JP2007223404A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2007223404A
JP2007223404A JP2006045053A JP2006045053A JP2007223404A JP 2007223404 A JP2007223404 A JP 2007223404A JP 2006045053 A JP2006045053 A JP 2006045053A JP 2006045053 A JP2006045053 A JP 2006045053A JP 2007223404 A JP2007223404 A JP 2007223404A
Authority
JP
Japan
Prior art keywords
motor
driving force
travel
electric motor
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006045053A
Other languages
English (en)
Other versions
JP4571917B2 (ja
Inventor
Yutaka Tamagawa
裕 玉川
Yoshihiro Sunaga
義弘 須永
Futoshi Ogura
太 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006045053A priority Critical patent/JP4571917B2/ja
Publication of JP2007223404A publication Critical patent/JP2007223404A/ja
Application granted granted Critical
Publication of JP4571917B2 publication Critical patent/JP4571917B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】内燃機関と電動機の内の少なくともいずれかで走行可能なハイブリッド車両において燃費性能およびドライバビリティを向上させるようにしたハイブリッド車両の制御装置を提供する。
【解決手段】車速Vとアクセル開度APから車両が要求する要求駆動力FCMDを算出し(ブロック44aから44d)、車速Vから第2モータ(電動機)26が出力し得るモータ最大駆動力を算出すると共に、最大駆動力で前記要求駆動力を負担したときの電動機負荷率を算出し、電動機負荷率について前記車速ごとに設定されたメンバーシップ関数からファジー推論を行い、内燃機関による走行に比して前記電動機によって走行することで燃費が低減する燃費低減駆領域の上限値と最大駆動力の間における内燃機関による走行適合度を算出し、算出された走行適合度に基づき、内燃機関による走行と電動機による走行のいずれかを選択する(ファジー制御部44f)。
【選択図】図2

Description

この発明は、ハイブリッド車両の制御装置に関する。
近時、内燃機関と電動機とを備えると共に、それらのいずれかで車輪を駆動して走行するハイブリッド車両が種々提案されており、その一例として特許文献1記載の技術を挙げることができる。この技術にあっては、車速が低くてアクセル開度が小さい場合は電動機で、車速が高い場合は内燃機関で、車速が高くてアクセル開度が大きい場合は内燃機関と電動機の両方で走行すると共に、モータ温度が高いなどモータ駆動装置に異常が検出されるとき、内燃機関の走行領域が低速側に拡大されるように構成される。
特開平6−80048号公報
上記した従来技術にあっては、車速とアクセル開度に応じて走行領域を決定すると共に、ヒステリシスを設けて切替え時に制御ハンチングが生じないように構成しているが、それに止まり、ドライバビリティや燃費性能まで考慮していずれで走行すべきかを決定するものではなかった。
従って、この発明の目的は上記した課題を解消することにあり、内燃機関と電動機の内の少なくともいずれかで走行可能なハイブリッド車両において燃費性能およびドライバビリティを向上させるようにしたハイブリッド車両の制御装置を提供することにある。
上記の目的を達成するために、請求項1にあっては、内燃機関と、電動機と、前記電動機に電力を供給する一方、前記電動機で発電された電力を蓄電する蓄電手段とを備えると共に、前記内燃機関と電動機の少なくともいずれかで車輪を駆動して走行するハイブリッド車両において、車速とアクセル開度から前記車両が要求する要求駆動力を算出する要求駆動力算出手段、前記車速から前記電動機が出力し得る最大駆動力を算出すると共に、前記最大駆動力で前記要求駆動力を負担したときの電動機負荷率を算出する電動機負荷率算出手段、前記電動機負荷率について前記車速に応じて設定されたメンバーシップ関数からファジー推論を行い、前記内燃機関による走行に比して前記電動機によって走行することで燃費が低減する燃費低減領域の上限値と前記最大駆動力の間における前記内燃機関による走行適合度を算出する内燃機関走行適合度算出手段、および前記算出された走行適合度に基づき、前記内燃機関による走行と前記電動機による走行のいずれかを選択する走行選択手段を備える如く構成した。
請求項2に係るハイブリッド車両の制御装置にあっては、前記アクセル開度の変化率について設定されたメンバーシップ関数からファジー推論を行って運転者の加速意思を推定する加速意思推定手段、および前記推定された加速意思と前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段を備える如く構成した。
請求項3に係るハイブリッド車両の制御装置にあっては、前記推定された加速意思が増加すると共に、前記内燃機関による走行が選択されているとき、前記内燃機関による走行と前記電動機による走行を共に許可する許可手段を備える如く構成した。
請求項4に係るハイブリッド車両の制御装置にあっては、前記車速について予め設定されたメンバーシップ関数からファジー推論を行なって渋滞あるいは高速度を推定する渋滞・高速度推定手段、および前記推定された渋滞・高速度に応じて前記蓄電手段の残容量の目標値を変更する残容量目標値変更手段を備える如く構成した。
請求項5に係るハイブリッド車両の制御装置にあっては、前記車速と前記要求駆動力とから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段、および前記推定された勾配度合いに応じて前記蓄電手段の残容量の目標値を変更する残容量目標値変更手段を備える如く構成した。
請求項6に係るハイブリッド車両の制御装置にあっては、前記車速と前記要求駆動力とから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段、および前記推定された勾配度合いと前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段を備える如く構成した。
請求項1にあっては、車速とアクセル開度から車両が要求する要求駆動力を算出し、車速から電動機が出力し得る最大駆動力を算出すると共に、最大駆動力で要求駆動力を負担したときの電動機負荷率を算出し、電動機負荷率について車速に応じて設定されたメンバーシップ関数からファジー推論を行い、内燃機関による走行に比して電動機によって走行することで燃費が低減する燃費低減領域の上限値と最大駆動力の間における内燃機関による走行適合度を算出し、算出された走行適合度に基づき、内燃機関による走行と電動機による走行のいずれかを選択する如く構成したので、燃費性能およびドライバビリティを向上させることができる。
即ち、内燃機関による走行に比して電動機によって走行することで燃費(燃料消費量)が低減する燃費低減領域は低車速やクルーズ時の低負荷走行時であるが、電動機による走行をその領域のみに限定すると、出力幅が狭いため、電動機による走行と内燃機関による走行の要求駆動力のしきい値が狭くなり、走行の切替えハンチングを生じやすくなると共に、電動機本来の性能を使いきることができない。しかしながら、上記のように構成することで、電動機の最大駆動力相当の要求駆動力が発生したときは速やかに内燃機関による走行に切替えることができる一方、燃費低減領域では確実に電動機による走行を選択することができる。燃費低減領域の上限値以上の要求駆動力が発生したときは、領域に対する走行適合度に応じた時間経過後、即ち、要求駆動力が小さければ長時間、大きければ短時間で内燃機関による走行に切替えることができる。さらに、要求駆動力のみのしきい値とならず、上限値と最大駆動力の間の走行適合度を算出することで、いわゆる遊びの設定が可能となって切替えハンチングを一層確実に防止することができる。このように、燃費低減領域での電動機による走行を容易にすることで、ドライバビリティと燃費を向上させることができる。
請求項2に係るハイブリッド車両の制御装置にあっては、アクセル開度の変化率について設定されたメンバーシップ関数からファジー推論を行って運転者の加速意思を推定し、推定された加速意思と算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って走行適合度を補正する如く構成したので、上記した効果に加え、アクセル開度が急変したときなどには内燃機関による走行に速やかに切替える(選択する)ことができ、運転者に出力不足感を与えることがない。
請求項3に係るハイブリッド車両の制御装置にあっては、推定された加速意思が増加すると共に、前記内燃機関による走行が選択されているとき、内燃機関による走行と電動機による走行を共に許可する許可手段を備える如く構成したので、請求項2と同様な効果を得ることができる。
請求項4に係るハイブリッド車両の制御装置にあっては、車速について予め設定されたメンバーシップ関数からファジー推論を行なって渋滞あるいは高速度を推定し、推定された渋滞・高速度に応じて蓄電手段の残容量の目標値を変更する如く構成したので、例えば渋滞・高速度に応じて目標値の下限を変更することで渋滞時には蓄電手段の利用幅を大きくすることができると共に、電動機による走行を可能にして燃費を向上させることができる。また、高速時には蓄電手段の利用幅を小さくして残容量を多めに維持することで、高速での加速アシストに備えることができる。
請求項5に係るハイブリッド車両の制御装置にあっては、車速と要求駆動力とから走行路の勾配推定値を算出すると共に、勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって走行路の勾配度合いを推定し、推定された勾配度合いに応じて蓄電手段の残容量の目標値を変更する如く構成したので、上記した効果に加え、例えば登坂走行であれば残容量の目標値の下限を下方に変更することで積極的に動力アシストすることができ、山岳路などを走行するときの動力性能を向上させることができる。また、例えば降坂走行であれば目標値の上限を下方に変更することで内燃機関による発電頻度を低減させ、減速回生によるエネルギ回収を効率良く実現することができる。
請求項6に係るハイブリッド車両の制御装置にあっては、勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって走行路の勾配度合いを推定し、推定された勾配度合いと算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って走行適合度を補正する如く構成したので、上記した効果に加え、例えば要求駆動力が小さい降坂走行では電動機による走行を選択し易くして燃費を向上させる一方、要求駆動力が増加する登坂走行では内燃機関による走行を選択し易くして動力性能を重視することでドライバビリティを向上させることができる。
以下、添付図面に即してこの発明に係るハイブリッド車両の制御装置を実施するための最良の形態について説明する。
図1はこの発明の実施例に係るハイブリッド車両の制御装置を全体的に示す概略図である。
図1で符号10はハイブリッド車両(以下「車両」という)を示す。車両10は、内燃機関(以下「エンジン」といい、「ENG」と示す)12と、エンジン12の出力を入力する変速機(「T/M」と示す)14を備える。変速機14はエンジン12の出力を変速して駆動輪(車輪)16に伝達し、車両10を走行させる。
エンジン12はガソリン噴射式火花点火式4気筒エンジンからなり、図示は省略するが、エンジン12においてスロットルバルブはアクセルペダルとの機械的な連結を断たれ、アクチュエータで開閉させられるDBW方式で制御される。変速機14は具体的には、自動変速機からなる。
エンジン12には第1の電動機(以下「第1モータ」という)20が直結される。第1モータ20はDCブラシレスモータ、より具体的には交流同期電動機からなり、エンジン12が回転するとき常に回転すると共に、エンジン12の始動時に通電されてエンジン12をクランキングして始動させる。第1モータ20は通電されるときはエンジン12の回転をアシストすると共に、通電されずにエンジン12で回転させられるときは、クランクシャフトの回転によって生じた運動エネルギを電気エネルギに変換して発電する発電機(ジェネレータ)として機能する。
駆動輪16には、ディファレンシャルギヤ22とクラッチ24を介して第2の電動機(以下「第2モータ」という)26が連結される。第2モータ26もDCブラシレスモータ、より具体的には交流同期電動機からなり、通電されてクラッチ24で接続されるとき、駆動輪16を直接駆動する。第2モータ26はエンジン12と選択的に駆動されると共に、加速時などにはエンジン10と共に駆動されてエンジン12の回転をアシスト(増速)する。第2モータ26も、非通電時にクラッチ24で接続されるとき、駆動軸16の回転によって生じた運動エネルギを電気エネルギに変換して出力する回生機能を有する。
第1、第2モータ20,26は、パワードライブユニット(Power Drive Unit。「PDU」と示す)30,32を介してバッテリ(「BAT」と示す)34に接続される。PDU30,32はそれぞれインバータを備え、バッテリ34から供給(放電)される直流を交流に変換して第1、第2モータ20,26に供給すると共に、第1モータ20の発電動作および第1、第2モータ20,26によって発電あるいは回生された交流を直流に変換してバッテリ34に供給する(バッテリ34を充電する)。バッテリ34は、ニッケル水素(Ni−MH)電池を適宜な個数だけ直列に接続してなる。
このように、ハイブリッド車両10は、エンジン12と、第1、第2モータ20,26と、第1、第2モータ20,26に電力を供給する一方、第1、第2モータ20,26、特に第1モータ20で発電された電力を蓄電するバッテリ34とを備えると共に、エンジン12と第2モータ26の少なくともいずれかで車輪16を駆動して走行する。
車両10は、図示の如く、エンジン12の動作を制御するエンジン制御ユニット(以下「ENG ECU」という)40と、第1、第2モータの動作を制御するモータ制御ユニット(以下「MOT ECU」という)42と、バッテリ34の充電状態SOC(State Of Charge)を算出して充放電の管理などを行うと共に、PDU30,32の動作を制御する管理制御ユニット(「MG ECU」という)44と、変速機14の動作を制御する変速制御ユニット(「T/M ECU」という)46を備える。ENG ECU40などのECU(Electronic Control Unit。電子制御ユニット)は全てマイクロコンピュータからなり、信号線50を介して相互に通信自在に接続される。
バッテリ34とPDU30,32の間の通電路には電流電圧センサ52が配置され、バッテリ34の出力端子電圧およびバッテリ34を充電あるいはバッテリ34から放電される電流に応じた出力を生じる。車両10の運転席床面(図示せず)のアクセルペダル(図示せず)の付近にはアクセル開度センサ54が配置され、運転者によって操作されるアクセルペダルの開度、即ち、アクセルペダルの踏み込み量APに応じた出力を生じる。車両10のドライブシャフト(図示せず)の付近には車速センサ56が配置され、車速Vに応じた出力を生じる。
上記したセンサ52,54,56の出力は、MG ECU44に入力される。MG ECU44は電流電圧センサ52の出力からバッテリ34の充電状態SOCを算出する。また、MG ECU44は、T/M ECU46から、変速機14の現在のレシオ(変速比)Ratioを入力する。
図2は、図1に示すハイブリッド車両の制御装置の動作を示すブロック図である。尚、図示の処理は、MG ECU44によって実行される。
図2を参照して概説すると、この装置にあってはトルクあるいは駆動力が算出され、それに基づいてエンジン12と第2モータ26のいずれで走行すべきなどが決定される。即ち、車速Vと現在の変速比Ratioとから、算出ブロック44aにおいて加速度Gについて車速Vで設定された図示の特性が検索され、そのときの車速Vと変速比Ratioでエンジン12あるいは第2モータ26によって車両10が発生することの可能な最大加速度GMAXが算出されると共に、車速Vとアクセル開度APとから算出ブロック44bにおいてアクセル開度APについて係数Kで設定された図示の特性が検索され、そのときの車速Vに対して現在のアクセル開度APで発生し得る割合APSが算出される。
次いで、乗算段44cにおいて算出された最大加速度GMAXと割合APSが乗じられ、そのときの車速Vと変速比Ratioとアクセル開度APで、換言すればある車速での任意のアクセル開度で発生すべき加速度G、即ち、要求加速度GCMDが算出される。
算出された要求加速度GCMDは車体モデル44dに入力され、そこで予め求められている車両10の仕様に従って要求駆動力FCMDが算出される。即ち、車体モデル44dにあっては、車両10の走行抵抗と要求加速度GCMDに基づき、予め求められている車両10の仕様に従って要求駆動力FCMDが以下のように算出される。
要求駆動力FCMD=空気抵抗+ころがり抵抗−要求加速度GCMD
次いで、算出された要求駆動力FCMDは駆動力切替え点44eとファジー制御部44fに送られ、ファジー制御部44fによってエンジン12による走行と第2モータ26による走行のいずれか選択される(駆動力が切替えられる)。即ち、ファジー制御部44fは車速Vとバッテリ34の充電状態SOCとアクセル開度APとを入力し、燃費と動力性能からの要求およびバッテリ34の容量管理(充電状態SOC)からの要求に基づいてエンジン12による走行と第2モータ26による走行のいずれかを選択すると共に、発電要求の有無を決定する。
エンジン12による走行が選択されたとき、エンジン12への要求駆動力は、エンジン要求トルク計算ブロック44gにおいて変速比やフリクションなどで補正され、エンジンクランク端トルク指令値ENGCMDとされ、加算段44hを介してエンジン12の動作を制御するENG ECU40に出力される。第2モータ26による走行が選択されたとき、第2モータ26への要求駆動力も、第2モータ要求トルク計算ブロック44iにおいて同様に計算され、モータ軸端トルク指令値MOTCMDとして第1、第2モータ20,26の動作を制御するMOT ECU42に出力される。
ファジー制御部44fはまた、入力値から第1モータ20が発電すべきか否かの発電要求の有無を決定する。発電要求がなされたときは、第1モータ要求トルク計算ブロック44jで発電トルクが算出され、算出値は加算段44hで指令値ENGCMDから減算され、よって得られた差がENG ECU40に送られる。トルクは全て、[N・m]を単位として算出される。
図3は、エンジン12と第2モータ26の走行領域を示す説明図である。同図で、横軸は車速V、縦軸は駆動力を示す。尚、図中の符号R/Lは平地での走行抵抗を示す。
この実施例に係るハイブリッド車両10にあって、エンジン12による走行に比して第2モータ26によって走行することで燃費が低減する領域を実験で求めると、符号aで示す如くとなる。即ち、第2モータ26(および第1モータ20)はモータとしての特性から低回転側で発生トルクが大きく、それらが必要とする電力の多くはエンジン12によって発電されることから、領域aは、車速Vと負荷(駆動力)が低い領域となる。符号bで示す特性はその上限値を示し、図示の如く、車速Vが増加するにつれて減少する。負荷が上限値bを超える領域cは、エンジン12で走行すべき領域となる。
図3において上限値bを境界として第2モータ26による走行とエンジン12による走行を切替えようすると、切替え点の駆動力は車速Vに対して一義的に決定されるため、切替え点近傍の駆動力を多用することとなって切替えハンチングを生じる。尚、符号dで示す特性は、第2モータ26が出力し得るモータ最大駆動力を示し、同様に予め実験を通じて求められる。モータ最大駆動力も、車速Vが増加するにつれて減少する。
そのため、この実施例にあっては、車速Vに応じてエンジン12による走行よりも第2モータ26で走行する方が燃費において低減する燃費低減領域(領域a)を予め実験を通じて求め、その領域を走行するために必要なモータ駆動力とモータ最大駆動力と走行抵抗から設定されたメンバーシップ関数とファジールールを構成するようにした。より具体的には、現在の走行状態での要求駆動力FCMDからモータ負荷率を算出し、モータ負荷率が領域aの上限値bより小さいか、あるいはモータ最大駆動力(dで示す)より大きいか判定し、領域aに対するエンジン12による走行適合度を求め、それを積分する。その積分値が所定値以上の場合にはエンジン12による走行が、所定値未満の場合には第2モータ26による走行が適していると判断するようにした。それについては後述する。
図4は、図2のファジー制御部44fの構成を詳細に示すブロック図である。
図示の如く、ファジー制御部44fは、エンジン走行適合度推定ブロック44f1と、加速意思推定ブロック44f2と、勾配度合い推定ブロック44f3と、渋滞・高速度推定ブロック44f4と、エンジン走行適合度推定ブロック44f1と加速意思推定ブロック44f2と勾配度合い推定ブロック44f3の出力を入力してエンジン12での走行度(逆言すれば第2モータ26での走行度にも相当)を出力するモータ/エンジン走行選択処理ブロック44f5と、勾配度合い推定ブロック44f3と渋滞・高速度推定ブロック44f4の出力を入力して発電要求の有無(換言すればエンジン12での走行度)を出力するSOC管理設定ブロック44f6を備える。
モータ/エンジン走行選択処理ブロック44f5とSOC管理設定ブロック44f6の出力は共に、エンジン走行度としてOR回路44f7を介して出力され、エンジン12による走行と第2モータ26による走行のいずれかが選択される。この実施例に係る車両10は、エンジン12で走行するときに第1モータ20で発電することから、発電を要求することは、図2に関して説明した如く、エンジン12での走行を要求することを意味する。
モータ/エンジン走行選択処理ブロック44f5の出力は、燃費および動力性能から決定される。SOC管理設定ブロック44f6の出力は、予め設定された車速に応じたSOC管理幅内に容量を管理することを目的として行われ、SOCが設定値を下回る場合には発電要求、即ち、エンジン12による走行を要求するように出力が決定される。また、SOCが設定値を上回る場合には上限SOCを設定し、バッテリ34の保護と過剰な発電による燃費の悪化を防止するように発電要求を出力する。さらに、勾配度合い推定ブロック44f3と渋滞・高速度推定ブロック44f4の出力に基づき、走行状態、即ち、登降坂路、渋滞路、高速路を走行しているか否かを判別してSOCの管理幅を補正し、よって走行状況に応じて最適な発電管理を行う。
図5は、エンジン走行適合度推定ブロック44f1の詳細を示す説明図である。
同図(a)に示す如く、エンジン走行適合度推定ブロック44f1においては、ブロック44f11において図3に示す特性dを車速Vから検索して第2モータ26が発生し得るモータ最大駆動力が算出される。次いでブロック44f12において、図2の車体モデル44dで算出された要求駆動力FCMDを、算出されたモータ最大駆動力で除算してモータ負荷率が算出される。モータ負荷率は、モータ最大駆動力で要求駆動力を負担したときの、第2モータ26の負荷率を意味する。
次いでブロック44f13において、算出されたモータ負荷率と車速Vが入力され、図示のメンバーシップ関数からエンジン走行適合度が算出される。図5(b)は、そのメンバーシップ関数と言語的制御ルールを示す説明図である。図5(b)において、横軸はモータ負荷率を示す。
図5(b)に示すグラフの横軸において、bは図3の燃費低減領域の上限値b(車速Vから決定される)と同一であり、モータ負荷率が1とはモータ負荷率がモータ最大駆動力に達したことを示す。図3の特性に基づき、言語的制御ルールは、モータ負荷率がbよりも小さいならばエンジン走行適合度は小、モータ負荷率が1よりも大きいならばエンジン走行適合度は大、と記述される。このように、ブロック44f13では関数とルールからファジー推論が行われ、エンジン走行適合度を示すメンバーシップ関数が出力される。
図6は、加速意思推定ブロック44f2の詳細を示す説明図である。
同図(a)に示す如く、加速意思推定ブロック44f2においては、ブロック44f21においてアクセル開度APを入力し、微分値を算出してローパスフィルタ(LPF)を通して得た値をアクセル開度APに加算してアクセル開度推定値AP_HATが算出される。算出された推定値はブロック44f22に送られ、そこで図示のメンバーシップ関数から加速意思、より正確には加速意思推定値が算出される。同図(b)は、そのメンバーシップ関数と言語的制御ルールを示す説明図である。同図(b)において、横軸は加速意思推定値を示す。尚、値p,qは、実験を通じて適宜設定される。
言語的制御ルールは、推定値AP_HATがpよりも小さいならば加速意思は小、推定値AP_HATがqよりも大きいならば加速意思は大、と記述され、ブロック44f22においてはこれら関数とルールからファジー推論を行い、加速意思推定値を示すメンバーシップ関数が出力される。
図7は、勾配度合い推定ブロック44f3の詳細を示す説明図である。
同図(a)に示す如く、勾配度合い推定ブロック44f3において、ブロック44f31で車速Vから図3に示す特性R/Lを検索して車両10の平地相当の走行抵抗が算出されると共に、ブロック44f32において車速偏差ΔV(車速Vの微分値)から車両10の重量(既知)などに基づいて加速抵抗が算出され、加算段44f33で平地相当の走行抵抗に加算されて車両10に作用する全ての走行抵抗が算出される。
次いで加算段44f34において、要求駆動力FCMDから、算出された全ての走行抵抗を減算して差が算出される。要求駆動力FCMDは車両10に要求される駆動力であることから、平地であれば算出された全ての走行抵抗に釣り合い、差は零となる筈である。従って、差が零とならない場合には勾配抵抗が存在する、即ち、登降坂路を走行、具体的には差が正値であれば登坂路を走行中、負値であれば降坂路を走行中と推定することができる。
従って、乗算段44f35において、算出された勾配抵抗とIW(車両10の慣性重量)とから勾配推定値ASINが算出される。次いでブロック44f36において、勾配推定値ASINを入力して図示のメンバーシップ関数から勾配度合い推定値が算出され、算出された勾配度合い推定値を重心演算(非ファジー化演算)して勾配度合いが算出される。同図(b)は、そのメンバーシップ関数と言語的制御ルールを示す説明図である。ブロック44f36においては図示の関数とルールからファジー推論を行い、勾配度合いが重心演算で求められる。
図8は、渋滞・高速度推定ブロック44f4の詳細を示す説明図である。
同図(a)に示す如く、渋滞・高速度推定ブロック44f4においては、ブロック44f41で車速Vから平均車速が算出され、ブロック44f42において、算出された平均車速を用いて図示のメンバーシップ関数から渋滞度推定値と高速度推定値が重心演算で算出される。同図(b)は、そのメンバーシップ関数と言語的制御ルールを示す説明図である。ブロック44f42においては図示の関数とルールからファジー推論を行い、渋滞度と高速度を重心演算で求める。「渋滞度」あるいは「高速度」とは、車両10の渋滞走行あるいは高速走行の度合いを示す。
図9は、モータ/エンジン走行選択処理ブロック44f5の処理を示す説明図である。
図示の如く、モータ/エンジン走行選択処理ブロック44f5においては、エンジン走行適合度推定ブロック44f1と加速意思推定ブロック44f2から出力されるエンジン走行適合度と加速意思推定値を示すメンバーシップ関数を入力し、図示の4つのファジールールに基づいてファジー推論が行なわれると共に、図示の計算式に従い、推論値について重心演算が行われ、重心演算結果が積分されて積分値yが算出される。
次いでブロック44f51において、しきい値を用いて走行要求値が算出される。図10は、そのしきい値を詳細に示す説明図である。ブロック44f51においては、重心演算結果の積分値yを先ずAと比較し、積分値yがA以上のときはエンジン走行要求が高いと判断されてエンジン12による走行が要求される。他方、積分値yがA未満のときはBと比較し、積分値yがB以下のときはモータ走行要求が高いと判断されて第2モータ26による走行が要求される。尚、積分値がA未満でBを超えるときは、エンジン走行要求もモータ走行要求も行われないこととする。このようなヒステリシスを設けることで、制御ハンチングが防止される。
尚、モータ/エンジン走行選択処理ブロック44f5(即ち、ファジー制御部44f)においては、加速意思が増加する運転状態にあるときにエンジン12による走行が選択されている場合、図2に想像線44kで示す如く、エンジン12による走行と第2モータ26による走行を共に許可する、即ち、加速アシストを実行させる。
図11は、モータ/エンジン走行選択処理において、勾配度合いに応じた制御ルールの修正を示す、図9と同様の説明図である。この場合、勾配度合いに応じて図示の如く制御ルールが修正される。
図12は、モータ/エンジン走行選択処理ブロック44f5において、渋滞度に応じてメンバーシップ関数が修正される場合を示す説明グラフである。即ち、渋滞度が大きい場合、低速域の第2モータ走行領域を拡大するようにメンバーシップ関数が、1点鎖線あるいは2点鎖線で示す如く、修正される。その結果、図3において燃費低減領域の上限値bは、想像線で示すように修正されることになる。
図13は、SOC管理設定ブロック44f6の処理を示す説明図である。
SOC管理設定ブロック44f6においては、バッテリ34の残容量(充電状態SOC)について、そのSOCと車速Vとから予め設定されたテーブルを検索することで、図示のような上限SOCと下限SOCが算出される。
次いで算出されたSOCが先ず上限SOCと比較され、算出されたSOCが上限SOC以上のときは発電が禁止される(ただし、減速回生は禁止されない)。換言すれば、エンジン12による走行は要求されない。他方、算出されたSOCが上限SOC未満のときは下限SOCと比較され、算出されたSOCが下限SOC以下のときは第2モータ26への発電要求が高いと判断してエンジン12による走行が要求される。尚、算出されたSOCが上限SOC未満で下限SOCを超えるときは、発電の禁止も要求も共に行われない(即ち、発電要求されない)こととする。
図14は、SOC管理設定ブロック44f6の処理を示すタイム・チャートである。図示の如く、下限SOCを下回らないように、モータ走行とエンジン走行(発電)が調整される。尚、上記した如く、減速時の回生は、上限SOCの制約を受けることはない。
図15は、SOC管理設定処理において、勾配度合いに応じたパラメータ修正を示す、図13と同様の説明図である。この場合、降り勾配のときは上限SOCを低く修正し、エンジン12による発電頻度を減少させて減速回生時のエネルギ回収の効率化を図る。また、登り勾配のときは下限SOCを同様に低く修正し、バッテリ34のエネルギを動力アシストに振り分けるようにすることで山岳路を走行するときの動力性能を向上させることができる。SOCの修正はより具体的には、図16に示すように行う。
図17は、SOC管理設定処理において、渋滞・高速度に応じたパラメータ修正を示す、図13と同様の説明図である。この場合、高速度が大きいときは上限SOCを高く修正し、バッテリ34の利用幅を小さくして残容量を多めに維持することで、追い越し時などの加速アシストに備えるように修正する。渋滞度が大きいときは下限SOCを低く修正してバッテリ34の利用幅を拡大し、低速での第2モータ26の走行頻度を増加させて渋滞路走行の燃費とドライバビリティを向上させるようにする。より具体的には、図18に示すように修正する。
この実施例に係るハイブリッド車両の制御装置にあっては、車速Vとアクセル開度APから車両10が要求する要求駆動力FCMDを算出し、車速Vから第2モータ26が出力し得るモータ最大駆動力を算出すると共に、モータ最大駆動力で要求駆動力を負担したときの電動機負荷率を算出し、電動機負荷率について車速Vに応じて設定されたメンバーシップ関数からファジー推論を行い、エンジン12による走行に比して第2モータ26によって走行することで燃費が低減する燃費低減領域aの上限値bとモータ最大駆動力の間におけるエンジンによる走行適合度を算出し、算出された走行適合度に基づき、エンジン12による走行と第2モータ26による走行のいずれかを選択する如く構成したので、燃費性能およびドライバビリティを向上させることができる。
即ち、エンジン12による走行に比して第2モータ26によって走行することで燃費(燃料消費量)が低減する燃費低減領域(モータ走行領域)aは低車速やクルーズ時の低負荷走行時であるが、第2モータ26による走行をその領域のみに限定すると、出力幅が狭いため、第2モータ26による走行とエンジン12による走行の要求駆動力のしきい値が狭くなり、走行の切替えハンチングを生じやすくなると共に、第2モータ26本来の性能を使いきることができない。しかしながら、上記のように構成することで、第2モータ26のモータ最大駆動力相当の要求駆動力FCMDが発生したときは速やかにエンジン12による走行に切替えることができる一方、燃費低減領域aでは確実に第2モータ26による走行を選択することができる。燃費低減領域aの上限値b以上の要求駆動力が発生したときは、領域に対する走行適合度に応じた時間経過後、即ち、要求駆動力が小さければ長時間、大きければ短時間でエンジン12による走行に切替えることができる。さらに、要求駆動力のみのしきい値とならず、上限値と最大駆動力の間の走行適合度を算出することで、いわゆる遊びの設定が可能となって切替えハンチングを一層確実に防止することができる。このように、燃費低減領域での電動機による走行を容易にすることで、ドライバビリティと燃費を向上させることができる。
即ち、図19に示す如く、燃費低減領域(モータ走行領域)aでは確実にモータ走行の判断が可能となり、またモータ最大駆動力では確実にエンジン12に切替えを行いつつ、燃費低減領域aの上限値b以上でモータ最大駆動力d以下の領域では加速意思とエンジン走行適合度に基づいてモータ/エンジンの走行がされ、アクセル開度APに応じてモータ走行領域aでは感度小、エンジン走行領域cでは感度大となるため、モータ/エンジンの切替えハンチングが防止され、良好なドライバビリティを得ることができる。
また、アクセル開度APの変化率について設定されたメンバーシップ関数からファジー推論を行って運転者の加速意思を推定し、推定された加速意思と算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って走行適合度を補正する如く構成したので、上記した効果に加え、アクセル開度APが急変したときなどにはエンジン12による走行に速やかに切替える(選択する)ことができ、運転者に出力不足感を与えることがない。
また、車速Vについて予め設定されたメンバーシップ関数からファジー推論を行なって渋滞あるいは高速度を推定し、推定された渋滞・高速度に応じてバッテリ34の残容量(充電状態SOC)の目標値(上限SOC、下限SOC)を変更する如く構成したので、例えば渋滞・高速度に応じて目標値の下限を変更することで渋滞時にはバッテリ34の利用幅を大きくすることができると共に、第2モータ26による走行を可能にして燃費を向上させることができる。また、高速時にはバッテリ34の利用幅を小さくして残容量を多めに維持することで、高速での加速アシストに備えることができる。
即ち、渋滞路においては下限SOCが引き下げられるように構成したので、バッテリ34のエネルギをモータ走行に優先させることが可能となり、燃費と渋滞路でのドライバビリティを向上させることができる。高速路では上限SOCが引き上げられるように構成したので、追い越し加速などに備えてバッテリ34のエネルギを蓄えておくことが可能となり、同様に動力性能を向上させることができる。
また、車速Vと要求駆動力FCMDとから走行路の勾配推定値を算出すると共に、勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって走行路の勾配度合いを推定し、推定された勾配度合いに応じてバッテリ34の残容量(充電状態SOC)の目標値を変更する如く構成したので、上記した効果に加え、例えば登坂走行であれば残容量の目標値の下限を下方に変更することで積極的に動力アシストすることができ、山岳路などを走行するときのドライバビリティや動力性能を向上させることができる。また、例えば降坂走行であれば目標値の上限を下方に変更することでエンジン12による発電頻度を低減させ、減速回生によるエネルギ回収を効率良く実現することができる。
また、勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって走行路の勾配度合いを推定し、推定された勾配度合いと算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って走行適合度を補正する如く構成したので、上記した効果に加え、例えば要求駆動力が小さい降坂走行では第2モータ26による走行を選択し易くして燃費を向上させる一方、要求駆動力が増加する登坂走行ではエンジン12による走行を選択し易くして動力性能を重視することでドライバビリティを向上させることができる。即ち、推定された勾配により、登りではエンジン走行を優先し、降坂ではモータ走行を優先するため、山岳路においても動力性能と燃費の両立を図ることができる。
尚、この実施例に係るハイブリッド車両10は、図1に示す構造に止まらず、図20に示す構造であっても良い。第2モータ26とそれに対応するPDU32を除去すると共に、エンジン12を休筒運転させつつ(具体的には、燃料供給を停止すると共に、吸排気バルブを閉弁させつつ)、第1モータ20を駆動して走行しても良い。
即ち、車両10は、エンジン12と、第1モータ20と、第1モータ20に電力を供給する一方、第1モータ20で発電された電力を蓄電するバッテリ34とを備えると共に、エンジン12と第1モータ20の少なくともいずれかで車輪16を駆動して走行するように構成しても良い。尚、図20においてエンジン制御ユニット40などの図示は省略した。
この実施例は上記の如く、エンジン(内燃機関)と、第1、第2モータ20,26(電動機)と、前記第1、第2モータ20,26に電力を供給する一方、前記第1、第2モータで発電された電力を蓄電するバッテリ(蓄電手段)34とを備えると共に、前記エンジン(内燃機関)12と第2モータ(電動機)26の少なくともいずれかで駆動輪(車輪)16を駆動して走行するハイブリッド車両10において、車速Vとアクセル開度APから前記車両が要求する要求駆動力FCMDを算出する要求駆動力算出手段(MG ECU44、ブロック44aから44c、車体モデル44d)、前記車速Vから前記第2モータ(電動機)26が出力し得るモータ最大駆動力を算出すると共に、前記最大駆動力で前記要求駆動力を負担したときの電動機負荷率を算出する電動機負荷率算出手段(MG ECU44、ファジー制御部44f、エンジン走行適合度推定ブロック44f1、ブロック44f11,44f12)、前記電動機負荷率について前記車速に応じて設定されたメンバーシップ関数からファジー推論を行い、前記内燃機関による走行に比して前記電動機によって走行することで燃費が低減する燃費低減領域の上限値と前記最大駆動力の間における前記内燃機関による走行適合度を算出する内燃機関走行適合度算出手段(MG ECU44、ファジー制御部44f、エンジン走行適合度推定ブロック44f1、ブロック44f13)、および前記算出された走行適合度に基づき、前記内燃機関による走行と前記電動機による走行のいずれかを選択する走行選択手段(MG ECU44、ファジー制御部44f、モータ/エンジン走行選択処理ブロック44f5)を備える如く構成した。
また、前記アクセル開度APの変化率について設定されたメンバーシップ関数からファジー推論を行って運転者の加速意思を推定する加速意思推定手段(MG ECU44、ファジー制御部44f、加速意思推定ブロック44f2、ブロック44f21,44f22)、および前記推定された加速意思と前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段(MG ECU44、ファジー制御部44f、モータ/エンジン走行選択処理ブロック44f5)を備える如く構成した。
また、前記推定された加速意思が増加すると共に、エンジン(内燃機関)による走行が選択されているとき、前記エンジン(内燃機関)12による走行と前記第2モータ(電動機)26による走行を共に許可する許可手段(ファジー制御部44f、モータ/エンジン走行選択処理ブロック44f5,44k)を備える如く構成した。
また、前記車速Vについて予め設定されたメンバーシップ関数からファジー推論を行なって渋滞あるいは高速度を推定する渋滞・高速度推定手段(MG ECU44、ファジー制御部44f、渋滞・高速度推定ブロック44f4,ブロック44f41,44f42)、および前記推定された渋滞・高速度に応じて前記バッテリ(蓄電手段)34の残容量(充電状態SOC)の目標値(上限SOC、下限SOC)を変更する残容量目標値変更手段(MG ECU44、ファジー制御部44f、SOC管理設定ブロック44f6)を備える如く構成した。
また、前記車速Vと前記要求駆動力FCMDとから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段(MG ECU44、ファジー制御部44f、勾配度合い推定ブロック44f3、ブロック44f31から44f36)、および前記推定された勾配度合いに応じて前記蓄電手段の残容量の目標値を変更する残容量目標値変更手段(MG ECU44、ファジー制御部44f、SOC管理設定ブロック44f6)を備える如く構成した。
また、前記車速Vと前記要求駆動力FCMDとから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段(MG ECU44、ファジー制御部44f、勾配度合い推定ブロック44f3、ブロック44f31から44f36)、および前記推定された勾配度合いと前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段(MG ECU44、ファジー制御部44f、勾配度合い推定ブロック44f3、エンジン走行適合度推定ブロック44f5,44f51)を備える如く構成した。
この発明の第1実施例に係るハイブリッド車両の制御装置の全体構成を示す概略図である。 図1に示すハイブリッド車両の制御装置の動作を示すブロック図である。 図1に示すエンジンと第2モータの走行領域を示す説明グラフである。 図2のファジー制御部の構成を詳細に示すブロック図である。 図4のエンジン走行適合度推定ブロックの詳細を示す説明図である。 図4の加速意思推定ブロックの詳細を示す説明図である。 図4の勾配度合い推定ブロックの詳細を示すブロック図である。 図4の渋滞・高速度推定ブロックの詳細を示す説明図である。 図4のモータ/エンジン走行選択処理ブロックの処理を示す説明図である。 図4のモータ/エンジン走行選択処理ブロックの処理で使用されるしきい値の説明図である。 図4のモータ/エンジン走行選択処理における、勾配度合いに応じた制御ルールの修正を示す、図9と同様の説明図である。 図4のモータ/エンジン走行選択処理における、渋滞度に応じてメンバーシップ関数を修正する場合を示す説明グラフである。 図4のSOC管理設定ブロックの処理を示す説明図である。 図13のSOC管理設定ブロックの処理を示すタイム・チャートである。 図4のSOC管理設定処理における、勾配度合いに応じたパラメータ修正を示す、図13と同様の説明図である。 図4のSOC管理設定処理における勾配度合いに応じたパラメータ修正をより具体的に示す説明図である。 図4のSOC管理設定処理において、渋滞・高速度に応じたパラメータ修正を示す、図13と同様の説明図である。 図4のSOC管理設定処理における渋滞・高速度に応じたパラメータ修正をより具体的に示す説明図である。 図2の装置の効果を示す、図3と同様な説明グラフである。 この実施例に係るハイブリッド車両の変形例を示す、図1と同様な説明図である。
符号の説明
10 ハイブリッド車両、12 内燃機関(エンジン)、14 変速機、16 駆動輪(車輪)、20 第1の電動機(第1モータ)、26 第2の電動機(第2モータ)、30,32 PDU、34 バッテリ(蓄電手段)、40 エンジン制御ユニット(ENG ECU)、44 管理制御ユニット(MG ECU)、52 電流電圧センサ、54 アクセル開度センサ、56 車速センサ

Claims (6)

  1. 内燃機関と、電動機と、前記電動機に電力を供給する一方、前記電動機で発電された電力を蓄電する蓄電手段とを備えると共に、前記内燃機関と電動機の少なくともいずれかで車輪を駆動して走行するハイブリッド車両において、
    a.車速とアクセル開度から前記車両が要求する要求駆動力を算出する要求駆動力算出手段、
    b.前記車速から前記電動機が出力し得る最大駆動力を算出すると共に、前記最大駆動力で前記要求駆動力を負担したときの電動機負荷率を算出する電動機負荷率算出手段、
    c.前記電動機負荷率について前記車速に応じて設定されたメンバーシップ関数からファジー推論を行い、前記内燃機関による走行に比して前記電動機によって走行することで燃費が低減する燃費低減領域の上限値と前記最大駆動力の間における前記内燃機関による走行適合度を算出する内燃機関走行適合度算出手段、
    および
    d.前記算出された走行適合度に基づき、前記内燃機関による走行と前記電動機による走行のいずれかを選択する走行選択手段、
    を備えることを特徴とするハイブリッド車両の制御装置。
  2. e.前記アクセル開度の変化率について設定されたメンバーシップ関数からファジー推論を行って運転者の加速意思を推定する加速意思推定手段、
    および
    f.前記推定された加速意思と前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段、
    を備えることを特徴とする請求項1記載のハイブリッド車両の制御装置。
  3. g.前記推定された加速意思が増加すると共に、前記内燃機関による走行が選択されているとき、前記内燃機関による走行と前記電動機による走行を共に許可する許可手段、
    を備えることを特徴とする請求項2記載のハイブリッド車両の制御装置。
  4. h.前記車速について予め設定されたメンバーシップ関数からファジー推論を行なって渋滞あるいは高速度を推定する渋滞・高速度推定手段、
    および
    i.前記推定された渋滞・高速度に応じて前記蓄電手段の残容量の目標値を変更する残容量目標値変更手段、
    を備えることを特徴とする請求項1から3のいずれかに記載のハイブリッド車両の制御装置。
  5. j.前記車速と前記要求駆動力とから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段、
    および
    k.前記推定された勾配度合いに応じて前記蓄電手段の残容量の目標値を変更する残容量目標値変更手段、
    を備えることを特徴とする請求項1から4のいずれかに記載のハイブリッド車両の制御装置。
  6. l.前記車速と前記要求駆動力とから走行路の勾配推定値を算出すると共に、前記勾配推定値について予め設定されたメンバーシップ関数からファジー推論を行なって前記走行路の勾配度合いを推定する勾配度合い推定手段、
    および
    m.前記推定された勾配度合いと前記算出された走行適合度について設定されたメンバーシップ関数に基づいて第2のファジー推論を行って前記走行適合度を補正する走行適合度補正手段、
    を備えることを特徴とする請求項1から5のいずれかに記載のハイブリッド車両の制御装置。
JP2006045053A 2006-02-22 2006-02-22 ハイブリッド車両の制御装置 Expired - Fee Related JP4571917B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045053A JP4571917B2 (ja) 2006-02-22 2006-02-22 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045053A JP4571917B2 (ja) 2006-02-22 2006-02-22 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2007223404A true JP2007223404A (ja) 2007-09-06
JP4571917B2 JP4571917B2 (ja) 2010-10-27

Family

ID=38545621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045053A Expired - Fee Related JP4571917B2 (ja) 2006-02-22 2006-02-22 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP4571917B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089777A (ja) * 2008-10-08 2010-04-22 Dr Ing Hcf Porsche Ag ドライブトレインを操作するための方法
JP2010125900A (ja) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd ハイブリッド駆動装置
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2012098743A1 (ja) * 2011-01-20 2012-07-26 日野自動車株式会社 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP2014051270A (ja) * 2012-09-06 2014-03-20 Hyundai Motor Company Co Ltd ハイブリッド自動車のバッテリ充電制御方法およびシステム
WO2014109065A1 (ja) * 2013-01-11 2014-07-17 本田技研工業株式会社 ハイブリッド車両の制御装置および制御方法
WO2014196275A1 (ja) * 2013-06-03 2014-12-11 トヨタ自動車株式会社 車両の制御装置
JP2015178360A (ja) * 2015-06-17 2015-10-08 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP2017030468A (ja) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2017030575A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10106143B2 (en) 2015-07-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
US10124678B2 (en) 2015-07-22 2018-11-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
CN109733406A (zh) * 2019-01-22 2019-05-10 湖南普西智能科技有限责任公司 基于模糊控制与动态规划的纯电动汽车行驶策略控制方法
CN115027475A (zh) * 2022-06-27 2022-09-09 重庆青山工业有限责任公司 混合动力汽车滑行能量回收扭矩控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105904990B (zh) * 2016-05-30 2019-03-26 江阴凹帆电子科技有限公司 适用电动车驱动系统的能量管理方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124529A (ja) * 1991-11-01 1993-05-21 Omron Corp 自動車の電子制御装置
JPH0680048A (ja) * 1992-07-17 1994-03-22 Aqueous Res:Kk ハイブリッド型車両
JPH1051909A (ja) * 1996-08-02 1998-02-20 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2002089313A (ja) * 2000-09-20 2002-03-27 Daihatsu Motor Co Ltd ハイブリッド車両の走行制御装置
JP2005083300A (ja) * 2003-09-10 2005-03-31 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124529A (ja) * 1991-11-01 1993-05-21 Omron Corp 自動車の電子制御装置
JPH0680048A (ja) * 1992-07-17 1994-03-22 Aqueous Res:Kk ハイブリッド型車両
JPH1051909A (ja) * 1996-08-02 1998-02-20 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2002089313A (ja) * 2000-09-20 2002-03-27 Daihatsu Motor Co Ltd ハイブリッド車両の走行制御装置
JP2005083300A (ja) * 2003-09-10 2005-03-31 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554399B2 (en) 2008-10-08 2013-10-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating a drive train
JP2010089777A (ja) * 2008-10-08 2010-04-22 Dr Ing Hcf Porsche Ag ドライブトレインを操作するための方法
JP2010125900A (ja) * 2008-11-25 2010-06-10 Aisin Aw Co Ltd ハイブリッド駆動装置
WO2012059997A1 (ja) * 2010-11-04 2012-05-10 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
JP5767238B2 (ja) * 2010-11-04 2015-08-19 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
WO2012098743A1 (ja) * 2011-01-20 2012-07-26 日野自動車株式会社 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
CN103068648A (zh) * 2011-01-20 2013-04-24 日野自动车株式会社 再生控制装置、混合动力汽车、再生控制方法以及程序
JP5059246B2 (ja) * 2011-01-20 2012-10-24 日野自動車株式会社 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP2014051270A (ja) * 2012-09-06 2014-03-20 Hyundai Motor Company Co Ltd ハイブリッド自動車のバッテリ充電制御方法およびシステム
DE102012224450B4 (de) 2012-09-06 2024-05-08 Hyundai Motor Company Verfahren und System zum Steuern eines Ladens einer Batterie für ein Hybrid-Elektrofahrzeug
WO2014109065A1 (ja) * 2013-01-11 2014-07-17 本田技研工業株式会社 ハイブリッド車両の制御装置および制御方法
EP2944494A4 (en) * 2013-01-11 2016-10-12 Honda Motor Co Ltd CONTROL DEVICE AND CONTROL METHOD FOR A HYBRID VEHICLE
CN104903132A (zh) * 2013-01-11 2015-09-09 本田技研工业株式会社 混合动力车辆的控制装置及控制方法
KR20160008221A (ko) * 2013-06-03 2016-01-21 도요타 지도샤(주) 차량의 제어 장치
JP2014234083A (ja) * 2013-06-03 2014-12-15 トヨタ自動車株式会社 車両の制御装置
WO2014196275A1 (ja) * 2013-06-03 2014-12-11 トヨタ自動車株式会社 車両の制御装置
KR101720641B1 (ko) 2013-06-03 2017-04-10 도요타 지도샤(주) 차량의 제어 장치
US9827856B2 (en) 2013-06-03 2017-11-28 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2015178360A (ja) * 2015-06-17 2015-10-08 トヨタ自動車株式会社 車両用ハイブリッド駆動装置
US10106143B2 (en) 2015-07-22 2018-10-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
US10124678B2 (en) 2015-07-22 2018-11-13 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle control apparatus
US10137880B2 (en) 2015-07-30 2018-11-27 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
CN106394542A (zh) * 2015-07-30 2017-02-15 丰田自动车株式会社 混合动力车辆的控制装置
JP2017030468A (ja) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP2017030575A (ja) * 2015-07-31 2017-02-09 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US10246076B2 (en) 2015-07-31 2019-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus
CN109733406A (zh) * 2019-01-22 2019-05-10 湖南普西智能科技有限责任公司 基于模糊控制与动态规划的纯电动汽车行驶策略控制方法
CN115027475A (zh) * 2022-06-27 2022-09-09 重庆青山工业有限责任公司 混合动力汽车滑行能量回收扭矩控制方法

Also Published As

Publication number Publication date
JP4571917B2 (ja) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4571917B2 (ja) ハイブリッド車両の制御装置
JP4271682B2 (ja) モータ駆動車両の制御装置
JP5799127B2 (ja) ハイブリッド車両の制御装置
JP3665060B2 (ja) ハイブリッド車両の制御装置
JP4655723B2 (ja) 車両およびその制御方法
EP1433641B1 (en) Drive control apparatus for hybrid vehicle
EP1493604B1 (en) Control apparatus for hybrid vehicle
JP3926514B2 (ja) ハイブリッド車両の制御装置
EP1093950B1 (en) Control system for hybrid vehicles
EP0800946B1 (en) Control system for hybrid vehicles
JP3167935B2 (ja) ハイブリッド車両の制御装置
US10800400B2 (en) Control system for hybrid vehicle
JP3983432B2 (ja) ハイブリッド車両の制御装置
JPH1051909A (ja) ハイブリッド車両の制御装置
JP3776434B2 (ja) 駆動力切換制御装置
JP3594010B2 (ja) 車両の駆動力制御方法とその制御装置
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
WO2017065265A1 (ja) ハイブリッド車の制御装置及び制御方法
Moghbeli et al. Fuzzy energy control strategy of through-to-road hybrid electric vehicle
JP3946385B2 (ja) ハイブリッド車両の制御装置
JP2017100473A (ja) ハイブリッド車両のモータアシスト制御装置
JP6428658B2 (ja) ハイブリッド車両
JP6447473B2 (ja) ハイブリッド車両
JP4242045B2 (ja) 前後輪駆動車両の駆動力制御装置
JP4216145B2 (ja) ハイブリット車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees