JP2007003102A - 平板式サーモチューブの製造方法 - Google Patents

平板式サーモチューブの製造方法 Download PDF

Info

Publication number
JP2007003102A
JP2007003102A JP2005184275A JP2005184275A JP2007003102A JP 2007003102 A JP2007003102 A JP 2007003102A JP 2005184275 A JP2005184275 A JP 2005184275A JP 2005184275 A JP2005184275 A JP 2005184275A JP 2007003102 A JP2007003102 A JP 2007003102A
Authority
JP
Japan
Prior art keywords
thermotube
flat plate
manufacturing
cavity
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005184275A
Other languages
English (en)
Inventor
Pei-Pei Chen
佩佩 陳
Hsiu-Wei Yang
修維 楊
Jaoching Lin
招慶 林
Wen-Hwa Yu
文華 余
Yen-Wen Chen
彦文 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiko Kagi Kofun Yugenkoshi
Original Assignee
Kiko Kagi Kofun Yugenkoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiko Kagi Kofun Yugenkoshi filed Critical Kiko Kagi Kofun Yugenkoshi
Priority to JP2005184275A priority Critical patent/JP2007003102A/ja
Publication of JP2007003102A publication Critical patent/JP2007003102A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/065Fastening; Joining by welding by ultrasonic or vibration welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】 該平板式サーモチューブを屈折させられない公知構造の問題を改善し、製造の速度を加速する平板式サーモチューブの製造方法を提供する。
【解決手段】 主に超音波溶接システムを用い、薄板状で可鍛性を具えた第一構成部品及び第二構成部品を平板式サーモチューブに成型し、しかも該超音波溶接システムは超音波振動を生じるコッパービット(copper bit)を含む。該製造方法は以下のステップを含む。(A)相互に重なり合う第一、第二構成部品において該コッパービット(copper bit)に抵触し、該第一、第二構成部品に対して超音波溶接を施し、(B)該コッパービット(copper bit)は該第一、第二構成部品に相対し封鎖ルートに沿って移動し、しかも固接された第一、第二構成部品は相互に対応し空洞を形成し、(C)該空洞の空気を抜き及び充填し、(D)該空洞を封鎖する。
【選択図】 図 8

Description

本発明は一種の平板式サーモチューブの製造方法に関する。特に一種の超音波溶接を利用する平板式サーモチューブの製造方法に係る。
サーモチューブは現在、電子製品において極めて能率が高い導熱パーツである。通常はノートPCのマイクロプロセッサー、テレビゲーム本体、或いは通信機器本体など設置が容易でない大型散熱フィンの熱源に応用され、該サーモチューブの作用は上記熱源が発生する熱量を散熱フィンを設置する散熱器に伝導することである。該サーモチューブはコストが低廉であるばかりでなく、被動散熱パーツに属するため、その使用寿命は数10年にも達する。またこれまでの銅質或いはアルミ材質による導熱パーツとは異なり、該サーモチューブの導熱係数は固定常数ではないため、サーモチューブの長さが長くなって行くに従い、その導熱係数は大きくなって行く。さらに、現在業界が製造しているサーモチューブでは、その導熱係数は銅の導熱係数の数10〜数万倍にも達する。
図1に示すように、一般の平板式サーモチューブ1は中空封入体11、毛細構造12、作業流体13を含む。
該封入体11内表面には毛細構造12を設置し、該封入体11内には作業流体13を設置する。該封入体11は反対の吸熱端111及び散熱端112を具え、しかも該封入体11内の圧力は該作業流体13自身の飽和蒸気圧で、すなわち該作業流体13は通常は液、気態共存の安定平衡態である。この他、該毛細構造12は該作業流体13により浸潤される多数の毛細孔121を具える。
該吸熱端111が熱を受けて温度がわずかに上昇する時、隣接する該吸熱端111作業流体13の安定平衡態を破壊し、隣接する該吸熱端111の液態作業流体13は蒸発する。この時、該吸熱端111の蒸気圧は該散熱端112の蒸気圧より大きく、大量の気態作業流体13は該吸熱端111より該散熱端112へと流れる。該散熱端112の温度は比較的低いため、近接する該散熱端112の気態作業流体13を凝結させ、過量の液態作業流体13が該毛細孔121に沿って該吸熱端111へと流れ、こうして熱量が該吸熱端111から該散熱端112へと伝導する導熱周期を完成する。
該導熱周期は該作業流体13の安定平衡態を破壊することにより生じるため、該封入体11の2端の温度差は大きくなく、該導熱周期は循環を持続し、大量の熱能を伝導することができる。そのため、該封入体11内の真空度を保持し、以って該作業流体13の安定平衡態を維持することは、前記導熱周期が執行されるか否かの鍵を握っている。
以下に図2により現行の該平板式サーモチューブ1の製造方法について説明する。
図3に合わせて示すように、ステップ191では相互に補い合う形状の第一構成部品113及び第二構成部品114をプレ製造する。該第一、第二構成部品113、114導熱性に優れた同様の材質により組成する。
ステップ192では毛細構造12を形成する。該毛細構造12はオートグラムの方式で直接該第一、第二構成部品113、114において相互に向かい合う表面に直線の溝を形成する。
ステップ193では該第一、第二構成部品113、114及び鋼管14を溶接する。公知の方式ではシリコンを塗布或いは溶接ロッドを設置するなどの公知の接着材料を該第一、第二構成部品113、114の相互に向かい合う表面の周辺部において使用する。さらに該第一、第二構成部品113、114、を固接し、二者は相互に対応し封入体11を形成する。 同時に該封入体11は鋼管14を挿設する角隅115を具える。或いは該第一、第二構成部品113、114の溶接点は溶融し、これにより二者は相互に固接する。この時、溶接物を溶融或いはいかなる接着材料を使用しようとも、該第一、第二構成部品113、114の接合位置間は元の構成材料とは異質の介面116が存在することになる(図4参照)。
図1及び図4に示すように、ステップ194では該鋼管14を通して抽気充填機具15により充填を行う。現在サーモチューブにおいて常用されている作業流体13は水で、メタノール或いはイソプロパノールなども作業流体13として使用される。作業流体13の違いによりサーモチューブに適した作業温度も異なり、作業環境が適用温度範囲を超えた時には、該導熱周期は執行不能である。
ステップ195では該鋼管14を通して該抽気充填機具15により抽気を行い、気態である該作業流体13以外の気体を排除する。該導熱周期が順調に執行されるよう、該封入体11内の最適作業圧力は該作業流体13の安定平衡態において保持しなければならない。そのため、該封入体11内の圧力が該作業流体13の蒸気圧と等しい時、該作業流体13以外の気体は既に排除されていることを示す。
ステップ196では挟合機具16により該鋼管14管口を挟合する。
ステップ197ではカット機具17により該挟合機具16で挟合された鋼管14をカットする。ここまでで該封入体11は図1に示すように完全に封鎖される。
図5に示すように、ステップ198溶接機具18により該カット機具17により切断された鋼管14に対してスポット溶接を行い、完全に開口部を封鎖する気密効果を達成する。
ステップ199では該封入体11を加工成型するが、現在ノートPCはより薄く軽くコンパクトにという方向へ発展しているため、電子パーツ間に装置し空間を節減する目的で、ノートPCに使用する平板式サーモチューブ1は屈折の処理を避けては通れない。
しかし、該封入体11を屈折する過程においては、ステップ193では異質介面116を生じ易く断裂或いは裂痕を発生させてしまい、該作業流体13の安定平衡態に影響を及ぼしてしまう。
公知方式には以下の欠点があった。
すなわち現在、ノートPCはより薄く軽くコンパクトにという方向へ発展しているため、電子パーツ間に装置し空間を節減する目的で、ノートPCに使用する平板式サーモチューブは屈折処理を避けては通れないにもかかわらず、公知の製造方式に用いる封入体を屈折する過程においては、異質介面を生じ易く断裂或いは裂痕を発生させてしまい、作業流体の安定平衡態に影響を及ぼしてしまう。
本発明は上記構造の問題点を解決した平板式サーモチューブの製造方法を提供するものである。
上記課題を解決するため、本発明は下記の平板式サーモチューブの製造方法を提供する。
それは主に製品の品質を確保することができる平板式サーモチューブの製造方法を提供し、
またそれは屈折過程において破壊されない平板式サーモチューブの製造方法を提供し、
さらにそれは超音波を利用し溶接する平板式サーモチューブの製造方法を提供し、
すなわち、本発明の超音波を利用し溶接する平板式サーモチューブの製造方法は超音波溶接システムを用い、薄板状で可鍛性を具えた第一構成部品及び第二構成部品を平板式サーモチューブに成型し、該超音波溶接システムは直線に沿って移動し、超音波振動を生じるコッパービット(copper bit)を用い、
該製造方法は以下のステップを含み、
(A)該直線に沿って相互に重なり合う第一、第二構成部品において該コッパービット(copper bit)に抵触し、該第一、第二構成部品に対して超音波溶接を施し、
(B)該コッパービット(copper bit)は該第一、第二構成部品に相対し、該直線に垂直な封鎖ルートに沿って移動し、しかも固接された第一、第二構成部品は相互に対応し空洞を形成し、
(C)該空洞内の気体を抜き、
(D)作業流体を該空洞に充填し、
(E)該空洞を封鎖することを特徴とする平板式サーモチューブの製造方法である。
上記のように、本発明は該超音波溶接システムの特性を利用し、これまで該封入体を屈折させる時、溶接或いは接着などの方式を利用し連接する接合位置に断裂或いは裂痕を生じる欠点を改善することができる。しかも超音波金属溶接を利用すれば、外用水冷却ジグを必要としないため、製造工程を加速することができる。そのため、本発明の超音波を利用し溶接する平板式サーモチューブの製造方法は確実に発明の目的及び効果を達成することができる。
以下の説明中においては、類似のパーツは同一の符合により表示する。
図6に示すように、本発明超音波を利用し溶接する平板式サーモチューブの製造方法の第一最適実施例はステップ91〜99を含む。
合わせて図7に示すように、ステップ91において、公知の金属加工方式により相互に補い合う形状の薄板状第一構成部品31及び薄板状第二構成部品32を製造する。二者の組成材質は銅或いはアルミで、鍛性を具えしかも導熱性に優れた材質である。
該第一、第二構成部品113、114の組成材質は同一或いは非同一の材質により組成し、しかも二者は共に対応する位置に抽気充填管35を設置する角隅37を形成する。
ステップ92では、公知の金属加工方式により毛細構造4を製造し、その組成材質は銅、アルミ或いはその他導熱性に優れた材質である。該毛細構造4は本最適実施例中では金属網で、相互に連通する多数の毛細孔41を具える。ここで言う毛細孔41とは液体に毛細現象を生じさせることができる細微孔洞で、すなわち、該毛細構造4のある部分と液体が接触した時、該液体は迅速に該毛細孔41より該毛細構造4の他の部分に拡散し、しかも該拡散過程と重力の方向は関係がない。そのため、該毛細孔41の実際の大きさは該毛細構造4の組成材質に応じ、また該毛細構造4使用の液体に対応し決定する。この他、該第一、第二構成部品31、32及び該毛細構造4が相互に重なり合う時、該第一、第二構成部品31、32の外縁は該毛細構造4の外縁に突出する。
ステップ93では該超音波溶接システム2に該第一、第二構成部品31、32及び該抽気充填管35を組合わせる。
図9、10、11に示すように、該超音波溶接システムは本体20、キャリア21、コッパービット(copper bit)22を含む。
該キャリア21及び該コッパービット(copper bit)22は該本体20一端より同方向に延伸出し、しかも直線Xに沿って排列する。該コッパービット(copper bit)22は該直線Xにおいて振動方向が垂直の超音波振動を生じる。また、該第一、第二構成部品31、32が超音波振動の影響を受け相対的に滑動するのを防止するため、該キャリア21と該コッパービット(copper bit)22はそれぞれ該直線Xに沿って排列する滑り止め片211、ウェルディングトゥース(welding tooth)221を具える。該ウェルディングトゥース(welding tooth)221の近接する該滑り止め片211の端面には多数の相互に対応し、該第一、第二構成部品31、32の相当する側向に摩擦力を提供する凸伸部222及び陥没部223(図11参照)を形成する。
次に図8と図10に示すように、ステップ93以下のサブステップを含む。
ステップ931ではそれぞれ順番に該第二構成部品32、毛細構造4、及び該第一構成部品31を該滑り止め片211において重ねる。ここでは該第一、第二構成部品31、32を溶接する必要があるだけであるため、重なり合う時、該第一、第二構成部品31、32は該毛細構造4の外縁に突出し、該ウェルディングトゥース(welding tooth)221及び該滑り止め片211の相対位置に対応する。
ステップ933では該ウェルディングトゥース(welding tooth)221は該直線Xに近接する該滑り止め片211に沿って、該第一構成部品31に接触し、しかも該ウェルディングトゥース(welding tooth)221及び該滑り止め片211の相互近接により、該第一、第二構成部品31、32は該毛細構造4の外縁に突出し相互に接触する。
ステップ935では、該コッパービット(copper bit)22は垂直に該直線X方向に超音波振動を施す。その超音波振動は該第一、第二構成部品31、32を組成する材質に応じて決定する。一般の周波数は約20〜40kHzで、しかも振幅は60ミクロンである。その超音波振動は該第一、第二構成部品31、32間に相互磨擦を生じさせ、除該第一、第二構成部品31、32表面の金属酸化層及び雑質を除去し、最後に該第一、第二構成部品31、32はきれいな表層を露出し緊密に結合する。
ステップ937では該第一、第二構成部品31、32を移動させる。すなわち該第一、第二構成部品31、32に該直線Xに垂直な張力を加え、該ウェルディングトゥース(welding tooth)221は該第一、第二構成部品31、32に対応し、該第一、第二構成部品31、32外縁に沿って移動し、封入体3(図12参照)を形成する。
多数ステップの執行を必要とする電気抵抗熱溶接、レーザー溶接、ハード溶接、及びソフト溶接などの他の溶接技術に比べ、超音波金属溶接はステップだけで、同様の効果と目的を達成することができる。超音波金属溶接技術は加熱用溶接ロッドを必要とせず、しかも溶接前作業或いは溶接後のクリーン作業を必要としない。また、超音波金属溶接に必要なエネルギーは高くなく(公知の溶接の1/30程度)、執行過程において有毒の化学物質を使用しないばかりか、命にかかわる溶接濃煙を発生することもない。しかも超音波金属溶接技術適時のモニター、及び精確な操作が可能で、製品の品質を確保することができる。
この他、超音波金属溶接低温の処理手順に属する。公知の技術と比較すれば、摩擦により発生する高温は被溶接物熔点の三分の一以下である。発生する熱量が多くないため、外用水冷却ジグを必要とせず、しかも被溶接物は熔化及びアニール(anneal)過程が不要であるため、既に溶接された被溶接物は直接次の処理手順に進むことができ、製造を加速することができる。
上記の低温特性はサーモチューブの応用において極めて重要である。溶融溶接の過程においては、導電性を具えずしかも壊れ易い金属化合物(intermetallic compound)を発生し易く、しかも該化合物溶接点の可鍛性を低下させてしまうが、超音波金属溶接は被溶接物を溶融しないため、該可鍛性の化合物を破壊することはない。
さらに図12と図13に示すように、最後に形成された封入体3は空洞33を形成し、しかも溶接された位置は該ウェルディングトゥース(welding tooth)221の外型に相対し(図11参照)エンボシング36を形成する。該エンボシング36が密であればあるほど、該封入体3の密閉封入性は良好となる。該毛細構造4は該空洞33に位置し、しかも相反する両側面がそれぞれ該封入体3内表面に接触する。このため、熱エネルギーは該封入体3より該毛細構造4に伝導し、或いは該毛細構造4より該封入体3に伝導する。
ここで説明を要するのは、前記ステップ91からステップ93は本発明の最適実施例ではあるが、実際の応用に当たっては、ステップ92において該毛細構造4は直接、オートグラム或いはエッチングなどの公知の加工技術により該第一、第二構成部品31、32の相対する2表面において形成することもできる点である。すなわちステップ93においては超音波溶接により該第一、第二構成部品31、32を組合せ後、類似の構造を得ることができる。
図6、13に示すように、ステップ94において、該抽気充填管35を通して抽気充填メカニズム6により作業流体5を該空洞33に充填する。該作業流体5は水、またはメタノール或いはイソプロパノールなどを作業流体5として使用可能であるが、実施上はこれに限るものではない。該抽気充填メカニズム6はポンプ推動の方式により該作業流体5の充填を行い、しかも一回につき充填される容量は一定で、以って該作業流体5は該毛細孔41を完全に浸潤させる。
ステップ95では同様に該抽気充填メカニズム6を通して該抽気充填管35及び該空洞33内の圧力を低下させ、該空洞33の圧力値を該作業流体5の作業温度下での蒸気圧に同等とし、該空洞33内の余分な気体を排除する。
ここで説明を要するのは、該抽気充填メカニズム6を通して執行されるステップ94及びステップ95本最適実施例であるだけで、実施に当たり使用する機具は制限されない。現在業界で用いられる方式である人工充填及び真空ポンプ抽気でも同様の効果を得ることができ、よってステップ94及びステップ95を執行可能である。
ステップ96及びステップ97では開口部を封鎖するメカニズム7を利用し該空洞33を封鎖する。該開口部を封鎖するメカニズム7は挟合部品71及びカッター72を含み、二者は水圧或いは油圧など現在業界で常用されている駆動方式により駆動する。
ステップ96では該挟合部品71は該抽気充填管35の管口を挟合し、ステップ97では該カッター72は該挟合部品71が挟合する抽気充填管35をカットし、切断面351を形成する。ここまでで該空洞33は完全に封鎖される。
図6 図14に示すように、ステップ98では溶接メカニズム8は該切断面351に対して溶接を行い、完全に開口部を封鎖し気密効果を達成する。実施方式はスポット接着或いはスポット溶接などの技術溶接を含む。スポット接着はエポキシレジン(Epoxy resin)、シリコン、或いは紫外線光固外膠など公知の接着剤を利用し、該切断面351を接着し永久気密を達成する。スポット溶接の一種方式は該超音波溶接システム2を使用し溶接を施すもので、実施の方式はステップ93と類似している。よってここでは詳述しない。スポット溶接の別種の方式はスズペースト或いは銀錫により該切断面351に対して溶接を行うものである、すなわちスズペースト或いは銀錫を該切断面351に設置後、溶接炉に戻し或いは熱風ガンによりスズペースト或いは銀錫を溶融させ、該切断面351に接着し永久気密を達成する。該項技術の専門家であれば簡単に考え付く金属溶接に応用可能な技術は上記の数種の方式に限らない。そのため上記は本発明の最適実施であり、その他可能な実施方式を制限するものではない。
最後に、ステップ99では該封入体3を加工し成型する。該封入体3はその他溶接方式により形成する異質介面116を具えないため(図4参照)、該封入体3は屈折の過程において断裂或いは裂痕を生じることなく、該作業流体5安定平衡態に影響を及ぼす可能性を排除することができる。
図15と図16に示すように、本発明の超音波を利用し溶接する平板式サーモチューブの製造方法の第二最適実施例と該第一最適実施例は類似しているが、異なる点は、組合せ後の封入体3は該第一最適実施中の角隅37を具えないが(図12参照)、突出部34を含み、該突出部34の側面には開口341を形成する点である。そのため本最適実施例中において、該抽気充填管35は該封入体3を組合せ後に、溶接或いは接着などの公知の方式により該開口341に連接し、該空洞33に連通する。
この他、ステップ96及びステップ97の挟合及び切断動作は該突出部34において実行し、該抽気充填管35においてではない。これによりステップ93において超音波により溶接する時、同時に該抽気充填管35を溶接しなければならない不便を省くことができる。同様に、ステップ98において、該突出部34の既に切断された切断段342に対してスポット溶接を行う。
以上は本発明の最適実施例を記載するもので、本発明実施の範囲を限定するものではなく、本発明の請求項範囲及び発明が説明する内容の簡単な同様の効果の変化と修飾はすべて本発明の特許範囲とする。
公知の平板式サーモチューブの立体図で、サーモチューブの作業原理を説明するものである。 公知の平板式サーモチューブ製造のフローチャートである。 封入体及び鋼管の立体図で、図2に対応し平板式サーモチューブの製造工程を説明するものである。 封入体、鋼管、及び抽気充填機具の俯瞰図で、図2に対応し平板式サーモチューブの製造工程を説明するものである。 封入体、鋼管、及び溶接機具の俯瞰図、図2に対応し該平板式サーモチューブの製造工程を説明するものである。 本発明の超音波を利用し溶接する平板式サーモチューブ製造方法の第一最適実施例のフローチャートである。 平板式サーモチューブの立体分解図で、図6に対応し第一最適実施例を説明するものである。 超音波溶接方法のフローチャートで、図6に対応し第一最適実施例を説明するものである。 超音波溶接システムの立体図で、図8に対応し第一最適実施例を説明するものである。 超音波溶接システムの未完成側面図で、図8に対応し第一最適実施例を説明するものである。 ウェルディングトゥース(welding tooth)の底面図で、図8に対応し第一最適実施例を説明するものである。 封入体及び抽気充填管の俯瞰図で、図6に対応し第一最適実施例を説明するものである。 封入体、抽気充填管、抽気充填メカニズム、及び開口封鎖メカニズムの側面断面図で、図6に対応し第一最適実施例を説明するものである。 封入体、抽気充填管、抽気充填メカニズム、及び開口封鎖メカニズムの側面断面図で、図6に対応し第一最適実施例を説明するものである。 別種の封入体の俯瞰図で、本発明の超音波を利用し溶接する平板式サーモチューブ製造方法の第二最適実施例を説明するものである。 封入体、抽気充填メカニズム、及び開口封鎖メカニズムの側面断面図で、第二最適実施例を説明するものである。
符号の説明
2 超音波溶接システム
20 本体
21 キャリア
211 滑り止め片
22 コッパービット(copper bit)
221 ウェルディングトゥース(welding tooth)
222 凸伸部
223 陥没部
3 封入体
31 第一構成部品
32 第二構成部品
33 空洞
34 突出部
341 開口
342 切断段
35 抽気充填管
351 切断面
36 エンボシング
37 角隅
4 毛細構造
41 毛細孔
5 作業流体
6 抽気充填メカニズム
7 開口封鎖メカニズム
71 挟合部品
72 カッター
91~99 ステップ
931~937 ステップ

Claims (7)

  1. 主に超音波溶接システムを用い、薄板状で可鍛性を具えた第一構成部品及び第二構成部品を平板式サーモチューブに成型し、該超音波溶接システム直線に沿って移動し、超音波振動を生じるコッパービット(copper bit)を含み、該製造方法は以下のステップを含み、
    (A)該直線に沿って相互に重なり合う第一、第二構成部品において該コッパービット(copper bit)に抵触し、該第一、第二構成部品に対して超音波溶接を施し、
    (B)該コッパービット(copper bit)は該第一、第二構成部品に相対し該直線に垂直な封鎖ルートに沿って移動し、しかも固接された第一、第二構成部品は相互に対応し空洞を形成し、
    (C)該空洞内の気体を抜き、
    (D)作業流体を該空洞に充填し、
    (E)該空洞を封鎖することを特徴とする平板式サーモチューブの製造方法。
  2. 前記ステップ(C)は以下のサブステップを含み、
    (C-1)前記空洞に連通する抽気充填管を前記第一、第二構成部品の間に設置し、
    (C-2)前記抽気充填管内圧を低下させ抽気を行うことを特徴とする請求項1記載の平板式サーモチューブの製造方法。
  3. 前記ステップ(D)は前記空洞に連通する抽気充填管により前記作業流体を充填することを特徴とする請求項1記載の平板式サーモチューブの製造方法。
  4. 前記超音波を利用し溶接する平板式サーモチューブの製造方法はさらにステップ(F)を含み、毛細構造を前記第一、第二構成部品間に設置することを特徴とする請求項1記載の平板式サーモチューブの製造方法。
  5. 前記超音波を利用し溶接する平板式サーモチューブの製造方法はさらにステップ(F)を含み、前記開口を溶接し前記空洞を密封することを特徴とする請求項1記載の平板式サーモチューブの製造方法。
  6. 前記ステップ(F)スポット接着方式により前記開口を溶接することを特徴とする請求項5記載の平板式サーモチューブの製造方法。
  7. 前記ステップ(F)はスポット溶接方式により前記開口を溶接することを特徴とする請求項5記載の平板式サーモチューブの製造方法。
JP2005184275A 2005-06-24 2005-06-24 平板式サーモチューブの製造方法 Pending JP2007003102A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184275A JP2007003102A (ja) 2005-06-24 2005-06-24 平板式サーモチューブの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184275A JP2007003102A (ja) 2005-06-24 2005-06-24 平板式サーモチューブの製造方法

Publications (1)

Publication Number Publication Date
JP2007003102A true JP2007003102A (ja) 2007-01-11

Family

ID=37688902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184275A Pending JP2007003102A (ja) 2005-06-24 2005-06-24 平板式サーモチューブの製造方法

Country Status (1)

Country Link
JP (1) JP2007003102A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067976A (ja) * 2010-09-24 2012-04-05 Kiko Kagi Kofun Yugenkoshi 平型ヒートパイプの封止構造及びその製造方法
CN102494550A (zh) * 2011-12-29 2012-06-13 四川鋈新能源科技有限公司 一种均温板、均温板制作装置以及均温板制作方法
CN110315196A (zh) * 2019-08-09 2019-10-11 东莞市原和电子有限公司 一种应用于均温板的超声波焊接装置及其无尾封口工艺
JP7428416B2 (ja) 2022-05-09 2024-02-06 健治 大沢 ヒートパイプ及び当該ヒートパイプに対する冷媒液の注入並びに封止方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196595A (ja) * 1986-02-24 1987-08-29 Furukawa Alum Co Ltd ヒ−トパイプ作動液封入口部の密封方法
JPS6361890A (ja) * 1986-09-02 1988-03-18 Nec Corp ヒ−トパイプ
JP2000111281A (ja) * 1998-10-08 2000-04-18 Hitachi Cable Ltd 平面状ヒートパイプ及びその製造方法
JP2003042675A (ja) * 2001-07-26 2003-02-13 Tokai Rubber Ind Ltd 熱拡散シート
JP2003080378A (ja) * 2001-09-10 2003-03-18 Furukawa Electric Co Ltd:The 平面型ヒートパイプの製造方法および実装方法
JP2003214779A (ja) * 2002-01-25 2003-07-30 Fujikura Ltd 平板型ヒートパイプ
JP2004020116A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 平板型ヒートパイプ
JP2005121345A (ja) * 2003-10-20 2005-05-12 Furukawa Electric Co Ltd:The 板型ヒートパイプおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196595A (ja) * 1986-02-24 1987-08-29 Furukawa Alum Co Ltd ヒ−トパイプ作動液封入口部の密封方法
JPS6361890A (ja) * 1986-09-02 1988-03-18 Nec Corp ヒ−トパイプ
JP2000111281A (ja) * 1998-10-08 2000-04-18 Hitachi Cable Ltd 平面状ヒートパイプ及びその製造方法
JP2003042675A (ja) * 2001-07-26 2003-02-13 Tokai Rubber Ind Ltd 熱拡散シート
JP2003080378A (ja) * 2001-09-10 2003-03-18 Furukawa Electric Co Ltd:The 平面型ヒートパイプの製造方法および実装方法
JP2003214779A (ja) * 2002-01-25 2003-07-30 Fujikura Ltd 平板型ヒートパイプ
JP2004020116A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Corp 平板型ヒートパイプ
JP2005121345A (ja) * 2003-10-20 2005-05-12 Furukawa Electric Co Ltd:The 板型ヒートパイプおよびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067976A (ja) * 2010-09-24 2012-04-05 Kiko Kagi Kofun Yugenkoshi 平型ヒートパイプの封止構造及びその製造方法
CN102494550A (zh) * 2011-12-29 2012-06-13 四川鋈新能源科技有限公司 一种均温板、均温板制作装置以及均温板制作方法
CN110315196A (zh) * 2019-08-09 2019-10-11 东莞市原和电子有限公司 一种应用于均温板的超声波焊接装置及其无尾封口工艺
JP7428416B2 (ja) 2022-05-09 2024-02-06 健治 大沢 ヒートパイプ及び当該ヒートパイプに対する冷媒液の注入並びに封止方法

Similar Documents

Publication Publication Date Title
US7677299B2 (en) Nearly isothermal heat pipe heat sink
US20050126759A1 (en) Plate-type heat pipe and method for manufacturing the same
US10448540B2 (en) Ultrathin heat dissipation structure
WO2016031604A1 (ja) 平面型ヒートパイプ
JP2016035348A (ja) 平面型ヒートパイプ
JP2007003102A (ja) 平板式サーモチューブの製造方法
US7849598B2 (en) Method for manufacturing an isothermal plate
CN1845321A (zh) 利用超音波焊接的平板式热管制造方法
JP5050440B2 (ja) 半導体装置及びその製造方法
US20040194915A1 (en) Thermal pouch interface
CN1790645A (zh) 接合的硅元件及其制造方法
JP2007093033A (ja) シート状ヒートパイプおよびその製造方法
JP2007013073A (ja) 半導体発光素子のパッケージ用基板を作製する方法及びそのパッケージ用基板
KR102128771B1 (ko) 베이퍼 챔버
JP2011077182A (ja) 発光装置の製造方法
US20050252951A1 (en) Method for assembling and brazing CPU heat sink modules
KR20100130960A (ko) 반도체 장치 및 반도체 장치의 제조 방법
WO2013039099A1 (ja) 半導体装置の製造方法およびその製造方法を用いて製造した半導体装置
JP2008045820A (ja) 平板式ヒートパイプの製造方法
US20110000645A1 (en) Heat dissipating board structure and method of manufacturing the same
JP3552553B2 (ja) 平面状ヒートパイプ及びその製造方法
TWI291540B (en) Process of a flat thin-plate heat pipe through ultrasonic welding
JP2012160688A (ja) ヒートシンク及びその製造方法
TWI766791B (zh) 雙面冷卻功率封裝結構
TWM575647U (zh) Middle frame heat dissipation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308