WO2016031604A1 - 平面型ヒートパイプ - Google Patents

平面型ヒートパイプ Download PDF

Info

Publication number
WO2016031604A1
WO2016031604A1 PCT/JP2015/073018 JP2015073018W WO2016031604A1 WO 2016031604 A1 WO2016031604 A1 WO 2016031604A1 JP 2015073018 W JP2015073018 W JP 2015073018W WO 2016031604 A1 WO2016031604 A1 WO 2016031604A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
metal member
layer
cavity
plate
Prior art date
Application number
PCT/JP2015/073018
Other languages
English (en)
French (fr)
Inventor
博史 青木
坂井 啓志
達朗 三浦
義勝 稲垣
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to US15/507,027 priority Critical patent/US10119770B2/en
Priority to CN201590000902.3U priority patent/CN206609325U/zh
Publication of WO2016031604A1 publication Critical patent/WO2016031604A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/067Fastening; Joining by welding by laser welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a flat type heat pipe with reduced container distortion and excellent compatibility with hydraulic fluid such as water.
  • a planar heat pipe may be used as a cooling method for electronic components.
  • copper material for flat heat pipes copper material with excellent compatibility with water that is widely used as hydraulic fluid and high thermal conductivity is used, because copper material has high thermal conductivity and low electrical resistance.
  • the outer periphery of the cavity is generally joined by brazing or soldering.
  • the sealing method by brazing or soldering needs to heat the copper material, which is a container material, at a high temperature, so that the rigidity of the container material tends to decrease and the pressure resistance of the flat heat pipe tends to deteriorate. There was a problem that there was.
  • a clad material made of two kinds of metal members may be used as a container material.
  • the clad material a two-layer structure of copper material and aluminum material is used for weight reduction and excellent workability, and the surface of the clad material that forms the inner wall of the container is made of copper material.
  • Patent Document 1 A pipe has also been proposed (Patent Document 1).
  • an object of the present invention is to provide a flat type heat pipe in which the distortion of the container is reduced, and the airtightness of the void portion having a wick structure and the compatibility with hydraulic fluid such as water are excellent.
  • An aspect of the present invention includes a container having a hollow portion formed in the center by two opposing plate-like bodies, and a working fluid sealed in the hollow portion, and the hollow portion is provided with a wick structure.
  • a flat heat pipe wherein at least one of the plate-like bodies is a composite member in which two or more kinds of metal members are laminated and integrated, and a layer in contact with the cavity portion of the composite member is formed.
  • the metal member that has a thermal conductivity of 200 W / m ⁇ K or more and the metal member that forms a layer in contact with the outside has a thermal conductivity of 100 W / m ⁇ K or less, and the outer periphery of the cavity
  • This is a flat type heat pipe whose part is sealed.
  • the thermal conductivity of this specification is a value in 25 degreeC.
  • An aspect of the present invention is a flat heat pipe in which an outer peripheral portion of the hollow portion is sealed by laser welding.
  • An aspect of the present invention is a flat heat pipe in which an outer peripheral portion of the hollow portion is sealed by resistance welding.
  • An aspect of the present invention is a planar heat pipe in which the composite member is a clad material or a plating material.
  • An aspect of the present invention is a planar heat pipe in which the metal member that forms the layer in contact with the cavity is copper, and the metal member that forms the layer in contact with the outside is stainless steel.
  • An aspect of the present invention is a planar heat pipe in which a thickness of a metal member forming a layer in contact with the cavity is 1/2 or less of a thickness of the composite member.
  • An aspect of the present invention is a heat sink on which the above planar heat pipe is mounted.
  • the container material of the planar heat pipe has a thermal conductivity of 200 W / m ⁇ K or more, and the metal member forming the layer in contact with the cavity forms a layer in contact with the outside
  • the metal member to be used is a composite member having a thermal conductivity of 100 W / m ⁇ K or less, when sealing the outer peripheral portion of the cavity portion by welding or the like, first, it is a layer in contact with the outside.
  • the metal member having a thermal conductivity of m ⁇ K or less quickly melts and releases heat of fusion, and the melting heat released from the metal member having a thermal conductivity of 100 W / m ⁇ K or less is in contact with the cavity.
  • the metal member Since the heat conductivity of 200 W / m ⁇ K or higher, that is, the above-mentioned layer, that is, heat transfer smoothly to the metal member having a relatively high heat conductivity, the metal member also melts quickly, the container is distorted. Occurrence is prevented and a flat heat pipe with high flatness is obtained.
  • the metal member which is a layer in contact with the outside and the metal member which is a layer in contact with the cavity are rapidly melted, a flat heat pipe having a wick structure with excellent airtightness is obtained. Furthermore, since the metal member that forms the layer in contact with the cavity has a high thermal conductivity of 200 W / m ⁇ K or more, it is excellent in compatibility with hydraulic fluid such as water, and also in heat transport characteristics. It becomes a flat heat pipe.
  • the metal member having a thermal conductivity of 100 W / m ⁇ K or less, which is a layer in contact with the outside is melted more quickly. Since the heat of fusion is smoothly transferred to the metal member having a thermal conductivity of 200 W / m ⁇ K or higher, which is a layer in contact with the cavity, which releases the heat of fusion, and the metal member also melts more quickly, the laser In the sealing process by welding, the occurrence of distortion of the container can be further reduced, and the airtightness of the gap portion having the wick structure is further improved.
  • the metal member When a metal member having a thermal conductivity of 100 W / m ⁇ K or less is irradiated with a laser beam, the metal member melts more quickly because the metal member having a lower thermal conductivity has a higher electrical conductivity. A metal member having a low electric conductivity has a higher absorption rate of the laser beam. Therefore, when a laser beam is irradiated to a metal member having a lower thermal conductivity, the metal member absorbs the energy of the laser beam more quickly. It is for melting.
  • the metal member having a thermal conductivity of 100 W / m ⁇ K or less which is a layer in contact with the outside, is melted more quickly.
  • the occurrence of distortion of the container can be further reduced, and the airtightness of the void portion having the wick structure is further improved.
  • the metal member melts more quickly because the metal member has a lower thermal conductivity.
  • higher Joule heat is generated. Therefore, when resistance welding is performed on a metal member having a lower thermal conductivity, the metal member is melted more rapidly.
  • the container material is excellent in compatibility with hydraulic fluid such as water. This is a flat heat pipe with high rigidity and excellent pressure resistance.
  • planar heat pipe It is side surface sectional drawing of the planar heat pipe which concerns on the example of 1st Embodiment of this invention. It is side surface sectional drawing of the planar heat pipe which concerns on the example of 2nd Embodiment of this invention.
  • the planar heat pipe 1 according to the first embodiment is formed by stacking two opposing plate-like bodies, that is, one plate-like body 4 and the other plate-like body 3.
  • a convex portion 6 having a hollow portion 5 has a rectangular container 2 in plan view formed in the center portion, and a working fluid (not shown) sealed in the hollow portion 5.
  • a wick structure (not shown) having a capillary structure is accommodated in the cavity 5.
  • One plate-like body 4 has a flat plate shape.
  • the other plate-like body 3 is also plate-shaped, but its central portion is plastically deformed into a convex shape.
  • a portion of the plate-like body 3 protruding outward and plastically deformed into a convex shape becomes a convex portion 6 of the container 2.
  • the inside of the convex portion 6 is a hollow portion 5.
  • the cavity 5 is sealed by forming the laser welding portion 8 with the laser beam 7 on the outer peripheral portion of the convex portion 6, that is, surrounding the convex portion 6. 5 is given airtightness.
  • the mode which irradiates the laser beam 7 and forms the laser welding part 8 in the position corresponded to one edge part of the side surface sectional drawing of the container 2 among the outer peripheral parts of the convex part 6 is shown. ing. Therefore, after that, the laser beam 7 is irradiated at a position corresponding to the other end portion of the side cross-sectional view of the container 2 to form a laser welded portion 8.
  • Both the one plate-like body 4 and the other plate-like body 3 are respectively the first layers 4-1 and 3-1 in contact with the cavity and the second layers 4-2 and 3-2 in contact with the external environment.
  • the metal member forming the first layer 4-1 in contact with the cavity has a thermal conductivity of 200 W / m ⁇ K or more
  • the external environment of the planar heat pipe 1 is
  • the metal member forming the contacted second layer 4-2 has a thermal conductivity of 100 W / m ⁇ K or less.
  • the other plate-like body 3 also has a thermal conductivity of 200 W / m ⁇ K or more as in the case of the one plate-like body 4, the metal member forming the first layer 3-1 in contact with the cavity.
  • the metal member forming the second layer 3-2 in contact with the external environment of the planar heat pipe 1 has a thermal conductivity of 100 W / m ⁇ K or less.
  • each of the first layers 3-1 and 4-1 and the second layers 3-2 and 4-2 is made of a single metal member. Layer structure.
  • the metal member When a laser beam is irradiated onto a metal member having a low thermal conductivity, the metal member quickly absorbs the energy of the laser beam and melts. Therefore, for example, the surface of the other plate-like body 3 is irradiated with the laser beam 7, that is, the metal member of the second layer 3-2 having a thermal conductivity of 100 W / m ⁇ K or less of the other plate-like body 3.
  • the metal member of the second layer 3-2 of the other plate 3 is quickly melted.
  • the heat of fusion of this metal member is a first layer of the other plate-like body 3 having a thermal conductivity of 200 W / m ⁇ K or higher which is a layer in contact with the cavity 5, that is, a relatively high thermal conductivity. Heat is smoothly transferred to the metal member of the layer 3-1, and the metal member of the first layer 3-1 is also rapidly melted. Similarly, the heat of fusion of the metal member of the first layer 3-1 of the other plate-like body 3 is further reduced to the metal member of the first layer 4-1 of one plate-like body 4 and the other plate-like body. 4 is transmitted to the metal member of the second layer 4-2, and the metal member of the first layer 4-1 and the metal member of the second layer 4-2 are rapidly melted. Therefore, the distortion of the container 2 can be further reduced by welding with the laser beam 7, and the airtightness of the gap portion 5 having the wick structure is further improved.
  • the metal member forming the first layers 3-1 and 4-1 has a high thermal conductivity of 200 W / m ⁇ K or more, so that it has compatibility with the hydraulic fluid. It can be set as the planar heat pipe which has a favorable heat transport characteristic.
  • the thermal conductivity of the metal member forming the first layers 3-1 and 4-1 is not particularly limited as long as it is 200 W / m ⁇ K or more, but the excellent heat transport characteristics of the planar heat pipe 1, 300 W / m ⁇ K from the viewpoint of heat transfer to the inside of the first layers 3-1 and 4-1 and heat transfer to one plate-like body 4.
  • the above is preferable, and 350 W / m ⁇ K or more is particularly preferable from the viewpoints of more excellent heat transport properties and more excellent heat conductivity.
  • the upper limit of the thermal conductivity of the metal member forming the first layers 3-1 and 4-1 is not particularly limited, but the second member formed from the metal member having a thermal conductivity of 100 W / m ⁇ K or less. 500 W / m ⁇ K or less is preferable, and 450 W / m ⁇ K or less is particularly preferable from the viewpoint of reliably preventing the distortion of the container 2 due to the difference in thermal expansion coefficient between the layers 3-2 and 4-2.
  • the metal member of the first layer 3-1, 4-1 is not particularly limited as long as it is a metal member having the above thermal conductivity, and is a metal of 200 W / m ⁇ K or more and less than 300 W / m ⁇ K.
  • a metal material for example, aluminum, an aluminum alloy or the like, a metal material of 300 W / m ⁇ K or more and less than 350 W / m ⁇ K, for example, gold, a copper alloy or the like, a metal of 350 W / m ⁇ K or more and less than 500 W / m ⁇ K
  • the material include copper and silver. Among these, copper is preferable from the viewpoint of excellent compatibility with water that is widely used as a hydraulic fluid and excellent heat transport properties.
  • the metal members of the second layers 3-2 and 4-2 absorb the laser beam energy quickly and melt, the distortion of the container 2 can be reduced and the airtightness of the void portion having the wick structure can be reduced. Will also improve.
  • the thermal conductivity of the metal member forming the second layers 3-2 and 4-2 is not particularly limited as long as it is 100 W / m ⁇ K or less, but the container absorbs the energy of the laser beam more quickly. 70 W / m ⁇ K or less is preferable from the viewpoint of further improving the flatness of the flat heat pipe 1 by further reducing the occurrence of distortion of 2 and 40 W / m ⁇ K from the viewpoint of improving productivity by increasing the speed of laser welding.
  • the metal member of the second layer 3-2, 4-2 is not particularly limited as long as it is a metal member having the above thermal conductivity, and a metal of 70 W / m ⁇ K or more and 100 W / m ⁇ K or less.
  • a metal member for example, nickel, iron, etc., as a metal member of 40 W / m ⁇ K, more than 70 W / m ⁇ K, for example, bronze, tin, etc., as a metal member of 40 W / m ⁇ K or less, for example, stainless steel, Titanium etc. can be mentioned.
  • stainless steel and titanium are preferable from the viewpoint of reducing the occurrence of distortion of the container 2 while providing the container 2 with high rigidity and excellent pressure resistance.
  • the total thickness of the laminated plate 4 and the other plate 3 is not particularly limited, and is, for example, 0.1 mm to 1.0 mm. Further, the thickness of one plate-like body 4 is not particularly limited, and is, for example, 0.05 mm to 0.5 mm, and the thickness of the other plate-like body 3 is not particularly limited, for example, 0.05 mm. ⁇ 0.5 mm.
  • the ratio of the thicknesses of the first layers 3-1 and 4-1 and the thicknesses of the second layers 3-2 and 4-2 is not particularly limited. For example, the second layers 3-2 and 4-2 are not limited.
  • the ratio of the thickness of the first layers 3-1 and 4-1 to the thickness of the first layer is preferably 0.1 to 1.0 from the viewpoint of the rigidity of one plate-like body and the other plate-like body. From the viewpoint of stability and reliability, 0.2 to 0.8 is particularly preferable.
  • a clad material or a plating material can be used as the composite member in which the first layers 3-1 and 4-1 and the second layers 3-2 and 4-2 are laminated and integrated.
  • the clad material used in the present invention can be manufactured by a known method. For example, the joint surfaces of the metal members of the first layers 3-1, 4-1 and the second layers 3-2, 4- After the joining surfaces of the two metal members are washed and subjected to a predetermined activation treatment, the joining surfaces of both the metal members are overlapped, joined by cold rolling, and heat-treated.
  • the plating material used in the present invention can also be produced by a known method. For example, electroless treatment is performed on the metal member that forms the second layers 3-2 and 4-2 that are members to be plated. It can be manufactured by forming the first layers 3-1 and 4-1 on the second layers 3-2 and 4-2 by performing plating or electroplating.
  • the laser used for forming the laser welded portion 8 is not particularly limited.
  • the laser of the container 2 examples thereof include a fiber laser having a small condensing diameter on the irradiation side surface, for example, a condensing diameter of 20 to 200 ⁇ m.
  • the working fluid to be sealed in the hollow portion 5 can be appropriately selected according to the compatibility with the material of the container 2, and can include, for example, water.
  • Examples of other hydraulic fluids include alternative chlorofluorocarbons, florina, and cyclopentane.
  • Examples of the wick structure (not shown) having a capillary structure include a thin plate having a mesh, a wire, and the like.
  • planar heat pipe 1 according to a second embodiment of the present invention will be described with reference to the drawings.
  • the same components as those of the planar heat pipe 1 according to the first embodiment of the present invention will be described using the same reference numerals.
  • the cavity 5 is sealed by forming the laser welded portion 8 with the laser beam 7 on the outer peripheral portion of the convex portion 6.
  • the welded portion 12 by the resistance welder is formed on the outer peripheral portion of the convex portion 6 by the resistance welder 11 such as a seam welder.
  • the cavity 5 is sealed.
  • the welded portion by the resistance welder is used by the resistance welder 11 at a position corresponding to one end of the side sectional view of the container 2 in the outer peripheral portion of the convex portion 6. 12 is formed. Therefore, after that, the welded portion 12 by the resistance welder is formed by the resistance welder 11 even at a position corresponding to the other end of the side sectional view of the container 2.
  • the occurrence of distortion of the container 2 can be further reduced as in the case of welding by the laser beam 7, and the void portion having a wick structure.
  • the airtightness of 5 is further improved.
  • planar heat pipe a case where a flexible printed wiring board on which a CPU or the like inside an electronic device such as a personal computer is mounted is cooled using the planar heat pipe of the present invention will be described as an example.
  • the flat heat pipe is appropriately bent according to the state of the gap inside the electronic device and the storage state of the flexible printed wiring board, and the flexible printed wiring board is thermally connected to the heat input side of the flat heat pipe.
  • a heat radiating fin is provided as necessary.
  • planar heat pipe according to the embodiment of the present invention can be mounted on the heat sink to improve the cooling capacity of the heat sink.
  • the mounting method for example, a method of thermally connecting the heat radiation side of the flat heat pipe to the heat receiving block surface of the heat sink, a method of connecting the heat input side of the flat heat pipe to the heat receiving block of the heat sink, and A method of thermally connecting the heat radiating side of the planar heat pipe to the heat radiating fins can be exemplified.
  • each of the first layers 3-1 and 4-1 and the second layers 3-2 and 4-2 is made of one metal member.
  • a structure of two or more layers formed from two or more metal members may be used.
  • specific metal species of the metal member can include the metal species described above.
  • both the other plate-like body 3 and the one plate-like body 4 are in contact with the first layers 3-1 and 4-1 in contact with the cavity 5, respectively.
  • the second layer 3-2, 4-2 in contact with the external environment, that is, a composite member having a two-layer structure in which two kinds of metal members are laminated and integrated.
  • the first layer 3-1, 4-1 and the second layer 3-2, 4-2 the first layer 3-1, 4-1 and the second layer 3-
  • a composite member having a structure of three or more layers provided with one or more intermediate layers formed of a metal member of a different type from the metal members of 2 and 4-2 may be used.
  • the metal member forming the intermediate layer is a metal member having a thermal conductivity of more than 100 W / m ⁇ K and less than 200 W / m ⁇ K, and examples thereof include tungsten.
  • both the other plate-like body 3 and the one plate-like body 4 have the first layers 3-1 and 4-1 and the first layers 3-1 and 4-1.
  • the other plate-like body 3 or one plate-like body 4 is replaced with the first layer 3-1.
  • It may be a single-layer member consisting of only 4-1 or only the second layers 3-2 and 4-2.
  • the plate-like body to which the laser beam 7 is irradiated is a composite member having a two-layer structure from the viewpoint of reliably preventing the container from being distorted.
  • the plate-like body that is not irradiated with the laser beam 7 is preferably a member having the above-mentioned single-layer structure. Even when the other plate-like body 3 or one plate-like body 4 is a member having the above-described one-layer structure, the composite member may have a structure having three or more layers instead of the two-layer structure.
  • the surface of the other plate-like body 3 is irradiated with the laser beam 9, but instead, the surface of the one plate-like body 4 is irradiated with the laser beam 9.
  • both surfaces of the other plate-like body 3 and one plate-like body 4 may be irradiated with the laser beam 9.
  • the flat type heat pipe of the present invention has reduced container distortion, excellent airtightness of the gap portion having a wick structure, and excellent compatibility with hydraulic fluid such as water. Highly useful in the field of cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

 コンテナの歪みが低減され、ウィック構造を有する空隙部の気密性と水等の作動液に対する適合性に優れた平面型ヒートパイプを提供する。 対向する2枚の板状体により空洞部が中央部に形成されたコンテナと、前記空洞部に封入された作動液とを有し、前記空洞部にウィック構造が備えられた平面型ヒートパイプであって、前記板状体の少なくとも一方は、2種類以上の金属部材が積層され一体化された複合部材であり、前記複合部材のうち、空洞部に接した層を形成する金属部材が、200W/m・K以上の熱伝導率を有し、外部に接した層を形成する金属部材が、100W/m・K以下の熱伝導率を有し、前記空洞部の外周部が封止されている平面型ヒートパイプ。

Description

平面型ヒートパイプ
 本発明は、コンテナの歪みが低減され、水等の作動液に対する適合性に優れた平面型ヒートパイプに関するものである。
 電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴う高密度搭載等により、発熱量が増大し、近年、その冷却がより重要となっている。電子部品の冷却方法として、平面型ヒートパイプが使用されることがある。
 平面型ヒートパイプのコンテナ材料として、作動液として広汎に使用される水に対する適合性に優れかつ熱伝導率の高い銅材を使用すると、銅材は熱伝導率が高く、電気抵抗が低いために、ウィック構造を有する空隙部を封止するために、ロウ付けまたははんだ付けにて空洞部の外周を接合するのが一般的である。しかし、ロウ付けまたははんだ付けによる封止方法は、コンテナ材料である銅材を高温下で加熱する必要があるので、コンテナ材料の剛性が低下して平面型ヒートパイプの耐圧性が劣化する傾向にあるという問題があった。
 一方で、ロウ付けまたははんだ付けによる平面型ヒートパイプの耐圧性の低下を防止するために、コンテナ材料として銅材以外の材料、例えば、ステンレス鋼等を使用すると、作動液として広汎に使用される水との適合性に劣るという問題があった。
 一方で、コンテナ材料として2種の金属部材からなるクラッド材を使用することもある。該クラッド材として、軽量化と優れた加工性のために、銅材とアルミニウム材との二層構造の部材を使用し、コンテナの内壁を形成するクラッド材の面が銅材からなる平面型ヒートパイプも提案されている(特許文献1)。
 しかし、特許文献1の平面型ヒートパイプでは、銅材とアルミニウム材という、いずれも比較的熱伝導率の大きい材料が用いられているので、レーザー溶接や抵抗溶接で前記空隙部を封止すると、コンテナに歪みが生じる場合があった。
特開2002-168575号公報
 上記事情に鑑み、本発明は、コンテナの歪みが低減され、ウィック構造を有する空隙部の気密性と水等の作動液に対する適合性に優れた平面型ヒートパイプを提供することを目的とする。
 本発明の態様は、対向する2枚の板状体により空洞部が中央部に形成されたコンテナと、前記空洞部に封入された作動液とを有し、前記空洞部にウィック構造が備えられた平面型ヒートパイプであって、前記板状体の少なくとも一方は、2種類以上の金属部材が積層され一体化された複合部材であり、前記複合部材のうち、空洞部に接した層を形成する金属部材が、200W/m・K以上の熱伝導率を有し、外部に接した層を形成する金属部材が、100W/m・K以下の熱伝導率を有し、前記空洞部の外周部が封止されている平面型ヒートパイプである。なお、本明細書の熱伝導率は、25℃での値である。
 本発明の態様は、前記空洞部の外周部が、レーザー溶接で封止されている平面型ヒートパイプである。
 本発明の態様は、前記空洞部の外周部が、抵抗溶接で封止されている平面型ヒートパイプである。
 本発明の態様は、前記複合部材が、クラッド材またはめっき材である平面型ヒートパイプである。
 本発明の態様は、前記空洞部に接した層を形成する金属部材が、銅であり、前記外部に接した層を形成する金属部材が、ステンレス鋼である平面型ヒートパイプである。
 本発明の態様は、前記空洞部に接した層を形成する金属部材の層の厚さが、前記複合部材の厚さの1/2以下である平面型ヒートパイプである。
 本発明の態様は、上記平面型ヒートパイプが搭載されたヒートシンクである。
 本発明の態様によれば、平面型ヒートパイプのコンテナ材料が、空洞部に接した層を形成する金属部材が200W/m・K以上の熱伝導率を有し、外部に接した層を形成する金属部材が100W/m・K以下の熱伝導率を有する複合部材であることにより、空洞部の外周部を溶接等にて封止する際に、まず、外部に接した層である100W/m・K以下の熱伝導率を有する金属部材が速やかに溶融して溶融熱を放出し、100W/m・K以下の熱伝導率を有する金属部材から放出された溶融熱は、空洞部に接した層である200W/m・K以上の熱伝導率、すなわち、相対的に高い熱伝導率を有する金属部材へ円滑に伝熱されて、該金属部材も速やかに溶融するので、コンテナに歪みが発生するのが防止され、平面度の高い平面型ヒートパイプとなる。
 また、外部に接した層である金属部材と空洞部に接した層である金属部材ともに、速やかに溶融するので、ウィック構造を有する空隙部の気密性に優れた平面型ヒートパイプとなる。さらに、空洞部に接した層を形成する金属部材が200W/m・K以上と、高い熱伝導率を有することから、水等の作動液に対する適合性に優れ、さらに熱輸送特性にも優れた平面型ヒートパイプとなる。
 本発明の態様によれば、空洞部がレーザー溶接で封止されていることにより、外部に接した層である100W/m・K以下の熱伝導率を有する金属部材がより速やかに溶融して溶融熱を放出し、空洞部に接した層である200W/m・K以上の熱伝導率を有する金属部材へ溶融熱が円滑に伝熱されて該金属部材もより速やかに溶融するので、レーザー溶接による封止処理にあたり、コンテナの歪みの発生をさらに低減でき、ウィック構造を有する空隙部の気密性もさらに向上する。なお、100W/m・K以下の熱伝導率を有する金属部材にレーザー光線が照射されると、より速やかに該金属部材が溶融するのは、熱伝導率のより低い金属部材は電気伝導度もより低く、電気伝導度のより低い金属部材はレーザー光線の吸収率がより高いので、レーザー光線が熱伝導率のより低い金属部材に照射されると、該金属部材はより速やかにレーザー光線のエネルギーを吸収して溶融するためである。
 本発明の態様によれば、空洞部が抵抗溶接で封止されていることにより、外部に接した層である100W/m・K以下の熱伝導率を有する金属部材がより速やかに溶融するので、抵抗溶接による封止処理にあたり、コンテナの歪みの発生をさらに低減でき、ウィック構造を有する空隙部の気密性もさらに向上する。なお、100W/m・K以下の熱伝導率を有する金属部材に対して溶接電流を流す抵抗溶接がなされると、より速やかに該金属部材が溶融するのは、熱伝導率のより低い金属部材に電流を印加すると、より高いジュール熱が発生するので、熱伝導率のより低い金属部材に対して抵抗溶接が施されると、該金属部材はより速やかに溶融するためである。
 本発明の態様によれば、空洞部に接した層の金属部材が銅、外部に接した層の金属部材がステンレス鋼であることにより、水等の作動液との適合性に優れ、コンテナ材料の剛性が高く耐圧性に優れた平面型ヒートパイプとなる。
本発明の第1実施形態例に係る平面型ヒートパイプの側面断面図である。 本発明の第2実施形態例に係る平面型ヒートパイプの側面断面図である。
 以下に、本発明の第1実施形態例に係る平面型ヒートパイプについて、図面を用いながら説明する。図1に示すように、第1実施形態例に係る平面型ヒートパイプ1は、対向する2枚の板状体、すなわち、一方の板状体4と他方の板状体3とを重ねることにより空洞部5を有する凸部6が中央部に形成された平面視矩形状のコンテナ2と、空洞部5内に封入された作動液(図示せず)とを有している。空洞部5内には、毛細管構造を有するウィック構造体(図示せず)が収納されている。
 一方の板状体4は平板状である。他方の板状体3も平板状であるが、中央部が凸状に塑性変形されている。この板状体3の、外側に向かって突出し、凸状に塑性変形された部位が、コンテナ2の凸部6となる。凸部6の内部は、空洞部5となっている。平面型ヒートパイプ1では、凸部6の外周部に、すなわち、凸部6の周りを囲むようにレーザー光線7にてレーザー溶接部8が形成されることで空洞部5が封止され、空洞部5に気密性が付与される。なお、図1では、凸部6の外周部のうち、コンテナ2の側面断面図の一方の端部に相当する位置において、レーザー光線7を照射してレーザー溶接部8を形成している様子を示している。従って、その後、コンテナ2の側面断面図の他方の端部に相当する位置においてもレーザー光線7が照射されて、レーザー溶接部8が形成される。
 一方の板状体4と他方の板状体3ともに、それぞれ、空洞部に接した第1の層4-1、3-1と外部環境に接した第2の層4-2、3-2が、積層され一体化された複合部材である。一方の板状体4では、空洞部に接した第1の層4-1を形成する金属部材は、200W/m・K以上の熱伝導率を有し、平面型ヒートパイプ1の外部環境に接した第2の層4-2を形成する金属部材は、100W/m・K以下の熱伝導率を有する。他方の板状体3も、一方の板状体4と同様に、空洞部に接した第1の層3-1を形成する金属部材は、200W/m・K以上の熱伝導率を有し、平面型ヒートパイプ1の外部環境に接した第2の層3-2を形成する金属部材は、100W/m・K以下の熱伝導率を有する。
 第1実施形態例に係る平面型ヒートパイプ1では、第1の層3-1、4-1と第2の層3-2、4-2は、いずれも、1種の金属部材からなる単層構造である。
 レーザー光線が熱伝導率の低い金属部材に照射されると、該金属部材は速やかにレーザー光線のエネルギーを吸収して溶融する。よって、例えば、他方の板状体3の表面側にレーザー光線7が照射、すなわち、他方の板状体3の100W/m・K以下の熱伝導率を有する第2の層3-2の金属部材に対してレーザー光線7が照射されると、速やかに他方の板状体3の第2の層3-2の金属部材が溶融する。この金属部材の溶融熱は、空洞部5に接した層である200W/m・K以上の熱伝導率、すなわち、相対的に高い熱伝導率を有する、他方の板状体3の第1の層3-1の金属部材へ円滑に伝熱されて、第1の層3-1の金属部材も速やかに溶融する。他方の板状体3の第1の層3-1の金属部材の溶融熱は、同様に、さらに、一方の板状体4の第1の層4-1の金属部材、一方の板状体4の第2の層4-2の金属部材へと伝えられて、第1の層4-1の金属部材及び第2の層4-2の金属部材も速やかに溶融する。従って、レーザー光線7による溶接にて、コンテナ2の歪みの発生をより低減でき、ウィック構造を有する空隙部5の気密性もさらに向上する。
 また、第1の層3-1、4-1を形成する金属部材の熱伝導率が200W/m・K以上と、高い熱伝導率であることにより、作動液との適合性を有しつつ良好な熱輸送特性を有する平面型ヒートパイプとすることができる。第1の層3-1、4-1を形成する金属部材の熱伝導率は、200W/m・K以上であれば特に限定されないが、平面型ヒートパイプ1の優れた熱輸送特性と、第2の層3-2、4-2の溶融熱の第1の層3-1、4-1内部への伝熱性及び一方の板状体4への伝熱性の点から、300W/m・K以上が好ましく、より優れた熱輸送特性とより優れた上記伝熱性の点から、350W/m・K以上が特に好ましい。
 また、第1の層3-1、4-1を形成する金属部材の熱伝導率の上限は特に限定されないが、100W/m・K以下の熱伝導率である金属部材から形成された第2の層3-2、4-2との熱膨張率の差に起因するコンテナ2の歪み発生を確実に防止する点から500W/m・K以下が好ましく、450W/m・K以下が特に好ましい。
 第1の層3-1、4-1の金属部材は、上記熱伝導率を有する金属部材であれば、金属種は特に限定されず、200W/m・K以上300W/m・K未満の金属材料として、例えば、アルミニウム、アルミニウム合金等、300W/m・K以上350W/m・K未満の金属材料として、例えば、金、銅合金等、350W/m・K以上500W/m・K未満の金属材料として、銅、銀等、を挙げることができる。このうち、作動液として汎用されている水との優れた適合性と優れた熱輸送特性の点から、銅が好ましい。
 一方で、第2の層3-2、4-2の金属部材はレーザー光線のエネルギーを速やかに吸収して溶融するので、コンテナ2の歪みの発生を低減でき、ウィック構造を有する空隙部の気密性も向上する。第2の層3-2、4-2を形成する金属部材の熱伝導率は、100W/m・K以下であれば、特に限定されないが、レーザー光線のエネルギーをより速やかに吸収することで、コンテナ2の歪みの発生をさらに低減して平面型ヒートパイプ1の平面度をより向上させる点から70W/m・K以下が好ましく、レーザー溶接の高速化による生産性向上の点から40W/m・K以下が特に好ましい。
 第2の層3-2、4-2の金属部材は、上記熱伝導率を有する金属部材であれば、金属種は特に限定されず、70W/m・K超100W/m・K以下の金属部材として、例えば、ニッケル、鉄等、40W/m・K超70W/m・K以下の金属部材として、例えば、青銅、スズ等、40W/m・K以下の金属部材として、例えば、ステンレス鋼、チタン等、を挙げることができる。このうち、剛性が高く耐圧性に優れたコンテナ2としつつ、コンテナ2の歪みの発生を低減する点から、ステンレス鋼、チタンが好ましい。
 積層された一方の板状体4と他方の板状体3の厚さの合計は、特に限定されず、例えば、0.1mm~1.0mmである。また、一方の板状体4の厚さは、特に限定されず、例えば、0.05mm~0.5mmであり、他方の板状体3の厚さも、特に限定されず、例えば、0.05mm~0.5mmである。第1の層3-1、4-1の厚さと第2の層3-2、4-2の厚さの比率は、特に限定されず、例えば、第2の層3-2、4-2の厚さに対する第1の層3-1、4-1の厚さの比は、一方の板状体及び他方の板状体の剛性の点から0.1~1.0が好ましく、溶接の安定性と信頼性の点から0.2~0.8が特に好ましい。
 第1の層3-1、4-1と第2の層3-2、4-2が積層され一体化された複合部材として、例えば、クラッド材またはめっき材を使用することができる。本発明で使用するクラッド材は、公知の方法にて製造することができ、例えば、第1の層3-1、4-1の金属部材の接合面と第2の層3-2、4-2の金属部材の接合面を洗浄して、所定の活性化処理をした後、両金属部材の接合面を重ねて冷間圧延にて接合し、熱処理することにより製造できる。また、本発明で使用するめっき材も、公知の方法にて製造することができ、例えば、被めっき部材である第2の層3-2、4-2を形成する金属部材に対して無電解めっきまたは電気めっきを施すことで第2の層3-2、4-2上に第1の層3-1、4-1を形成することで製造できる。
 レーザー溶接部8の形成に使用するレーザーは、特に限定されないが、高速加工の点及びレーザー溶接部8の溶接幅を低減して空洞部5の歪みを防止する点から、例えば、コンテナ2のレーザー照射側表面における集光径が小さい、例えば、該集光径20~200μmのファイバーレーザーを挙げることができる。
 空洞部5に封入する作動液としては、コンテナ2の材料との適合性に応じて、適宜選択可能であり、例えば、水を挙げることができる。その他の作動液としては、例えば、代替フロン、フロリーナ、シクロペンタン等を挙げることができる。毛細管構造を有するウィック構造体(図示せず)としては、例えば、メッシュ、ワイヤ等を有する薄板を挙げることができる。
 次に、本発明の第2実施形態例に係る平面型ヒートパイプについて、図面を用いながら説明する。本発明の第1実施形態例に係る平面型ヒートパイプ1と同じ構成要素については同じ符号を用いて説明する。
 図2に示すように、第1実施形態例に係る平面型ヒートパイプ1では、凸部6の外周部にレーザー光線7にてレーザー溶接部8が形成されることで空洞部5が封止されていたが、これに代えて、第2実施形態例に係る平面型ヒートパイプ10では、凸部6の外周部にシーム溶接機等の抵抗溶接機11にて抵抗溶接機による溶接部12が形成されることで空洞部5が封止されている。なお、図2でも、図1と同様に、凸部6の外周部のうち、コンテナ2の側面断面図の一方の端部に相当する位置において、抵抗溶接機11にて抵抗溶接機による溶接部12を形成している様子を示している。従って、その後、コンテナ2の側面断面図の他方の端部に相当する位置においても抵抗溶接機11にて抵抗溶接機による溶接部12が形成されることとなる。
 熱伝導率の低い金属部材に電流を印加すると高いジュール熱が発生するので、100W/m・K以下の熱伝導率を有する第2の層3-2、4-2の金属部材に対して溶接電流を流すシーム溶接等の抵抗溶接がなされると、速やかに第2の層3-2、4-2の金属部材が溶融する。この金属部材の溶融熱は、空洞部5に接した層である200W/m・K以上の熱伝導率、すなわち、相対的に高い熱伝導率を有する、第1の層3-1、4-1の金属部材へ円滑に伝熱されて、第1の層3-1、4-1の金属部材も速やかに溶融する。従って、シーム溶接機等の抵抗溶接機11にて凸部6の外周部を溶接しても、レーザー光線7による溶接と同様に、コンテナ2の歪みの発生をより低減でき、ウィック構造を有する空隙部5の気密性もさらに向上する。
 次に、本発明の実施形態例に係る平面型ヒートパイプの使用方法例について説明する。ここでは、パソコン等の電子機器内部のCPU等が実装されているフレキシブルプリント配線板を、本発明の平面型ヒートパイプを用いて冷却する場合を例にとって説明する。電子機器内部の空隙の状況とフレキシブルプリント配線板の収納状況に応じて、適宜、平面型ヒートパイプを曲げて、フレキシブルプリント配線板を平面型ヒートパイプの入熱側と熱的に接続させる。平面型ヒートパイプの放熱側には、必要に応じて、放熱用のフィンを設ける。これにより、電子機器内部の狭い空間に収容されたフレキシブルプリント配線板を面状に冷却することができる。
 また、本発明の実施形態例に係る平面型ヒートパイプをヒートシンクに搭載して、ヒートシンクの冷却能力を向上させることもできる。上記搭載方法としては、例えば、ヒートシンクの受熱ブロック表面に平面型ヒートパイプの放熱側を熱的に接続させる方法、ヒートシンクの受熱ブロックに平面型ヒートパイプの入熱側を熱的に接続させ、ヒートシンクの放熱フィンに平面型ヒートパイプの放熱側を熱的に接続させる方法等を挙げることができる。
 次に、本発明の他の実施形態例について説明する。上記各実施形態例に係る平面型ヒートパイプ1、10では、第1の層3-1、4-1と第2の層3-2、4-2は、いずれも、1種の金属部材からなる単層構造であったが、これに代えて、2種以上の金属部材から形成された2層以上の構造でもよい。この場合、金属部材の具体的な金属種としては、上記した金属種を挙げることができる。
 上記各実施形態例に係る平面型ヒートパイプ1、10では、他方の板状体3と一方の板状体4ともに、それぞれ、空洞部5に接した第1の層3-1、4-1と外部環境に接した第2の層3-2、4-2からなる複合部材、すなわち、2種の金属部材が積層され一体化された2層構造の複合部材であったが、これに代えて、第1の層3-1、4-1と第2の層3-2、4-2との間に、さらに、第1の層3-1、4-1及び第2の層3-2、4-2の金属部材とは別の種類の金属部材にて形成した中間層を1つ以上設けた、3層以上の構造の複合部材としてもよい。中間層を形成する金属部材は、熱伝導率が100W/m・K超200W/m・K未満の金属部材であり、例えば、タングステン等を挙げることができる。
 また、上記の通り、上記各実施形態例に係る平面型ヒートパイプ1、10では、他方の板状体3と一方の板状体4ともに、第1の層3-1、4-1と第2の層3-2、4-2からなる2層構造の複合部材であったが、これに代えて、他方の板状体3または一方の板状体4を、第1の層3-1、4-1のみまたは第2の層3-2、4-2のみからなる1層構造の部材としてもよい。この実施形態例では、レーザー光線7が照射される場合には、コンテナに歪みが発生するのを確実に防止する点から、レーザー光線7が照射される方の板状体が2層構造の複合部材、レーザー光線7が照射されない方の板状体が上記1層構造の部材であることが好ましい。なお、他方の板状体3または一方の板状体4を上記1層構造の部材とする場合にも、複合部材は2層構造ではなく3層以上の構造としてもよい。
 第1実施形態例に係る平面型ヒートパイプ1では、他方の板状体3の表面にレーザー光線9が照射されたが、これに代えて、一方の板状体4の表面にレーザー光線9が照射されてもよく、他方の板状体3と一方の板状体4の両表面にレーザー光線9が照射されてもよい。
 本発明の平面型ヒートパイプは、コンテナの歪みが低減され、ウィック構造を有する空隙部の気密性と水等の作動液に対する適合性に優れるので、特に、冷却対象の発熱体を面状に均一に冷却する分野で利用価値が高い。
1、10            平面型ヒートパイプ
2               コンテナ
3               他方の板状体
4               一方の板状体
5               空洞部
8               レーザー溶接部
12              抵抗溶接機による溶接部

Claims (7)

  1.  対向する2枚の板状体により空洞部が中央部に形成されたコンテナと、前記空洞部に封入された作動液とを有し、前記空洞部にウィック構造が備えられた平面型ヒートパイプであって、
    前記板状体の少なくとも一方は、2種類以上の金属部材が積層され一体化された複合部材であり、前記複合部材のうち、空洞部に接した層を形成する金属部材が、200W/m・K以上の熱伝導率を有し、外部に接した層を形成する金属部材が、100W/m・K以下の熱伝導率を有し、前記空洞部の外周部が封止されている平面型ヒートパイプ。
  2.  前記空洞部の外周部が、レーザー溶接で封止されている請求項1に記載の平面型ヒートパイプ。
  3.  前記空洞部の外周部が、抵抗溶接で封止されている請求項1に記載の平面型ヒートパイプ。
  4.  前記複合部材が、クラッド材またはめっき材である請求項1乃至3のいずれか1項に記載の平面型ヒートパイプ。
  5.  前記空洞部に接した層を形成する金属部材が、銅であり、前記外部に接した層を形成する金属部材が、ステンレス鋼である請求項1乃至4のいずれか1項に記載の平面型ヒートパイプ。
  6.  前記空洞部に接した層を形成する金属部材の層の厚さが、前記複合部材の厚さの1/2以下である請求項1乃至5のいずれか1項に記載の平面型ヒートパイプ。
  7.  請求項1乃至6のいずれか1項に記載の平面型ヒートパイプが搭載されたヒートシンク。
PCT/JP2015/073018 2014-08-29 2015-08-17 平面型ヒートパイプ WO2016031604A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/507,027 US10119770B2 (en) 2014-08-29 2015-08-17 Planar heat pipe
CN201590000902.3U CN206609325U (zh) 2014-08-29 2015-08-17 平面型热管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-176173 2014-08-29
JP2014176173A JP5788069B1 (ja) 2014-08-29 2014-08-29 平面型ヒートパイプ

Publications (1)

Publication Number Publication Date
WO2016031604A1 true WO2016031604A1 (ja) 2016-03-03

Family

ID=54207188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073018 WO2016031604A1 (ja) 2014-08-29 2015-08-17 平面型ヒートパイプ

Country Status (5)

Country Link
US (1) US10119770B2 (ja)
JP (1) JP5788069B1 (ja)
CN (1) CN206609325U (ja)
TW (1) TWI593931B (ja)
WO (1) WO2016031604A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115813A (ja) * 2017-01-18 2018-07-26 大日本印刷株式会社 ベーパーチャンバ、ベーパーチャンバ用金属シート組合体およびベーパーチャンバの製造方法
TWI692605B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692920B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692610B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692606B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692608B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692609B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692607B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692611B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
WO2021255967A1 (ja) * 2020-06-15 2021-12-23 日本電産株式会社 熱伝導部材
WO2021255968A1 (ja) * 2020-06-15 2021-12-23 日本電産株式会社 熱伝導部材

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018147283A1 (ja) * 2017-02-07 2019-07-18 古河電気工業株式会社 ベーパーチャンバ
WO2018198375A1 (ja) * 2017-04-28 2018-11-01 株式会社村田製作所 ベーパーチャンバー
US10470291B2 (en) * 2017-07-21 2019-11-05 Chintung Lin Process for preparing an energy saving anti-burst heat dissipation device
US11209216B2 (en) * 2017-07-28 2021-12-28 Dana Canada Corporation Ultra thin heat exchangers for thermal management
TWI677664B (zh) * 2018-07-03 2019-11-21 奇鋐科技股份有限公司 散熱單元製造方法
CN108907460A (zh) * 2018-07-09 2018-11-30 奇鋐科技股份有限公司 热单元制造方法
US20200025461A1 (en) * 2018-07-22 2020-01-23 Asia Vital Components Co., Ltd. Method of manufacturing heat dissipation unit
JP6702524B1 (ja) 2018-07-31 2020-06-03 株式会社村田製作所 ベーパーチャンバー
WO2020026908A1 (ja) 2018-07-31 2020-02-06 株式会社村田製作所 ベーパーチャンバー
US20200116436A1 (en) * 2018-10-12 2020-04-16 Htc Corporation Heat transferring module and manufacturing method thereof
WO2020100533A1 (ja) 2018-11-16 2020-05-22 株式会社村田製作所 ベーパーチャンバー
WO2020100378A1 (ja) 2018-11-16 2020-05-22 株式会社村田製作所 ベーパーチャンバー
CN111912273A (zh) * 2019-05-10 2020-11-10 双鸿电子科技工业(昆山)有限公司 均温板
CN110149784B (zh) * 2019-06-03 2021-03-12 Oppo广东移动通信有限公司 散热组件及电子设备
WO2021045211A1 (ja) 2019-09-06 2021-03-11 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用シート、ベーパーチャンバ用の中間体が多面付けされたシート、ベーパーチャンバ用の中間体が多面付けされたシートが巻かれたロール、ベーパーチャンバ用の中間体
JP2021076297A (ja) * 2019-11-08 2021-05-20 日本電産株式会社 熱伝導部材
CN111163621B (zh) * 2020-01-14 2021-03-02 华为技术有限公司 高强度均热板及其制备方法、电子设备
TWI740391B (zh) * 2020-02-20 2021-09-21 邁萪科技股份有限公司 均溫板結構
TW202239587A (zh) * 2021-03-04 2022-10-16 宸寰科技有限公司 薄型化封裝接著結構

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168575A (ja) * 2000-12-05 2002-06-14 Furukawa Electric Co Ltd:The ヒートパイプ
JP2003254685A (ja) * 2001-10-01 2003-09-10 Furukawa Electric Co Ltd:The 板型ヒートパイプおよびその製造方法
JP2003291241A (ja) * 2002-04-02 2003-10-14 Toyo Kohan Co Ltd プレート積層材の製造方法、プレート積層材を用いる中空積層材の製造方法、および中空積層材を用いる部品の製造方法
JP2003314979A (ja) * 2002-04-23 2003-11-06 Furukawa Electric Co Ltd:The 板型ヒートパイプ、その実装構造および板型ヒートパイプの製造方法
JP2004095684A (ja) * 2002-08-29 2004-03-25 Fujikura Ltd ヒートシンク
JP2005045810A (ja) * 2003-07-23 2005-02-17 Lg Electronics Inc 内蔵型アンテナ及びその内蔵型アンテナを具備した携帯端末機
JP2006322665A (ja) * 2005-05-19 2006-11-30 Toyo Kohan Co Ltd 中空積層体、それを用いたプレート型冷却部材、およびそれを用いた電子機器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272787B2 (ja) * 1992-10-27 2002-04-08 住友特殊金属株式会社 接合クラッド板の製造方法
JP3936831B2 (ja) * 2000-05-24 2007-06-27 株式会社新潟ティーエルオー 伝熱板の製造方法
JP2002022378A (ja) * 2000-07-06 2002-01-23 Showa Denko Kk ヒートパイプ
US6871701B2 (en) 2001-04-09 2005-03-29 The Furukawa Electric Co., Ltd. Plate-type heat pipe and method for manufacturing the same
JP2004028442A (ja) * 2002-06-25 2004-01-29 Furukawa Electric Co Ltd:The 板型ヒートパイプおよびその実装構造
US6889755B2 (en) * 2003-02-18 2005-05-10 Thermal Corp. Heat pipe having a wick structure containing phase change materials
KR20050032888A (ko) * 2003-10-02 2005-04-08 엘에스전선 주식회사 판형 열전달 장치
JP2007113864A (ja) * 2005-10-21 2007-05-10 Sony Corp 熱輸送装置及び電子機器
JP2007266153A (ja) 2006-03-28 2007-10-11 Sony Corp プレート型熱輸送装置及び電子機器
CN101939611B (zh) * 2008-02-08 2012-05-30 国立大学法人横浜国立大学 自激振荡热管
JP2013173248A (ja) * 2012-02-24 2013-09-05 Hitachi Ltd レーザ接合方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168575A (ja) * 2000-12-05 2002-06-14 Furukawa Electric Co Ltd:The ヒートパイプ
JP2003254685A (ja) * 2001-10-01 2003-09-10 Furukawa Electric Co Ltd:The 板型ヒートパイプおよびその製造方法
JP2003291241A (ja) * 2002-04-02 2003-10-14 Toyo Kohan Co Ltd プレート積層材の製造方法、プレート積層材を用いる中空積層材の製造方法、および中空積層材を用いる部品の製造方法
JP2003314979A (ja) * 2002-04-23 2003-11-06 Furukawa Electric Co Ltd:The 板型ヒートパイプ、その実装構造および板型ヒートパイプの製造方法
JP2004095684A (ja) * 2002-08-29 2004-03-25 Fujikura Ltd ヒートシンク
JP2005045810A (ja) * 2003-07-23 2005-02-17 Lg Electronics Inc 内蔵型アンテナ及びその内蔵型アンテナを具備した携帯端末機
JP2006322665A (ja) * 2005-05-19 2006-11-30 Toyo Kohan Co Ltd 中空積層体、それを用いたプレート型冷却部材、およびそれを用いた電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115813A (ja) * 2017-01-18 2018-07-26 大日本印刷株式会社 ベーパーチャンバ、ベーパーチャンバ用金属シート組合体およびベーパーチャンバの製造方法
TWI692605B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692920B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692610B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692606B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692608B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692609B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692607B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
TWI692611B (zh) * 2019-06-28 2020-05-01 新加坡商 J&J 資本控股有限公司 熱傳導結構及其製造方法、行動裝置
WO2021255967A1 (ja) * 2020-06-15 2021-12-23 日本電産株式会社 熱伝導部材
WO2021255968A1 (ja) * 2020-06-15 2021-12-23 日本電産株式会社 熱伝導部材

Also Published As

Publication number Publication date
US20170248378A1 (en) 2017-08-31
TWI593931B (zh) 2017-08-01
JP2016050713A (ja) 2016-04-11
US10119770B2 (en) 2018-11-06
TW201616081A (zh) 2016-05-01
JP5788069B1 (ja) 2015-09-30
CN206609325U (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
JP5788069B1 (ja) 平面型ヒートパイプ
JP5740036B1 (ja) 平面型ヒートパイプ
JP6079505B2 (ja) 接合体及びパワーモジュール用基板
JP5672324B2 (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
CN211903865U (zh) 均热板
JP5720839B2 (ja) 接合体及びパワーモジュール用基板
JP4350753B2 (ja) ヒートシンク部材およびその製造方法
JP4965242B2 (ja) アルミニューム製ヒートシンクの製造方法
TWI815076B (zh) 蒸氣室
JP5869890B2 (ja) 放熱板、及び放熱板の製法
JP6607792B2 (ja) ヒートスプレッダ
WO2016163062A1 (ja) 炭素材料層含有複合材料および熱交換器
JP2012160688A (ja) ヒートシンク及びその製造方法
JP2006341304A (ja) 異種金属接合法
US11614289B2 (en) Aluminum heat exchanger with solderable outer surface layer
JP2015057847A (ja) パワーモジュール用基板の製造方法
JP6139331B2 (ja) パワーモジュール
JP6422726B2 (ja) 回路基板付きヒートシンク及びその製造方法
CN103715170A (zh) 半导体单元及其制造方法
JP2005121345A (ja) 板型ヒートパイプおよびその製造方法
US20210129261A1 (en) Ultrasonic additively manufactured coldplates on heat spreaders
WO2022004618A1 (ja) ベーパーチャンバおよびベーパーチャンバの製造方法
WO2024042791A1 (ja) 熱伝導接合構造、熱伝導接合方法、該熱伝導接合構造を有するヒートシンク、並びに該熱伝導接合構造を有する半導体装置
JP5927567B2 (ja) 半導体素子の接合構造体と製造方法
TW202415913A (zh) 熱傳導接合構造、熱傳導接合方法、具有該熱傳導接合構造的散熱片、以及具有該熱傳導接合構造的半導體裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15507027

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836573

Country of ref document: EP

Kind code of ref document: A1