JP2007201018A - 窒化物半導体発光素子とその製造方法 - Google Patents

窒化物半導体発光素子とその製造方法 Download PDF

Info

Publication number
JP2007201018A
JP2007201018A JP2006015587A JP2006015587A JP2007201018A JP 2007201018 A JP2007201018 A JP 2007201018A JP 2006015587 A JP2006015587 A JP 2006015587A JP 2006015587 A JP2006015587 A JP 2006015587A JP 2007201018 A JP2007201018 A JP 2007201018A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
light emitting
crystal growth
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006015587A
Other languages
English (en)
Other versions
JP4802314B2 (ja
Inventor
Saburo Yamamoto
三郎 山本
Masahiro Araki
正浩 荒木
Kazuyuki Tadatomo
一行 只友
Katsuyuki Hoshino
勝之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Yamaguchi University NUC
Original Assignee
Sharp Corp
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Yamaguchi University NUC filed Critical Sharp Corp
Priority to JP2006015587A priority Critical patent/JP4802314B2/ja
Publication of JP2007201018A publication Critical patent/JP2007201018A/ja
Application granted granted Critical
Publication of JP4802314B2 publication Critical patent/JP4802314B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

【課題】種々の特性が改善された窒化物半導体発光ダイオードとそれを少ないプロセスで簡便に実現できる製造方法とを提供する。
【解決手段】窒化物半導体発光素子において、窒化物半導体積層構造(7−11)が支持基板(16)の一主面上に設けられており、この半導体積層構造は活性層(8)を含む複数の窒化物半導体層からなり、支持基板(16)の一主面に平行な半導体積層構造の表面に対して活性層(8)の端面が露出していることを特徴としている。
【選択図】図2

Description

本発明は発光ダイオード(LED)素子、レーザダイオード(LD)素子などの発光素子に関し、特に発光特性の改善された窒化物半導体発光素子とその製造方法に関するものである。
窒化物半導体(InxGayAl1-x-yN、x≧0、y≧0、x+y≦1)においては、その組成を調整することによって、バンドギャップが狭いものから広いものまでの種々の窒化物半導体結晶を成長させることができる。このような窒化物半導体を利用して半導体発光素子を作製する場合には、通常はサファイア、スピネル、SiCなどの異種基板上にMOCVD(有機金属気相堆積)法などを利用して複数の窒化物系半導体層が積層される。しかしながら、そのような異種基板上に結晶成長した窒化物半導体層中には、格子不整合に起因して109個/cm2もの貫通転位が存在する。これらの貫通転位は非発光センターになり、電流のリークパスの原因ともなる。
近年では、高出力の発光ダイオード(LED)、レーザダイオード(LD)などが実現されているが、さらにそれらの特性向上を図るためには転位密度の低減が望まれている。転位密度の低減を図る方法の一つとして、基板面上の選択成長を利用するラテラル(横方向)成長法がある。この方法は、基板面上に結晶成長を防止するマスクを部分的に設けて選択的結晶成長をさせることによって、マスク上面にラテラル結晶成長を行わせ、転位密度が低減された高品質の結晶領域を得る方法である(たとえば、特許文献1の特許第3139445号公報参照)。この方法は、LEO(lateral epitaxial overgrowth)法と呼ばれている。また、結晶成長防止用マスクを使用せずに、周期溝を形成した基板の溝上へラテラル成長させる例もある(たとえば、特許文献2の特許第3556916号公報参照)。この方法は、LEPS(lateral epitaxial patterned substrate)法と呼ばれている。これらのLEO法やLEPS法では、結晶層の成長中に発生する貫通転位のほとんどが結晶層の厚さ方向に伝播し、横方向には伝播しないことを利用している。
現在実用化されている窒化物発光ダイオードのほとんどはいわゆるC面窒化物発光ダイオードであって、六方晶系のサファイアのC面すなわち(0001)面またはそれに直交するA面すなわち(11−20)面上に平行に成長するC面を有する窒化物半導体層を利用して作製されている。
図10の模式的斜視図は、GaN結晶における主要な結晶学的方位を示している。GaN結晶のC面に平行な原子面としてはGa原子面とN原子面が交互に重なっている。そして、これらの原子間の電気陰性度の相違に起因して結晶内のc軸方向すなわち[0001]軸方向に自発分極が発生し、さらに、歪がかかった場合には圧電(ピエゾ)分極が重畳される。発光層として作用する(C面に平行な)量子井戸層内において、このように分極による電場が生じれば、電子と正孔が井戸層の両界面側に分離し、発光効率の低下を招く。
サファイア基礎基板のR面すなわち(01−12)面上にラテラル成長技術を利用して結晶成長させたGaN基板層のA面上にその無極性のA面に平行な活性層を含む窒化物発光ダイオードを試作した例(たとえば、特許文献2のUS2005/0214992A1参照)はあるが、このような窒化物発光ダイオードにおいても従来のC面窒化物発光ダイオードに比べて優れた特性は得られていない。この原因として、GaN基板層上のラテラル成長の起点となる非マスク領域、およびm軸方向すなわち[1−100]方向へのラテ
ラル成長部には高密度の貫通転位が存在するからであると考えられる。
他方、通常の発光ダイオードでは、光を発する活性層が複数の半導体層の積層構造内でその表面に平行に形成されているので、屈折率の低い空気中へはその積層構造の表面にほぼ直角な光のみが出射し、他のほとんどの光は全反射によって積層構造内部に閉じ込められる。このような問題を軽減して光取り出し効率の向上を図る工夫の一例として、光取り出し面をサファイア基板裏面として、その裏面を曲面に加工した発光ダイオードがある(特許文献4の特許第3362836号公報参照)。
特許第3139445号公報 特許第3556916号公報 US2005/0214992A1 特許第3362836号公報
従来のラテラル成長によって転位密度が低減された窒化物LEDの場合、周期的なストライプ状にラテラル成長した結晶の隣同士が合体して成長表面全体が平坦になった後に、量子井戸活性層などが形成されて積層されている。
図11は、前述のLEPS法によって転位密度が低減された窒化物LEDの断面構造を模式的に示している。この窒化物LEDにおいては、いわゆるサファイアC面基板100の上面に周期溝101が形成されており、その上にGaNバッファ層102、n型GaNコンタクト層103、n型GaNクラッド層104、InGaN量子井戸層105、p型AlGaN電子障壁層106、p型GaNクラッド層107、およびp+型GaNコンタクト層108が順次積層されている。そして、p+型GaNコンタクト層108上にはp型用電極(Ni/Auの積層など)が形成され、n型GaNコンタクト層103の部分的露出部上にはn型用電極(Ti/Al/Auの積層など)が形成されている。
しかし、従来のLEO法やLEPS法などによって転位密度の低減を図ったLEDにおいても、チップ全面の平均転位密度は107〜108/cm2程度でまだ高く、内部量子効率も十分ではない。これは、特に結晶成長防止用マスクのない窓領域上の成長層および隣り合うラテラル成長の合体部において転位密度が高く、これらの領域も発光領域に含まれるからである。
また、従来の窒化物半導体発光素子の活性層はC面で構成されているので、上述したように自発分極と圧電分極に起因して発光効率の向上には限界がある。
さらに、従来の窒化物半導体発光素子において光を発する活性層は半導体積層構造の表面に平行にその内部に存在するので、その積層構造の表面からの光取り出し効率が悪い。
さらに、サファイアなどの異種基板と窒化物半導体とはそれらの格子定数と熱膨張係数が互いに大きく異なる。したがって、結晶成長中の窒化物半導体層には圧縮歪が加わり、室温では異種基板とその上の半導体積層構造とを含むウエハが反りやすい。このことが発光素子における内部量子効率の低下の一原因となっており、ウエハの発光素子化プロセスを難しくしている。
さらに、発光素子チップのサファイア基板をパッケージに接着する場合、サファイアの熱伝導率が悪いので、活性層における発熱を十分放熱することができない。したがって、発光素子を高電流で発光させる場合に、光出力が熱飽和してしまう。
さらに、現在の窒化物発光ダイオードは、転位密度の低減、光取り出し効率の向上、内部歪の低減、放熱性向上などのために、様々な対策がなされており、このことが高出力発光ダイオードの製造工程を複雑にしている。
本発明は上述のような種々の課題の解決のために、少ないプロセスで簡便に実現できる新規な構造の発光ダイオードとその製造方法を提供することを目的としている。
本発明による窒化物半導体発光素子においては、窒化物半導体積層構造が支持基板の一主面上に設けられており、この半導体積層構造は活性層を含む複数の窒化物半導体層からなり、支持基板の一主面に平行な半導体積層構造の表面に対して活性層の端面が露出していることを特徴としている。
なお、活性層は紫外から赤色の波長帯域内の光を発することが可能な量子井戸層を含むことが好ましい。また、窒化物半導体積層構造は六方晶の結晶構造を有し、活性層は分極性のC面以外の面に平行な領域を含むことが好ましい。その活性層は六方晶構造のA面に平行な領域を含むことがより好ましい。さらに、活性層端部が露出した半導体積層構造の表面に反射防止膜が形成されていることが好ましい。
上述のような窒化物半導体発光素子を製造するための方法において、複数の窒化物半導体層を結晶成長させる際に結晶成長用基板が用いられ、この基板は窒化物半導体積層構造と異なる格子定数を有するサファイア、スピネル、または炭化ケイ素から形成され得る。この基板として、窒化物半導体も好ましく用いられ得る。
結晶成長用基板の一主面上には窒化物半導体層の結晶成長を防止するために周期的な結晶成長防止膜が形成されていることが好ましい。結晶成長用基板の一主面上には周期的に配置された複数の凹部が形成され、窒化物半導体層の結晶成長を防止するために凹部の底面と側面に結晶成長防止膜が形成されることも好ましい。
結晶成長用基板の一主面上の結晶成長防止膜間の周期的窓部から横方向へ窒化物半導体積層構造が結晶成長し、窒化物半導体積層構造内で転位密度が低減化された領域内の活性層の領域が発光領域として利用されることが好ましい。結晶成長用基板の一主面上に形成された窒化物半導体積層構造に含まれる活性層のうちで一主面に平行な領域を除去し、その一主面に垂直な領域のみを発光部として利用することがさらに好ましい。
周期的窓部から横方向へ成長する窒化物半導体積層構造が隣の窒化物半導体積層構造と合体する前に結晶成長を停止させ、互いに隣接する窒化物半導体積層構造が互いに独立していることが好ましい。互いに独立している窒化物半導体積層構造の側面に電流注入用の電極が形成されることが好ましい。結晶成長用基板の一主面上に形成された窒化物半導体積層構造の表面上に放熱性の支持基板を接着した後に、結晶成長用基板が除去されることが好ましい。その支持基板は窒化物からなることが好ましい。
上述のような窒化物半導体発光素子の複数個がアレイ状に配列されている窒化物半導体発光素子アレイチップを提供することができる。その場合に、ストライプ状の窒化物半導体発光素子が互いに平行に配列されてもよいし、長方形の窒化物半導体発光素子が互いに平行に2次元的に配列されてもよい。
上述のような窒化物半導体発光素子とその発光素子から発する紫外から青色までの波長範囲内の光を波長変換する蛍光体とを含み、全体として白色光を放射し得る白色発光装置を提供することができる。
以上のような本発明による窒化物半導体発光素子においては、低転位密度領域における非極性面での発光による内部量子効率の向上、および発光素子表面からの直角光出射による光取り出し効率の向上、すなわち外部量子効率の向上によって、低電流で大きな発光出力を得ることができる。また、本発明による窒化物半導体発光素子においては、素子内部の歪も緩和されているので、発光出力の劣化もない。さらに、半導体積層構造の支持基板がヒートシンクを兼ねているので、半導体発光素子の高出力動作時の熱飽和が少ない。
より具体的には、貫通転位が低減された領域に発光層を形成するので、非発光センターが少なく、電流リークも少ない。また、非極性のA面を発光層として使用するので、自発分極や圧電分極の影響がなく、内部量子効率の向上が実現できる。さらに、発光素子の表面に直角に発光層が形成されているので、光取り出し効率を大きくし得る。さらに、集積化された発光セグメントが互いに分離されてエピタキシャル成長させられているので、発光セグメント内の歪が開放され、半導体積層構造と結晶成長用基板を含むウエハの反りが生じず、その結晶成長用基板の分離が容易となり、各発光セグメントの光出力の劣化が少なくなるなどの利点が得られる。
さらに、本発明の半導体発光素子の応用として、本発明の半導体発光素子を白色用蛍光体の励起光源として使用すれば、100lm/W以上の発光効率が期待でき、照明用光源として好ましく利用することができる。
本発明では、前述のLEO法またはLEPS法によるラテラル成長領域における転位密度の低い部分の活性層のみを発光層として利用することによって、内部量子効率向上を図ることができる。
図1はLEO法によるラテラル成長層の様子を示す模式的断面図である。LEO法では、サファイアC面基板1にSiO2などの結晶成長防止膜2を形成し、周期的なストライプ状にそのSiO2を除去した窓3を形成する。図1(a)はストライプ窓3をサファイア基板1のa軸[11−20]方向に平行に形成した場合を示し、図1(b)はストライプ窓3をサファイア基板1のm軸[1−100]方向に平行に形成した場合を示している。
図1(a)の場合には、GaN成長層4のC面がサファイア基板1のC面に対して平行であるが90度回転し、GaN成長層4のm軸の[1−100]方向がストライプ窓3と平行になる。GaN層4の成長速度は、そのc軸の[0001]方向に平行な厚さ方向よりもa軸の[11−20]方向および[−1−120]方向に平行な横方向の方が大きい。そして、GaN成長層4は、そのC面とA面で囲まれた矩形状に成長する。このとき、ストライプ窓領域内の貫通転位5は、c軸方向に沿って上方へ伝播していき、a軸方向に沿う横方向には伝播しない。
図1(b)の場合には、GaN成長層4のC面がサファイア基板1のC面に対して平行であるが90度回転し、GaN成長層4のa軸の[11−20]方向がストライプ窓3と平行になる。GaN層4の成長速度は、そのc軸の[0001]方向に平行な厚さ方向よりもm軸の[10−10]方向および[−1010]方向に平行な横方向の方が小さい。したがって、基板1上に成長するGaN層4の断面形状は、[10−11]方向と[−101−1]方向に向かう2つの斜面による三角形状から、それらの斜面および基板に垂直なM面と平行なC面からなる形状へと変化していく。そして、ストライプ窓領域内の貫通転位5は、それらの一部がGaN層4のラテラル成長部へ向けて横方向へ折れ曲がるが、厚さ方向へ伝播する転位も多い。
本発明の窒化物半導体発光素子では、図1(a)の場合を利用し、貫通転位密度が105〜106/cm2に低減されたラテラル成長部に形成された半導体積層構造に含まれる活性層でのみ発光させる。すなわち、ラテラル成長部において基板面に垂直なA面に平行に形成された活性層を発光層として使用する。このA面に平行な活性層では自発分極や圧電分極が起こらないので、窒化物半導体発光素子の内部量子効率の向上が実現できる。
また、この場合に結晶成長用基板1を除去すれば、半導体積層構造の基板側表面に垂直に形成された活性層の端部が露出することになる。この場合、活性層に閉じ込められて導波されるほとんどの光が空気中に出射され得る。ところで、従来のように複数の発光ダイオードが形成されたウエハを劈開などによって分断してバー状にした端面発光型LEDを複数本並べる方法があるが、この場合には1パッケージ内に並べるバーの本数に制限があり、アセンブリ工程も煩雑である。本発明では、1チップ内に10本ないし50本の端面発光活性層をウエハプロセスにより形成することができる。また、半導体積層構造の結晶成長表面側に光反射膜を形成すれば、成長層内へ向かう光をすべて反射し、さらに基板を除去した光出射側表面に透過膜(反射防止膜)を形成することにより、ほとんどの発光を光出射側から空気中に取り出すことができる。
さらに、LEO法やLEPS法において、隣接したラテラル成長部が合体する前に結晶成長を停止することによって、半導体積層構造間に隙間を設けることができる。これによって、半導体積層構造にかかる歪を開放し、ウエハの反りの問題も解消することができる。
さらに、半導体積層構造の結晶成長表面に放熱性の支持基板を金属を介して接合した後、サファイア基板をレーザ照射法などにより分離し、その放熱性支持基板側をパッケージにマウントすることができる。これによって、半導体発光素子の活性層で発生した熱がパッケージ側へ効率良く放熱され、光出力の熱飽和問題を解消することができる。放熱性支持基板としては、高出力赤色半導体レーザのヒートシンク兼サブマウント材として使用されているAlNが適当である。なぜならば、AlNは高い熱伝導率を有し、その熱膨張率がGaNに最も近いからである。
[実施例1]
図2は、本発明の実施例1による発光ダイオードを示す模式的断面図である。この発光ダイオードは、n型GaNクラッド層7、半導体積層構造の結晶成長表面に垂直なInGaN量子井戸活性層8、半導体積層構造の表面に平行な量子井戸活性層8a、p型AlGaN電子障壁層9、p型GaNクラッド層10、p型GaNコンタクト層11、金属光反射層12、各発光セグメント間の隙間13、発光セグメント14、接着材料(Au−Snなど)15、両面がメタライズされた放熱性支持基板(AlN)16、n型用電極(Ti/Al/Au)17、p型用電極(Ni/Au)18、および光透過膜(反射防止膜)19を含んでいる。なお、図2中の矢印20はp型用電極18からn型用電極17へ流れる電流を表し、矢印21は半導体積層構造の結晶成長表面に垂直な量子井戸活性層8から出射される光を表している。矢印20で示されているように、電流は半導体積層構造の結晶成長表面近傍を横方向に流れ、その表面に平行な量子井戸活性層8a内へはほとんど電流が流れない。
図3の模式的断面図においては、図1の発光ダイオードの製造プロセスが図解されている。
まず、図3(a)において、サファイアC面基板1の表面上に、結晶成長防止膜としてたとえば厚さ120nmのSiO2膜をプラズマCVD法によって形成する。このSiO2
膜上にレジストを塗布して、フォトリソグラフィによって周期的ストライプ状にエッチングして窓部3を形成する。そのストライプ方向は、サファイア基板のa軸の[11−20]方向に平行である。たとえば、SiO2ストライプ2の幅は10μmで、窓部3の幅は5μmとし得る。その場合、ストライプの1周期は15μmである。
図3(b)においては、MOCVD法によって、アンドープGaNバッファ層6、n型GaAsクラッド層7、量子井戸活性層8、8a、p型AlGaN電子障壁層9、p型GaNクラッド層10、およびキャリア濃度の大きいp+型GaNコンタクト層11を結晶成長させる。こうして得られる半導体積層構造の全厚は、たとえば4.5μmである。量子井戸活性層8、8aは、アンドープInGaN井戸層とアンドープGaN障壁層を交互に積層してなる多重量子井戸(MQW)である。InGaN井戸層のIn組成比は、発光波長ピークが405nmになるように設定され得る。
隣り合う半導体積層構造間には、隙間13が残される。すなわち、LEO法の場合、結晶成長防止膜2上ではラテラル成長層の端面がやや傾いて成長するので、隣り合う半導体積層構造の隣接部では斜めの隙間13が生じる。この隙間13はサファイア基板とGaN系半導体積層構造との間における格子定数と熱膨張係数の違いに基づく歪を緩和する役目を果たし得るので、結晶成長後にサファイア基板とGaN系半導体積層構造を含むウエハの反りはほとんど生じない。前述したように、GaN系半導体積層構造のC面は、サファイア基板C面に対して平行であるが90度回転しているので、半導体積層構造のストライプ方向はサファイア基板のa軸方向から半導体積層構造のm軸方向へ変換されている。したがって、半導体積層構造のラテラル結晶成長の端面はA面となる。半導体積層構造の結晶成長表面には、金属光反射層12として、Agを蒸着し得る。
図3(c)では、両面がメタライズされたAlN支持基板16と半導体積層構造上の金属光反射層12とをAu−Sn接着材12を介して反りが生じないように均等な圧力で熱圧着する。このとき、隣接する半導体積層構造間の隙間部13でクラックが生じても問題にならない。なお、LEDペレット化が容易になるように、AlN支持基板の裏面がLEDペレットの寸法に合わせてブレードでハーフカットされたものを用いることができる。
図3(d)においては、白抜きの太い矢印で表されたKrFエキシマレーザ光(波長248.5nm)を線状断面のビームに整形して、サファイア基板1の裏面から全面をスキャンする。そうすれば、サファイア基板と半導体積層構造との境界において窒化物半導体が分解し、サファイア基板1が分離できる。このとき、ウエハに反りがないので、レーザ光の焦点ずれが生ぜず、サファイア基板1を全面で確実に分離することができる。
図3(e)では、アンドープGaNバッファ層6をエッチングで除去し、n型用電極17としてTi/Al/Auの積層を形成する。そして、表面をリンスエッチングすることによって、活性層8やp+型GaN層11の端部を確実に露出させる。また、p+型GaN層11の端部と隙間13にp型用電極18としてNi/Auの積層を形成する。最後に、発光波長λ(405nm)に対してλ/4の厚さのAl23光透過膜19を形成する。
図4は、本実施例1におけるLEDペレットの電極側パターンの一例を模式的な平面図で示している。この電極側パターンには、n型用電極ストライプ20、p型用電極ストライプ21、n型用電極用ボンディングパッド22、およびp型用電極用ボンディングパッド23が含まれる。ペレットの寸法形状を450μm角とした場合、ストライプのピッチは15μmであるから、電極ストライプはn型用電極20とp型用電極21はそれぞれ30本ずつとなる。また、一対のn型用とp型用の電極あたりに活性層のストライプ状端部8が2本存在するので、LEDペレットから出射される光のストライプは60本となる。
得られら半導体積層構造の結晶性を評価するためにCL(カソードルミネッセンス)測定を行ったところ、暗点密度は窓部3の上方領域で108〜109/cm2であり、ラテラル成長部で105〜106/cm2であった。そして、ラテラル成長部におけるCL強度は、窓部3の上方領域に比べて約100倍であった。
また、本実施例1による窒化物半導体LEDの発光特性を測定したところ、405nmのピーク波長、70%の内部量子効率、および90%の光取り出し効率が得られた。さらに、本実施例1による窒化物半導体LEDの光出力は約28mW(20mA)であり、従来のLEDに比べて大幅な出力向上を実現し得る。
[実施例2]
図5は、本発明の実施例2による発光ダイオードを示す模式的断面図である。この発光ダイオードは、n型GaNクラッド層47、半導体積層構造の表面に垂直なInGaN量子井戸活性層48、p型AlGaN電子障壁層49、p型GaNクラッド層50、p+型GaNコンタクト層51、ラテラル成長部52、各発光セグメント間の隙間53、発光セグメント54、接着材料(Au−Snなど)55、両面がメタライズされた放熱性導電支持基板(Si)56、n型用電極(Ti/Al/Au)57、p型用電極(Ni/Au)58、および光透過膜59を含んでいる。また、図5においては、電流をブロックするためのSiO2膜60が設けられており、矢印61はp型用電極58からn型用電極57へ流れる電流を表し、矢印62は半導体積層構造の結晶成長表面に垂直な量子井戸活性層48から出射される光を表している。なお、半導体積層構造の結晶成長表面に平行な量子井戸活性層はエッチング除去されている。
図6の模式的断面図においては、図5の発光ダイオードの製造プロセスが図解されている。
まず、図6(a)において、サファイアC面基板1の表面にレジストを塗布し、フォトリソグラフィおよびRIE(反応性イオンエッチング)技術によって、周期的ストライプ状の溝部62を形成する。このストライプ方向は、サファイア基板のa軸の[11−20]方向に平行である。たとえば、溝部62の幅は15μmで、それらの溝間の凸部の幅は5μmとし得る。この場合、ストライプの1周期は20μmである。なお、溝の深さは、たとえば1.5μmとし得る。
図6(b)では、溝部62およびそれらの溝間の凸部を覆うように、たとえば厚さ120nmのSiO2膜がプラズマCVD法によって形成される。この上にレジストを塗布して、フォトリソグラフィによって凸部上のSiO2膜をエッチング除去する。すなわち、溝部62の底面と側面のみに結晶成長防止膜63としてのSiO2膜を残す。
図6(c)においては、MOCVD法によって、n型GaNバッファ層46、n型GaAsクラッド層47、量子井戸活性層48、48a、p型AlGaN電子障壁層49、p型GaNクラッド層50、およびキャリア濃度の大きいp+型GaNコンタクト層51を結晶成長させる。こうして得られる半導体積層構造の全厚は、たとえば4.5μmである。量子井戸活性層48、48aは、アンドープInGaN井戸層とアンドープGaN障壁層とを交互に積層してなる多重量子井戸(MQW)である。InGaN井戸層のIn組成比は、発光波長ピークが405nmになるように設定し得る。半導体積層構造は、溝部62上ではラテラル成長する。隣り合うラテラル成長部52が互いに接触する前に、それらの結晶成長を停止させる。溝部62の底面と側面に形成された結晶成長防止膜63上には窒化物半導体層の結晶成長が全く起こらず、半導体積層構造のオーバハング状の下面では原料ガスの回り込みが少ないので、結晶成長がほとんど起こらない。
本実施形態2の場合には、ラテラル成長の側面において傾きが生ぜず、半導体積層構造の表面に垂直なA面ファセットが形成される。隣接するラテラル成長部の隙間53の幅は、たとえば2〜5μmに設定し得る。この隙間53はサファイア基板1とGaN系半導体積層構造との間における格子定数と熱膨張係数の違いに基づく歪を緩和する役目を果たし、結晶成長後のウエハの反りはほとんど生じない。前述したように、GaN系半導体積層構造のC面はサファイア基板のC面に対して平行であるが90度回転しているので、半導体積層構造のストライプ方向はサファイア基板のa軸から半導体積層構造のm軸へ変換される。したがって、ラテラル成長の側面はA面となる。
図6(d)では、フォトリソグラフィ技術によって、半導体積層構造ストライプの中央部において結晶成長表面から活性層48aまでエッチング除去して凹部64を形成し、その底面と側面に電流ブロック層60としてSiO2膜を形成する。
図6(e)では、ウエハ表面にp型用電極58として、Ni/Auの積層を蒸着する。このとき、蒸着材料がラテラル成長側面へも廻りこみ、そこにもp型用電極58が形成される。
図6(f)においては、両面がメタライズされた導電性Si支持基板65と半導体積層構造とをAu−Sn半田材66を介して反りが生じないように均等な圧力で熱圧着する。Si支持基板65としては、LEDペレット化が容易になるように、裏面をLEDペレットの寸法に合わせてブレードでハーフカットされたものを用いることができる。そして、矢印67で表されたKrFエキシマレーザ光(波長248.5nm)を線状断面のビームに整形して、サファイア基板1の裏面から全面をスキャンする。そうすれば、サファイア基板と半導体積層構造との境界において窒化物半導体が分解し、サファイア基板1が分離できる。このとき、ウエハに反りがないので、レーザ光の焦点ずれが生ぜず、サファイア基板1を全面で確実に分離することができる。さらに、サファイア基板1と半導体積層構造との接触面積が少ないので、それらの分離は容易である。
図6(g)では、半導体積層構造の下面をリンスエッチングすることによって、活性層48端部を確実に露出させる。その後、n型GaNバッファ層46上に型用電極57としてTi/Al/Auを積層する。最後に、発光波長λ(405nm)に対してλ/4の厚さのAl23光透過膜59が形成される。
図7は、本実施例2によるLEDペレットの電極側パターンの一例を示す模式的平面図である。この電極側パターンには、n型用電極ストライプ68およびn型用電極用ボンディングパッド69が含まれる。LEDペレットの寸法形状を460μm角とした場合、ストライプのピッチは20μmであるから、電極ストライプは23本となる。また、1本の電極ストライプあたりに2本のストライプ状活性層端部が存在するので、LEDペレットから出射される光のストライプ70は46本となる。
得られた半導体積層構造の結晶性を評価するために、CL(カソードルミネッセンス)測定を行ったところ、暗点密度は窓部領域の上方で108〜109/cm2であり、ラテラル成長部で105〜106/cm2であった。そして、ラテラル成長部におけるCL強度は、窓部領域の上方に比べて約100倍であった。
また、本実施例2の窒化物半導体LEDの発光特性を測定したところ、405nmのピーク波長、80%の内部量子効率、および90%の光取り出し効率が得られた。さらに、本実施例2による窒化物半導体LEDの光出力は約40mW(20mA)であり、従来のLEDに比べて大幅な出力向上を実現し得る。
[実施例3]
実施例1および実施例2では、各発光セグメントが細長いストライプ構造として形成されているので、各発光セグメントはその作製過程においてサファイア基板から受ける圧縮歪がストライプ方向に加わる。係る観点から、本発明による実施例3は、上述の実施例2の一部変更に相当している。すなわち、本実施例3では、半導体積層構造ストライプ中に周期的な分断部を設けることによって、発光ダイオードの製造過程におけるストライプ方向の圧縮歪をも開放する。したがって、本実施例3による発光ダイオードはストライプ方向に直交する断面において実施例2の場合と同様の構造を有しており、その断面構造として図5と図6を参照することができる。これらの図をも考慮しつつ、本実施例3による製造プロセスが、図8の平面図をも参照して、以下において説明される。
まず、図8(a)において、フォトリソグラフ技術とエッチング技術を利用して、サファイアC面基板上に40μmの長辺と5μmの短辺を有する長方形状の凸部81の複数が、2次元的に周期配列されて形成される。凸部81の長辺はm軸に直交しており、そのような長辺の複数がm軸方向に沿ってアライメント(整列)される。凸部81の短辺はa軸に直交しており、そのような短辺の複数がa軸方向にアライメントされる。これらの凸部81以外で縦横に交わる凹部領域の底面と側面に、結晶成長防止膜としてSiO2膜80を形成する。a軸方向に沿った凹部の幅はたとえば15μmであり、m軸方向に沿った凹部の幅はたとえば3μmである。
図8(b)において、MOCVD法によって実施例2と同様のGaN系半導体積層構造をエピタキシャル成長させる。GaN系半導体積層構造のC面はサファイア基板のC面に対して平行であるが90度回転するので、サファイア基板のa軸に対して半導体積層構造のm軸が対応し、サファイア基板のm軸に対して半導体積層構造のa軸が対応する。したがって、長方形半導体積層構造82のラテラル成長の側面は、その長辺がA面となって短辺がM面となる。ラテラル成長速度は、半導体積層構造のm軸方向では非常に遅くてa軸方向では速い。本実施例3において、m軸方向へ1μmのラテラル成長が生じさせた場合に、a軸方向へ6μmのラテラル成長が生じた。この場合、隣り合う半導体積層構造間の隙間83は対向する短辺間では1μmであり、対向する長辺間では3μmである。
図8(c)においては、実施例2の場合と同様に(図6(f)参照)、半導体積層構造上のp型用電極へSi支持基板を接合した後、サファイア基板を分離する。実施例2に比べて、本実施例3ではサファイア基板と半導体積層構造との接触面積がさらに少なくなっているので、両者を含むウエハの反りもさらに小さくて、両者の分離がさらに容易となる。
サファイア基板を分離した後に、半導体積層構造の側面を約1μm厚さだけエッチング除去する。このとき、半導体積層構造の短辺側におけるラテラル成長部のすべてが除去され、長辺側ではp型GaNコンタクト層の途中までエッチングされる。半導体積層構造の下面84側(半導体積層構造がサファイア基板に接していた側)から、隙間83に絶縁性のフォトレジスト85を充填してベーキングにより硬化させる。その後、半導体積層構造の表面に付着した不要なフォトレジストは除去される。
図8(d)において、n型用電極ストライプ86を形成する。この際、発光セグメント間の隙間はレジストで埋められているので、n型用電極86は分断されることなく形成することができる。
本実施例3の窒化物半導体LEDの発光特性を測定しところ、405nmのピーク波長、85%の内部量子効率、および90%の光取り出し効率が得られた。さらに、本実施例3による窒化物半導体LEDの光出力は約45mW(20mA)であり、従来のLEDに
比べて大幅な出力向上を実現し得る。
図9のグラフは、実施例1〜3のLEDにおける光出力−電流特性の測定例を示している。すなわち、このグラフの横軸は注入電流(mA)を表し、縦軸は光出力(mW)を表している。
なお、以上の実施例においては紫外光を発する窒化物半導体発光素子が例示されたが、本発明においては、窒化物半導体の組成を調整することによって、紫外から赤色までの任意の波長の光を発する窒化物半導体発光素子を作製し得ることは言うまでもない。また、以上の実施例において結晶成長用基板としてサファイアを用いる例が説明されたが、スピネル、炭化ケイ素、または窒化物半導体などの基板を用いることもできる。また、上述のような窒化物半導体発光素子とその発光素子から発する紫外から青色までの波長範囲内の光を波長変換する蛍光体とを組み合わせることによって、全体として白色光を放射し得る白色発光装置を提供することができる。
以上のように、本発明によれば、種々の特性が改善された窒化物半導体発光素子を簡便に製造して提供することができる。
サファイア基板上における窒化物半導体層のラテラル成長を図解する模式的断面図である。 本発明の一実施例による発光ダイオードを示す模式的断面図である。 図2の発光ダイオードの製造プロセスを図解する模式的断面図である。 図2のLEDペレットにおける電極側パターンの一例を示す模式的平面図である。 本発明の他の実施例による発光ダイオードを示す模式的断面図である。 図5の発光ダイオードの製造プロセスを図解する模式的断面図である。 図5のLEDペレットにおける電極側パターンの一例を示す模式的平面図である。 本発明のさらに他の実施例による発光ダイオードの製造プロセスを図解する模式的平面図である。 本発明の種々の実施例による発光ダイオードにおける光出力−電流特性の測定例を示すグラフである。 六方晶系単位格子の結晶学的方位を示す模式的斜視図である。 従来の窒化物半導体発光ダイオードペレットを示す模式的断面図である。
符号の説明
1 サファイアC面基板、2、63 結晶成長防止膜、3 窓部、4 窒化物半導体成長層、5 貫通転位、6 GaNバッファ層、7、47 n型GaNクラッド層、8、48 表面に直角なInGaN量子井戸活性層、8a、48a 表面に平行な量子井戸活性層、9、49 p型AlGaN電子障壁層、10、50 p型GaNクラッド層、11、51 p+型GaNコンタクト層、12 金属光反射層、13、53 隣接する半導体積層構造間の隙間、14、54 発光セグメント、15、55、66 接着材(Au−Sn)、16 両面がメタライズされたAlN支持基板、17、57 n型用電極、18、58 p型用電極、19、59 光透過膜(反射防止膜)、20、68 n型用電極ストライプ、21 p型用電極ストライプ、22、69 n型用電極用ボンディングパッド、23 p型用電極用ボンディングパッド、52 ラテラル成長部、56 両面がメタライズされた放熱性導電支持基板(Si)、60 電流をブロックするためのSiO2膜、61
p型用電極からn型用電極へ流れる電流、62 成長表面に直角な量子井戸活性層から
出射される光、64 凹部、65 両面がメタライズされた導電性Si支持基板、67 エキシマレーザ光、70 端面発光ストライプ、80 成長防止膜としてのSiO2膜、81 凸部、82 長方形発光セグメント、83 半導体積層構造間の隙間、84 半導体積層構造の下面、85 フォトレジスト、86 n型用電極ストライプ、100 サファイア基板、101 周期溝、102 GaNバッファ層、103 n型GaNコンタクト層、104 n型GaNクラッド層、105 InGaN量子井戸層、106 p型AlGaN電子障壁層、107 p型GaNクラッド層、108 p+型GaNコンタクト層、109 p型用電極、110 n型用電極。

Claims (19)

  1. 窒化物半導体積層構造が支持基板の一主面上に設けられており、
    前記半導体積層構造は活性層を含む複数の窒化物半導体層からなり、
    前記支持基板の前記一主面に平行な前記半導体積層構造の表面に対して前記活性層の端面が露出していることを特徴とする窒化物半導体発光素子。
  2. 前記活性層は紫外から赤色の波長帯域内の光を発することが可能な量子井戸層を含むことを特徴とする請求項1に記載の窒化物半導体発光素子
  3. 前記窒化物半導体積層構造は六方晶の結晶構造を有し、前記活性層は分極性のC面以外の面に平行な領域を含むことを特徴とする請求項1または2に記載の窒化物半導体発光素子。
  4. 前記活性層は前記六方晶構造のA面に平行な領域を含むことを特徴とする請求項3に記載の窒化物半導体発光素子。
  5. 前記活性層端部が露出した前記半導体積層構造の表面に反射防止膜が形成されていることを特徴とする請求項1から4のいずれかに記載の窒化物半導体発光素子。
  6. 請求項1から5のいずれかの窒化物半導体発光素子を製造するための方法であって、前記複数の窒化物半導体層を結晶成長させる際に結晶成長用基板が用いられ、この基板は前記窒化物半導体積層構造と異なる格子定数を有するサファイア、スピネル、または炭化ケイ素からなることを特徴とする窒化物半導体発光素子の製造方法。
  7. 請求項1から5のいずれかの窒化物半導体発光素子を製造するための方法であって、前記複数の窒化物半導体層を結晶成長させる際に結晶成長用基板が用いられ、この基板は窒化物半導体からなることを特徴とする窒化物半導体発光素子の製造方法。
  8. 前記結晶成長用基板の一主面上には前記窒化物半導体層の結晶成長を防止するために周期的な結晶成長防止膜が形成されていることを特徴とする請求項6または7に記載の窒化物半導体発光素子の製造方法。
  9. 前記結晶成長用基板の一主面上には周期的に配置された複数の凹部が形成されており、前記窒化物半導体層の結晶成長を防止するために前記凹部の底面と側面に結晶成長防止膜が形成されていることを特徴とする請求項6または7に記載の窒化物半導体発光素子の製造方法。
  10. 前記結晶成長用基板の前記一主面上の前記結晶成長防止膜間の周期的窓部から横方向へ前記窒化物半導体積層構造が結晶成長し、前記窒化物半導体積層構造内で転位密度が低減化された領域内の前記活性層の領域が発光領域として利用されることを特徴とする請求項8または9に記載の窒化物半導体発光素子の製造方法。
  11. 前記結晶成長用基板の前記一主面上に形成された窒化物半導体積層構造に含まれる前記活性層のうちで前記一主面に平行な領域を除去し、前記一主面に垂直な領域のみを発光部として利用することを特徴とする請求項10に記載の窒化物半導体発光素子の製造方法。
  12. 前記周期的窓部から横方向へ成長する前記窒化物半導体積層構造が隣の前記窒化物半導体積層構造と合体する前に結晶成長を停止させ、互いに隣接する前記窒化物半導体積層構造が互いに独立していることを特徴とする請求項10または11に記載の窒化物半導体発
    光素子の製造方法。
  13. 前記互いに独立している前記窒化物半導体積層構造の側面に電流注入用の電極が形成されることを特徴とする請求項12に記載の窒化物半導体発光素子の製造方法。
  14. 前記結晶成長用基板の前記一主面上に形成された前記窒化物半導体積層構造の表面上に放熱性の前記支持基板を接着した後に、前記結晶成長用基板が除去されることを特徴とする請求項6から13のいずれかに記載の窒化物半導体発光素子の製造方法。
  15. 前記支持基板は窒化物からなることを特徴とする請求項14に記載の窒化物半導体発光素子の製造方法。
  16. 請求項1から5のいずれかの窒化物半導体発光素子の複数個がアレイ状に配列されていることを特徴とする窒化物半導体発光素子アレイチップ。
  17. ストライプ状の窒化物半導体発光素子が互いに平行に配列されていることを特徴とする請求項16に記載の窒化物半導体発光素子アレイチップ。
  18. 長方形の窒化物半導体発光素子が互いに平行に2次元的に配列されていることを特徴とする請求項16に記載の窒化物半導体発光素子アレイチップ。
  19. 請求項1から5のいずれかの窒化物半導体発光素子とその発光素子から発する紫外から青色までの波長範囲内の光を波長変換する蛍光体とを含み、全体として白色光を放射し得ることを特徴とする白色発光装置。
JP2006015587A 2006-01-24 2006-01-24 窒化物半導体発光素子とその製造方法 Expired - Fee Related JP4802314B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015587A JP4802314B2 (ja) 2006-01-24 2006-01-24 窒化物半導体発光素子とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015587A JP4802314B2 (ja) 2006-01-24 2006-01-24 窒化物半導体発光素子とその製造方法

Publications (2)

Publication Number Publication Date
JP2007201018A true JP2007201018A (ja) 2007-08-09
JP4802314B2 JP4802314B2 (ja) 2011-10-26

Family

ID=38455325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015587A Expired - Fee Related JP4802314B2 (ja) 2006-01-24 2006-01-24 窒化物半導体発光素子とその製造方法

Country Status (1)

Country Link
JP (1) JP4802314B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142513A (ja) * 2011-01-06 2012-07-26 Nichia Chem Ind Ltd 半導体発光素子の製造方法
JP2012522402A (ja) * 2009-04-02 2012-09-20 台湾積體電路製造股▲ふん▼有限公司 結晶物質の非極性面から形成される装置とその製作方法
KR101743026B1 (ko) * 2016-04-26 2017-06-15 광주과학기술원 자외선 발광 다이오드 및 이의 제조방법
JP2017152665A (ja) * 2016-02-25 2017-08-31 日本碍子株式会社 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法
CN109979925A (zh) * 2012-12-06 2019-07-05 首尔伟傲世有限公司 发光二极管
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936472A (ja) * 1995-07-14 1997-02-07 Hitachi Ltd 半導体レ−ザ素子
WO1997028390A1 (en) * 1996-02-02 1997-08-07 ABB Fläkt Oy Flow rate control element for ducts
JPH11213840A (ja) * 1998-01-26 1999-08-06 Hitachi Ltd 電磁操作式開閉器
JP2001308458A (ja) * 2000-04-27 2001-11-02 Sony Corp 半導体発光素子およびその製造方法ならびに半導体装置およびその製造方法
JP2003218390A (ja) * 2002-01-18 2003-07-31 Sony Corp 半導体発光素子及びその製造方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936472A (ja) * 1995-07-14 1997-02-07 Hitachi Ltd 半導体レ−ザ素子
WO1997028390A1 (en) * 1996-02-02 1997-08-07 ABB Fläkt Oy Flow rate control element for ducts
JPH11213840A (ja) * 1998-01-26 1999-08-06 Hitachi Ltd 電磁操作式開閉器
JP2001308458A (ja) * 2000-04-27 2001-11-02 Sony Corp 半導体発光素子およびその製造方法ならびに半導体装置およびその製造方法
JP2003282942A (ja) * 2001-08-22 2003-10-03 Sony Corp 窒化物半導体素子及び窒化物半導体素子の製造方法
JP2003218390A (ja) * 2002-01-18 2003-07-31 Sony Corp 半導体発光素子及びその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522402A (ja) * 2009-04-02 2012-09-20 台湾積體電路製造股▲ふん▼有限公司 結晶物質の非極性面から形成される装置とその製作方法
US8629446B2 (en) 2009-04-02 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
KR101450956B1 (ko) * 2009-04-02 2014-10-15 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 결정질 재료의 비극성 평면으로부터 형성된 소자 및 이의 제조 방법
US9299562B2 (en) 2009-04-02 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US9576951B2 (en) 2009-04-02 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
JP2012142513A (ja) * 2011-01-06 2012-07-26 Nichia Chem Ind Ltd 半導体発光素子の製造方法
CN109979925A (zh) * 2012-12-06 2019-07-05 首尔伟傲世有限公司 发光二极管
CN109979925B (zh) * 2012-12-06 2024-03-01 首尔伟傲世有限公司 发光二极管
JP2017152665A (ja) * 2016-02-25 2017-08-31 日本碍子株式会社 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
KR101743026B1 (ko) * 2016-04-26 2017-06-15 광주과학기술원 자외선 발광 다이오드 및 이의 제조방법
US10177284B2 (en) 2016-04-26 2019-01-08 Gwangju Institute Of Science And Technology Ultraviolet light emitting diode and method of manufacturing the same

Also Published As

Publication number Publication date
JP4802314B2 (ja) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4572270B2 (ja) 窒化物半導体素子およびその製造方法
JP5014967B2 (ja) 発光素子及び発光素子の製造方法
US8750343B2 (en) Nitride-based semiconductor light-emitting device, nitride-based semiconductor laser device, nitride-based semiconductor light-emitting diode, method of manufacturing the same, and method of forming nitride-based semiconductor layer
JP4169821B2 (ja) 発光ダイオード
KR100709058B1 (ko) 자외선 발광장치
US20100219419A1 (en) Semiconductor element and method for manufacturing the same
JP4626306B2 (ja) 窒化物半導体発光素子およびその製造方法
JP2009283912A (ja) 窒化物系半導体素子およびその製造方法
JP2009081374A (ja) 半導体発光素子
JP2003332618A (ja) 半導体発光素子
JPH10321910A (ja) 半導体発光素子
JP2006216772A (ja) 光集積型半導体発光素子
JP4802314B2 (ja) 窒化物半導体発光素子とその製造方法
US7885304B2 (en) Nitride-based semiconductor laser device and method of manufacturing the same
JPWO2009057254A1 (ja) 半導体レーザ装置
JP2002344089A (ja) 窒化物系半導体発光素子およびその製造方法
JP2007036174A (ja) 窒化ガリウム系発光ダイオード
JP4493041B2 (ja) 窒化物半導体発光素子
JP4802315B2 (ja) 窒化物半導体発光素子とその製造方法
US7876798B2 (en) Nitride semiconductor laser device
JP4097343B2 (ja) 窒化物半導体レーザ素子の製造方法
JP2007201020A (ja) 窒化物系半導体発光素子とその製造方法
JPH11163402A (ja) GaN系半導体発光素子
JP2008118048A (ja) GaN系半導体発光素子
KR20150015760A (ko) 발광 소자 제조용 템플릿 및 자외선 발광소자 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4802314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees