JP2007309874A - 表面検査装置 - Google Patents

表面検査装置 Download PDF

Info

Publication number
JP2007309874A
JP2007309874A JP2006141348A JP2006141348A JP2007309874A JP 2007309874 A JP2007309874 A JP 2007309874A JP 2006141348 A JP2006141348 A JP 2006141348A JP 2006141348 A JP2006141348 A JP 2006141348A JP 2007309874 A JP2007309874 A JP 2007309874A
Authority
JP
Japan
Prior art keywords
light
angle
linearly polarized
repetitive pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006141348A
Other languages
English (en)
Other versions
JP4506723B2 (ja
Inventor
Daisaku Mochida
大作 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006141348A priority Critical patent/JP4506723B2/ja
Publication of JP2007309874A publication Critical patent/JP2007309874A/ja
Application granted granted Critical
Publication of JP4506723B2 publication Critical patent/JP4506723B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 繰り返しパターンの方向が事前に分からなくても高感度な欠陥検査を行う。
【解決手段】 被検基板の表面に形成された繰り返しパターンを直線偏光により照明する手段と、直線偏光の振動面の表面における方向と繰り返しパターンの繰り返し方向との成す角度を複数の異なる角度に設定する手段(S1,S7)と、斜めの角度に設定された各状態で、繰り返しパターンから発生した正反射光のうち直線偏光の振動面に交差する偏光成分の光強度を測定する手段(S2,S3)と、各状態で測定された光強度のうち最大値に基づいて、繰り返しパターンの欠陥を検出する手段(S5,S6)とを備える。
【選択図】 図7

Description

本発明は、被検基板の表面に形成された繰り返しパターンの欠陥検査を行う表面検査装置に関する。
被検基板(例えば半導体ウエハや液晶基板など)の表面に形成された繰り返しパターンに検査用の照明光を照射し、このとき繰り返しパターンから発生する光に基づいて、繰り返しパターンの欠陥検査を行う装置が知られている。
また、検査用の照明光として直線偏光を用い、繰り返しパターンから発生する光のうち、繰り返しパターンでの偏光状態の変化に関わる成分を受光して、欠陥検査を行う装置も提案されている(例えば特許文献1を参照)。この装置では、高感度な欠陥検査を行うために、照明光の直線偏光の向きを繰り返しパターンの繰り返し方向に対して45度の方向に設定している。
国際公開2005/040776号パンフレット
しかし、上記の装置では、検査対象となる繰り返しパターンの方向が事前に分からなければ、照明光の直線偏光の向きを45度の方向に設定することができず、高感度な欠陥検査を行うことができなかった。
本発明の目的は、繰り返しパターンの方向が事前に分からなくても高感度な欠陥検査を行える表面検査装置を提供することにある。
本発明の表面検査装置は、被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を複数の異なる角度に設定する設定手段と、前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に交差する偏光成分の光強度を測定する測定手段と、前記各状態で測定された前記光強度のうち最大値に基づいて、前記繰り返しパターンの欠陥を検出する検出手段とを備えたものである。
本発明の他の表面検査装置は、被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を複数の異なる角度に設定する設定手段と、前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に交差する偏光成分に基づいて前記被検基板の画像を取り込む処理手段と、前記各状態で取り込まれた前記画像のうち最も明るい画像の各画素値に基づいて、前記繰り返しパターンの欠陥を検出する検出手段とを備えたものである。
本発明の表面検査装置によれば、繰り返しパターンの方向が事前に分からなくても高感度な欠陥検査を行うことができる。
以下、図面を用いて本発明の実施形態を詳細に説明する。
本実施形態の表面検査装置10は、図1に示す通り、被検基板20を支持するステージ11と、アライメント系12と、照明系13と、受光系14と、画像処理部15とで構成される。本実施形態の表面検査装置10は、一括撮像型の装置である。
被検基板20は、例えば半導体ウエハや液晶ガラス基板などである。被検基板20の表面(レジスト層)の各点には、図2に示す通り、検査すべき繰り返しパターン22が形成されている。繰り返しパターン22は、配線パターンなどである。繰り返しパターン22のライン部の配列方向(X方向)を「繰り返しパターン22の繰り返し方向」という。
本実施形態の表面検査装置10は、半導体回路素子や液晶表示素子の製造工程において、被検基板20の表面に形成された繰り返しパターン22の欠陥検査を自動で行う装置である。繰り返しパターン22の欠陥とは、被検基板20に対する露光時のデフォーカス欠陥やレジストの膜厚ムラや傷などの形状変化である。被検基板20は、表面(レジスト層)への露光・現像後、不図示の搬送系によってカセットまたは現像装置から運ばれ、ステージ11に吸着される。
ステージ11は、被検基板20を上面に載置して例えば真空吸着により固定保持する。また、ステージ11には不図示の回転機構が設けられ、その回転軸は被検基板20を載置する上面に垂直である。回転機構によってステージ11を回転させ、その上面に載置された被検基板20を回転させることで、上記の繰り返しパターン22の繰り返し方向(図2のX方向)を、被検基板20の表面内で回転させることができる。
このような回転の最中に、アライメント系12は、被検基板20の外縁部を照明し、外縁部に設けられた不図示の外形基準(例えばノッチ)の回転方向の位置に基づいて、被検基板20の向きを検出する。そして、被検基板20が所望の方向になると、ステージ11の回転が停止される。
このとき、被検基板20の表面に形成された繰り返しパターン22の繰り返し方向(X方向)は、例えば図3(a)〜(c)に示す様々な方向の何れかとなり、何れであるかを常に把握できるとは限らない。これは、被検基板20の表面の各層(各工程)ごとに繰り返しパターン22の方向(X方向)が異なる場合があるからである。
照明系13は、被検基板20の表面の繰り返しパターン22(図3(a)〜(c)参照)に対して検査用の照明光L1を照射する手段であって、光源31と、波長選択フィルタ32と、ライトガイドファイバ33と、偏光フィルタ34と、凹面反射鏡35とで構成されている(偏心光学系)。この照明系13は、被検基板20側に対してテレセントリックな光学系である。
光源31は、ハロゲンランプやメタルハライドランプや水銀ランプなどの安価な放電光源である。例えば、光源31が水銀ランプの場合、光源31から出射される光の波長域は、240nm〜600nm程度であり、紫外域から可視域までの領域を含む。波長選択フィルタ32は、光源31から出射される光のうち所定波長の輝線スペクトル(狭帯域のスペクトル)を選択的に透過する。
ライトガイドファイバ33は、波長選択フィルタ32から出射される光を伝送し、発散光束の照明光L0(非偏光)を射出する。発散光束の照明光L0の広がり角度は、ライトガイドファイバ33の開口数に応じた角度である。
偏光フィルタ34は、ライトガイドファイバ33の射出端近傍に配置され、その透過軸が所定の方位に設定される。そして、ライトガイドファイバ33からの発散光束の照明光L0(非偏光)を、透過軸の方位に応じた偏光状態(つまり直線偏光)に変換する。このため、偏光フィルタ34から凹面反射鏡35には、発散光束の照明光L0(直線偏光)が導かれる。
凹面反射鏡35は、球面の内側を反射面とした反射鏡であり、前側焦点がライトガイドファイバ33の射出端と略一致、後側焦点が被検基板20の表面と略一致するように配置される。このため、偏光フィルタ34からの発散光束の照明光L0(直線偏光)は、凹面反射鏡35によってコリメートされ、平行光束の検査用の照明光L1として被検基板20の表面の繰り返しパターン22に照射される(いわゆるテレセントリック照明)。
このとき、被検基板20の表面の比較的広い領域(例えば全域など)の各点に対して、斜め上方から略一定の角度条件で、検査用の照明光L1を入射させることができる。被検基板20の表面の全域を照明すれば、表面の全域で一括して繰り返しパターン22の欠陥を検出可能となり、高スループットでの欠陥検査が可能となる。
繰り返しパターン22の欠陥検査の際には、被検基板20を所望の方向に設定し(例えば図3(a)の状態)、その後、被検基板20をステップ的に回転させる。そして、図4(a)〜(c)に示す通り、被検基板20の表面における照明光L1の振動面の方向(V方向)と、繰り返しパターン22の繰り返し方向(X方向)との成す角度を、複数の異なる斜めの角度φ,φ+Δ,φ+2Δ,…に設定する。このような照明光L1と繰り返しパターン22との角度関係は、被検基板20の表面の全域において略均一である。
そして、上記の照明光L1(直線偏光)を用いて繰り返しパターン22を照明すると、繰り返しパターン22の異方性に起因する構造性複屈折(form birefringence)によって直線偏光(照明光L1)の偏光状態が変化し、繰り返しパターン22から各点での入射面に沿って、楕円偏光の正反射光L2(図1)が発生する。
繰り返しパターン22の構造性複屈折による直線偏光の楕円化の詳細は、本出願人が既に出願した国際公開2005/040776号パンフレットに記載されているので、ここでは詳しい説明を省略する。
なお、本実施形態では、繰り返しパターン22のピッチ(例えば110nm)が照明光L1の波長(240nm〜600nm程度の波長域)と比較して十分小さいため、照明光L1が照射されたときに、繰り返しパターン22から回折光が発生することはない。
本実施形態の表面検査装置10は、直線偏光の照明光L1(図4)によって被検基板20の表面の繰り返しパターン22を照明し、このとき繰り返しパターン22から発生する楕円偏光の正反射光L2を受光系14に導き、その偏光状態(つまり楕円化の程度)に基づいて、繰り返しパターン22の欠陥検査を行うものである。
受光系14(図1)は、繰り返しパターン22から発生した正反射光L2に基づいて受光信号を出力する手段であって、凹面反射鏡36と、偏光フィルタ37と、集光レンズ38と、撮像素子39とで構成される(偏心光学系)。受光系14も、照明系13と同様、被検基板20側に対してテレセントリックな光学系である。
凹面反射鏡36は、照明系13の凹面反射鏡35と同様の構成であり、被検基板20の表面の繰り返しパターン22から発生した正反射光L2を反射して集光光束(正反射光L3)に変換し、偏光フィルタ37の方に導く。そして、凹面反射鏡36からの光(L3)の一部(L4)は、偏光フィルタ37を透過した後、集光レンズ38を介して、撮像素子39の撮像面に入射する。
偏光フィルタ37は、集光レンズ38の近傍に配置され、その透過軸が所定の方位に設定される。偏光フィルタ37の透過軸の方位は、照明系13の偏光フィルタ34に対し、それぞれの透過軸が互いに直交するように配置される(クロスニコルの配置)。
このため、凹面反射鏡36からの光(L3)は、偏光フィルタ37を透過する際に、その透過軸の方位に応じた偏光成分L4(すなわち直線偏光の照明光L1の振動面に垂直な偏光成分)のみが抽出される。この偏光成分L4は、繰り返しパターン22から発生した楕円偏光の正反射光L2の偏光状態(つまり楕円化の程度)に応じた大きさを有する。
なお、被検基板20の表面のうち繰り返しパターン22のない部分では、偏光成分L4の大きさがほぼ0になる(暗視野)。これに対し、繰り返しパターン22の部分では、構造性複屈折によって直線偏光(L1)が楕円偏光(L2)となり、偏光成分L4が有限の値を持つため、暗視野の中にパターン像が浮かび上がって見えることになる。
偏光フィルタ37からの偏光成分L4は、集光レンズ38を介して撮像素子39の撮像面に入射する。このとき、撮像素子39の撮像面には、上記の偏光成分L4によって、被検基板20の表面の反射像が形成される。撮像素子39は、凹面反射鏡36と集光レンズ38とを介して、被検基板20の表面と共役な位置に配置される。撮像素子39は、例えばCCD撮像素子などであり、撮像面に形成された被検基板20の表面の反射像を光電変換し、各画素ごとの受光信号を画像処理部15に出力する。
画像処理部15は、撮像素子39から出力される受光信号に基づいて、被検基板20の反射画像を取り込む。この反射画像には、被検基板20の表面の各点(繰り返しパターン22)から発生した正反射光L2の偏光状態(つまり偏光成分L4の大きさ)に応じた明暗が現れる。
画像処理部15は、被検基板20の反射画像を取り込むと、その輝度情報と例えば良品サンプルの反射画像の輝度情報とを比較する。良品サンプルとは、理想的な形状で欠陥のない繰り返しパターン22を表面全域に形成したものである。
画像処理部15は、良品サンプルの反射画像の輝度値を基準とし、被検基板20の反射画像の輝度値の変化量を測定する。得られた輝度値の変化量は、繰り返しパターン22の形状変化(露光時のデフォーカス欠陥やレジストの膜厚ムラなど)による正反射光L2の偏光状態(つまり偏光成分L4の大きさ)の変化を表している。
そして、画像処理部15は、被検基板20の反射画像における輝度値の変化量に基づいて、繰り返しパターン22の欠陥を検出する。例えば、輝度値の変化量が予め定めた閾値(許容値)より大きければ「欠陥」と判定し、閾値より小さければ「正常」と判定すればよい。また、良品サンプルを使わずに、被検基板20の反射画像の中での輝度値の変化量を所定の閾値と比較してもよい。
このように、直線偏光の照明光L1によって繰り返しパターン22を照明し、繰り返しパターン22から発生した正反射光L2の偏光状態(つまり偏光成分L4の大きさ)に応じて被検基板20の反射画像を取り込み、この反射画像の明暗に基づいて繰り返しパターン22の欠陥を検出する場合、高感度な欠陥検査を行うためには、照明光L1の振動面の方向(例えば図4のV方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度を45度に設定すればよいと言われている(図5の状態)。
ここで、例えば図4(a)に示すように、照明光L1の振動面の方向(V方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度を、斜めの角度φとした場合(0度<φ<90度)、偏光成分L4の大きさ(光強度IL4)は、次の式(1)によって表される。
L4 = (EL4)2 = E2/4・(γX−γY)2・sin2(2φ) …(1)
式(1)において、EL4は偏光成分L4の振幅、Eは照明光L1の振幅、γXは繰り返しパターン22の繰り返し方向(X方向)の振幅反射率、γYは繰り返し方向(X方向)に垂直な方向(Y方向)の振幅反射率である。
式(1)を導出するために、正反射光L2を繰り返しパターン22の繰り返し方向(X方向)に平行な成分と垂直な成分とに分けて考えると、平行な成分の振幅EX'と垂直な成分の振幅EY'は(図6(a))、各々、次の式(2),(3)によって表される。
X' = γX・Ecosφ …(2)
Y' = γY・Esinφ …(3)
そして、正反射光L2の各成分の振幅EX',EY'を受光系14の偏光フィルタ37の透過軸の方位に投影し(図6(b))、これらを次の式(4)にしたがって加算すると、偏光成分L4の振幅EL4が得られる。さらに、この振幅EL4を二乗すれば、式(1)の偏光成分L4の大きさ(光強度IL4)を求めることができる。
L4 = EX'sinφ−EY'cosφ = E/2・(γX−γY)・sin(2φ) …(4)
式(1)において、被検基板20の繰り返しパターン22では、一般に、構造性複屈折のために、振幅反射率γXYが異なった値となり、この差(γX−γY)が繰り返しパターン22のライン&スペースに固有の値となる。
振幅反射率の差(γX−γY)を最も効率よく検出するには、式(1)から、2φ=90度(すなわちφ=45度)であればよいことが分かる(図5の状態)。角度φを45度に設定すれば、最も構造性複屈折の影響を受けやすく、偏光成分L4が最大となる。このとき、偏光成分L4の大きさ(光強度IL4(45))は、式(5)のように表される。
L4(45)= E2/4・(γX−γY)2 …(5)
検査対象となる繰り返しパターン22の繰り返し方向(X方向)が事前に分かっていれば、この繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を45度に設定することができ(図5の状態)、高感度な欠陥検査を行うことができる。しかし、繰り返しパターン22の方向(X方向)は常に把握できるとは限らず、事前に分からない可能性も十分に考えられる。
そこで、本実施形態の表面検査装置10では、繰り返しパターン22の方向(X方向)が分からなくても高感度な欠陥検査を行うために、図7のフローチャートの手順にしたがって欠陥検査の処理を行う。
ステップS1では、被検基板20を所望の方向に設定する(例えば図3(a)の状態)。このとき、照明光L1の振動面の方向(V方向)と繰り返しパターン22の繰り返し方向(X方向)との成す角度は、例えば、図4(a)に示すように、角度φ(0度≦φ≦90度)に設定される。
このとき、繰り返しパターン22から発生した正反射光L2のうち、撮像素子39の撮像面に入射する偏光成分L4は、その振幅EL4(図6)が上記の式(4)によって表され、光強度IL4が上記の式(1)によって表される。
次に(ステップS2)、ステップS1で設定した角度φの状態を保ち、被検基板20の反射画像を画像処理部15に取り込む。このとき取り込んだ反射画像の各画素値は、繰り返しパターン22から発生した正反射光L2の偏光状態(つまり式(1)によって表される偏光成分L4の光強度IL4)に比例している。
次に(ステップS3)、画像処理部15は、上記の角度φで取り込んだ反射画像の明るさを検出する。反射画像の明るさとは、例えば、被検基板20の表面の所定点に対応する1画素の強度(偏光成分L4の光強度IL4)、または、複数の画素や全画素の強度の平均値である。
そして、今回のステップS2,S3の処理が1回目であれば(ステップS4がNo)、ステップS5の処理を行わずに、ステップS6の処理を行う。ステップS6では、ステージ11の現在の回転角(例えば0度)と反射画像の各画素値と明るさの各データをそれぞれ保存する。
次に(ステップS7)、ステージ11を予め定めた角度Δ(例えば30度)だけ回転させ、図4(b)に示す通り、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、上記の角度φとは異なる角度(φ+Δ)に設定する。角度Δは、欠陥検査に必要とされる精度に応じて適宜選択(入力)すればよい。
このような回転処理(角度Δ)が終わると、ステップS2の処理に戻る。そして、角度(φ+Δ)の状態を保って被検基板20の反射画像を画像処理部15に取り込み(ステップS3)、その明るさ(例えば平均輝度)を検出する。その後、今回のステップS2,S3の処理は2回目であるため(ステップS4がYes)、ステップS5の処理に進む。
ステップS5では、今回の反射画像の明るさと、前回の反射画像の明るさ(ステップS6で保存したデータ)との比較を行う。上記の式(1)から分かるように、反射画像の明るさ(偏光成分L4の光強度IL4)は、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度に依存し、45度に近づくほど大きくなる。
このため、ステップS5の比較の結果、前回の反射画像の方が暗い(今回の反射画像の方が明るい)場合には、1回目の角度φより2回目の角度(φ+Δ)の方が45度に近づいたと考えられるため、ステップS6の処理に進む。ステップS6では、ステージ11の現在の回転角(角度Δ)と反射画像と明るさの各データをそれぞれ上書き保存する。
次に(ステップS7)、上記と同様、ステージ11をさらに予め定めた角度Δだけ回転させ、図4(c)に示す通り、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、上記の角度φや角度(φ+Δ)とは異なる角度(φ+2Δ)に設定する。
このようにしてステップS2〜S7の処理を繰り返し、ステップS5において、前回の反射画像の方が明るい(今回の方が暗い)と判定された場合には、今回の角度(φ+nΔ)より前回の角度(φ+(n−1)Δ)方が45度に近かったと考えられるため、今回のデータを保存せずにステップS8の処理に進む。
この時点で保存されている最新のデータは、前回のデータであり、ステップS2〜S7の処理を繰り返す間に、複数の異なる角度φ,(φ+Δ),(φ+2Δ),…,(φ+nΔ)で取り込まれた各反射画像のうち、最も明るい反射画像のデータである。つまり、最新のデータは、複数の角度φ,(φ+Δ),(φ+2Δ),…,(φ+nΔ)のうち最も45度に近い角度で取り込まれた反射画像のデータである。
ステップS8では、この時点で保存されている最新のデータを読み出し、その反射画像の各画素値(つまり最も明るい反射画像の各画素値)に基づいて、繰り返しパターン22の欠陥を検出する。
上記のように、本実施形態では、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を、複数の異なる角度φ,(φ+Δ),…,(φ+nΔ)に設定し、その各状態で被検基板20の反射画像を取り込み、各状態で取り込まれた画像のうち最も明るい画像の各画素値から欠陥を検出する。
したがって、繰り返しパターン22の方向(X方向)が事前に分からなくても、繰り返しパターン22の方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を最適な45度の近傍に設定することができ、45度に設定した図5の場合と同等の高感度な欠陥検査を行うことができる。
繰り返しパターン22の方向(X方向)は、被検基板20の表面の各層(各工程)ごとに異なる場合があり、常に把握できるとは限らない。しかし、このような場合であっても、本実施形態の表面検査装置10を用いれば、全ての層(全工程)の繰り返しパターン22の欠陥検査を高感度に行うことができる。
上記した図7のステップS2〜S7の処理の繰り返し回数(n+1)と、ステージ11の1回の回転角Δとを用いると、ステージ11の初期状態からの回転角の累計(スキャン範囲)はnΔとなる。そして、上記した図7の処理は、回転角の累計nΔが90度を初めて超えるまでに、必ず最適な45度を通過して、終了となる。例えば、Δ=30度の場合、3回以内の処理(S2〜S7)の繰り返しで終了する。
また、Δ=30度の場合には、繰り返しパターン22の方向(X方向)が事前に分からなくても、最適な45度に対して±15度の範囲で画像を取り込み、この画像に基づいて欠陥検査を行うことができる。ステージ11の1回の回転角Δが小さいほど、最適な45度に近い条件での欠陥検査が可能となる。なお、Δ=30度の場合でも、最適な45度における光強度IL4(45)(式(5))の約70%以上の光強度を確保しつつ十分な感度で欠陥検査を行うことができる。
さらに、本実施形態では、被検基板20の表面の比較的広い領域(例えば全域など)の反射画像を複数の異なる角度状態(例えば図4(a)〜(c))の各々で一括して取り込むため、最適な45度に最も近い角度を見積もる際、反射画像の全体的な明るさ(平均輝度)を指標として用いることができるため、その見積もり精度が向上する。また、被検基板20の表面の各部の欠陥検査を一括して効率よく高感度に行える。
(変形例)
上記した実施形態では、ステージ11の回転によって繰り返しパターンの方向(X方向など)を回転させ、その繰り返し方向(X方向など)と照明光L1の振動面の方向(V方向)との成す角度を変化させたが、本発明はこれに限定されない。ステージ11を回転させる代わりに、照明系13と受光系14の偏光フィルタ34,37を例えば光軸中心で回転させて、照明光L1の振動面の方向(V方向)を回転させ、同様のスキャンを行ってもよい。また、ステージ11の回転と偏光フィルタ34,37の回転とを組み合わせてもよい。偏光フィルタ34,37を回転させる場合には、各透過軸の角度関係(例えばクロスニコルの状態)を一定にを保ちながら同期させて回転させることが好ましい。
また、上記した実施形態では、偏光フィルタ34,37の各透過軸を直交させてクロスニコルの配置としたが、本発明はこれに限定されない。偏光フィルタ34,37の各透過軸を直交以外の角度で交差させても構わない。ただし、欠陥検出の感度が最も高くなるのは、偏光フィルタ34,37をクロスニコルの配置にした場合である。
さらに、上記した実施形態では、被検基板20の反射画像を取り込んで欠陥検査を行う例で説明したが、本発明はこれに限定されない。被検基板20の反射画像を取り込まずに、被検基板20の表面の各部から発生した正反射光L2の偏光成分L4の光強度IL4を測定して、被検基板20の各部ごとに欠陥検査を行ってもよい。この場合、複数の異なる角度φ,(φ+Δ),…,(φ+nΔ)に設定した各状態で、正反射光L2の偏光成分L4の光強度IL4を測定し、得られた各状態での光強度IL4のうち最大値に基づいて、繰り返しパターン22の欠陥を検出すればよい。
また、上記した実施形態では、ステージ11および/または偏光フィルタ34,37の回転によるスキャンの際、そのステップ角(上記の角度Δ)を一定としたが、本発明はこれに限定されない。ステップ角をスキャンの途中で変化させ、初めは粗いステップ角で広い範囲をスキャンして、最適な45度を含む狭い範囲に追い込んだ後、この狭い範囲を細かいステップ角でスキャンしてもよい。
さらに、上記した実施形態では、被検基板20の表面の全体に同一方向の繰り返しパターン22が形成されている前提で説明したが、本発明はこれに限定されない。被検基板20の表面に様々な繰り返し方向X1〜X3(例えば図8)が存在する場合にも、本発明を適用できる。この場合、各々の繰り返しパターンごとに個別に処理を行って最適な45度での欠陥検査を行ってもよいし、同じ繰り返し方向の繰り返しパターンごとに領域を分割して各領域ごとに処理を行って最適な45度での欠陥検査を行ってもよい。
表面検査装置10の全体構成を示す図である。 繰り返しパターン22の繰り返し方向(X方向)を説明する図である。 被検基板20を所望の方向に設定したときの繰り返しパターン22の繰り返し方向(X方向)を説明する図である。 繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を複数の異なる角度φ,(φ+Δ),(φ+2Δ)に設定した状態を説明する図である。 繰り返し方向(X方向)と照明光L1の振動面の方向(V方向)との成す角度を最適な45度に設定した状態を説明する図である。 図4(a)の角度状態における正反射光L2の振幅EX',EY'と偏光成分L4の振幅EL4を説明する図である。 本実施形態の欠陥検査の手順を示すフローチャートである。 被検基板20の表面に形成された様々な繰り返し方向X1〜X3を説明する図である
符号の説明
10 表面検査装置 ; 11 ステージ ; 12 アライメント系 ; 13 照明系 ;
14 受光系 ; 15 画像処理部 ; 20 被検基板 ; 22 繰り返しパターン ;
31 光源 ; 32 波長選択フィルタ ; 33 ライトガイドファイバ ;
34,37 偏光フィルタ ; 35,36 凹面反射鏡 ; 38 集光レンズ ; 39 撮像素子

Claims (2)

  1. 被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、
    前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を複数の異なる角度に設定する設定手段と、
    前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に交差する偏光成分の光強度を測定する測定手段と、
    前記各状態で測定された前記光強度のうち最大値に基づいて、前記繰り返しパターンの欠陥を検出する検出手段とを備えた
    ことを特徴とする表面検査装置。
  2. 被検基板の表面に形成された繰り返しパターンを直線偏光により照明する照明手段と、
    前記直線偏光の振動面の前記表面における方向と前記繰り返しパターンの繰り返し方向との成す角度を複数の異なる角度に設定する設定手段と、
    前記角度に設定された各状態で、前記繰り返しパターンから発生した正反射光のうち前記直線偏光の振動面に交差する偏光成分に基づいて前記被検基板の画像を取り込む処理手段と、
    前記各状態で取り込まれた前記画像のうち最も明るい画像の各画素値に基づいて、前記繰り返しパターンの欠陥を検出する検出手段とを備えた
    ことを特徴とする表面検査装置。
JP2006141348A 2006-05-22 2006-05-22 表面検査装置 Active JP4506723B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141348A JP4506723B2 (ja) 2006-05-22 2006-05-22 表面検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141348A JP4506723B2 (ja) 2006-05-22 2006-05-22 表面検査装置

Publications (2)

Publication Number Publication Date
JP2007309874A true JP2007309874A (ja) 2007-11-29
JP4506723B2 JP4506723B2 (ja) 2010-07-21

Family

ID=38842851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141348A Active JP4506723B2 (ja) 2006-05-22 2006-05-22 表面検査装置

Country Status (1)

Country Link
JP (1) JP4506723B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099142A1 (ja) * 2008-02-06 2009-08-13 Nikon Corporation 表面検査装置および表面検査方法
JP2009300216A (ja) * 2008-06-12 2009-12-24 Nikon Corp 観察装置
WO2010052934A1 (ja) * 2008-11-10 2010-05-14 株式会社ニコン 評価装置および評価方法
US9612212B1 (en) 2015-11-30 2017-04-04 Samsung Electronics Co., Ltd. Ellipsometer and method of inspecting pattern asymmetry using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128595A (ja) * 1993-10-28 1995-05-19 Prometrix Corp 光学顕微鏡を用いて緻密なライン幅構造を映像化する方法及び装置
JPH11201743A (ja) * 1998-01-16 1999-07-30 Hitachi Ltd 異物欠陥検査方法およびその装置
JP2000155099A (ja) * 1998-09-18 2000-06-06 Hitachi Ltd 試料表面の観察方法及びその装置並びに欠陥検査方法及びその装置
WO2005040776A1 (ja) * 2003-10-27 2005-05-06 Nikon Corporation 表面検査装置および表面検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128595A (ja) * 1993-10-28 1995-05-19 Prometrix Corp 光学顕微鏡を用いて緻密なライン幅構造を映像化する方法及び装置
JPH11201743A (ja) * 1998-01-16 1999-07-30 Hitachi Ltd 異物欠陥検査方法およびその装置
JP2000155099A (ja) * 1998-09-18 2000-06-06 Hitachi Ltd 試料表面の観察方法及びその装置並びに欠陥検査方法及びその装置
WO2005040776A1 (ja) * 2003-10-27 2005-05-06 Nikon Corporation 表面検査装置および表面検査方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099142A1 (ja) * 2008-02-06 2009-08-13 Nikon Corporation 表面検査装置および表面検査方法
US8223328B2 (en) 2008-02-06 2012-07-17 Nikon Corporation Surface inspecting apparatus and surface inspecting method
JP5500427B2 (ja) * 2008-02-06 2014-05-21 株式会社ニコン 表面検査装置および表面検査方法
JP2009300216A (ja) * 2008-06-12 2009-12-24 Nikon Corp 観察装置
WO2010052934A1 (ja) * 2008-11-10 2010-05-14 株式会社ニコン 評価装置および評価方法
US8334977B2 (en) 2008-11-10 2012-12-18 Nikon Corporation Evaluation device and evaluation method
US8705034B2 (en) 2008-11-10 2014-04-22 Nikon Corporation Evaluation device and evaluation method
JP5489003B2 (ja) * 2008-11-10 2014-05-14 株式会社ニコン 評価装置および評価方法
US9612212B1 (en) 2015-11-30 2017-04-04 Samsung Electronics Co., Ltd. Ellipsometer and method of inspecting pattern asymmetry using the same
US9719946B2 (en) 2015-11-30 2017-08-01 Samsung Electronics Co., Ltd. Ellipsometer and method of inspecting pattern asymmetry using the same

Also Published As

Publication number Publication date
JP4506723B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4552859B2 (ja) 表面検査装置および表面検査方法
JP4548385B2 (ja) 表面検査装置
JP5201350B2 (ja) 表面検査装置
JP5585615B2 (ja) 検査装置および検査方法
US20090315988A1 (en) Observation device, inspection device and inspection method
JP2009192520A (ja) 表面検査装置
JP4692892B2 (ja) 表面検査装置
JP4462232B2 (ja) 表面検査装置
JP4506723B2 (ja) 表面検査装置
US20120069335A1 (en) Surface inspecting apparatus and surface inspecting method
JP4605089B2 (ja) 表面検査装置
JP4696607B2 (ja) 表面検査装置
JP2010096596A (ja) 評価装置
JP4622933B2 (ja) 表面検査方法及び表面検査装置
JP4552202B2 (ja) 表面検査装置
JP5648937B2 (ja) 評価装置
JP4462222B2 (ja) 表面検査装置
JP2008008777A (ja) 表面検査装置
JP4635939B2 (ja) 表面検査装置
JP2006266817A (ja) 表面検査装置
JP5299764B2 (ja) 評価装置および評価方法
JP2001289793A (ja) 表面検査装置
JP2010107465A (ja) 欠陥検査装置及び欠陥検査方法
JP2009068892A (ja) 検査装置
JP5201443B2 (ja) 表面検査装置および表面検査方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250