材料14的柔性、抗剪、抗彎、抗沖或者提高絕緣性等。常用改性劑包括聚硫橡膠、聚醯胺樹脂、聚乙烯醇叔丁醛或者丁腈橡膠類中一種或者幾種混合。所述填料用於改善所述熱固性高分子材料14固化時的散熱條件,用了填料也可以減少所述熱固性高分子材料的用量,降低成本。常用填料包括石棉纖維、玻璃纖維、石英粉、瓷粉、氧化鋁和矽膠粉中一種或者幾種混合。所述稀釋劑用於降低樹脂粘度,改善樹脂的滲透性。所述稀釋劑包括二縮水甘油醚、多縮水甘油醚、環氧丙烷丁基醚、環氧丙烷苯基醚、二環氧丙烷乙基醚、三環氧丙烷丙基醚和烯丙基苯酚中的一種或者幾種混合。 The curing agent is used to promote curing of the thermosetting polymer material 14. Commonly used curing agents include one or a mixture of a fatty amine, an alicyclic amine, an aromatic amine, a polyamine, an acid anhydride, a resin, and a tertiary amine. The modifier is used to improve the flexibility, shear resistance, bending resistance, impact resistance or insulation of the thermosetting polymer material 14. Commonly used modifiers include one or a mixture of polysulfide rubber, polyamide resin, polyvinyl butyral or nitrile rubber. The filler is used to improve heat dissipation conditions when the thermosetting polymer material 14 is cured, and the filler can also reduce the amount of the thermosetting polymer material and reduce the cost. Commonly used fillers include one or a mixture of asbestos fiber, glass fiber, quartz powder, porcelain powder, alumina and tannin powder. The diluent serves to lower the viscosity of the resin and improve the permeability of the resin. The diluent includes diglycidyl ether, polyglycidyl ether, propylene oxide butyl ether, propylene oxide phenyl ether, dipropylene oxide ethyl ether, tripropylene oxide propyl ether and allyl phenol. One or several mixes.

本技術方案實施例優選以環氧樹脂製備液態熱固性高分子材料14,其具體包括以下步驟:首先,將縮水甘油醚 型環氧和縮水甘油酯型環氧的混合物置於一容器中,加熱至30℃~60℃,並對容器中所述縮水甘油醚型環氧和縮水甘油酯型環氧的混合物攪拌10分鐘,直至所述縮水甘油醚型環氧和縮水甘油酯型環氧的混合物混合均勻為止;其次,將脂肪胺和二縮水甘油醚加入到所述攪拌均勻的縮水甘油醚型環氧和縮水甘油酯型環氧的混合物中進行化學反應;最後,將所述縮水甘油醚型環氧和縮水甘油酯型環氧的混合物加熱至30℃~60℃,從而得到一含環氧樹脂的液態熱固性高分子材料14。所述含環氧樹脂的液態熱固性高分子材料14係一透明淡黃色均勻混合的液體。 The embodiment of the technical solution preferably prepares the liquid thermosetting polymer material 14 by using an epoxy resin, which specifically includes the following steps: First, the glycidyl ether A mixture of epoxy and glycidyl ester epoxy is placed in a container, heated to 30 ° C to 60 ° C, and the mixture of the glycidyl ether epoxy and glycidyl ester epoxy in the container is stirred for 10 minutes. Until the mixture of the glycidyl ether type epoxy and the glycidyl ester type epoxy is uniformly mixed; secondly, the fatty amine and diglycidyl ether are added to the uniformly stirred glycidyl ether type epoxy and glycidyl ester a chemical reaction is carried out in a mixture of epoxy groups; finally, a mixture of the glycidyl ether epoxy and glycidyl ester epoxy is heated to 30 ° C to 60 ° C to obtain a liquid thermosetting polymer containing epoxy resin. Material 14. The epoxy-containing liquid thermosetting polymer material 14 is a liquid which is uniformly mixed in a transparent pale yellow color.

步驟三:將所述液態熱固性高分子材料14浸潤所述奈米碳管薄膜結構12。 Step 3: The liquid thermosetting polymer material 14 is impregnated into the carbon nanotube film structure 12.

如圖3所示,步驟三可在一成型裝置100中實現。該成型裝置100包括一原料供給裝置20、一原料輸入裝置30、一模具40和一原料輸出裝置50。所述原料供給裝置20包括一容器201,該容器201用於盛放原料;該容器201具有一進口202和一加壓口203,該進口202用於將所述容器201抽真空,該加壓口203用於對所述容器201中的原料施加注射壓力。所述原料輸入裝置30包括一閥門301,用於控制原料的流入;一注射口302,用於將原料注射進模具40中。所述模具40具有一上模具401和一下模具402。所述上模具401和下模具402的表面均勻塗抹一脫模劑,以便獲得複合材料後可以順利脫模。所述脫模劑根據熱固性高分子材料類別的不同而不同。所述脫模劑可以係 高溫脫模劑、有機矽型脫模劑、蠟類脫模劑或者矽氧烷型脫模劑。所述原料輸出裝置50包括一閥門501,用於控制原料的流出;一出口502,用於將原料排出所述成型裝置100。 As shown in FIG. 3, step three can be implemented in a molding apparatus 100. The molding apparatus 100 includes a material supply device 20, a material input device 30, a mold 40, and a material output device 50. The raw material supply device 20 includes a container 201 for holding a raw material; the container 201 has an inlet 202 and a pressurizing port 203 for evacuating the container 201, the pressurizing The port 203 is for applying an injection pressure to the raw material in the container 201. The material input device 30 includes a valve 301 for controlling the inflow of the raw material, and an injection port 302 for injecting the raw material into the mold 40. The mold 40 has an upper mold 401 and a lower mold 402. The surface of the upper mold 401 and the lower mold 402 is evenly coated with a release agent so that the composite material can be smoothly released after obtaining the composite material. The release agent varies depending on the type of thermosetting polymer material. The release agent can be High temperature release agent, organic oxime release agent, wax release agent or siloxane type release agent. The material output device 50 includes a valve 501 for controlling the outflow of the raw material, and an outlet 502 for discharging the raw material out of the molding apparatus 100.

本技術方案實施例中將所述液態熱固性高分子材料14浸潤所述奈米碳管薄膜結構12的方法包括以下步驟: The method for infiltrating the liquid thermosetting polymer material 14 into the carbon nanotube film structure 12 in the embodiment of the technical solution comprises the following steps:

(1)將一奈米碳管薄膜結構12放置於一模具40中。 (1) A carbon nanotube film structure 12 is placed in a mold 40.

在所述模具40中上模具401和下模具402的表面均勻塗抹一脫模劑,再將所述奈米碳管薄膜結構12放置於所述模具40的下模具402的模腔中,將所述上模具401輕輕置於所述下模具402之上。同時,使用密封墊片或者密封劑將所述模具40密封。 Applying a release agent to the surface of the upper mold 401 and the lower mold 402 in the mold 40, and placing the carbon nanotube film structure 12 in the cavity of the lower mold 402 of the mold 40, The mold 401 is gently placed over the lower mold 402. At the same time, the mold 40 is sealed using a gasket or sealant.

(2)將所述液態熱固性高分子材料14置於一容器201中,並對該容器201抽真空後對所述液態熱固性高分子材料14施加注射壓力。 (2) The liquid thermosetting polymer material 14 is placed in a container 201, and the container 201 is evacuated, and an injection pressure is applied to the liquid thermosetting polymer material 14.

將所述原料輸入裝置30中閥門301和所述原料輸出裝置50中閥門501關閉。將所述熱固性高分子材料14置於所述原料供給裝置20的容器201中。通過所述原料供給裝置20的進口202,對所述容器201進行抽真空,使其真空度低於-0.09Mpa,並在該真空度下保持至少10分鐘,以充分排除因攪拌引入到所述熱固性材料14中的空氣。接著,通過所述原料供給裝置20的加壓口203,對所述容器201中的熱固性高分子材料14施加注射壓力。所施加的注射壓力的計量值為0.001Mpa-10Mpa。 The valve 301 in the raw material input device 30 and the valve 501 in the raw material output device 50 are closed. The thermosetting polymer material 14 is placed in the container 201 of the material supply device 20. The container 201 is evacuated through the inlet 202 of the raw material supply device 20 to a vacuum of less than -0.09 MPa, and maintained at the vacuum for at least 10 minutes to sufficiently eliminate the introduction into the The air in the thermoset material 14. Next, an injection pressure is applied to the thermosetting polymer material 14 in the container 201 through the pressurizing port 203 of the material supply device 20. The applied injection pressure is measured in the range of 0.001 MPa to 10 MPa.

(3)將所述液態熱固性高分子材料14注射進所述模具40中,浸潤所述奈米碳管薄膜結構12。 (3) The liquid thermosetting polymer material 14 is injected into the mold 40 to infiltrate the carbon nanotube film structure 12.

將所述原料輸入裝置30的閥門301和所述原料輸出裝置50的閥門501打開。所述熱固性高分子材料14在注射壓力的作用下,從所述容器201通過所述原料輸入裝置30進入到所述模具40中,並浸潤所述奈米碳管薄膜結構12。 The valve 301 of the raw material input device 30 and the valve 501 of the raw material output device 50 are opened. The thermosetting polymer material 14 enters the mold 40 from the container 201 through the raw material input device 30 under the action of injection pressure, and infiltrates the carbon nanotube film structure 12.

所述液態熱固性高分子材料14的粘度很低,奈米碳管薄膜結構12中奈米碳管擇優取向排列,且相鄰的奈米碳管之間具有一定的間隙,故所述液態熱固性高分子材料14能夠很好的浸潤到奈米碳管之間形成的間隙中。因此,所述的奈米碳管複合材料10具有優異的性能。為了讓液態熱固性高分子材料14充分浸潤所述奈米碳管薄膜結構12,浸潤所述奈米碳管薄膜結構12的時間不能少於10分鐘。同時,多餘的液態熱固性高分子材料14通過所述原料輸出裝置50的出口502流出。流動的熱固性高分子材料14將奈米碳管薄膜結構12中奈米碳管之間的間隙內的空氣帶出,充分排除奈米碳管複合材料10中的空氣,從而不會導致所述奈米碳管複合材料10存在結構缺陷。 The viscosity of the liquid thermosetting polymer material 14 is very low, and the carbon nanotube film structure 12 has a preferred orientation of the carbon nanotubes, and the adjacent carbon nanotubes have a certain gap therebetween, so the liquid thermosetting property is high. The molecular material 14 is well infiltrated into the gap formed between the carbon nanotubes. Therefore, the carbon nanotube composite material 10 has excellent properties. In order for the liquid thermosetting polymer material 14 to sufficiently wet the carbon nanotube film structure 12, the carbon nanotube film structure 12 may be infiltrated for not less than 10 minutes. At the same time, the excess liquid thermosetting polymer material 14 flows out through the outlet 502 of the material output device 50. The flowing thermosetting polymer material 14 carries out the air in the gap between the carbon nanotubes in the carbon nanotube film structure 12, and completely excludes the air in the carbon nanotube composite material 10, thereby not causing the naphthalene The carbon nanotube composite material 10 has structural defects.

可以理解,將所述液態熱固性高分子材料14浸潤所述奈米碳管薄膜結構12的方法不限注射的方法,所述液態熱固性高分子材料14還可以通過毛細作用被吸入到所述奈米碳管薄膜結構12中,浸潤所述奈米碳管薄膜結構12,或者將所述奈米碳管薄膜結構12浸泡在所述液態熱固性高分子材料14中。 It can be understood that the method of infiltrating the liquid thermosetting polymer material 14 into the carbon nanotube film structure 12 is not limited to an injection method, and the liquid thermosetting polymer material 14 can also be sucked into the nanometer by capillary action. In the carbon nanotube film structure 12, the carbon nanotube film structure 12 is impregnated, or the carbon nanotube film structure 12 is immersed in the liquid thermosetting polymer material 14.

步驟四:固化上述被液態熱固性高分子材料14浸潤的奈米碳管薄膜結構12,得到一奈米碳管複合材料10。 Step 4: curing the carbon nanotube film structure 12 infiltrated by the liquid thermosetting polymer material 14 to obtain a carbon nanotube composite material 10.

本技術方案實施例中固化上述被液態熱固性高分子材料14浸潤的奈米碳管薄膜結構12的方法包括以下步驟: The method for curing the carbon nanotube film structure 12 infiltrated by the liquid thermosetting polymer material 14 in the embodiment of the present technical solution comprises the following steps:

(1)將被液態熱固性高分子材料14浸潤的奈米碳管薄膜結構12逐漸升溫。 (1) The carbon nanotube film structure 12 infiltrated by the liquid thermosetting polymer material 14 is gradually heated.

將所述原料輸入裝置30的閥門301和所述原料輸出裝置50的閥門501關閉。通過一加熱裝置對所述模具40進行加熱,實現對所述液態熱固性高分子材料14的固化。對所述模具40進行加熱,需逐步升溫固化所述的熱固性高分子材料14。因為在液態熱固性高分子材料14的固化過程中,升溫過快會導致熱固性高分子材料14爆聚,從而影響材料性能,故,液態熱固性高分子材料14的固化需要逐步升溫。所述液態熱固性高分子材料14的固化溫度和固化時間由所述高分子材料和添加物的種類及質量所決定。所述液態熱固性高分子材料14的固化溫度低於400℃,固化時間少於100小時。所述加熱裝置可以係加熱板、熱壓機、平板硫化機、熱壓罐或者烘箱中等加熱裝置中的一種。 The valve 301 of the raw material input device 30 and the valve 501 of the raw material output device 50 are closed. The mold 40 is heated by a heating device to effect curing of the liquid thermosetting polymer material 14. The mold 40 is heated, and the thermosetting polymer material 14 is gradually heated and solidified. Since the temperature rise too fast during the solidification of the liquid thermosetting polymer material 14 causes the thermosetting polymer material 14 to swell and affect the material properties, the solidification of the liquid thermosetting polymer material 14 needs to be gradually increased. The curing temperature and curing time of the liquid thermosetting polymer material 14 are determined by the type and quality of the polymer material and the additive. The liquid thermosetting polymer material 14 has a curing temperature of less than 400 ° C and a curing time of less than 100 hours. The heating device may be one of a heating plate, a hot press, a flat vulcanizer, an autoclave or an oven.

(2)將逐漸升溫後的奈米碳管薄膜結構12降溫至室溫,得到奈米碳管複合材料10。 (2) The carbon nanotube film structure 12 after gradually heating up is cooled to room temperature to obtain a carbon nanotube composite material 10.

待所述熱固性高分子材料14固化成型後,將所述模具40降溫至室溫,脫模可得奈米碳管複合材料10。 After the thermosetting polymer material 14 is solidified and molded, the mold 40 is cooled to room temperature, and the carbon nanotube composite material 10 is obtained by demolding.

本技術方案實施例含環氧樹脂的熱固性高分子材料14的 固化方法具體包括以下步驟:首先,將一加熱裝置升溫至50℃~70℃,在該溫度下含環氧樹脂的熱固性高分子材料14為液態,維持該溫度1小時~3小時,使得該熱固性高分子材料14繼續吸熱以增加其固化度;其次,繼續升溫該加熱裝置至80℃~100℃,在該溫度下維持1小時~3小時,使得所述熱固性高分子材料14繼續吸熱以增加其固化度;再次,繼續升溫該加熱裝置至110℃~150℃,在該溫度下維持2小時~20小時,使得所述熱固性高分子材料14繼續吸熱以增加其固化度;最後,待該加熱裝置降溫至室溫後,將模具40從加熱裝置中取出,脫模可得一奈米碳管複合材料10。 Embodiments of the present technical solution include an epoxy resin-containing thermosetting polymer material 14 The curing method specifically includes the following steps: First, a heating device is heated to 50 ° C to 70 ° C, at which temperature the thermosetting polymer material 14 containing epoxy resin is in a liquid state, and the temperature is maintained for 1 hour to 3 hours to make the thermosetting property. The polymer material 14 continues to absorb heat to increase its degree of solidification; secondly, the heating device is further heated to 80 ° C to 100 ° C, and maintained at this temperature for 1 hour to 3 hours, so that the thermosetting polymer material 14 continues to absorb heat to increase its Curing degree; again, further heating the heating device to 110 ° C ~ 150 ° C, maintaining at this temperature for 2 hours to 20 hours, so that the thermosetting polymer material 14 continues to absorb heat to increase its degree of solidification; finally, the heating device After cooling to room temperature, the mold 40 is taken out from the heating device, and a carbon nanotube composite material 10 is obtained by demolding.

請參考圖4,本技術方案實施例提供的奈米碳管複合材料10,包括熱固性高分子材料14與奈米碳管,該奈米碳管以奈米碳管薄膜結構12的形式均勻分佈於所述熱固性高分子材料14中。 Referring to FIG. 4 , the carbon nanotube composite material 10 provided by the embodiment of the present technical solution includes a thermosetting polymer material 14 and a carbon nanotube tube, and the carbon nanotube tube is uniformly distributed in the form of a carbon nanotube film structure 12 . In the thermosetting polymer material 14.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

12‧‧‧奈米碳管薄膜結構 12‧‧‧Nano Carbon Tube Thin Film Structure

14‧‧‧液態熱固性高分子材料 14‧‧‧Liquid thermosetting polymer materials

20‧‧‧原料供給裝置 20‧‧‧Material supply device

30‧‧‧原料輸入裝置 30‧‧‧Material input device

40‧‧‧模具 40‧‧‧Mold

50‧‧‧原料輸出裝置 50‧‧‧Material output device

100‧‧‧成型裝置 100‧‧‧Molding device

121‧‧‧第一奈米碳管層 121‧‧‧First carbon nanotube layer

122‧‧‧第二奈米碳管層 122‧‧‧Second carbon nanotube layer

123‧‧‧第三奈米碳管層 123‧‧‧ third carbon nanotube layer

124‧‧‧第四奈米碳管層 124‧‧‧ fourth carbon nanotube layer

201‧‧‧容器 201‧‧‧ container

202‧‧‧進口 202‧‧‧Import

203‧‧‧加壓口 203‧‧‧pressure port

301,501‧‧‧閥門 301,501‧‧‧ valve

302‧‧‧注射口 302‧‧‧ injection port

401‧‧‧上模具 401‧‧‧Upper mold

402‧‧‧下模具 402‧‧‧Mold

502‧‧‧出口 502‧‧‧Export

圖1為本技術方案實施例的奈米碳管複合材料的製備方法的流程圖。 1 is a flow chart of a method for preparing a carbon nanotube composite material according to an embodiment of the present technical solution.

圖2為本技術方案實施例的奈米碳管薄膜結構的結構示意圖。 2 is a schematic structural view of a structure of a carbon nanotube film according to an embodiment of the present technical solution.

圖3為本技術方案實施例的奈米碳管複合材料成型裝置的結構示意圖。 FIG. 3 is a schematic structural view of a carbon nanotube composite material forming apparatus according to an embodiment of the present technical solution.

圖4為本技術方案實施例的奈米碳管複合材料的結構示意圖。 4 is a schematic structural view of a carbon nanotube composite material according to an embodiment of the present technical solution.

12‧‧‧奈米碳管薄膜結構 12‧‧‧Nano Carbon Tube Thin Film Structure

121‧‧‧第一奈米碳管層 121‧‧‧First carbon nanotube layer

122‧‧‧第二奈米碳管層 122‧‧‧Second carbon nanotube layer

123‧‧‧第三奈米碳管層 123‧‧‧ third carbon nanotube layer

124‧‧‧第四奈米碳管層 124‧‧‧ fourth carbon nanotube layer

Claims (15)

一種奈米碳管複合材料的製備方法,包括以下步驟:製備一自支撐的奈米碳管薄膜結構,該奈米碳管薄膜結構包括複數個首尾相連的奈米碳管,該複數個奈米碳管沿平行於所述奈米碳管薄膜結構的表面定向排列;提供一液態熱固性高分子材料;將所述液態熱固性高分子材料浸潤所述奈米碳管薄膜結構;及固化上述被液態熱固性高分子材料浸潤的奈米碳管薄膜結構,得到一奈米碳管複合材料,其中,所述將液態熱固性高分子材料浸潤所述奈米碳管薄膜結構的方法為注射浸潤,具體包括以下步驟:將一奈米碳管薄膜結構放置於一模具中;將一液態熱固性高分子材料置於一容器中,並對該容器抽真空直至該容器的真空度低於-0.09Mpa後,對所述液態熱固性高分子材料施加計量值為0.001Mpa-10Mpa的注射壓力;及將所述液態熱固性高分子材料注射進所述模具中,浸潤所述奈米碳管薄膜結構。 A method for preparing a carbon nanotube composite material, comprising the steps of: preparing a self-supporting carbon nanotube film structure, the carbon nanotube film structure comprising a plurality of carbon nanotubes connected end to end, the plurality of nano tubes The carbon tube is oriented along a surface parallel to the surface of the carbon nanotube film structure; providing a liquid thermosetting polymer material; impregnating the carbon nanotube film structure with the liquid thermosetting polymer material; and curing the liquid thermosetting property The carbon nanotube film structure infiltrated by the polymer material obtains a carbon nanotube composite material, wherein the method for infiltrating the carbon nanotube film structure by the liquid thermosetting polymer material is injection infiltration, and specifically comprises the following steps : placing a carbon nanotube film structure in a mold; placing a liquid thermosetting polymer material in a container, and vacuuming the container until the vacuum degree of the container is lower than -0.09 MPa, The liquid thermosetting polymer material is applied with an injection pressure of 0.001 MPa to 10 MPa; and the liquid thermosetting polymer material is injected into the mold, and dipped The carbon nanotube film structure is moistened. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,所述奈米碳管薄膜結構的製備方法包括以下步驟:提供一奈米碳管陣列;從上述奈米碳管陣列中選定一定寬度的多個奈米碳管片斷;及 以一定速度沿垂直於奈米碳管陣列生長方向拉伸該多個奈米碳管片斷獲得一連續的奈米碳管薄膜,該奈米碳管薄膜中奈米碳管的排列方向平行於上述拉伸的方向。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the method for preparing the carbon nanotube film structure comprises the steps of: providing a carbon nanotube array; and the nano carbon from the above Selecting a plurality of carbon nanotube segments of a certain width in the tube array; and Stretching the plurality of carbon nanotube segments perpendicular to the growth direction of the carbon nanotube array at a certain speed to obtain a continuous carbon nanotube film, wherein the arrangement of the carbon nanotubes in the carbon nanotube film is parallel to the above The direction of stretching. 如申請專利範圍第2項所述的奈米碳管複合材料的製備方法,其中,所述奈米碳管薄膜結構的製備方法進一步包括以下步驟:將至少兩個奈米碳管薄膜平行且無間隙鋪設得到一奈米碳管層;及將至少兩個奈米碳管層重疊鋪設得到一奈米碳管薄膜結構。 The method for preparing a carbon nanotube composite material according to the second aspect of the invention, wherein the method for preparing the carbon nanotube film structure further comprises the steps of: parallelizing at least two carbon nanotube films and not A carbon nanotube layer is obtained by gap laying; and at least two carbon nanotube layers are overlapped to form a carbon nanotube film structure. 如申請專利範圍第2項所述的奈米碳管複合材料的製備方法,其中,所述奈米碳管薄膜結構的製備方法進一步包括將至少兩個奈米碳管薄膜重疊鋪設得到一奈米碳管薄膜結構的步驟。 The method for preparing a carbon nanotube composite material according to claim 2, wherein the method for preparing the carbon nanotube film structure further comprises overlapping at least two carbon nanotube films to obtain one nanometer. The step of the carbon tube film structure. 如申請專利範圍第2項所述的奈米碳管複合材料的製備方法,其中,所述奈米碳管薄膜結構的製備方法進一步包括將至少兩個奈米碳管薄膜平行且無間隙鋪設得到一奈米碳管薄膜結構的步驟。 The method for preparing a carbon nanotube composite material according to claim 2, wherein the method for preparing the carbon nanotube film structure further comprises laying at least two carbon nanotube films in parallel and without gaps. A step of a carbon nanotube film structure. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,進一步包括使用有機溶劑處理該奈米碳管薄膜結構的步驟。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the method further comprises the step of treating the carbon nanotube film structure with an organic solvent. 如申請專利範圍第6項所述的奈米碳管複合材料的製備方法,其中,該有機溶劑為乙醇、甲醇、丙酮、二氯乙烷和氯仿中的一種或者幾種的混合。 The method for producing a carbon nanotube composite material according to claim 6, wherein the organic solvent is one or a mixture of ethanol, methanol, acetone, dichloroethane and chloroform. 如申請專利範圍第6項所述的奈米碳管複合材料的製備方法,其中,上述使用有機溶劑處理奈米碳管薄膜結構的步 驟為通過試管將有機溶劑滴落在奈米碳管薄膜結構表面浸潤整個奈米碳管薄膜結構。 The method for preparing a carbon nanotube composite material according to claim 6, wherein the step of treating the carbon nanotube film structure by using the organic solvent The organic solvent is dropped on the surface of the carbon nanotube film structure through the test tube to infiltrate the entire carbon nanotube film structure. 如申請專利範圍第6項所述的奈米碳管複合材料的製備方法,其中,上述使用有機溶劑處理奈米碳管薄膜結構的步驟為將整個奈米碳管薄膜結構浸到盛有有機溶劑的容器中浸潤。 The method for preparing a carbon nanotube composite material according to claim 6, wherein the step of treating the carbon nanotube film structure by using the organic solvent comprises immersing the entire carbon nanotube film structure in an organic solvent. Infiltrated in the container. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,所述液態熱固性高分子材料在室溫下具有低於5帕.秒的粘度。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the liquid thermosetting polymer material has a lower than 5 Pa at room temperature. The viscosity of seconds. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,所述的熱固性高分子材料為酚醛樹脂、環氧樹脂、雙馬來醯亞胺樹脂、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂、聚氨酯、聚甲基丙烯酸甲酯和不飽和聚醯樹脂中的一種或者幾種的混合。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the thermosetting polymer material is a phenol resin, an epoxy resin, a bismaleimide resin, or a polybenzoxazine. A mixture of one or more of a resin, a cyanate resin, a polyimide resin, a polyurethane, a polymethyl methacrylate, and an unsaturated polyfluorene resin. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,所述液態熱固性高分子材料浸潤奈米碳管薄膜結構的時間大於等於10分鐘。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the liquid thermosetting polymer material infiltrates the carbon nanotube film structure for 10 minutes or longer. 如申請專利範圍第1項所述的奈米碳管複合材料的製備方法,其中,所述的固化上述被液態熱固性高分子材料浸潤的奈米碳管薄膜結構,得到一奈米碳管複合材料的方法具體包括以下步驟:將被液態熱固性高分子材料浸潤的奈米碳管薄膜結構在少於100小時的時間內逐漸升溫至低於400℃;及將逐漸升溫後的奈米碳管薄膜結構降溫至室溫,得到奈米碳管複合材料。 The method for preparing a carbon nanotube composite material according to claim 1, wherein the curing the carbon nanotube film structure infiltrated by the liquid thermosetting polymer material to obtain a carbon nanotube composite material The method specifically includes the steps of: gradually heating the carbon nanotube film structure impregnated with the liquid thermosetting polymer material to less than 400 ° C in less than 100 hours; and the carbon nanotube film structure after gradually heating up The temperature was cooled to room temperature to obtain a carbon nanotube composite material. 如申請專利範圍第13項所述的奈米碳管複合材料的製備方 法,其中,所述將被液態熱固性高分子材料浸潤的奈米碳管薄膜結構逐漸升溫的過程係通過一加熱裝置實現。 Preparation method of the carbon nanotube composite material as described in claim 13 The method in which the structure of the carbon nanotube film infiltrated by the liquid thermosetting polymer material is gradually heated is realized by a heating device. 如申請專利範圍第14項所述的奈米碳管複合材料的製備方法,其中,所述加熱裝置為加熱板、熱壓機、平板硫化機、熱壓罐或者烘箱。 The method for preparing a carbon nanotube composite material according to claim 14, wherein the heating device is a heating plate, a hot press, a flat vulcanizing machine, an autoclave or an oven.
TW96150104A 2007-12-26 2007-12-26 Method for making carbon nanotube composite TWI422524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Publications (2)

Publication Number Publication Date
TW200927647A TW200927647A (en) 2009-07-01
TWI422524B true TWI422524B (en) 2014-01-11

Family

ID=44863710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Country Status (1)

Country Link
TW (1) TWI422524B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024310B2 (en) 2011-01-12 2015-05-05 Tsinghua University Epitaxial structure
CN102723408B (en) * 2011-03-29 2015-04-15 清华大学 Method for preparing semiconductor epitaxial structure
CN103379681B (en) * 2012-04-28 2016-03-30 清华大学 Heating resistance pad
CN107057278B (en) * 2016-11-25 2023-07-14 深圳前海量子翼纳米碳科技有限公司 Preparation device and preparation method for preparing carbon nano tube film composite material in one step

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699452A (en) * 2004-05-19 2005-11-23 中国航空工业第一集团公司北京航空材料研究院 High volume fraction carbon nanotube array - resin base composite materials and method for preparing same
CN1893040A (en) * 2005-06-30 2007-01-10 鸿富锦精密工业(深圳)有限公司 Thermo-interface material producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699452A (en) * 2004-05-19 2005-11-23 中国航空工业第一集团公司北京航空材料研究院 High volume fraction carbon nanotube array - resin base composite materials and method for preparing same
CN1893040A (en) * 2005-06-30 2007-01-10 鸿富锦精密工业(深圳)有限公司 Thermo-interface material producing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mei Zhang, Shaoli Fang, Anvar A. Zakhidov, Sergey B. Lee, Ali E. Aliev, Christopher D. Williams, Ken R. Atkinson, Ray H. Baughman, "Strong, Transparent, Multifunctional, Carbon Nanotube Sheets", Science, Vol. 309, No. 5738, 2005.8.19,Page:1215~1219. *

Also Published As

Publication number Publication date
TW200927647A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
CN101456277B (en) Method for preparing carbon nanotube composite material
Wang et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching
JP5254819B2 (en) Carbon nanotube composite material and manufacturing method thereof
JP5032454B2 (en) Method for producing carbon nanotube composite material
Jiang et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites
Jin et al. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
Bradford et al. A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes
Tai et al. Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites
US8231965B2 (en) Resin complex containing carbon nanotube and method for production thereof
Gauthier et al. Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices
US20120282453A1 (en) Carbon nanotube composites and methods and apparatus for fabricating same
CN102292281A (en) Multifunctional composites based on coated nanostructures
TWI422524B (en) Method for making carbon nanotube composite
CN106631079B (en) Carbon nanotube composite material of silicon carbide and preparation method thereof
Li et al. Largely improved dimensional stability of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating at a low content
TWI476147B (en) Carbon nanotube composite and method for making the same
CN103921368A (en) High-orientation carbon nano tube compound prefabricated body and preparation method thereof
Jain et al. Polyacrylonitrile/carbon nanofiber nanocomposite fibers
CN110435239B (en) Multi-scale toughened epoxy resin-based carbon fiber composite material and preparation method thereof
Qu et al. Enhancement of mechanical properties of buckypapers/polyethylene composites by microwave irradiation
CN106905546B (en) Preparation method of high-strength high-conductivity composite fiber reinforced composite material
Wu et al. Full on-line preparation of polymer composites reinforced with aligned carbon nanotubes
CN113105714A (en) Continuous high-thermal-conductivity asphalt-based carbon fiber reinforced epoxy resin composite material and preparation method thereof
Gantayat et al. Design of carbon nanofiber embedded conducting epoxy resin