JP2007194336A - 半導体ウェーハの製造方法 - Google Patents

半導体ウェーハの製造方法 Download PDF

Info

Publication number
JP2007194336A
JP2007194336A JP2006009881A JP2006009881A JP2007194336A JP 2007194336 A JP2007194336 A JP 2007194336A JP 2006009881 A JP2006009881 A JP 2006009881A JP 2006009881 A JP2006009881 A JP 2006009881A JP 2007194336 A JP2007194336 A JP 2007194336A
Authority
JP
Japan
Prior art keywords
layer
sige layer
heat treatment
semiconductor wafer
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006009881A
Other languages
English (en)
Inventor
Koji Matsumoto
光二 松本
Tomoyuki Hora
智之 洞
Akihiko Endo
昭彦 遠藤
Etsuro Morita
悦郎 森田
Masaharu Ninomiya
正晴 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006009881A priority Critical patent/JP2007194336A/ja
Priority to US11/649,943 priority patent/US8110486B2/en
Publication of JP2007194336A publication Critical patent/JP2007194336A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】この発明の目的は、SOIウェーハ内の絶縁層上に、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層を形成することができる、半導体ウェーハの製造方法を提供する。
【解決手段】SOIウェーハ4内の絶縁層2上に、格子緩和または一部格子緩和した歪緩和SiGe層5を形成する工程を有する半導体ウェーハの製造方法であって、前記歪緩和SiGe層5を形成する工程が、SOI層3上に、SiGe層6の少なくとも上層側部分7を、その表面7aへ向かって漸減するGe濃度勾配で形成した後、酸化雰囲気にて熱処理を行うことを特徴とする。
【選択図】図1

Description

本発明は、SOIウェーハ内の絶縁層上に、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層を形成することができる、半導体ウェーハの製造方法に関するものである。
シリコンMOSデバイスは、スケーリング則に従った微細化や動作電圧の低減を行う事により、高速化と低消費電力化を両立してきた。しかし、ゲート長が100nm以下の領域となると、上記の両立が困難となりつつある。この為に、SOI基板及び歪シリコンの導入が検討され、特にSOI基板上に歪シリコンを導入した基板が究極の基板と考えられ、研究が進められている。
本基板を実用化するには、浮遊容量の影響を抑えるといったSOI基板構造の効果を発揮するために、埋め込み酸化膜からチャネル層である歪シリコン層までの距離を極力抑えることが必要である。そのためにはSOI構造の埋め込み酸化膜直上に歪Si層が直接堆積されることがもっとも望ましいが、現実には歪緩和したSiGe層を中間層として用いる事が一般的である。つまり歪シリコンSOI基板の優位性を完全に発揮するには、上述した埋め込み酸化膜からチャネル層である歪シリコン層までの距離を極力抑えるとともに、中間層であるSiGe層を完全に歪緩和させる必要がある。
歪み緩和したSiGe層を形成するための第1の方法としては、SOI基板とSiGeエピ技術との組み合わせによる方法が挙げられる。例えば、特許文献1に記載されているように、既存のSOI基板上にSiGeエピ層を形成して歪緩和を起こし、歪緩和したSiGe層上にSi層を形成して歪Siとする方法が開示されている。しかしこの方法では、欠陥を減らすために埋め込み酸化膜からチャネル層である活性層まで数μm以上のSiGe層を挟むこととなり、SOI基板構造の優位性を十分発揮できない。
また、歪み緩和したSiGe層を形成するための第2の方法としては、例えば特許文献2に記載したように、高価なSOI基板を用いる代わりに、シリコン単結晶基板を用い、このシリコン単結晶基板上に、酸素含有シリコン層、SiGe層およびSi層を、基板の格子情報を受け継いだ単結晶層として形成し、その後、熱酸化処理を施す方法が挙げられる。しかしこの方法では、SiGe層中の歪が十分緩和できず、それに伴い活性層の歪Siにも十分な歪が加わらないために歪Siの優位性を発揮しきれない。
さらに、歪み緩和したSiGe層を形成するための第3の方法としては、例えば特許文献3に記載されているように、SOI基板上にSiGe膜を形成し、熱処理によってSiGe層を部分溶融状態にしてSOI層にGeを拡散させ、その後、SiGe層を固化させる事により歪緩和を行う方法が挙げられる。しかしこの方法で作製した基板では欠陥密度が多くなってしまう。
さらにまた、歪み緩和したSiGe層を形成するための第4の方法としては、例えば特許文献4に記載されているように、シリコン基板上にSiGe層を形成した後、このSiGe層に、酸素イオン注入分離法(SIMOX)により酸素イオンを注入して、SiGe層内に埋め込み絶縁層を形成し、その後、歪みシリコン層を形成する方法が挙げられる。しかしながら、この特許文献2記載の方法では、埋め込み絶縁層をSiGe層内に形成しているため、埋め込み絶縁層中にGeが残留し、この残留Geが原因と思われる埋め込み絶縁層の絶縁耐圧の劣化が生じやすく、その結果、半導体素子の特性に悪影響を及ぼすという問題がある。
特開平7−169926号公報 特開2000−243946号公報 特開2003−31495号公報 特開平9−321307号公報
本発明の目的は、熱処理前のSiGe層のGe濃度の適正化を図ることにより、SOIウェーハ内の絶縁層上に、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層を形成することができる、半導体ウェーハの製造方法を提供することにある。
上記目的を達成するため、本発明の要旨構成は以下の通りである。
(1)SOIウェーハ内の絶縁層上に、格子緩和または一部格子緩和した歪緩和SiGe層を形成する工程を有する半導体ウェーハの製造方法であって、前記歪緩和SiGe層を形成する工程が、SOI層上に、SiGe層の少なくとも上層側部分を、その表面へ向かって漸減するGe濃度勾配で形成した後、酸化雰囲気にて熱処理を行うことを特徴とする半導体ウェーハの製造方法。
(2)前記熱処理は1100℃以上で行う上記(1)記載の半導体ウェーハの製造方法。
(3)熱処理前のSiGe層全体は、その表面へ向かって漸減するGe濃度勾配でSOI層上に形成する上記(1)または(2)記載の半導体ウェーハの製造方法。
(4)熱処理前のSiGe層は、その基板側部分を、一定のGe濃度でSOI層上に形成した後、SiGe層の上層側部分を、その表面へ向かって漸減するGe濃度勾配で形成する上記(1)または(2)記載の半導体ウェーハの製造方法。
(5)熱処理前のSiGe層は、その基板側部分を、その表面へ向かって漸増するGe濃度勾配でSOI層上に形成した後、SiGe層の上層側部分を、その表面へ向かって漸減するGe濃度勾配でさらに形成する上記(1)または(2)記載の半導体ウェーハの製造方法。
(6)熱処理前のSiGe層は、請求項2〜4記載の熱処理前SiGe層のうちから選択した1種または2種以上の熱処理前SiGe層の複数層を積層した積層体として形成する半導体ウェーハの製造方法。熱処理前のSiGe層は、SOI層上に、SiGe層全体を、その表面へ向かって漸減するGe濃度勾配で形成する上記(1)または(2)記載の半導体ウェーハの製造方法。
(7)熱処理を行うのに先立ち、熱処理前のSiGe層上にさらにSi層を形成する上記(1)〜(6)のいずれか1項記載の半導体ウェーハの製造方法。
(8)熱処理前のSiGe層中におけるGe濃度の最大値が30質量%以下である上記(1)〜(7)のいずれか1項記載の半導体ウェーハの製造方法。
(9)熱処理前のSiGe層中におけるGe濃度勾配が2質量%/nm以下である上記(1)〜(8)のいずれか1項記載の半導体ウェーハの製造方法。
この発明によれば、熱処理前のSiGe層のGe濃度の適正化を図ることにより、SOIウェーハ内の絶縁層上に、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層を形成することができる、半導体ウェーハの製造方法を提供することが可能になった。
次に、この発明に従う半導体ウェーハの製造方法を図面を参照しながら説明する。
図1は、この発明の製造方法によって半導体ウェーハを製造する工程を説明するためのフローチャートである。
この発明は、Siウェーハ1、絶縁層(SiO2層)2およびSOI層(Si活性層)3で構成されるSOIウェーハ4内の絶縁層(SiO2層)2上に、格子緩和または一部格子緩和した歪緩和SiGe層5を形成する工程を有する半導体ウェーハの製造方法であり、具体的には、SOIウェーハ4の上に、単結晶SiGe層6を、その少なくとも上層側部分7が、その表面7aへ向かって漸減するGe濃度勾配で形成(例えば図1(a)および図2(a),(b)参照)した後、酸化雰囲気にて熱処理(熱酸化処理)を施すことにあり、この構成を採用することによって、厚さ方向にGe濃度勾配をもつSiGe層6中のGeを、SOI層3に向かって拡散させるとともに、単結晶SiGe層6が、その上層側部分7の表面7aから酸化して、単結晶SiGe層6の一部がSiO2層に変化していき、SOI層3と単結晶SiGe層6の残部中に、拡散してきたGeが均一かつ高濃度化する結果、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層5を形成することができる(図1(b))。SiGe層6中のGeは、SOIウェーハ4内のSiO2層2と、酸化による表面からのSiO2層9には拡散しないため、酸化が進むとGe濃度は濃くなり、最終的には均一なGe濃度の歪緩和SiGe層5の形成が可能になるのである。
さらに言えば、SiGe層6中のGe濃度を、SOIウェーハ4側(厳密にはSOI層3側)で高くすることによって、熱酸化処理時に、絶縁層(SiO2層)2とSOI層3およびSiGe層6との界面で緩和が起こりやすくなり、絶縁層(SiO2層)2が十分柔軟であるためにミスフィット転位ができずに緩和しやすいからである。
なお、図1(a)では、熱酸化処理を行うのに先立ち、熱処理前のSiGe層6上にさらにSi層10を形成した場合を示しているが、かかるSi層10は、熱酸化処理の際に、SiGe層6中のGeがその表面7aから外部に蒸発するのを防止するため、キャップ層として設けたものであり、必要に応じて設けることができる。
また、前記熱処理は、1100℃以上で行うことが好ましい。前記熱処理温度が1100℃未満だと、SiO2層が十分柔軟にならないために緩和が発生する際に欠陥をより多く導入する傾向があるうえ、Geの拡散もスムーズに起こらずに欠陥が導入されるきっかけとなりやすく、また導入された欠陥も消滅しにくくなるからである。なお、かかる熱処理は、通常は900℃未満の温度から昇温して1100℃以上の所定温度に保持するような場合が多く、この場合、900℃未満のGeの拡散が酸化速度に比べて遅い温度領域でも、ウェーハ表層では酸化が徐々に進行するため、界面にGeの濃い層ができやすくなるが、本発明では、SiGe層中に所定のGe濃度勾配を設けることにより、界面にGeの濃い層ができにくくし、そこからミスフィット転位が発生することを抑えることができる。
さらに、前記熱処理の雰囲気を酸化雰囲気に限定した理由は、高濃度の薄膜SiGeを得るためには酸化によるGeの濃縮が不可欠だからである。酸化雰囲気としては、酸素のみからなる場合のほか、酸素と窒素、アルゴンのような不活性ガスの組み合わせでもよいし、また、大気中でもよい。
本発明の半導体ウェーハの製造方法は、上記した熱酸化処理を施した後、図1(c)に示すように、熱酸化処理で形成したSiO2層9を、フッ酸(HF)等を用いて剥離除去し、次いで、必要に応じて、図2(d)に示すように、歪みSi層を形成(成膜)することによって半導体ウェーハを製造することができる。
図2〜図5はいずれも、この発明における、熱処理前のSiGe層の種々の態様を示したものであって、各図(a)は、熱処理前のSiGe層の断面図、各図(b)は、同図(a)のSiGe層の膜厚に対応するGe濃度を示したものである。
図2(a),(b)では、熱処理前のSiGe層6の全体は、その表面6aへ向かって漸減するGe濃度勾配でSOI層上に形成した場合の実施形態である。
図3(a),(b)では、熱処理前のSiGe層6のSOI側部分8を、一定のGe濃度でSOI層上に形成した後、SiGe層6の上層側部分7を、その表面7aへ向かって漸減するGe濃度勾配で形成した場合の実施形態である。
図4(a),(b)では、熱処理前のSiGe層6のSOI側部分8を、その表面8aへ向かって漸増するGe濃度勾配でSOI層3上に形成した後、SiGe層6の上層側部分7を、その表面7aへ向かって漸減するGe濃度勾配でさらに形成した場合の実施形態である。
図5(a),(b)では、熱処理前のSiGe層は、図2(a)で示したGe濃度勾配をもつSiGe層6を2層積層した積層体として形成した場合の実施形態である。
なお、このようなGe濃度勾配をもつSiGe層6の形成方法としては、例えばCVD(Chemical Vapor Deposition)装置を用い、SOIウェーハを設置したチャンバー内に、Ge源となるガス
の流量を制御する方法の他、Si源となるガスやキャリヤガスを制御したり、温度や圧力などの成膜時の寄与するパラメータを変える方法等が挙げられるが、かかる方法だけには限定されない。
また、この発明では、熱処理前のSiGe層6中におけるGe濃度の最大値が30%以下であることが好ましい。前記Ge濃度の最大値が30%を超えると、SOIウェハ4と単結晶SiGe層6の間に欠陥が発生しやくなる傾向があるので望ましくない。
加えて、熱処理前のSiGe層6の膜厚を厚くしすぎると、同様にSOIウェハ4と単結晶SiGe層6の間に欠陥が発生しやすくなる傾向があることから、熱処理前のSiGe層6の膜厚は臨界膜厚以下にすることが好ましい。なお、熱処理前のSiGe層6の膜厚の下限は、30%の臨界膜厚が5nm程度であるので5nm以上とすることが好ましい。
なお、SiGe層6の表面側のGe濃度は、図2〜図5ではいずれも0質量%にした場合を示しているが、この発明では、必ずしも0質量%までGe濃度を薄くしなくても良い。しかしながら、後の酸化濃縮時に、Ge濃度の高い層が部分的にできにくくするため、表面のGe濃度はなるべく低くすることが望ましい。
また、熱処理前のSiGe層中におけるGe濃度勾配は、2%/nm以下であることが好ましい。
前記Ge濃度勾配が2%/nmを超えると、ほとんど均一濃度と同様になってしまい傾斜の効果が薄れてしまうため好ましくないからである。
上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。例えば、本発明の実施形態ではいずれも、歪緩和SiGe層5を形成するためのウェーハとして、SIMOXウェーハを用いる場合を示しているが、貼り合わせSOIウェーハを用いてもよい。
(実施例1)
CVD装置にて図2(a),(b)に示すように、チャンバー内にSOIウェーハ4を設置し、SOIウェーハ4を700℃に加熱・保持した状態で、Ge源となるガスの流量を制御しながらGe濃度を表面に向かって徐々に薄くなるように単結晶SiGe層6をSOIウェーハ4上に形成した。このとき、SiGe層6中のGe濃度の最大値は20質量%、膜厚は200nmであった。次いで、単結晶SiGe層6に引き続いてSi層10を、CVD装置にて13nm形成した後、Si層10を形成したウェーハを、熱処理装置にて、100%酸素からなる酸化雰囲気中で1250℃、180分間にわたって、ウェーハ表面を酸化させると同時に、Geの拡散も行い、膜厚100nmの歪緩和SiGe層5を形成した。このとき、歪緩和SiGe層5中のGe濃度は20質量%であった。その後、HF溶液にて、表面に形成したSiO2層9を剥離・除去した後、評価のために再度CVD装置にて、歪Si層11を12nm成膜し、半導体ウェーハを得た。なお、SOI層上にSiGe層を形成後のエピタキシャル成長前には、表面の自然酸化膜を除去するため、850℃以上の高温下での水素熱処理を行ったり、Arイオンによるスパッタ処理を行ったリ、又は低温での水素プラズマ処理を行うのが一般的であり、ここでは、850℃以上の高温下での水素熱処理を行った。
(実施例2)
CVD装置にて図3(a),(b)に示すように、チャンバー内にSOIウェーハ4を設置し、SOIウェーハ4を700℃に加熱・保持した状態で、Ge源となるガスの流量を制御しながら、SOIウェハ4上に、均一Ge濃度(20質量%)のSiGe層のSOI側部分8を成膜した後、Ge濃度を20質量%のGe濃度を最大として、表面(Ge濃度:0質量%)に向かって徐々に薄くなるようにSiGe層6の上層側部分7をさらに形成した。このとき、SiGe層6のSOI側部分8の膜厚は50nmであり、SiGe層6の上層側部分7の膜厚は100nmであった。それ以外の製造工程は、実施例1と同様である。
(実施例3)
CVD装置にて図4(a),(b)に示すように、チャンバー内にSOIウェーハ4を設置し、SOIウェーハ4を700℃に加熱・保持した状態で、Ge源となるガスの流量を制御しながら、SOIウェハ4上に、Ge濃度を表面8a(Ge濃度:20質量%)に向かって徐々に濃くなるようにSiGe層6のSOI側部分8を成膜した後、Ge源となるガスの流量を制御しながらGe濃度を表面7a(Ge濃度:0質量%)に向かって徐々に低くなるようにSiGe層6の上層側部分7を形成した。このとき、SiGe層6のSOI側部分8および上層側部分7の膜厚はいずれも100nmであった。それ以外の製造工程は、実施例1と同様である。
(実施例4)
CVD装置にて図5(a),(b)に示すように、チャンバー内にSOIウェーハ4を設置し、SOIウェーハ4を700℃に加熱・保持した状態で、Ge源となるガスの流量を制御しながらGe濃度を表面8a(Ge濃度:0質量%)に向かって徐々に薄くなるようにSiGe層6のSOI側部分8をSOIウェーハ4上に形成した後、SiGe層6のSOI側部分8と同様のGe濃度勾配でSiGe層6の上層側部分7をさらに形成した。このとき、SiGe層6のSOI側部分8および上層側部分7の膜厚はいずれも100nmであった。それ以外の製造工程は、実施例1と同様である。
(比較例)
比較例として図6(a),(b)に示すように、チャンバー内にSOIウェーハを設置し、SOIウェーハを700℃に加熱・保持した状態で、Ge源となるガスの流量を制御しながら、SOIウェーハ4上に、均一Ge濃度(20質量%)のSiGe層を形成した。このとき、SiGe層の膜厚は200nmであった。それ以外の製造工程は、実施例1と同様である。
(評価方法)
上記で作製した各供試ウェーハについて、その表面における欠陥密度を測定し、その測定値から性能を評価した。
欠陥密度は、希釈セコエッチングした後、HFに浸漬し測定した。
評価結果を図7に示す。
図7の結果から、実施例1〜4はいずれも、比較例に比べて欠陥密度が格段に低く、欠陥が少ないことがわかる。
この発明によれば、熱処理前のSiGe層のGe濃度の適正化を図ることにより、SOIウェーハ内の絶縁層上に、欠陥が少なく、均一かつ高濃度のGeを含有する、格子緩和または一部格子緩和した歪緩和SiGe層を形成することができる、半導体ウェーハの製造方法を提供することが可能になった。
この発明の製造方法によって半導体ウェーハを製造する工程を説明するためのフローチャートである。 熱処理前のSiGe層の態様(実施例1)を示したものであって、(a)は、熱処理前のSiGe層の断面図、(b)は、(a)のSiGe層の膜厚に対応するGe濃度を示したものである。 熱処理前のSiGe層の他の態様(実施例2)を示したものであって、(a)は、熱処理前のSiGe層の断面図、(b)は、(a)のSiGe層の膜厚に対応するGe濃度を示したものである。 熱処理前のSiGe層の他の態様(実施例3)を示したものであって、(a)は、熱処理前のSiGe層の断面図、(b)は、(a)のSiGe層の膜厚に対応するGe濃度を示したものである。 熱処理前のSiGe層の他の態様(実施例4)を示したものであって、(a)は、熱処理前のSiGe層の断面図、(b)は、(a)のSiGe層の膜厚に対応するGe濃度を示したものである。 熱処理前のSiGe層の他の態様(比較例)を示したものであって、(a)は、熱処理前のSiGe層の断面図、(b)は、(a)のSiGe層の膜厚に対応するGe濃度を示したものである。 欠陥密度の評価結果を示すグラフである。
符号の説明
1 Siウェーハ
2 絶縁層(SiO2層)
3 SOI層(Si活性層)
4 SOIウェーハ
5 歪緩和SiGe層
6 SiGe層
7 SiGe層の上層側部分
8 SiGe層のSOI側部分
9 SiO2
10 Si層
11 歪Si層

Claims (9)

  1. SOIウェーハ内の絶縁層上に、格子緩和または一部格子緩和した歪緩和SiGe層を形成する工程を有する半導体ウェーハの製造方法であって、
    前記歪緩和SiGe層を形成する工程が、SOI層上に、SiGe層の少なくとも上層側部分を、その表面へ向かって漸減するGe濃度勾配で形成した後、酸化雰囲気にて熱処理を行うことを特徴とする半導体ウェーハの製造方法。
  2. 前記熱処理は1100℃以上で行う請求項1記載の半導体ウェーハの製造方法。
  3. 熱処理前のSiGe層全体は、その表面へ向かって漸減するGe濃度勾配でSOI層上に形成する請求項1または2記載の半導体ウェーハの製造方法。
  4. 熱処理前のSiGe層は、その基板側部分を、一定のGe濃度でSOI層上に形成した後、SiGe層の上層側部分を、その表面へ向かって漸減するGe濃度勾配で形成する請求項1または2記載の半導体ウェーハの製造方法。
  5. 熱処理前のSiGe層は、その基板側部分を、その表面へ向かって漸増するGe濃度勾配でSOI層上に形成した後、SiGe層の上層側部分を、その表面へ向かって漸減するGe濃度勾配でさらに形成する請求項1または2記載の半導体ウェーハの製造方法。
  6. 熱処理前のSiGe層は、請求項3〜5記載の熱処理前SiGe層のうちから選択した1種または2種以上の熱処理前SiGe層の複数層を積層した積層体として形成する半導体ウェーハの製造方法。
  7. 熱処理を行うのに先立ち、熱処理前のSiGe層上にさらにSi層を形成する請求項1〜6のいずれか1項記載の半導体ウェーハの製造方法。
  8. 熱処理前のSiGe層中におけるGe濃度の最大値が30質量%以下である請求項1〜7のいずれか1項記載の半導体ウェーハの製造方法。
  9. 熱処理前のSiGe層中におけるGe濃度勾配が2質量%/nm以下である請求項1〜8のいずれか1項記載の半導体ウェーハの製造方法。
JP2006009881A 2006-01-18 2006-01-18 半導体ウェーハの製造方法 Pending JP2007194336A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006009881A JP2007194336A (ja) 2006-01-18 2006-01-18 半導体ウェーハの製造方法
US11/649,943 US8110486B2 (en) 2006-01-18 2007-01-05 Method of manufacturing semiconductor wafer by forming a strain relaxation SiGe layer on an insulating layer of SOI wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009881A JP2007194336A (ja) 2006-01-18 2006-01-18 半導体ウェーハの製造方法

Publications (1)

Publication Number Publication Date
JP2007194336A true JP2007194336A (ja) 2007-08-02

Family

ID=38263733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009881A Pending JP2007194336A (ja) 2006-01-18 2006-01-18 半導体ウェーハの製造方法

Country Status (2)

Country Link
US (1) US8110486B2 (ja)
JP (1) JP2007194336A (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035164B2 (en) 2007-10-19 2011-10-11 Seiko Epson Corporation Semiconductor device and electronic apparatus
KR101136617B1 (ko) * 2009-07-28 2012-04-18 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 고 게르마늄 농도 SiGe 스트레서 형성방법
US8264032B2 (en) 2009-09-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Accumulation type FinFET, circuits and fabrication method thereof
US8264021B2 (en) 2009-10-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Finfets and methods for forming the same
JP2012191202A (ja) * 2011-03-03 2012-10-04 Internatl Rectifier Corp 歪吸収中間層遷移モジュールを有するiii族窒化物半導体構造
US8298925B2 (en) 2010-11-08 2012-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US8305790B2 (en) 2009-03-16 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical anti-fuse and related applications
US8305829B2 (en) 2009-02-23 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Memory power gating circuit for controlling internal voltage of a memory array, system and method for controlling the same
US8431453B2 (en) 2011-03-31 2013-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma doping to reduce dielectric loss during removal of dummy layers in a gate structure
US8440517B2 (en) 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US8461015B2 (en) 2009-07-08 2013-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. STI structure and method of forming bottom void in same
US8472227B2 (en) 2010-01-27 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and methods for forming the same
US8482073B2 (en) 2010-03-25 2013-07-09 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit including FINFETs and methods for forming the same
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US8629478B2 (en) 2009-07-31 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure for high mobility multiple-gate transistor
US8759943B2 (en) 2010-10-08 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having notched fin structure and method of making the same
US8806397B2 (en) 2010-11-12 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method and device for increasing fin device density for unaligned fins
US8877602B2 (en) 2011-01-25 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms of doping oxide for forming shallow trench isolation
US8912602B2 (en) 2009-04-14 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and methods for forming the same
US8957482B2 (en) 2009-03-31 2015-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical fuse and related applications
US8980719B2 (en) 2010-04-28 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for doping fin field-effect transistors
US9040393B2 (en) 2010-01-14 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming semiconductor structure
US9048181B2 (en) 2010-11-08 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US9184088B2 (en) 2011-01-25 2015-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a shallow trench isolation (STI) structures
US9484462B2 (en) 2009-09-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of fin field effect transistor
US9893160B2 (en) 2010-10-19 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming gate dielectric material

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010883B4 (de) * 2009-02-27 2011-05-26 Amd Fab 36 Limited Liability Company & Co. Kg Einstellen eines nicht-Siliziumanteils in einer Halbleiterlegierung während der FET-Transistorherstellung mittels eines Zwischenoxidationsprozesses
US20110097867A1 (en) * 2009-10-22 2011-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method of controlling gate thicknesses in forming fusi gates
US8466502B2 (en) 2011-03-24 2013-06-18 United Microelectronics Corp. Metal-gate CMOS device
US8445363B2 (en) 2011-04-21 2013-05-21 United Microelectronics Corp. Method of fabricating an epitaxial layer
US8324059B2 (en) 2011-04-25 2012-12-04 United Microelectronics Corp. Method of fabricating a semiconductor structure
US8426284B2 (en) 2011-05-11 2013-04-23 United Microelectronics Corp. Manufacturing method for semiconductor structure
US8481391B2 (en) 2011-05-18 2013-07-09 United Microelectronics Corp. Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure
US8431460B2 (en) 2011-05-27 2013-04-30 United Microelectronics Corp. Method for fabricating semiconductor device
US8962400B2 (en) 2011-07-07 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ doping of arsenic for source and drain epitaxy
US8716750B2 (en) 2011-07-25 2014-05-06 United Microelectronics Corp. Semiconductor device having epitaxial structures
US8575043B2 (en) 2011-07-26 2013-11-05 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8647941B2 (en) 2011-08-17 2014-02-11 United Microelectronics Corp. Method of forming semiconductor device
US8674433B2 (en) 2011-08-24 2014-03-18 United Microelectronics Corp. Semiconductor process
US8476169B2 (en) 2011-10-17 2013-07-02 United Microelectronics Corp. Method of making strained silicon channel semiconductor structure
US8691659B2 (en) 2011-10-26 2014-04-08 United Microelectronics Corp. Method for forming void-free dielectric layer
US8754448B2 (en) 2011-11-01 2014-06-17 United Microelectronics Corp. Semiconductor device having epitaxial layer
US8647953B2 (en) 2011-11-17 2014-02-11 United Microelectronics Corp. Method for fabricating first and second epitaxial cap layers
US8709930B2 (en) 2011-11-25 2014-04-29 United Microelectronics Corp. Semiconductor process
CN103165511B (zh) * 2011-12-14 2015-07-22 中国科学院上海微系统与信息技术研究所 一种制备goi的方法
US8883598B2 (en) * 2012-03-05 2014-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. Thin capped channel layers of semiconductor devices and methods of forming the same
US8785285B2 (en) 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US9136348B2 (en) 2012-03-12 2015-09-15 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
US9202914B2 (en) 2012-03-14 2015-12-01 United Microelectronics Corporation Semiconductor device and method for fabricating the same
US8664069B2 (en) 2012-04-05 2014-03-04 United Microelectronics Corp. Semiconductor structure and process thereof
US8866230B2 (en) 2012-04-26 2014-10-21 United Microelectronics Corp. Semiconductor devices
US8835243B2 (en) 2012-05-04 2014-09-16 United Microelectronics Corp. Semiconductor process
US8951876B2 (en) 2012-06-20 2015-02-10 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8796695B2 (en) 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
CN103632945B (zh) * 2012-08-29 2016-05-25 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管的形成方法
US8710632B2 (en) 2012-09-07 2014-04-29 United Microelectronics Corp. Compound semiconductor epitaxial structure and method for fabricating the same
US9117925B2 (en) 2013-01-31 2015-08-25 United Microelectronics Corp. Epitaxial process
US8753902B1 (en) 2013-03-13 2014-06-17 United Microelectronics Corp. Method of controlling etching process for forming epitaxial structure
US9034705B2 (en) 2013-03-26 2015-05-19 United Microelectronics Corp. Method of forming semiconductor device
US9064893B2 (en) 2013-05-13 2015-06-23 United Microelectronics Corp. Gradient dopant of strained substrate manufacturing method of semiconductor device
US8927363B2 (en) 2013-05-17 2015-01-06 International Business Machines Corporation Integrating channel SiGe into pFET structures
US8853060B1 (en) 2013-05-27 2014-10-07 United Microelectronics Corp. Epitaxial process
US9076652B2 (en) 2013-05-27 2015-07-07 United Microelectronics Corp. Semiconductor process for modifying shape of recess
US8765546B1 (en) 2013-06-24 2014-07-01 United Microelectronics Corp. Method for fabricating fin-shaped field-effect transistor
US8895396B1 (en) 2013-07-11 2014-11-25 United Microelectronics Corp. Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures
US8981487B2 (en) 2013-07-31 2015-03-17 United Microelectronics Corp. Fin-shaped field-effect transistor (FinFET)
US8987069B1 (en) * 2013-12-04 2015-03-24 International Business Machines Corporation Semiconductor substrate with multiple SiGe regions having different germanium concentrations by a single epitaxy process
US11610808B2 (en) * 2019-08-23 2023-03-21 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor wafer with low defect count and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243946A (ja) * 1998-12-24 2000-09-08 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2004241507A (ja) * 2003-02-04 2004-08-26 Sumitomo Mitsubishi Silicon Corp 半導体基板及び電界効果型トランジスタ並びにこれらの製造方法
JP2005072054A (ja) * 2003-08-27 2005-03-17 Toshiba Corp 歪み緩和SiGe基板の製造方法
JP2005142217A (ja) * 2003-11-04 2005-06-02 Toshiba Corp 素子形成用基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461243A (en) 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
JP3376211B2 (ja) 1996-05-29 2003-02-10 株式会社東芝 半導体装置、半導体基板の製造方法及び半導体装置の製造方法
US6049106A (en) * 1999-01-14 2000-04-11 Micron Technology, Inc. Large grain single crystal vertical thin film polysilicon MOSFETs
US6690043B1 (en) * 1999-11-26 2004-02-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2003031495A (ja) 2001-07-12 2003-01-31 Hitachi Ltd 半導体装置用基板の製造方法および半導体装置の製造方法
WO2003079415A2 (en) * 2002-03-14 2003-09-25 Amberwave Systems Corporation Methods for fabricating strained layers on semiconductor substrates
US7022593B2 (en) * 2003-03-12 2006-04-04 Asm America, Inc. SiGe rectification process
EP1647046A2 (en) * 2003-07-23 2006-04-19 ASM America, Inc. DEPOSITION OF SiGE ON SILICON-ON-INSULATOR STRUCTURES AND BULK SUBSTRATES
US20050221591A1 (en) * 2004-04-06 2005-10-06 International Business Machines Corporation Method of forming high-quality relaxed SiGe alloy layers on bulk Si substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243946A (ja) * 1998-12-24 2000-09-08 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2004241507A (ja) * 2003-02-04 2004-08-26 Sumitomo Mitsubishi Silicon Corp 半導体基板及び電界効果型トランジスタ並びにこれらの製造方法
JP2005072054A (ja) * 2003-08-27 2005-03-17 Toshiba Corp 歪み緩和SiGe基板の製造方法
JP2005142217A (ja) * 2003-11-04 2005-06-02 Toshiba Corp 素子形成用基板

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035164B2 (en) 2007-10-19 2011-10-11 Seiko Epson Corporation Semiconductor device and electronic apparatus
US8305829B2 (en) 2009-02-23 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Memory power gating circuit for controlling internal voltage of a memory array, system and method for controlling the same
US8305790B2 (en) 2009-03-16 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical anti-fuse and related applications
US8957482B2 (en) 2009-03-31 2015-02-17 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical fuse and related applications
US8912602B2 (en) 2009-04-14 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and methods for forming the same
US8461015B2 (en) 2009-07-08 2013-06-11 Taiwan Semiconductor Manufacturing Company, Ltd. STI structure and method of forming bottom void in same
KR101136617B1 (ko) * 2009-07-28 2012-04-18 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 고 게르마늄 농도 SiGe 스트레서 형성방법
US8623728B2 (en) 2009-07-28 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming high germanium concentration SiGe stressor
US9660082B2 (en) 2009-07-28 2017-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit transistor structure with high germanium concentration SiGe stressor
US8629478B2 (en) 2009-07-31 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure for high mobility multiple-gate transistor
US8896055B2 (en) 2009-09-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Accumulation type FinFET, circuits and fabrication method thereof
US8264032B2 (en) 2009-09-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Accumulation type FinFET, circuits and fabrication method thereof
US9484462B2 (en) 2009-09-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of fin field effect transistor
US10355108B2 (en) 2009-09-24 2019-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a fin field effect transistor comprising two etching steps to define a fin structure
US11158725B2 (en) 2009-09-24 2021-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of fin field effect transistor
US8264021B2 (en) 2009-10-01 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Finfets and methods for forming the same
US9040393B2 (en) 2010-01-14 2015-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming semiconductor structure
US9922827B2 (en) 2010-01-14 2018-03-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a semiconductor structure
US8472227B2 (en) 2010-01-27 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and methods for forming the same
US8482073B2 (en) 2010-03-25 2013-07-09 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit including FINFETs and methods for forming the same
US8980719B2 (en) 2010-04-28 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for doping fin field-effect transistors
US9450097B2 (en) 2010-04-28 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for doping Fin field-effect transistors and Fin field-effect transistor
US9209280B2 (en) 2010-04-28 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for doping fin field-effect transistors
US8497528B2 (en) 2010-05-06 2013-07-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US11855210B2 (en) 2010-05-06 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure and structure formed
US11251303B2 (en) 2010-05-06 2022-02-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure and structure formed
US9147594B2 (en) 2010-05-06 2015-09-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure
US10998442B2 (en) 2010-05-06 2021-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure and structure formed
US10510887B2 (en) 2010-05-06 2019-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure and structure formed
US9564529B2 (en) 2010-05-06 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a strained structure and structure formed
US8759943B2 (en) 2010-10-08 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having notched fin structure and method of making the same
US8440517B2 (en) 2010-10-13 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET and method of fabricating the same
US9209300B2 (en) 2010-10-13 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistor
US9716091B2 (en) 2010-10-13 2017-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Fin field effect transistor
US9893160B2 (en) 2010-10-19 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming gate dielectric material
US8298925B2 (en) 2010-11-08 2012-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US8735266B2 (en) 2010-11-08 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US9048181B2 (en) 2010-11-08 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming ultra shallow junction
US8806397B2 (en) 2010-11-12 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method and device for increasing fin device density for unaligned fins
US9026959B2 (en) 2010-11-12 2015-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Method and device for increasing fin device density for unaligned fins
US9184088B2 (en) 2011-01-25 2015-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making a shallow trench isolation (STI) structures
US8877602B2 (en) 2011-01-25 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms of doping oxide for forming shallow trench isolation
JP2012191202A (ja) * 2011-03-03 2012-10-04 Internatl Rectifier Corp 歪吸収中間層遷移モジュールを有するiii族窒化物半導体構造
US8431453B2 (en) 2011-03-31 2013-04-30 Taiwan Semiconductor Manufacturing Company, Ltd. Plasma doping to reduce dielectric loss during removal of dummy layers in a gate structure

Also Published As

Publication number Publication date
US20070166929A1 (en) 2007-07-19
US8110486B2 (en) 2012-02-07

Similar Documents

Publication Publication Date Title
JP2007194336A (ja) 半導体ウェーハの製造方法
US7759228B2 (en) Semiconductor device and method of manufacturing the same
JP5259954B2 (ja) 基板上に歪層を製造する方法と層構造
US20090110898A1 (en) High resistivity soi base wafer using thermally annealed substrate
JP4826475B2 (ja) 半導体ウェーハの製造方法
JP2007335867A (ja) ヘテロ構造内で空孔拡散を制限する方法
JP2008294045A (ja) Soiウエーハの製造方法
US9825151B2 (en) Method for preparing substrate using germanium condensation process and method for manufacturing semiconductor device using same
JP2006173568A (ja) Soi基板の製造方法
US7338886B2 (en) Implantation-less approach to fabricating strained semiconductor on isolation wafers
KR20070084075A (ko) 반도체 웨이퍼의 제조방법
KR20100027947A (ko) 감소된 secco 결함 밀도를 갖는 반도체-온-절연체 기판의 제조 방법
JP2001148473A (ja) 半導体装置及びその製造方法
JP2006237235A (ja) 半導体ウェーハの製造方法
KR20220163388A (ko) 복합 기판 및 그 제조 방법
JP2010040931A (ja) 半導体基板の製造方法及び半導体基板
JP2003078116A (ja) 半導体部材の製造方法及び半導体装置の製造方法
JP5257401B2 (ja) 歪シリコンsoi基板の製造方法
JP2008041830A (ja) Soi基板およびその製造方法
JP2004363197A (ja) 歪シリコンsoi基板の製造方法
JP2004363199A (ja) 半導体基板の製造方法
JP4510707B2 (ja) エピタキシャル膜の形成方法と、これを用いた薄膜形成方法、及び半導体装置の製造方法
JP2005244187A (ja) 歪みシリコンウエハおよびその製造方法
JP4037803B2 (ja) Sgoi基板の製造方法
JP2003234289A (ja) 歪み緩和膜の製造方法、および、歪み緩和膜を有する積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327