WO2017065265A1 - ハイブリッド車の制御装置及び制御方法 - Google Patents

ハイブリッド車の制御装置及び制御方法 Download PDF

Info

Publication number
WO2017065265A1
WO2017065265A1 PCT/JP2016/080519 JP2016080519W WO2017065265A1 WO 2017065265 A1 WO2017065265 A1 WO 2017065265A1 JP 2016080519 W JP2016080519 W JP 2016080519W WO 2017065265 A1 WO2017065265 A1 WO 2017065265A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor generator
engine
upper limit
torque assist
Prior art date
Application number
PCT/JP2016/080519
Other languages
English (en)
French (fr)
Inventor
耕平 齊藤
前田 茂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/766,731 priority Critical patent/US10889174B2/en
Priority to DE112016004703.7T priority patent/DE112016004703T5/de
Publication of WO2017065265A1 publication Critical patent/WO2017065265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a control technology for a hybrid vehicle including an engine and a motor generator that are power sources of the vehicle.
  • Patent Document 1 discloses a hybrid vehicle that travels with both engine power and motor generator power by performing torque assist by a motor generator when acceleration is required during engine travel that travels with engine power. Is disclosed.
  • Patent Document 1 does not mention a method for determining the output of the motor generator when performing torque assist. Therefore, in the hybrid vehicle described in Patent Document 1, there is a possibility that the torque assist is performed up to a high output region where the output of the motor generator is relatively large.
  • the power loss of each part for example, the loss due to the internal resistance of the battery, the loss in the wiring between the battery and the motor generator, the loss in the motor generator, etc.
  • the total loss increases, the motor generator efficiency (ratio of shaft output to power consumption) decreases, and a high fuel efficiency improvement effect cannot be obtained. is there.
  • This disclosure is intended to provide a control device and a control method for a hybrid vehicle that can enhance the fuel efficiency improvement effect of a system that performs torque assist by a motor generator while the engine is running.
  • One aspect of the technology of the present disclosure is a hybrid vehicle that includes an engine (11) and a motor generator (12) that are power sources of a vehicle, and that performs torque assist by the motor generator while the engine is running with the power of the engine.
  • the control device having the above configuration sets the upper limit guard value of the output command value of the motor generator to a base value at which the efficiency of the motor generator (ratio of shaft output to power consumption) is equal to or greater than a predetermined value. .
  • the output of the motor generator is limited.
  • FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle control system according to an embodiment of the present disclosure.
  • FIG. 2 is a time chart showing an execution example of torque assist.
  • FIG. 3 is a characteristic diagram showing the relationship between the output of the motor generator and the efficiency.
  • FIG. 4 is a flowchart (1/2) showing the flow of processing of the torque assist control routine.
  • FIG. 5 is a flowchart (2/2) showing the flow of processing of the torque assist control routine.
  • FIG. 6 is a diagram conceptually illustrating an example of a map of the accelerator correction coefficient Ka.
  • FIG. 7 is a diagram conceptually illustrating an example of a map of the battery correction coefficient Kb.
  • FIG. 8 is a diagram conceptually illustrating an example of a map of the engine correction coefficient Kc.
  • FIG. 1 a schematic configuration of a hybrid vehicle control system will be described with reference to FIG.
  • an engine 11 that is an internal combustion engine and a motor generator (hereinafter referred to as “MG”) 12 are mounted as a power source of the vehicle in the control system 1 according to the present embodiment.
  • the MG 12 is a starter generator motor (ISG: Integrated Starter Generator) that cranks the engine 11.
  • ISG Integrated Starter Generator
  • a pulley 13 is connected to the crankshaft of the engine 11.
  • a pulley 14 is connected to the rotation shaft of the MG 12.
  • the pulley 13 and the pulley 14 are connected via a belt 15 so that power can be transmitted.
  • the pulleys 13 and 14, the belt 15, and the like correspond to a power transmission mechanism in the claims.
  • the power transmission mechanism that couples the engine 11 and the MG 12 so as to be able to transmit power may be constituted by a gear mechanism or the like.
  • the power of the output shaft (crankshaft) of the engine 11 is transmitted to the transmission 16.
  • the power of the output shaft of the transmission 16 is transmitted to the wheels 19 through the differential gear 17, the axle 18 and the like.
  • the transmission 16 may be a stepped transmission that switches the gears step by step from among a plurality of gears, or may be a continuously variable transmission (CVT) that changes gears steplessly.
  • a clutch 20 is provided between the engine 11 and the transmission 16 for interrupting power transmission.
  • the transmission 16 may have a configuration in which a clutch is incorporated.
  • the control system 1 is provided with a starter 21, a first battery 22, a second battery 23, a DCDC converter 24, and the like.
  • the starter 21 cranks the engine 11 separately from the MG 12.
  • the first battery 22 supplies power to the starter 21.
  • the 1st battery 22 is comprised by secondary batteries, such as a lead storage battery, for example.
  • the second battery 23 exchanges power with the MG 12.
  • the second battery 23 is configured by a secondary battery such as a lithium ion battery.
  • the DCDC converter 24 is connected between the first battery 22 and the second battery 23.
  • control system 1 is provided with an accelerator sensor 25, a shift switch 26, a brake switch 27, a vehicle speed sensor 28, an ECU 29, and the like.
  • the accelerator sensor 25 detects the accelerator opening (the amount of operation of the accelerator pedal).
  • the shift switch 26 detects the operation position of the shift lever.
  • the brake switch 27 detects a brake operation (a brake pedal operation amount).
  • the vehicle speed sensor 28 detects the vehicle speed.
  • Output from various sensors and switches is input to the ECU 29 which is an electronic control unit.
  • the ECU 29 controls the engine 11, the MG 12, the transmission 16, the clutch 20, and the like according to the driving state of the vehicle.
  • the ECU 29 corresponds to a control device according to the present embodiment (a control device that is an aspect of the technology of the present disclosure).
  • the engine 11, the MG 12, the transmission 16, the clutch 20, and the like may be configured to be controlled by a plurality of ECUs.
  • the power loss of each part tends to increase as the power consumption of the MG 12 increases.
  • Examples of the power loss include loss due to the internal resistance of the battery 23, loss in the wiring between the battery 23 and the MG 12, and loss inside the MG 12. For this reason, in a vehicle that performs torque assist in a high output region where the output of the MG 12 is relatively large, the total loss increases, the efficiency of the MG 12 (the ratio of the shaft output to the power consumption) decreases, and a high fuel efficiency improvement effect is achieved. I can't get it.
  • the ECU 29 executes the process of the torque assist control routine shown in FIGS. 4 and 5 to perform the following control.
  • the ECU 29 sets the upper limit guard value for limiting the output command value of the MG 12 to a base value at which the efficiency of the MG 12 (the ratio of the shaft output to the power consumption) is equal to or greater than a predetermined value.
  • ECU29 restrict
  • the ECU 29 determines the vehicle operation state of the driver (for example, the accelerator opening degree or the changing speed of the accelerator opening degree), the SOC (State of Charge) indicating the charging state of the battery 23, and the operating state of the engine 11 (for example, the engine rotation speed)
  • the upper limit guard value is corrected to a higher output side (so as to be a higher output value) than the base value.
  • the upper limit guard value is higher than the base value as the accelerator opening or the change rate of the accelerator opening is larger.
  • the upper guard value is corrected to a higher output side than the base value as the SOC of the battery 23 is higher.
  • the engine rotational speed is equal to or higher than the predetermined value c
  • the upper limit guard value is corrected to a higher output side than the base value as the engine rotational speed is higher.
  • step S101 determines whether or not the engine 11 has been warmed up.
  • step S101 determines whether or not the coolant temperature is equal to or higher than a predetermined value.
  • step S101 determines whether or not the vehicle is running.
  • step S102 determines whether or not the vehicle is running.
  • the ECU29 determines whether a torque assist permission flag is "1", when it determines with the vehicle driving
  • the torque assist permission flag is a control value indicating whether torque assist by the MG 12 can be performed.
  • the torque assist permission flag is set to “1”, for example, when a predetermined condition is satisfied such that the MG 12 is not abnormal and the SOC of the battery 23 is equal to or higher than a lower limit value. Therefore, when the torque assist permission flag is “1”, torque assist by the MG 12 can be performed. If the ECU 29 determines that the torque assist permission flag is “0” (step S103: No), the ECU 29 ends the routine without executing the processing after step 104.
  • the ECU29 determines whether a torque assist request flag is "1", when it determines with a torque assist permission flag being "1" (step S103: Yes) (step S104).
  • the torque assist request flag is a control value indicating whether torque assist by the MG 12 is requested.
  • the torque assist request flag is set to “1” when, for example, a predetermined condition such that the accelerator opening is equal to or greater than a predetermined value and the SOC of the battery 23 is equal to or greater than a predetermined value is satisfied. Therefore, when the torque assist request flag is “1”, torque assist by the MG 12 is requested. If the ECU 29 determines that the torque assist request flag is “0” (step S104: No), the ECU 29 ends this routine without executing the processing after step 105.
  • step S104 determines with a torque assist request flag being "1" (step S104: Yes) (step S105).
  • the ECU 29 calculates the output command value of the MG 12 based on at least one information of, for example, the accelerator opening, the operating state of the engine 11, the vehicle speed, and the shift lever operation position.
  • the ECU 29 determines whether or not the accelerator opening is equal to or greater than a predetermined value a (for example, a value of the accelerator opening that can be determined that the driver's acceleration request for the vehicle is relatively strong). (Step S106). When it is determined that the accelerator opening is smaller than the predetermined value a (step S106: No), the ECU 29 sets an accelerator correction coefficient Ka for correcting the upper limit guard value to “1” (step S107). That is, when the accelerator opening is smaller than the predetermined value a, the upper limit guard value is not corrected according to the accelerator opening.
  • a predetermined value a for example, a value of the accelerator opening that can be determined that the driver's acceleration request for the vehicle is relatively strong.
  • the ECU29 calculates accelerator correction coefficient Ka according to an accelerator opening, when it determines with an accelerator opening being more than the predetermined value a (step S106: Yes) (step S108).
  • the ECU 29 calculates the accelerator correction coefficient Ka using a predetermined map or mathematical expression.
  • the map or mathematical formula of the accelerator correction coefficient Ka indicates that the accelerator correction coefficient Ka is greater than 1 and the accelerator correction is larger as the accelerator opening is larger in a region where the accelerator opening is greater than or equal to the predetermined value a.
  • the coefficient Ka is set to be large. Note that the map here is data that associates the value of the accelerator opening with the value of the accelerator correction coefficient Ka, and can specify the accelerator correction coefficient Ka based on the accelerator opening.
  • the data is stored in advance in a storage device (predetermined storage area) such as a ROM provided in the ECU 29, for example.
  • a storage device predetermined storage area
  • the ECU 29 can calculate the accelerator correction coefficient Ka corresponding to the accelerator opening, similarly to the calculation by the mathematical expression.
  • the accelerator correction coefficient Ka is set according to the accelerator opening, but the present invention is not limited to this.
  • the accelerator correction coefficient Ka may be set according to the change speed (increase speed) of the accelerator opening.
  • the ECU 29 determines whether or not the change rate of the accelerator opening is equal to or greater than a predetermined value a (for example, a value of the change rate of the accelerator opening that can be determined that the driver's acceleration request for the vehicle is relatively strong).
  • a predetermined value a for example, a value of the change rate of the accelerator opening that can be determined that the driver's acceleration request for the vehicle is relatively strong.
  • the accelerator correction coefficient Ka is calculated by a predetermined map or mathematical expression according to the change rate of the accelerator opening.
  • the map or mathematical expression of the accelerator correction coefficient Ka indicates that the accelerator correction coefficient Ka is larger when the accelerator opening coefficient change rate is larger than 1 and the accelerator opening changing rate is larger in a region where the changing speed of the accelerator opening is equal to or greater than a predetermined value a. Ka is set to be large.
  • the ECU 29 determines whether or not the SOC of the battery 23 is equal to or greater than a predetermined value b (for example, a value relatively close to the upper limit value of the SOC) (step S109).
  • a predetermined value b for example, a value relatively close to the upper limit value of the SOC
  • the ECU 29 sets the battery correction coefficient Kb for correcting the upper limit guard value to “1” (step S110). That is, when the SOC of the battery 23 is lower than the predetermined value b, the upper limit guard value is not corrected according to the SOC of the battery 23.
  • the ECU29 calculates the battery correction coefficient Kb according to the SOC of the battery 23, when it determines with SOC of the battery 23 being more than the predetermined value b (step S109: Yes) (step S111).
  • the ECU 29 calculates the battery correction coefficient Kb using a predetermined map or mathematical expression. As shown in FIG. 7, the map or formula of the battery correction coefficient Kb indicates that the battery correction coefficient Kb is larger than 1 and the SOC of the battery 23 is higher in the region where the SOC of the battery 23 is greater than or equal to the predetermined value b.
  • the battery correction coefficient Kb is set to be large.
  • the map here is data in which the SOC value of the battery 23 is associated with the value of the battery correction coefficient Kb, and the battery correction coefficient Kb can be specified based on the SOC.
  • the ECU 29 can calculate the battery correction coefficient Kb corresponding to the SOC, similarly to the calculation by the mathematical expression.
  • the ECU 29 determines whether or not the engine rotation speed is equal to or higher than a predetermined value c (for example, a value of the engine rotation speed at which it can be determined that the required output of the vehicle is relatively large) (step S112). If the ECU 29 determines that the engine speed is lower than the predetermined value c (step S112: No), the ECU 29 sets an engine correction coefficient Kc for correcting the upper limit guard value to “1” (step S113). That is, when the engine speed is lower than the predetermined value c, the upper limit guard value is not corrected according to the engine speed.
  • a predetermined value c for example, a value of the engine rotation speed at which it can be determined that the required output of the vehicle is relatively large
  • the ECU29 calculates engine correction coefficient Kc according to engine rotational speed, when it determines with engine rotational speed being more than predetermined value c (step S112: Yes) (step S114).
  • the ECU 29 calculates the engine correction coefficient Kc using a predetermined map or mathematical expression.
  • the map or formula of the engine correction coefficient Kc shows that the engine correction coefficient Kc is larger than 1 and the engine correction is higher as the engine rotation speed is higher in a region where the engine rotation speed is a predetermined value c or more.
  • the coefficient Kc is set to be large.
  • the map here is data that associates the value of the engine rotation speed with the value of the engine correction coefficient Kc, and can specify the engine correction coefficient Kc based on the engine rotation speed. By referring to such a map, the ECU 29 can calculate the engine correction coefficient Kc corresponding to the engine rotation speed in the same manner as the calculation using the mathematical formula.
  • the ECU 29 reads the base value of the upper limit guard value (step S115).
  • the base value is set to a value at which the efficiency of MG 12 (ratio of shaft output to power consumption) is not less than a predetermined value (for example, a value in the range of 0.6 to 0.7).
  • the base value is set in advance based on, for example, design data and test data, and is stored in a storage device (predetermined storage area) such as a ROM provided in the ECU 29.
  • the base value may be a fixed value set in advance, but may be changed according to a change factor of the efficiency of the MG 12 (for example, a change with time of the system or an environmental change).
  • the ECU 29 uses the base value read in the process of step S115 and the correction coefficients Ka, Kb, Kc set in the processes of steps S106 to S114 to calculate the upper limit guard value using the following equation.
  • Upper guard value base value ⁇ Ka ⁇ Kb ⁇ Kc
  • the correction coefficients Ka, Kb, and Kc are all 1 by the processing in steps S106 to S114, the upper guard value is set as the base value.
  • the accelerator opening or the changing speed of the accelerator opening is equal to or greater than the predetermined value a and the accelerator correction coefficient Ka is greater than 1 (when Ka> 1), the accelerator opening or the changing speed of the accelerator opening is large.
  • the upper limit guard value is corrected to a higher output side than the base value.
  • the upper limit guard value is set higher than the base value as the engine speed increases. to correct.
  • the processing in steps S106 to S116 corresponds to a setting unit in the claims and serves as the function unit.
  • the correction coefficients Ka, Kb, and Kc are calculated, but the present invention is not limited to this.
  • the correction coefficient K is calculated by a predetermined three-dimensional map or mathematical expression according to the accelerator opening (or the change speed of the accelerator opening), the SOC of the battery 23, and the engine speed. You may do it.
  • the ECU 29 may calculate the upper limit guard value by the following equation using the correction coefficient K and the base value.
  • Upper guard value base value x K
  • the ECU 29 limits the output command value of the MG 12 calculated in the process of step S105 with the upper guard value (step S117). Specifically, when the output command value of MG12 is smaller than the upper limit guard value, the output command value of MG12 is used as it is. On the other hand, when the output command value of MG12 is greater than or equal to the upper limit guard value, the output command value of MG12 is set to the upper limit guard value.
  • the process of step S117 corresponds to a restriction unit in the claims and serves as the function unit.
  • the ECU 29 rotationally drives the MG 12 with an energization current corresponding to the output command value of the MG 12, and performs torque assist by the MG 12 (step S118).
  • the ECU 29 when performing torque assist, sets the upper limit guard value of the output command value of the MG 12 when the correction coefficients Ka, Kb, and Kc are all 1.
  • the base value is set such that the efficiency (ratio of shaft output to power consumption) is equal to or greater than a predetermined value.
  • the ECU 29 limits the output of the MG 12 by limiting the output command value of the MG 12 with the set upper limit guard value. In this way, torque assist can be performed in a high efficiency region where the efficiency of the MG 12 is greater than or equal to a predetermined value, and the fuel efficiency improvement effect is enhanced.
  • a high fuel efficiency improvement effect can be obtained in the range of normal acceleration (for example, when driving at low speeds in urban areas).
  • control system 1 equipped with the MG 12 also serving as a starter connected to the crankshaft of the engine 11 via a power transmission mechanism such as a belt 15 has the following characteristics.
  • the power generated by the MG 12 and the capacity of the battery 23 are relatively small, and the power generated by the MG 12 (charging the battery 23) is mainly regenerative power generation during deceleration. For this reason, in the control system 1, it is an important point how to efficiently use the power of the battery 23 (power obtained by regenerative power generation).
  • the output command value of the MG 12 is limited by the upper limit guard value, thereby preventing torque assist at a larger output than necessary and reducing the power of the battery 23. It can be used efficiently. That is, fuel efficiency can be effectively improved in a system equipped with ISG.
  • the amount of heat generated by the MG 12 can be reduced by limiting the output of the MG 12. Therefore, the control system 1 can prevent the MG 12 from overheating even if the cooling performance of the MG 12 is reduced.
  • the cooling system of MG12 can be changed from a water cooling type to an air cooling type, piping of a cooling water etc. can be omitted, and there also exists an advantage that cost reduction and space saving can be carried out.
  • the upper limit guard value is set to a higher output side (high output value) than the base value based on the vehicle operation state of the driver (for example, the accelerator opening degree or the change speed of the accelerator opening degree). ).
  • the vehicle operation state of the driver for example, the accelerator opening degree or the change speed of the accelerator opening degree.
  • it can change to the upper limit guard value according to the vehicle operation state which is a request
  • the upper limit guard value for realizing the fuel efficiency improvement effect can be changed to the upper limit guard value for realizing the request from the driver.
  • the upper guard value is output higher than the base value as the accelerator opening or the change rate of the accelerator opening is larger. I am trying to correct it to the side. That is, in this embodiment, it is determined that the acceleration request from the driver is stronger (the requested acceleration is higher) as the accelerator opening or the change rate of the accelerator opening is larger, and the upper limit guard value is corrected to the higher output side. In this way, the higher the driver's required acceleration, the higher the upper guard value can be corrected to the higher output side, and the output of MG 12 (torque assist amount) can be increased. Thereby, in the control system 1, the acceleration performance according to the acceleration request
  • the correction of the upper limit guard value is not limited to this.
  • the driving mode selected by the driver for example, economy mode or sports mode
  • the upper limit guard value is corrected according to the driving mode. May be.
  • the upper limit guard value is set to a higher output side (higher output value) than the base value as the SOC of the battery 23 increases. I am trying to correct it.
  • the discharge amount of the battery 23 can be increased moderately and the charge condition of the battery 23 can be reduced moderately.
  • the control system 1 can sufficiently secure the amount of power that can be charged to the battery 23 by regenerative power generation at the next deceleration, and can effectively use the kinetic energy of the vehicle at the time of deceleration.
  • the upper limit guard value is corrected according to the vehicle operating state of the driver, the SOC of the battery 23, and the operating state of the engine 11, but the present invention is not limited to this.
  • the upper guard value may be corrected only in accordance with the vehicle operation state of the driver.
  • the upper limit guard value may be corrected according to the SOC of the battery 23 or the operating state of the engine 11.
  • the upper guard value may be corrected according to two pieces of information of the vehicle operation state of the driver, the SOC of the battery 23, and the operation state of the engine 11.
  • the upper limit guard value may not be corrected (the upper limit guard value is always set to the base value) according to the vehicle operation state of the driver, the SOC of the battery 23, or the operation state of the engine 11.
  • the output command value of MG12 is restrict
  • other command values such as the current command value and torque command value of the MG 12 may be limited by the upper guard value, and the output of the MG 12 may be limited.
  • part or all of the functions executed by the ECU 29 may be realized by hardware such as one or a plurality of ICs.
  • the technology of the present disclosure is not limited to the hybrid vehicle having the configuration shown in FIG. 1, and can be implemented by applying to various hybrid vehicles having an engine and MG as a power source for the vehicle.
  • the technology of the present disclosure is, for example, a hybrid vehicle in which MG is connected to a power transmission system that transmits engine power to wheels (for example, a hybrid vehicle in which MG is arranged between the engine and a transmission), or a plurality of MGs.
  • the present invention may be applied to an onboard hybrid vehicle.

Abstract

制御装置はトルクアシストを行う際に、MG(12)の指令値を制限するための上限ガード値をMG(12)の効率(消費電力に対する軸出力の比率)が所定値以上になるベース値に設定する。そして、MG(12)の指令値を上限ガード値で制限し、MG(12)の出力を制限する。アクセル開度又はアクセル開度の変化速度が所定値a以上の場合には、アクセル開度又はアクセル開度の変化速度が大きいほど、上限ガード値を高出力側に補正する。バッテリ(23)のSOCが所定値b以上の場合には、バッテリ(23)のSOCが高いほど、上限ガード値を高出力側に補正する。エンジン回転速度が所定値c以上の場合には、エンジン回転速度が高いほど、上限ガード値を高出力側に補正する。

Description

ハイブリッド車の制御装置及び制御方法
 本開示は、車両の動力源となるエンジン及びモータジェネレータを備えたハイブリッド車の制御技術に関する。
 近年では、低燃費、低排気エミッションの社会的要請から、車両の動力源としてエンジンとモータジェネレータとを搭載したハイブリッド車が注目されている。例えば特許文献1には、エンジンの動力で走行するエンジン走行中に、加速が要求されると、モータジェネレータによるトルクアシストを行って、エンジンの動力とモータジェネレータの動力との両方で走行するハイブリッド車が開示されている。
特開2013-189134号公報
 上記特許文献1には、トルクアシストを行う際のモータジェネレータの出力の決定方法について言及されていない。よって、上記特許文献1に記載のハイブリッド車では、モータジェネレータの出力が比較的大きくなる高出力領域までトルクアシストを実施する可能性がある。しかし、一般には、モータジェネレータの消費電力が大きくなるほど、各部の電力損失(例えば、バッテリの内部抵抗による損失、バッテリとモータジェネレータとの間の配線での損失、モータジェネレータ内部での損失等)が大きくなる傾向がある。このため、高出力領域でトルクアシストを実施するハイブリッド車では、損失合計が大きくなり、モータジェネレータの効率(消費電力に対する軸出力の比率)が低下し、高い燃費向上効果が得られないという問題がある。
 本開示は、エンジン走行中にモータジェネレータによるトルクアシストを行うシステムの燃費向上効果が高められるハイブリッド車の制御装置及び制御方法を提供することを目的とする。
 本開示の技術の一態様は、車両の動力源となるエンジン(11)及びモータジェネレータ(12)を備え、エンジンの動力で走行するエンジン走行中に、モータジェネレータによるトルクアシストを行う、ハイブリッド車の制御装置であって、トルクアシストを行う際に、モータジェネレータの指令値を制限するための上限ガード値を、モータジェネレータの消費電力に対する軸出力の比率が所定値以上になるベース値に設定する設定部(29)と、トルクアシストを行う際に、モータジェネレータの指令値を上限ガード値で制限することによって、モータジェネレータの出力を制限する制限部(29)と、を備える。
 上記構成の制御装置は、トルクアシストを行う際に、モータジェネレータの出力指令値の上限ガード値を、モータジェネレータの効率(消費電力に対する軸出力の比率)が所定値以上になるベース値に設定する。設定された上限ガード値でモータジェネレータの出力指令値を制限することによって、モータジェネレータの出力を制限する。これにより、上記構成の制御装置では、モータジェネレータの効率が所定値以上になる高効率領域でトルクアシストが行え、燃費向上効果が高められる。
図1は、本開示の一実施例におけるハイブリッド車の制御システムの概略構成を示す図である。 図2は、トルクアシストの実行例を示すタイムチャートである。 図3は、モータジェネレータの出力と効率との関係を示す特性図である。 図4は、トルクアシスト制御ルーチンの処理の流れを示すフローチャート(1/2)である。 図5は、トルクアシスト制御ルーチンの処理の流れを示すフローチャート(2/2)である。 図6は、アクセル補正係数Kaのマップの一例を概念的に示す図である。 図7は、バッテリ補正係数Kbのマップの一例を概念的に示す図である。 図8は、エンジン補正係数Kcのマップの一例を概念的に示す図である。
 以下、本開示の技術を実施するための形態を具体化した一実施例について、図面を参照し説明する。
 まず、図1に基づいて、ハイブリッド車の制御システムの概略構成を説明する。
 図1に示すように、本実施例に係る制御システム1には、車両の動力源として、内燃機関であるエンジン11とモータジェネレータ(以下「MG」という)12とが搭載されている。MG12は、エンジン11をクランキングするスタータ兼用のモータジェネレータ(ISG:Integrated Starter Generator)である。エンジン11のクランク軸には、プーリ13が連結されている。また、MG12の回転軸には、プーリ14が連結されている。プーリ13とプーリ14とは、ベルト15を介して動力伝達可能に連結されている。この場合、プーリ13,14及びベルト15等は、請求の範囲でいう動力伝達機構に相当する。尚、エンジン11とMG12とを動力伝達可能に連結する動力伝達機構は、ギヤ機構等で構成しても良い。
 エンジン11の出力軸(クランク軸)の動力は、変速機16に伝達される。変速機16の出力軸の動力は、ディファレンシャルギヤ17や車軸18等を介して車輪19に伝達される。変速機16は、複数の変速段の中から変速段を段階的に切り換える有段変速機であっても良いし、無段階に変速する無段変速機(CVT)であっても良い。エンジン11と変速機16との間には、動力伝達を断続するためのクラッチ20が設けられている。尚、変速機16は、クラッチが組み込まれた構成としても良い。
 また、本実施例に係る制御システム1には、スタータ21、第1のバッテリ22、第2のバッテリ23、及びDCDCコンバータ24等が設けられている。スタータ21は、MG12とは別にエンジン11をクランキングする。第1のバッテリ22は、スタータ21に電力を供給する。第1のバッテリ22は、例えば鉛蓄電池等の二次電池により構成されている。一方、第2のバッテリ23は、MG12と電力を授受する。第2のバッテリ23は、例えばリチウムイオン電池等の二次電池により構成されている。DCDCコンバータ24は、第1のバッテリ22と第2のバッテリ23との間に接続されている。
 また、本実施例に係る制御システム1には、アクセルセンサ25、シフトスイッチ26、ブレーキスイッチ27、車速センサ28、及びECU29等が設けられている。アクセルセンサ25は、アクセル開度(アクセルペダルの操作量)を検出する。シフトスイッチ26は、シフトレバーの操作位置を検出する。ブレーキスイッチ27は、ブレーキ操作(ブレーキペダルの操作量)を検出する。車速センサ28は、車速を検出する。
 各種センサやスイッチからの出力は、電子制御ユニットであるECU29に入力される。ECU29は、車両の運転状態に応じて、エンジン11、MG12、変速機16、及びクラッチ20等を制御する。ECU29は、本実施例に係る制御装置(本開示の技術の一態様である制御装置)に相当する。尚、エンジン11、MG12、変速機16、及びクラッチ20等は、複数のECUで制御される構成としても良い。
 図2に示すように、ECU29は、エンジン11の自動停止中(アイドルストップ中)に再始動要求が発生したときに、MG12の動力でエンジン11をクランキングし、エンジン11を再始動する。車両を運転中(エンジン11の動力で走行するエンジン走行中)にトルクアシスト要求が発生したときには、MG12によるトルクアシストを行って、エンジン11の動力とMG12の動力との両方で走行するモータアシスト走行を実施する。エンジン11の燃料カット時(例えば車両の減速時等)には、MG12で回生発電を行って、その発電電力を第2のバッテリ23(以降便宜上、単に「バッテリ23」という)に充電する。回生発電では、車輪19の動力によって駆動されるエンジン11の動力でMG12を駆動し、車両の運動エネルギをMG12で電気エネルギに変換する。
 しかし、図3に示すように、一般には、MG12の消費電力が大きくなるほど、各部の電力損失が大きくなる傾向がある。ここでいう電力損失には、例えば、バッテリ23の内部抵抗による損失、バッテリ23とMG12との間の配線での損失、MG12内部での損失等が挙げられる。このため、MG12の出力が比較的大きくなる高出力領域でトルクアシストを実施する車両では、損失合計が大きくなり、MG12の効率(消費電力に対する軸出力の比率)が低下し、高い燃費向上効果が得られない。
 そこで、本実施例に係る制御システム1では、図4及び図5に示すトルクアシスト制御ルーチンの処理をECU29が実行することで、次のような制御を行う。ECU29は、トルクアシストを行う際に、MG12の出力指令値を制限するための上限ガード値を、MG12の効率(消費電力に対する軸出力の比率)が所定値以上になるベース値に設定する。そして、ECU29は、設定した上限ガード値でMG12の出力指令値を制限することによって、MG12の出力を制限する。これにより、本実施例に係る制御システム1では、MG12の効率が所定値以上になる高効率領域でトルクアシストが行え、燃費向上効果が高められる。
 更に、ECU29は、運転者の車両操作状態(例えばアクセル開度又はアクセル開度の変化速度等)、バッテリ23の充電状態を表すSOC(State of Charge)、エンジン11の運転状態(例えばエンジン回転速度や負荷等)に基づいて、上限ガード値をベース値よりも高出力側(高出力値となるように)に補正する。ここで、バッテリ23のSOCは、例えば次式により定義される。
      SOC=残容量/満充電容量×100
 具体的には、アクセル開度又はアクセル開度の変化速度が所定値a以上の場合には、アクセル開度又はアクセル開度の変化速度が大きいほど、上限ガード値をベース値よりも高出力側に補正する。バッテリ23のSOCが所定値b以上の場合には、バッテリ23のSOCが高いほど、上限ガード値をベース値よりも高出力側に補正する。エンジン回転速度が所定値c以上の場合には、エンジン回転速度が高いほど、上限ガード値をベース値よりも高出力側に補正する。
 以下に、図4及び図5に基づいて、本実施例に係る制御システム1のECU29が実行するトルクアシスト制御ルーチンの処理を説明する。
 図4及び図5に示すトルクアシスト制御ルーチンの処理は、ECU29の電源がオン状態の期間中に、所定周期に従って実行される(例えば一定の間隔で繰り返し実行される)。図4に示すように、本ルーチンが起動されると、まず、ECU29は、エンジン11の暖機後か否かを判定する(ステップS101)。ECU29は、例えば冷却水の水温が所定値以上か否かによって、エンジン11の暖機後か否かを判定する。ECU29は、エンジン11の暖機後ではない(暖機前)と判定した場合(ステップS101:No)、ステップS102以降の処理を実行することなく、本ルーチンを終了する。
 ECU29は、エンジン11の暖機後と判定した場合(ステップS101:Yes)、車両が走行中か否かを判定する(ステップS102)。ECU29は、車両が走行中ではない(車両停止中)と判定した場合(ステップS102:No)、ステップ103以降の処理を実行することなく、本ルーチンを終了する。
 ECU29は、車両が走行中と判定した場合(ステップS102:Yes)、トルクアシスト許可フラグが「1」か否かを判定する(ステップS103)。トルクアシスト許可フラグは、MG12によるトルクアシストが行えるか否かを表す制御値である。トルクアシスト許可フラグは、例えば、MG12が異常無し、バッテリ23のSOCが下限値以上等の所定条件が成立している場合に、「1」にセットされる。よって、トルクアシスト許可フラグが「1」の場合には、MG12によるトルクアシストが行える。ECU29は、トルクアシスト許可フラグが「0」と判定した場合(ステップS103:No)、ステップ104以降の処理を実行することなく、本ルーチンを終了する。
 ECU29は、トルクアシスト許可フラグが「1」と判定した場合(ステップS103:Yes)、トルクアシスト要求フラグが「1」か否かを判定する(ステップS104)。トルクアシスト要求フラグは、MG12によるトルクアシストが要求されたか否かを表す制御値である。トルクアシスト要求フラグは、例えば、アクセル開度が所定値以上、バッテリ23のSOCが所定値以上等の所定条件が成立している場合に、「1」にセットされる。よって、トルクアシスト要求フラグが「1」の場合には、MG12によるトルクアシストが要求されている。ECU29は、トルクアシスト要求フラグが「0」と判定した場合(ステップS104:No)、ステップ105以降の処理を実行することなく、本ルーチンを終了する。
 ECU29は、トルクアシスト要求フラグが「1」と判定した場合(ステップS104:Yes)、トルクアシストを行う際のMG12の出力指令値を算出する(ステップS105)。この場合、ECU29は、例えば、アクセル開度、エンジン11の運転状態、車速、及びシフトレバーの操作位置等のうちの少なくとも1つの情報に基づいて、MG12の出力指令値を算出する。
 この後、図5に示すように、ECU29は、アクセル開度が所定値a(例えば運転者からの車両の加速要求が比較的強いと判断できるアクセル開度の値)以上か否かを判定する(ステップS106)。ECU29は、アクセル開度が所定値aよりも小さいと判定した場合(ステップS106:No)、上限ガード値を補正するためのアクセル補正係数Kaを「1」に設定する(ステップS107)。つまり、アクセル開度が所定値aより小さい場合には、アクセル開度に応じた上限ガード値の補正は行われない。
 ECU29は、アクセル開度が所定値a以上と判定した場合(ステップS106:Yes)、アクセル開度に応じて、アクセル補正係数Kaを算出する(ステップS108)。この場合、ECU29は、所定のマップ又は数式等により、アクセル補正係数Kaを算出する。図6に示すように、アクセル補正係数Kaのマップ又は数式等は、アクセル開度が所定値a以上の領域において、アクセル補正係数Kaが1よりも大きく、且つ、アクセル開度が大きいほどアクセル補正係数Kaが大きくなるように設定されている。尚、ここでいうマップとは、アクセル開度の値とアクセル補正係数Kaの値とが対応付けられており、アクセル開度を基にアクセル補正係数Kaを特定可能なデータである。当該データは、例えば、ECU29が備えるROM等の記憶装置(所定の記憶領域)に予め記憶されている。ECU29は、このようなマップを参照することで、数式による算出と同様に、アクセル開度に応じたアクセル補正係数Kaを算出できる。
 上記ステップS106~S108の処理では、アクセル開度に応じて、アクセル補正係数Kaを設定するようにしているが、これに限定されない。他の設定方法としては、例えばアクセル開度の変化速度(増加速度)に応じて、アクセル補正係数Kaを設定するようにしても良い。この場合、ECU29は、アクセル開度の変化速度が所定値a(例えば運転者からの車両の加速要求が比較的強いと判断できるアクセル開度の変化速度の値)以上か否かを判定する。その結果、アクセル開度の変化速度が所定値aよりも小さいと判定された場合には、アクセル補正係数Kaを「1」に設定する。一方、アクセル開度の変化速度が所定値a以上と判定された場合には、アクセル開度の変化速度に応じて、アクセル補正係数Kaを所定のマップ又は数式等により算出する。アクセル補正係数Kaのマップ又は数式等は、アクセル開度の変化速度が所定値a以上の領域において、アクセル補正係数Kaが1よりも大きく、且つ、アクセル開度の変化速度が大きいほどアクセル補正係数Kaが大きくなるように設定されている。
 次に、ECU29は、バッテリ23のSOCが所定値b(例えばSOCの上限値に比較的近い値)以上か否かを判定する(ステップS109)。ECU29は、バッテリ23のSOCが所定値bよりも低いと判定した場合(ステップS109:No)、上限ガード値を補正するためのバッテリ補正係数Kbを「1」に設定する(ステップS110)。つまり、バッテリ23のSOCが所定値bより低い場合には、バッテリ23のSOCに応じた上限ガード値の補正は行われない。
 ECU29は、バッテリ23のSOCが所定値b以上と判定した場合(ステップS109:Yes)、バッテリ23のSOCに応じて、バッテリ補正係数Kbを算出する(ステップS111)。この場合、ECU29は、所定のマップ又は数式等により、バッテリ補正係数Kbを算出する。図7に示すように、バッテリ補正係数Kbのマップ又は数式等は、バッテリ23のSOCが所定値b以上の領域において、バッテリ補正係数Kbが1よりも大きく、且つ、バッテリ23のSOCが高いほどバッテリ補正係数Kbが大きくなるように設定されている。尚、ここでいうマップとは、バッテリ23のSOCの値とバッテリ補正係数Kbの値とが対応付けられており、SOCを基にバッテリ補正係数Kbを特定可能なデータである。ECU29は、このようなマップを参照することで、数式による算出と同様に、SOCに応じたバッテリ補正係数Kbを算出できる。
 次に、ECU29は、エンジン回転速度が所定値c(例えば車両の要求出力が比較的大きいと判断できるエンジン回転速度の値)以上か否かを判定する(ステップS112)。ECU29は、エンジン回転速度が所定値cよりも低いと判定した場合(ステップS112:No)、上限ガード値を補正するためのエンジン補正係数Kcを「1」に設定する(ステップS113)。つまり、エンジン回転速度が所定値cより低い場合には、エンジン回転速度に応じた上限ガード値の補正は行われない。
 ECU29は、エンジン回転速度が所定値c以上と判定した場合(ステップS112:Yes)、エンジン回転速度に応じて、エンジン補正係数Kcを算出する(ステップS114)。この場合、ECU29は、所定のマップ又は数式等により、エンジン補正係数Kcを算出する。図8に示すように、エンジン補正係数Kcのマップ又は数式等は、エンジン回転速度が所定値c以上の領域において、エンジン補正係数Kcが1よりも大きく、且つ、エンジン回転速度が高いほどエンジン補正係数Kcが大きくなるように設定されている。尚、ここでいうマップとは、エンジン回転速度の値とエンジン補正係数Kcの値とが対応付けられており、エンジン回転速度を基にエンジン補正係数Kcを特定可能なデータである。ECU29は、このようなマップを参照することで、数式による算出と同様に、エンジン回転速度に応じたエンジン補正係数Kcを算出できる。
 次に、ECU29は、上限ガード値のベース値を読み込む(ステップS115)。ベース値は、MG12の効率(消費電力に対する軸出力の比率)が所定値(例えば0.6~0.7の範囲の値)以上となる値に設定されている。ベース値は、例えば設計データや試験データ等に基づいて予め設定されており、ECU29が備えるROM等の記憶装置(所定の記憶領域)に記憶されている。尚、ベース値は、予め設定した固定値としても良いが、MG12の効率の変化要因(例えばシステムの経時変化や環境変化等)に応じて変化させるようにしても良い。
 次に、ECU29は、上記ステップS115の処理で読み込んだベース値と、上記ステップS106~S114の処理で設定した各補正係数Ka,Kb,Kcとを用いて、上限ガード値を次式により算出する(ステップS116)。
      上限ガード値=ベース値×Ka×Kb×Kc
 上記ステップS106~S114の処理により、各補正係数Ka,Kb,Kcが全て1の場合には、上限ガード値をベース値に設定する。
 一方、アクセル開度又はアクセル開度の変化速度が所定値a以上で、アクセル補正係数Kaが1より大きい場合(Ka>1の場合)には、アクセル開度又はアクセル開度の変化速度が大きいほど、上限ガード値をベース値よりも高出力側に補正する。
 また、バッテリ23のSOCが所定値b以上で、バッテリ補正係数Kbが1より大きい場合(Kb>1の場合)には、バッテリ23のSOCが高いほど、上限ガード値をベース値よりも高出力側に補正する。
 更に、エンジン回転速度が所定値c以上で、エンジン補正係数Kcが1より大きい場合(Kc>1の場合)には、エンジン回転速度が高いほど、上限ガード値をベース値よりも高出力側に補正する。
 上記ステップS106~S116の処理は、請求の範囲でいう設定部に相当し、当該機能部としての役割を果たす。上記ステップS106~S114の処理では、各補正係数Ka,Kb,Kcをそれぞれ算出するようにしているが、これに限定されない。他の算出方法としては、例えば、アクセル開度(又はアクセル開度の変化速度)、バッテリ23のSOC、及びエンジン回転速度に応じて、補正係数Kを所定の三次元マップ又は数式等により算出するようにしても良い。この場合、ECU29は、この補正係数Kとベース値とを用いて、上限ガード値を次式により算出するようにしても良い。
      上限ガード値=ベース値×K
 次に、ECU29は、上記ステップS105の処理で算出したMG12の出力指令値を上限ガード値で制限する(ステップS117)。具体的には、MG12の出力指令値が上限ガード値よりも小さい場合には、MG12の出力指令値をそのまま用いる。一方、MG12の出力指令値が上限ガード値以上の場合には、MG12の出力指令値を上限ガード値に設定する。ステップS117の処理は、請求の範囲でいう制限部に相当し、当該機能部としての役割を果たす。
 次に、ECU29は、MG12の出力指令値に応じた通電電流でMG12を回転駆動し、MG12によるトルクアシストを実施する(ステップS118)。
 以上説明した本実施例では、ECU29(制御装置)は、トルクアシストを行う際に、各補正係数Ka,Kb,Kcが全て1の場合に、MG12の出力指令値の上限ガード値を、MG12の効率(消費電力に対する軸出力の比率)が所定値以上になるベース値に設定する。そして、ECU29は、設定した上限ガード値でMG12の出力指令値を制限することによって、MG12の出力を制限するようにしている。このようにすれば、MG12の効率が所定値以上になる高効率領域でトルクアシストが行え、燃費向上効果が高められる。これにより、本実施例では、通常加速(例えば市街地での低速走行時等)の範囲において、高い燃費向上効果が得られる。
 また、エンジン11のクランク軸にベルト15等の動力伝達機構を介して連結されたスタータ兼用のMG12(ISG)を搭載した制御システム1は、次のような特徴を有する。MG12の発電電力やバッテリ23の容量は、比較的小さく、MG12の発電(バッテリ23の充電)は、主に減速時の回生発電である。このため、制御システム1では、バッテリ23の電力(回生発電によって得た電力)をいかに効率良く使うかが重要なポイントとなる。これに対して、本実施例では、トルクアシストを行う際に、MG12の出力指令値を上限ガード値で制限することによって、必要以上に大出力でのトルクアシストを防止し、バッテリ23の電力を効率良く使用できる。つまり、ISGを搭載したシステムにおいて、効果的に燃費を向上させられる。
 更に、本実施例では、MG12の出力を制限することで、MG12の発熱量を低下させられる。そのため、制御システム1では、MG12の冷却性能を低下させてもMG12の過熱を防止できる。これにより、制御システム1では、MG12の冷却方式を水冷式から空冷式に変更し、冷却水の配管等を省略でき、低コスト化及び省スペース化できるという利点もある。
 また、本実施例では、運転者の車両操作状態(例えばアクセル開度又はアクセル開度の変化速度等)に基づいて、上限ガード値をベース値よりも高出力側(高出力値となるように)に補正するようにしている。これにより、本実施例では、運転者からの要求である車両操作状態に応じた上限ガード値に変更できる。具体的には、燃費向上効果を実現するための上限ガード値から運転者からの要求を実現するための上限ガード値へ変更できる。
 より具体的には、アクセル開度又はアクセル開度の変化速度が所定値a以上の場合には、アクセル開度又はアクセル開度の変化速度が大きいほど、上限ガード値をベース値よりも高出力側に補正するようにしている。つまり、本実施例では、アクセル開度又はアクセル開度の変化速度が大きいほど、運転者からの加速要求が強い(要求加速度が高い)と判断し、上限ガード値を高出力側に補正する。このようにすれば、運転者の要求加速度が高くなるほど、上限ガード値を高出力側に補正し、MG12の出力(トルクアシスト量)を大きくできる。これにより、制御システム1では、運転者からの加速要求に応じた加速性能を発揮でき、ドライバビリティを確保できる。
 尚、上限ガード値の補正は、これに限定されない。他の補正方法としては、例えば、運転者の車両操作状態として、運転者が選択した走行モード(例えばエコノミーモードやスポーツモード等)を用い、走行モードに応じて、上限ガード値を補正するようにしても良い。
 更に、本実施例では、バッテリ23のSOCが所定値b以上の場合には、バッテリ23のSOCが高いほど、上限ガード値をベース値よりも高出力側(高出力値となるように)に補正するようにしている。このようにすれば、バッテリ23のSOCが高いほど、上限ガード値を高出力側に補正し、MG12の出力(トルクアシスト量)を大きくできる。これにより、本実施例では、バッテリ23の放電量を適度に増加させ、バッテリ23の充電状態を適度に低下させられる。その結果、制御システム1では、次回の減速時に、回生発電によりバッテリ23に充電可能な電力量を十分に確保でき、減速時の車両の運動エネルギを有効利用できる。
 尚、上記実施例では、運転者の車両操作状態、バッテリ23のSOC、及びエンジン11の運転状態に応じて、上限ガード値を補正するようにしているが、これに限定されない。他の補正方法としては、例えば、運転者の車両操作状態のみに応じて、上限ガード値を補正するようにしても良い。或は、バッテリ23のSOC又はエンジン11の運転状態に応じて、上限ガード値を補正するようにしても良い。また、運転者の車両操作状態、バッテリ23のSOC、及びエンジン11の運転状態のうちの2つの情報に応じて、上限ガード値を補正するようにしても良い。更に、運転者の車両操作状態、バッテリ23のSOC、又はエンジン11の運転状態に応じて、上限ガード値を補正しない(上限ガード値を常にベース値に設定する)ようにしても良い。
 また、上記実施例では、MG12の出力指令値を上限ガード値で制限し、MG12の出力を制限するようにしているが、これに限定されない。他の補正方法としては、例えば、MG12の電流指令値やトルク指令値等の他の指令値を上限ガード値で制限し、MG12の出力を制限するようにしても良い。
 また、上記実施例において、ECU29が実行する機能の一部又は全部を、1つ或は複数のIC等のハードウェアによって実現しても良い。
 本開示の技術は、図1に示す構成のハイブリッド車に限定されず、車両の動力源として、エンジン及びMGを搭載した種々の構成のハイブリッド車に適用して実施できる。本開示の技術は、例えば、エンジンの動力を車輪に伝達する動力伝達系にMGを連結したハイブリッド車(例えばエンジンと変速機との間にMGを配置したハイブリッド車等)や、複数のMGを搭載したハイブリッド車に適用しても良い。
 11…エンジン、12…MG、29…ECU(設定部,制限部)

Claims (8)

  1.  車両の動力源となるエンジン(11)及びモータジェネレータ(12)を備え、前記エンジンの動力で走行するエンジン走行中に、前記モータジェネレータによるトルクアシストを行う、ハイブリッド車の制御装置であって、
     前記トルクアシストを行う際に、前記モータジェネレータの指令値を制限するための上限ガード値を、前記モータジェネレータの消費電力に対する軸出力の比率が所定値以上になるベース値に設定する設定部(29)と、
     前記トルクアシストを行う際に、前記モータジェネレータの前記指令値を前記上限ガード値で制限することによって、前記モータジェネレータの出力を制限する制限部(29)と
     を備える、ハイブリッド車の制御装置。
  2.  前記設定部は、少なくとも運転者の車両操作状態に基づいて、前記上限ガード値を前記ベース値よりも高出力側に補正する、請求項1に記載のハイブリッド車の制御装置。
  3.  前記設定部は、前記車両操作状態として、アクセル開度又は該アクセル開度の変化速度を用い、前記アクセル開度又は該アクセル開度の前記変化速度が大きいほど、前記上限ガード値を前記ベース値よりも高出力側に補正する、請求項2に記載のハイブリッド車の制御装置。
  4.  前記設定部は、前記モータジェネレータと電力を授受するバッテリ(23)の充電状態が高いほど、前記上限ガード値を前記ベース値よりも高出力側に補正する、請求項1乃至3のいずれか一項に記載のハイブリッド車の制御装置。
  5.  前記モータジェネレータは、前記エンジンのクランク軸に動力伝達機構(13,14,15)を介して連結されたスタータ兼用のモータジェネレータである、請求項1乃至4のいずれか一項に記載のハイブリッド車の制御装置。
  6.  車両の動力源となるエンジン(11)及びモータジェネレータ(12)と、
     トルクアシストを行う際に、前記モータジェネレータの指令値を制限するための上限ガード値を、前記モータジェネレータの消費電力に対する軸出力の比率が所定値以上になるベース値に設定する設定部(29)と、を備え、
     前記エンジンの動力で走行するエンジン走行中に、前記モータジェネレータによる前記トルクアシストを行う、ハイブリッド車に適用する制御装置であって、
     前記トルクアシストを行う際に、前記モータジェネレータの前記指令値を前記上限ガード値で制限することによって、前記モータジェネレータの出力を制限する制限部(29)を備える、ハイブリッド車の制御装置。
  7.  車両の動力源となるエンジン(11)及びモータジェネレータ(12)と、
     トルクアシストを行う際に、前記モータジェネレータの指令値を、当該指令値を制限するための上限ガード値で制限することによって、前記モータジェネレータの出力を制限する制限部(29)と、を備え、
     前記エンジンの動力で走行するエンジン走行中に、前記モータジェネレータによる前記トルクアシストを行う、ハイブリッド車に適用する制御装置であって、
     前記トルクアシストを行う際に、前記上限ガード値を、前記モータジェネレータの消費電力に対する軸出力の比率が所定値以上になるベース値に設定する設定部(29)を備える、ハイブリッド車の制御装置。
  8.  車両の動力源となるエンジン(11)及びモータジェネレータ(12)を備え、前記エンジンの動力で走行するエンジン走行中に、前記モータジェネレータによるトルクアシストを行う、ハイブリッド車の制御装置で実行される制御方法であって、
     前記トルクアシストを行う際に、前記モータジェネレータの指令値を制限するための上限ガード値を、前記モータジェネレータの消費電力に対する軸出力の比率が所定値以上になるベース値に設定するステップ(S106~S116)と、
     前記トルクアシストを行う際に、前記モータジェネレータの前記指令値を前記上限ガード値で制限することによって、前記モータジェネレータの出力を制限するステップ(S117)と
     を含む、ハイブリッド車の制御方法。
PCT/JP2016/080519 2015-10-16 2016-10-14 ハイブリッド車の制御装置及び制御方法 WO2017065265A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/766,731 US10889174B2 (en) 2015-10-16 2016-10-14 Control apparatus and control method for hybrid vehicle
DE112016004703.7T DE112016004703T5 (de) 2015-10-16 2016-10-14 Steuerungsgerät und Steuerungsverfahren für ein Hybridfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015204817A JP6409735B2 (ja) 2015-10-16 2015-10-16 ハイブリッド車の制御装置
JP2015-204817 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017065265A1 true WO2017065265A1 (ja) 2017-04-20

Family

ID=58517282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080519 WO2017065265A1 (ja) 2015-10-16 2016-10-14 ハイブリッド車の制御装置及び制御方法

Country Status (4)

Country Link
US (1) US10889174B2 (ja)
JP (1) JP6409735B2 (ja)
DE (1) DE112016004703T5 (ja)
WO (1) WO2017065265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370953B2 (ja) 2020-11-05 2023-10-30 株式会社豊田自動織機 ハイブリッド車両の制御システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255690A1 (ja) * 2019-06-21 2020-12-24 ジヤトコ株式会社 車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218251A (ja) * 2004-01-30 2005-08-11 Mitsubishi Motors Corp トルク制御装置
JP2006020423A (ja) * 2004-07-01 2006-01-19 Toyota Motor Corp 電動機を搭載した車両の制御装置
JP2013001158A (ja) * 2011-06-13 2013-01-07 Hino Motors Ltd ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP2013189135A (ja) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd 車両の駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454245B2 (ja) * 2000-10-26 2003-10-06 トヨタ自動車株式会社 車両の始動制御装置
JP2011166990A (ja) * 2010-02-12 2011-08-25 Toyota Motor Corp 電源システム
DE102010003758B4 (de) * 2010-04-08 2021-09-30 Robert Bosch Gmbh Verfahren zur Bestimmung eines Leistungsgrenzwertes für eine elektrische Maschine in einem Fahrzeug, Computerprogramm und Steuergerät zum Steuern einer elektrischen Maschine in einem Fahrzeug
JP2013189134A (ja) 2012-03-14 2013-09-26 Nissan Motor Co Ltd 車両の駆動装置
JP6119561B2 (ja) * 2013-11-01 2017-04-26 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
CA2935038C (en) * 2013-12-27 2020-07-14 Honda Motor Co., Ltd. Vehicle, and vehicle control method
US10000197B2 (en) * 2015-08-10 2018-06-19 Cummins Inc. Mild hybrid powertrain controls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218251A (ja) * 2004-01-30 2005-08-11 Mitsubishi Motors Corp トルク制御装置
JP2006020423A (ja) * 2004-07-01 2006-01-19 Toyota Motor Corp 電動機を搭載した車両の制御装置
JP2013001158A (ja) * 2011-06-13 2013-01-07 Hino Motors Ltd ハイブリッド自動車の制御装置、ハイブリッド自動車およびハイブリッド自動車の制御方法、並びにプログラム
JP2013189135A (ja) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd 車両の駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370953B2 (ja) 2020-11-05 2023-10-30 株式会社豊田自動織機 ハイブリッド車両の制御システム

Also Published As

Publication number Publication date
JP2017074911A (ja) 2017-04-20
US10889174B2 (en) 2021-01-12
US20180297462A1 (en) 2018-10-18
JP6409735B2 (ja) 2018-10-24
DE112016004703T5 (de) 2018-07-05

Similar Documents

Publication Publication Date Title
JP3817516B2 (ja) ハイブリッド車両の駆動制御装置
US10525968B2 (en) Method for controlling a drive device of a hybrid vehicle and hybrid vehicle
US8818595B2 (en) Controller for hybrid vehicle
JP5742949B2 (ja) 車両の駆動力制御装置
US8845481B2 (en) Method and apparatus for executing a transmission shift in a powertrain system including a torque machine and an engine
US20070118255A1 (en) Control device for motor-driven vehicle
KR101714206B1 (ko) 친환경 차량의 엔진 운전 제어 시스템 및 방법
JP2011239605A (ja) 車両の制御装置
US11465533B2 (en) Acceleration control system for an electric vehicle
JP2007230431A (ja) 車両の駆動制御装置
JP4240845B2 (ja) ハイブリッド車
JP4876054B2 (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
WO2017065265A1 (ja) ハイブリッド車の制御装置及び制御方法
US9643597B2 (en) Control apparatus for hybrid vehicle
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
JP5218161B2 (ja) ハイブリッド車両の制御装置
JP2009107554A (ja) 動力出力装置、それを備えた車両および動力出力装置の制御方法
JP6068842B2 (ja) ハイブリッド車両の制御装置及び制御方法
JP3966214B2 (ja) 車両制御装置
JP6634807B2 (ja) ハイブリッド車両の駆動制御装置
JP2019209822A (ja) ハイブリッド車両
JP6977320B2 (ja) 車両の制御装置
JP2013087648A (ja) エンジン始動システム
JP2019001302A (ja) 車両の駆動制御装置
JP2022044486A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766731

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004703

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855518

Country of ref document: EP

Kind code of ref document: A1