WO2022004618A1 - ベーパーチャンバおよびベーパーチャンバの製造方法 - Google Patents

ベーパーチャンバおよびベーパーチャンバの製造方法 Download PDF

Info

Publication number
WO2022004618A1
WO2022004618A1 PCT/JP2021/024251 JP2021024251W WO2022004618A1 WO 2022004618 A1 WO2022004618 A1 WO 2022004618A1 JP 2021024251 W JP2021024251 W JP 2021024251W WO 2022004618 A1 WO2022004618 A1 WO 2022004618A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal sheet
vapor chamber
top surface
flow path
gap
Prior art date
Application number
PCT/JP2021/024251
Other languages
English (en)
French (fr)
Inventor
賢吾 田中
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to US18/002,908 priority Critical patent/US20230258416A1/en
Priority to CN202180040276.0A priority patent/CN115698620A/zh
Publication of WO2022004618A1 publication Critical patent/WO2022004618A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/08Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes pressed; stamped; deep-drawn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/061Fastening; Joining by welding by diffusion bonding

Definitions

  • This disclosure relates to a vapor chamber and a method for manufacturing a vapor chamber.
  • Electronic components such as semiconductor elements mounted on electrical and electronic devices such as notebook computers, digital cameras, and mobile phones tend to generate more heat due to high-density mounting due to higher performance.
  • electrical and electronic devices such as notebook computers, digital cameras, and mobile phones
  • it is necessary to efficiently cool the electronic components.
  • Patent Document 1 describes a vapor chamber having a first metal sheet and a second metal sheet, and having a liquid flow path portion in a sealed space provided between the first metal sheet and the second metal sheet.
  • the width of the first connecting groove is larger than the width of the first mainstream groove and the width of the second mainstream groove for each groove constituting the liquid flow path portion, and the width of the second connecting groove is large.
  • the depth of the first connecting groove is deeper than the depth of the first mainstream groove and the depth of the second mainstream groove, and the second connecting groove. The depth of is deeper than the depth of the second mainstream groove and the depth of the third mainstream groove.
  • the first metal sheet and the second metal sheet are joined by diffusion joining or brazing.
  • the first metal sheet and the second metal sheet are generally heat-treated and heat-treated. In this way, the entire vapor chamber is heat-blown, which reduces the mechanical strength of the vapor champa.
  • the heat transport efficiency is improved by satisfying a predetermined relationship between the grooves constituting the liquid flow path portion.
  • it is insufficient to meet the increasing demand for cooling performance in electrical and electronic devices in recent years.
  • An object of the present disclosure is to provide a vapor chamber and a method for manufacturing a vapor chamber having excellent mechanical strength and heat transport characteristics.
  • a vapor chamber having a working fluid in an internal space formed between a first metal sheet and a second metal sheet, wherein the first metal sheet has a recessed flow path and at least one or more protrusions.
  • the recessed flow path is provided on the inner surface of the first metal sheet, and the protruding portion protrudes from the inner surface of the first metal sheet toward the second metal sheet, and the top of the protruding portion.
  • the surface abuts on the second metal sheet, the vapor chamber comprises at least one top surface joint and a gap flow path, the top surface joint being one of the top surfaces of the protrusion.
  • a vapor chamber in which a portion and the second metal sheet are joined, and the gap flow path portion is characterized in that the top surface and the second metal sheet are separated from each other.
  • the gap flow path portion is a top surface contact portion of the top surface of the first metal sheet that is not bonded to the second metal sheet, and the top surface contact portion of the second metal sheet. It is provided between the inner surface contact portion that abuts on the top surface, has a closed portion on the top surface joint portion side of the top surface contact portion, and has an opening on the protruding portion side surface side of the top surface contact portion.
  • the gap flow path portion has a longer gap length from the closed portion to the opening than the gap width between the top surface contact portion and the inner surface contact portion. Described vapor chamber.
  • the average value of the gap width between the top surface contact portion and the inner surface contact portion is 1.0 ⁇ m or more and 100.0 ⁇ m or less, as described in [2] or [3]. ] Described in the vapor chamber.
  • the gap flow path portion is provided with a gap expansion portion on the closed portion side, and the average value of the gap width between the top surface contact portion and the inner surface contact portion in the gap expansion portion is the above.
  • the vapor chamber according to any one of the above [2] to [5], which is longer than the average value of the gap width in the gap flow path portion other than the gap expansion portion.
  • the ratio (t2 / t1) of the sheet thickness t2 in the protruding portion of the first metal sheet to the sheet thickness t1 in the recessed flow path of the first metal sheet is 0.1 or more and 10.0 or less.
  • the vapor chamber according to any one of the above [1] to [6].
  • FIG. 1 is a perspective view showing an example of the vapor chamber of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the A plane of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing another example of the second metal sheet constituting the vapor chamber of the first embodiment.
  • FIG. 4 is a perspective view showing another example of the protrusion constituting the vapor chamber of the first embodiment.
  • FIG. 5 is a perspective view showing an example of the vapor chamber of the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of the B plane of FIG.
  • FIG. 7 is an enlarged cross-sectional view showing another example of the protrusion constituting the vapor chamber of the second embodiment.
  • the present inventor has improved the mechanical strength and heat transfer characteristics by paying attention to the structure of the joint portion for joining the first metal sheet and the second metal sheet.
  • the vapor chamber of the embodiment is a vapor chamber having a working fluid in an internal space formed between the first metal sheet and the second metal sheet, and the first metal sheet has at least one recessed flow path.
  • the recessed flow path is provided on the inner surface of the first metal sheet, and the protruding portion projects from the inner surface of the first metal sheet toward the second metal sheet, and the protrusion is formed.
  • the top surface of the protrusion abuts on the second metal sheet, the vapor chamber comprises at least one top surface joint and a gap flow path, where the top surface joint is the said of the protrusion. A part of the top surface is joined to the second metal sheet, and the top surface and the second metal sheet are separated from each other in the gap flow path portion.
  • FIG. 1 is a perspective view showing an example of the vapor chamber of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of the A plane of FIG. FIG. 1 shows a partially transparent state so that the internal structure of the vapor chamber can be seen for convenience.
  • the flowing direction of the working fluid F (G) in the gas phase is indicated by a black arrow
  • the flowing direction of the working fluid F (L) in the liquid phase is indicated by a white arrow.
  • the vapor chamber 1 of the first embodiment has a first metal sheet 10 and a second metal sheet 20.
  • the first metal sheet 10 and the second metal sheet 20 are joined so that the inner surface 10a of the first metal sheet 10 and the inner surface 20a of the second metal sheet 20 face each other. That is, the inside of the first metal sheet 10 and the second metal sheet 20 is closed.
  • the vapor chamber 1 has a working fluid in the internal space S formed between the first metal sheet 10 and the second metal sheet 20.
  • the internal space S is sealed by the first metal sheet 10 and the second metal sheet 20.
  • a working fluid is sealed in the internal space S provided inside the vapor chamber 1.
  • Examples of the working fluid enclosed in the internal space S include pure water, ethanol, methanol, and acetone from the viewpoint of the cooling performance of the vapor chamber 1.
  • the first metal sheet 10 constituting the vapor chamber 1 includes a recessed flow path 11 and at least one or more protrusions 12.
  • the recessed flow path 11 is provided on the inner surface 10a of the first metal sheet 10.
  • the recessed flow path 11 provided on the inner surface 10a side is recessed from the outer edge 10c of the first metal sheet 10 to the center of the inner surface 10a.
  • the recessed flow path is a space excluding the protruding portion 12 and the gap flow path portion 14 from the internal space S.
  • the working fluid of the gas phase mainly flows in the recessed flow path 11.
  • the protruding portion 12 projects from the inner surface 10a of the first metal sheet 10 toward the inner surface 20a of the second metal sheet 20.
  • the top surface 13 of the protrusion 12 abuts on the inner surface 20a of the second metal sheet 20.
  • the protrusion 12 has a quadrangular prism shape.
  • the vapor chamber 1 includes at least one top surface joint portion 13a and a gap flow path portion 14.
  • the top surface joining portion 13a joins a part of the top surface 13 of the protruding portion 12 to the second metal sheet 20. As described above, in the contact surface between the top surface 13 of the protrusion 12 and the inner surface 20a of the second metal sheet 20, the top surface joint portion 13a is a part of the top surface 13 of the protrusion 12 and the second metal. A part of the inner surface 20a of the sheet 20 is joined.
  • the vapor chamber 1 does not have the heat annealed portion 50 generated by the heat when forming the top surface joint portion 13a for joining the first metal sheet 10 and the second metal sheet 20 over the entire vapor chamber 1. , Locally provided in a portion adjacent to the top surface joint portion 13a.
  • the vapor chamber 1 includes a heat annealed portion 50 formed on a second metal sheet 20 adjacent to the top surface joint portion 13a.
  • the metallographic structure of the heat-annealed portion 50 and the metallographic structure of the portion other than the heat-annealed portion 50 are clearly different when observed by SEM.
  • the first metal sheet 10 and the second metal sheet 20 are joined via the top surface joining portion 13a.
  • the length 13ax of the top surface joining portion 13a that joins a part of the top surface 13 and a part of the inner surface 20a is smaller than the length 12x of the protruding portion 12.
  • the ratio (13ax / 12x) of the length 13ax of the apex joint portion 13a to the length 12x of the protrusion 12 is preferably smaller than 0.5.
  • the length 13ax of the apex joint 13a and the length 12x of the protrusion 12 are distances in the direction perpendicular to the thickness direction of the vapor chamber 1 in the cross section of the vapor chamber 1 including the apex joint 13a as shown in FIG. Is.
  • the top surface 13 of the first metal sheet 10 and the second metal sheet 20 are separated from each other.
  • the working fluid of the liquid phase flows through the gap flow path portion 14.
  • Such a gap flow path portion 14 is provided between the top surface contact portion 13b of the top surface 13 of the protrusion 12 and the inner surface contact portion 21 of the second metal sheet 20.
  • the top surface contact portion 13b of the first metal sheet 10 is a portion of the top surface 13 of the first metal sheet 10 that is not joined to the inner surface 20a of the second metal sheet 20.
  • the inner surface contact portion 21 of the second metal sheet 20 is a portion of the inner surface 20a of the second metal sheet 20 that abuts on the top surface contact portion 13b.
  • the top surface contact portion 13b and the inner surface contact portion 21 are not joined but are in contact with each other so as to be separated from each other.
  • the gap flow path portion 14 is a gap generated by the contact between the top surface contact portion 13b and the inner surface contact portion 21.
  • the state where the top surface contact portion 13b and the inner surface contact portion 21 are clearly separated is shown so that the gap flow path portion 14 can be easily understood.
  • the gap flow path portion 14 has a closing portion 14a on the top surface joining portion 13a side of the top surface contact portion 13b.
  • the closed portion 14a is a portion to which the top surface contact portion 13b and the top surface joint portion 13a are connected, and is closed by the top surface joint portion 13a.
  • the gap flow path portion 14 has an opening 14b on the side surface side of the protruding portion of the top surface contact portion 13b.
  • the side surface side of the protrusion is the side surface 12a side of the protrusion 12, and is the recessed flow path 11 side. In this way, the gap flow path portion 14 is closed on the top surface joint portion 13a side of the top surface contact portion 13b, and the protruding portion side surface side of the top surface contact portion 13b is opened.
  • the gap flow path portion 14 is provided between the recessed flow path 11 and the top surface joint portion 13a on the top surface 13 side of the protrusion 12.
  • the gap flow path portion 14 provided around the top surface joint portion 13a extends in a direction perpendicular to the thickness direction of the vapor chamber 1.
  • the gap flow path portion 14 is connected to the recessed flow path 11 via the opening 14b.
  • the gap flow path portion 14 is connected to the recessed flow path 11 on the second metal sheet 20 side.
  • the gap width 14w of the gap flow path portion 14 is much smaller than the groove spacing p of the recessed flow path 11.
  • the gap width 14w of the gap flow path portion 14 is the distance between the top surface contact portion 13b and the inner surface contact portion 21.
  • the groove spacing p of the recessed flow path 11 is the distance between the adjacent protrusions 12 or the distance between the protrusions 12 and the outer edge 10c.
  • the gap flow path portion 14 is a gap generated by the contact between the top surface contact portion 13b and the inner surface contact portion 21, and the gap width 14w of the gap flow path portion 14 is very small. Therefore, the gap flow path portion 14 exhibits a capillary phenomenon with respect to the working fluid of the liquid phase.
  • the vapor chamber 1 mainly cools the heating element 30 by the following cooling paths.
  • the heat generated by the heating element 30 thermally connected to the outer surface 20b of the second metal sheet 20 is transferred to the evaporation unit 41 located on the inner surface 20a of the second metal sheet 20.
  • the evaporating unit 41 evaporates the working fluid of the liquid phase flowing through the gap flow path portion 14 by the heat transferred from the heating element 30, and the vapor phase is shown by the arrow F (G).
  • the working fluid of the gas phase heated by evaporation flows to the condensing portion 42 at a position away from the evaporating portion 41, as shown by the arrow F (G) in FIG.
  • the temperature of the working fluid drops.
  • the working fluid in the gas phase whose temperature has dropped is condensed and changed into a working fluid in the liquid phase.
  • the latent heat generated by the phase change is transferred to the first metal sheet 10 and the second metal sheet 20 and released to the outside of the vapor chamber 1.
  • the working fluid of the condensed liquid phase easily penetrates into the gap flow path portion 14 due to the capillary phenomenon.
  • the working fluid of the liquid phase moves in the gap flow path portion 14 and returns to the evaporation portion 41 again. Due to such good circulation of the working fluids of the liquid phase and the gas phase, the vapor chamber 1 can efficiently cool the heating element 30.
  • the working fluid of the liquid phase When the vapor chamber 1 is provided with the gap flow path portion 14 on the top surface 13 side of the protrusion 12, the working fluid of the liquid phase has a gap from the recessed flow path 11 due to the capillary phenomenon of the gap flow path portion 14 with respect to the working fluid of the liquid phase. It easily penetrates into the flow path portion 14, and the working fluid of the liquid phase in the gap flow path portion 14 does not easily leak to the outside of the gap flow path portion 14.
  • the working fluid of the liquid phase flows in the recessed flow path because the configuration corresponding to the gap flow path portion 14 of the vapor chamber 1 is not provided.
  • the holding amount of the working fluid in the liquid phase is increased and the recirculation amount of the working fluid is increased as compared with the conventional case. Therefore, the amount of heat transported in the internal space S is improved. Further, in the internal space S of the vapor chamber 1, a state in which the working fluid of the liquid phase does not exist in the evaporating part, that is, so-called dryout can be suppressed, the circulation flow of the working fluid of the liquid phase and the gas phase becomes good, and heat transport is performed. Is improved. Therefore, the vapor chamber 1 can have excellent heat transport characteristics.
  • the gap flow path portion 14 easily takes in the working fluid of the liquid phase inside due to the capillary phenomenon, and it is difficult for the working fluid of the liquid phase taken into the inside to leak to the outside of the gap flow path portion 14.
  • the working fluid of the liquid phase is the gap flow path portion 14. It easily enters the space and does not easily leak to the outside from the gap flow path portion 14.
  • the heat transport characteristics of the vapor chamber 1 are excellent because the circulation flow of the working fluids of the liquid phase and the gas phase is good regardless of the arrangement state of the vapor chamber 1.
  • the vapor chamber 1 is provided with the heat annealed portion 50 generated by the heat when forming the top surface joint portion 13a locally not in the entire vapor chamber 1 but in the portion adjacent to the top surface joint portion 13a.
  • the heat annealed portion 50 annealed by the heat treatment reduces the mechanical strength of the material.
  • the heat annealing portion is not locally provided in the portion adjacent to the top surface joint portion 13a of the vapor chamber 1, but is provided over a wide area of the first metal sheet and the second metal sheet. do.
  • the region of the heat annealed portion 50 is smaller than that in the conventional case, and it is possible to suppress a decrease in mechanical strength due to heat annealing. Therefore, the vapor chamber 1 can have excellent mechanical strength.
  • the gap flow path portion 14 has a longer gap length 14x from the closed portion 14a to the opening portion 14b than the gap width 14w between the top surface contact portion 13b and the inner surface contact portion 21.
  • the gap length 14x is longer than the gap width 14w for the gap flow path portion 14
  • the holding amount of the working fluid of the liquid phase in the gap flow path portion 14 increases, and the capillary phenomenon of the gap flow path portion 14 is improved. Therefore, the heat transport characteristics of the vapor chamber 1 are further improved.
  • the ratio (14x / 14w) of the gap length 14x to the gap width 14w is preferably 1.0 or more and 30.0 or less, more preferably 2.0 or more and 10. It is 0 or less.
  • the average value of the gap width 14w of the gap flow path portion 14 is preferably 1.0 ⁇ m or more and 100.0 ⁇ m or less, more preferably 3.0 ⁇ m or more and 50.0 ⁇ m or less, and further preferably 5.0 ⁇ m or more and 20.0 ⁇ m or less. Is.
  • the average value of the gap width 14w is 1.0 ⁇ m or more, the gap flow path portion 14 can be easily formed.
  • the average value of the gap width 14w is 100.0 ⁇ m or less, the capillary phenomenon of the gap flow path portion 14 is improved, so that the heat transport characteristics of the vapor chamber 1 are further improved.
  • the average value of the gap length 14x of the gap flow path portion 14 is preferably 40.0 ⁇ m or more, more preferably 80.0 ⁇ m or more, still more preferably 150.0 ⁇ m or more.
  • the average value of the gap length 14x is preferably 1.0 mm or less, more preferably 500.0 ⁇ m or less, and further preferably 200.0 ⁇ m or less.
  • the average value of the gap length 14x is 40.0 ⁇ m or more, the holding amount of the working fluid of the liquid phase in the gap flow path portion 14 increases, and the capillary phenomenon of the gap flow path portion 14 is improved. The heat transport characteristics of the are further improved.
  • the average value of the gap length 14x is 1.0 mm or less, the gap flow path portion 14 can be easily formed.
  • the gap flow path portion 14 includes the gap expansion portion 15 on the closing portion 14a side, and the gap between the top surface contact portion 13b and the inner surface contact portion 21 in the gap expansion portion 15.
  • the average value of the width 15w is preferably longer than the average value of the gap width 14w between the top surface contact portion 13b and the inner surface contact portion 21 in the gap flow path portion 14 other than the gap expansion portion 15.
  • the average value of the gap width 15w of the gap expansion portion 15 is longer than the average value of the gap width 14w between the top surface contact portion 13b and the inner surface contact portion 21 in the gap flow path portion 14 other than the gap expansion portion 15.
  • the holding amount of the working fluid of the liquid phase in the gap flow path portion 14 and the gap expansion portion 15 is increased, and the capillary phenomenon of the gap flow path portion 14 is improved. Therefore, the heat transport characteristics of the vapor chamber 1 are further improved.
  • the ratio (15w / 14w) of the gap width 15w to the gap width 14w is preferably 1.1 or more and 2.0 or less.
  • the ratio (15w / 14w) is 1.1 or more, the heat transport characteristics of the vapor chamber 1 are improved.
  • the ratio (15w / 14w) is 2.0 or less, the gap expanding portion 15 can be easily formed.
  • the gap expanding portion 15 is, as shown in FIG. 2, a portion of the apex contact portion 13b closest to the apex joint portion 13a, in other words, a closed portion. It is preferably provided in 14a.
  • the shape of the gap expanding portion 15 is preferably spherical as shown in FIG.
  • the protruding portion 12 extends along the longitudinal direction L1 of the vapor chamber 1.
  • the distance from the evaporating portion 41 to the condensing portion 42 becomes long, and the recirculation amount of the working fluid increases. Therefore, the heat transport characteristics of the vapor chamber 1 are further improved.
  • the vapor chamber 1 is provided with a plurality of top surface joining portions 13a in one of the protruding portions 12.
  • a plurality of top surface joining portions 13a are provided on one protruding portion 12, the bonding force between the first metal sheet 10 and the second metal sheet 20 is improved.
  • a plurality of top surface joining portions 13a are provided on each protruding portion 12, the bonding force between the first metal sheet 10 and the second metal sheet 20 is further improved.
  • FIG. 3 is an enlarged cross-sectional view showing another example of the second metal sheet 20 constituting the vapor chamber 1.
  • the second metal sheet 20 is provided with at least one or more protrusions 22 on the inner surface 20a, and the protrusions 22 of the second metal sheet 20 are first from the inner surface 20a of the second metal sheet 20. It is preferable that the protrusion toward the metal sheet 10 and the top surface 23 of the protrusion 22 abut against the recessed flow path 11 of the first metal sheet 10.
  • the top surface 23 of the protrusion 22 of the second metal sheet 20 abuts on the recessed flow path 11, that is, the inner surface 10a of the first metal sheet 10. Therefore, the mechanical strength of the vapor chamber 1 in the thickness direction is further improved. Further, a gap is provided between the top surface 23 of the protrusion 22 and the inner surface 10a of the first metal sheet 10 due to contact. Similar to the gap flow path portion 14, this gap exerts a capillary phenomenon with respect to the working fluid of the liquid phase, so that the working fluid of the liquid phase can be easily taken in. Therefore, the heat transport characteristics of the vapor chamber 1 are further improved.
  • the inner surface 10a of the first metal sheet 10 and the inner surface 20a of the second metal sheet 20 have a roughened structure or a groove structure.
  • the roughened structure is formed by roughening the inner surface 10a and the inner surface 20a.
  • processing using a laser is preferable for the formation of the top surface joint portion 13a and the gap flow path portion 14 for improving the heat transport characteristics of the vapor chamber 1 and the local formation of the heat annealed portion 50.
  • processing using a fiber laser is more preferable.
  • the expansion of the formation of the heat annealed portion 50 can be suppressed, and the top surface joint portion 13a and the gap flow path portion 14 can be formed into a desired shape in a short time.
  • the heat-annealed portion 50 is not formed in a wide area but is formed locally in the vapor chamber 1.
  • the top surface joint portion 13a and the gap flow path portion 14 are formed, particularly the gap flow path portion 14.
  • the workability is very low compared to laser machining, for example, it is difficult to form a metal, and a heat-stained portion is formed on the entire vapor chamber.
  • the material constituting the first metal sheet 10 and the second metal sheet 20 copper, a copper alloy, aluminum, an aluminum alloy, and stainless steel are preferable from the viewpoints of high thermal conductivity and ease of processing by a laser.
  • aluminum and aluminum alloys are more preferable for the purpose of weight reduction, and stainless steel is more preferable for the purpose of increasing mechanical strength.
  • tin, tin alloy, titanium, titanium alloy, nickel, nickel alloy or the like may be used for the first metal sheet 10 and the second metal sheet 20.
  • the heating element 30 mounted on the vapor chamber 1 is a member such as an electronic component that generates heat during operation, such as a semiconductor element.
  • the method for manufacturing the vapor chamber 1 includes a laser joining step of forming the top surface joining portion 13a with a laser.
  • the laser joining step it is preferable to form the top surface joining portion 13a for joining the first metal sheet 10 and the second metal sheet 20 with a fiber laser.
  • laser machining it is easy to control the machining of the top surface joint portion 13a into a desired shape, and the top surface joint portion 13a can be formed in a short time.
  • the portion to be joined can be locally heated, so that the heat annealed portion 50 generated by the heating is not formed in a wide area in the vapor chamber 1 but locally in the portion adjacent to the top surface joining portion 13a. Is formed in.
  • the fiber laser is more excellent in processing control and short-time processing.
  • the gap flow path portion 14 is also formed as a result. Since the process of separately mounting the capillary structure (wick structure) as in the conventional case is not required, it is possible to reduce the manufacturing cost and the manufacturing time and to facilitate the manufacturing.
  • the inner surface 10a of the first metal sheet 10 provided with the recessed flow path 11 and the protruding portion 12 and the inner surface 20a of the second metal sheet 20 face each other, and the top surface of the protruding portion 12 of the first metal sheet 10 faces each other.
  • a laser is applied to a part of the top surface 13 in a state where the 13 is in contact with the inner surface 20a of the metal sheet 20.
  • a laser may be applied to a part of the top surface 13 from the first metal sheet 10 side, or a laser may be irradiated to a part of the top surface 13 from the second metal sheet 20 side. Irradiation of may be combined.
  • the first metal sheet and the second metal sheet are heat-treated as a whole.
  • the entire surface of the top surface 13 of the protrusion 12 is joined to the inner surface of the second metal sheet 20, it is difficult to form the top surface joint portion 13a and the gap flow path portion 14. Therefore, in addition to the step of joining the first metal sheet and the second metal sheet, it is necessary to separately perform the step of installing the capillary structure. Further, since the first metal sheet and the second metal sheet are totally heat-treated and heat-treated, the mechanical strength of the vapor chamber is lowered.
  • the method for manufacturing the vapor chamber 1 further includes a laser welding step of welding the outer edge 10c of the first metal sheet 10 and the outer edge 20c of the second metal sheet 20 with a laser before or after the laser joining step. ..
  • a laser welding step of welding the outer edge 10c of the first metal sheet 10 and the outer edge 20c of the second metal sheet 20 with a laser
  • a welded portion 51 is formed, and the vapor chamber 1 having an internal space S inside can be easily manufactured. If the laser used in the laser joining process and the laser used in the laser welding process are the same, the vapor chamber can be easily manufactured in a shorter time.
  • the first metal sheet 10 and the second metal sheet 20 of the above are irradiated with a laser.
  • the contact portion between the outer edge 10c and the outer edge 20c may be irradiated from the first metal sheet 10 side, or the contact portion between the outer edge 10c and the outer edge 20c may be irradiated from the second metal sheet 20 side.
  • the contact portions of the outer edge 10c and the outer edge 20c may be irradiated with a laser from the in-plane direction of the vapor chamber 1, or the irradiation of these lasers may be combined.
  • the vapor chamber 1 manufactured in this way is suitably used for electronic devices such as mobile phones, which are required to have good heat transport characteristics even in various postures.
  • the electronic device provided with the vapor chamber 1 has the high heat transfer characteristics of the vapor chamber 1 even under various usage conditions.
  • the working fluid of the liquid phase easily penetrates into the gap flow path portion and flows, the circulation flow of the working fluid of the liquid phase and the gas phase is improved, and the inside space of the vapor chamber is satisfied. Increases heat transport in. Therefore, the vapor chamber can have excellent heat transport properties. Further, the vapor chamber is not provided in a wide area but is provided locally in the heat-annealed portion. Therefore, it is possible to suppress a decrease in the mechanical strength of the vapor chamber due to the heat annealing portion.
  • the heating element 30 is attached to the outer surface 20b of the second metal sheet 20 as shown in FIG. 1, the heating element 30 may be attached to the outer surface 10b of the first metal sheet 10. ..
  • the vapor chamber 1 is installed so that the second metal sheet 20 is arranged on the gravity direction side, that is, the second metal sheet 20 is arranged below and the first metal sheet 10 is arranged above along the gravity direction. It is preferable to do so.
  • the gap flow path portion 14 is arranged on the gravity direction side in the internal space S.
  • the working fluid of the liquid phase easily enters the gap flow path portion 14 due to gravity.
  • the heat transfer characteristics of the vapor chamber are further improved.
  • the heating element 30 is attached to the outer surface 20b of the second metal sheet 20, that is, the lower part of the vapor chamber 1, the heating element 30 can be efficiently cooled.
  • the shape of the protruding portion 12 may be such that the top surface 13 can abut on the inner surface 20a of the second metal sheet 20. ..
  • the shape of the protrusion 12 may be a cylinder as shown in FIG.
  • the shapes of the protrusions 12 may be all the same, or at least a part thereof may be different.
  • FIG. 5 is a perspective view showing an example of the vapor chamber of the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of the B plane of FIG.
  • the configuration of the first metal sheet 10 is basically the same as that of the vapor chamber 1 of the first embodiment except that the configuration of the first metal sheet 10 is different in the vapor chamber 2 of the second embodiment. Therefore, the different configurations will be mainly described here.
  • the first metal sheet 10 of the vapor chamber 2 has a higher uniformity of sheet thickness than the first metal sheet 10 of the vapor chamber 1 of the first embodiment.
  • the sheet thickness in the protruding portion 12 is clearly larger than the sheet thickness in the recessed flow path 11.
  • the ratio (t2 / t1) of the sheet thickness t2 in the protruding portion 12 of the first metal sheet 10 to the sheet thickness t1 in the recessed flow path 11 of the first metal sheet 10 is. It is preferably 0.1 or more and 10.0 or less, more preferably 0.2 or more and 5.0 or less, still more preferably 0.5 or more and 2.0 or less, and most preferably 1.0, that is, the sheet thickness in the recessed flow path 11.
  • the t1 and the sheet thickness t2 at the protruding portion 12 are the same.
  • the ratio (t2 / t1) is within the above range, the variation in the sheet thickness of the first metal sheet 10 is suppressed, so that the vapor chamber 2 can be reduced in weight.
  • processing by press molding is suitable for the formation of the first metal sheet 10 having such a predetermined ratio (t2 / t1).
  • FIG. 7 is an enlarged cross-sectional view showing another example of the protrusion 12 constituting the vapor chamber 2.
  • the first metal sheet 10 may further have a convex portion 16 projecting from a part of the top surface 13 toward the inner surface 20a of the second metal sheet 20.
  • the top surface of the convex portion 16 provided on a part of the top surface 13 of the protrusion 12 is joined to the inner surface 20a of the second metal sheet 20.
  • a part of the top surface of the convex portion 16 may be joined to the inner surface 20a of the second metal sheet 20, or the entire top surface of the convex portion 16 may be joined to the inner surface 20a of the second metal sheet 20. May be good. Processing by press molding is suitable for forming the convex portion 16.
  • the shape of the gap flow path portion 14 can be easily controlled, so that the working fluid of the liquid phase can be easily taken into the gap flow path portion 14. Therefore, the heat transport characteristics of the vapor chamber can be improved.
  • the top surface of the convex portion 16 and the inner surface 20a of the second metal sheet 20 are compared with the contact area between the top surface joint portion 13a and the inner surface 20a of the second metal sheet 20 in the vapor chamber not provided with the convex portion 16.
  • the contact area of the metal can be easily reduced, and the heat annealed portion 50 can be further localized. Therefore, it is possible to further suppress a decrease in the mechanical strength of the vapor chamber due to the heat annealing portion.
  • the method for manufacturing the vapor chamber 2 further includes a press working step of forming the recessed flow path 11 and the protruding portion 12 of the first metal sheet 10 by press forming before the laser joining step and the laser welding step. ..
  • a press working step By press-molding the first metal sheet 10, the recessed flow path 11 and the protruding portion 12 can be easily formed.
  • the press working step it is more preferable to form the convex portion 16 on the first metal sheet 10 in addition to the concave flow path 11 and the protruding portion 12.
  • the vapor chamber 2 can be manufactured by performing a laser welding process following a laser welding process after a pressing process, or by performing a laser welding process following a laser welding process.
  • the weight of the vapor chamber can be reduced by reducing the variation in the sheet thickness of the first metal sheet.
  • Such a recessed flow path and a protruding portion of the first metal sheet can be easily formed in a short time by press molding. Therefore, the vapor chamber can be manufactured more easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

ベーパーチャンバは、第1金属シートと第2金属シートとの間に形成される内部空間に作動流体を有するベーパーチャンバであって、前記第1金属シートは、凹部流路と少なくとも1つ以上の突出部とを備え、前記凹部流路は、前記第1金属シートの内面に設けられ、前記突出部は、前記第1金属シートの内面から前記第2金属シートに向かって突出し、かつ前記突出部の頂面が前記第2金属シートに当接し、前記ベーパーチャンバは、少なくとも1つ以上の頂面接合部と隙間流路部とを備え、前記頂面接合部は、前記突出部の前記頂面の一部と前記第2金属シートとを接合し、前記隙間流路部は、前記頂面と前記第2金属シートが離間している。

Description

ベーパーチャンバおよびベーパーチャンバの製造方法
 本開示は、ベーパーチャンバおよびベーパーチャンバの製造方法に関する。
 ノートパソコン、デジタルカメラ、携帯電話などの電気・電子機器に搭載されている半導体素子などの電子部品は、高性能化に伴う高密度搭載などによって、発熱量が増大する傾向にある。電気・電子機器を長時間にわたって正常に駆動するためには、電子部品を効率よく冷却する必要がある。
 例えば、特許文献1には、第1金属シートと第2金属シートとを有し、第1金属シートと第2金属シートとの間に設けられる密封空間に液流路部を備えるベーパーチャンバが記載されている。特許文献1のベーパーチャンバでは、液流路部を構成する各溝について、第1連絡溝の幅は、第1主流溝の幅および第2主流溝の幅よりも大きく、第2連絡溝の幅は、第2主流溝の幅および第3主流溝の幅よりも大きく、第1連絡溝の深さは、第1主流溝の深さおよび第2主流溝の深さよりも深く、第2連絡溝の深さは、第2主流溝の深さおよび第3主流溝の深さよりも深い。
 特許文献1のベーパーチャンバでは、第1金属シートおよび第2金属シートは拡散接合やろう付けなどによって接合されている。拡散接合やろう付けを行うときには、第1金属シートおよび第2金属シートは、全体的に、熱処理されて、熱でなまされる。このように、ベーパーチャンバの全体が熱でなまされるため、ベーパーチャンパの機械的強度が低下する。また、引用文献1のベーパーチャンバでは、液流路部を構成する各溝が所定の関係を満たすことによって、熱輸送効率の向上を図っている。しかしながら、近年増大している電気・電子機器における冷却性能の要求に対しては不十分である。
特開2019-158323号公報
 本開示の目的は、機械的強度および熱輸送特性に優れるベーパーチャンバおよびベーパーチャンバの製造方法を提供することである。
[1] 第1金属シートと第2金属シートとの間に形成される内部空間に作動流体を有するベーパーチャンバであって、前記第1金属シートは、凹部流路と少なくとも1つ以上の突出部とを備え、前記凹部流路は、前記第1金属シートの内面に設けられ、前記突出部は、前記第1金属シートの内面から前記第2金属シートに向かって突出し、かつ前記突出部の頂面が前記第2金属シートに当接し、前記ベーパーチャンバは、少なくとも1つ以上の頂面接合部と隙間流路部とを備え、前記頂面接合部は、前記突出部の前記頂面の一部と前記第2金属シートとを接合し、前記隙間流路部は、前記頂面と前記第2金属シートが離間していることを特徴とするベーパーチャンバ。
[2] 前記隙間流路部は、前記第1金属シートの前記頂面のうち、前記第2金属シートに接合しない頂面当接部と、前記第2金属シートにおける、前記頂面当接部に当接する内面当接部と、の間に設けられ、前記頂面当接部の前記頂面接合部側に閉塞部を有し、前記頂面当接部の突出部側面側に開口部を有する、上記[1]に記載のベーパーチャンバ。
[3] 前記隙間流路部は、前記頂面当接部と前記内面当接部との間の隙間幅より、前記閉塞部から前記開口部までの隙間長さが長い、上記[2]に記載のベーパーチャンバ。
[4] 前記隙間流路部は、前記頂面当接部と前記内面当接部との間の隙間幅の平均値が1.0μm以上100.0μm以下である、上記[2]または[3]に記載のベーパーチャンバ。
[5] 前記隙間流路部は、前記閉塞部から前記開口部までの隙間長さの平均値が40.0μm以上である、上記[2]~[4]のいずれか1つに記載のベーパーチャンバ。
[6] 前記隙間流路部は、隙間拡大部を前記閉塞部側に備え、前記隙間拡大部における前記頂面当接部と前記内面当接部との間の隙間幅の平均値は、前記隙間拡大部以外の前記隙間流路部における前記隙間幅の平均値よりも長い、上記[2]~[5]のいずれか1つに記載のベーパーチャンバ。
[7] 前記第1金属シートの前記凹部流路におけるシート厚みt1に対する、前記第1金属シートの前記突出部におけるシート厚みt2の比(t2/t1)は、0.1以上10.0以下である、上記[1]~[6]のいずれか1つに記載のベーパーチャンバ。
[8] 前記突出部は、前記ベーパーチャンバの長手方向に沿って延在する、上記[1]~[7]のいずれか1つに記載のベーパーチャンバ。
[9] 前記ベーパーチャンバは、前記突出部の1つに前記頂面接合部を複数備える、上記[1]~[8]のいずれか1つに記載のベーパーチャンバ。
[10] 前記第2金属シートは、少なくとも1つ以上の突出部を内面に備え、前記第2金属シートの前記突出部は、前記第2金属シートの前記内面から前記第1金属シートに向かって突出し、かつ前記突出部の頂面が前記第1金属シートの前記凹部流路に当接する、上記[1]~[9]のいずれか1つに記載のベーパーチャンバ。
[11] 上記[1]~[10]のいずれか1つに記載のベーパーチャンバの製造方法であって、前記頂面接合部をレーザーで形成するレーザー接合工程を有することを特徴とするベーパーチャンバの製造方法。
[12] 前記レーザー接合工程の前または後に、前記第1金属シートの外縁と前記第2金属シートの外縁とをレーザーで溶接するレーザー溶接工程をさらに有する、上記[11]に記載のベーパーチャンバの製造方法。
[13] 前記レーザー接合工程およびレーザー溶接工程の前に、前記第1金属シートの前記凹部流路および前記突出部をプレス成形で形成するプレス加工工程をさらに有する、上記[11]または[12]に記載のベーパーチャンバの製造方法。
 本開示によれば、機械的強度および熱輸送特性に優れるベーパーチャンバおよびベーパーチャンバの製造方法を提供することができる。
図1は、第1実施形態のベーパーチャンバの一例を示す斜視図である。 図2は、図1のA面の拡大断面図である。 図3は、第1実施形態のベーパーチャンバを構成する第2金属シートの他の例を示す拡大断面図である。 図4は、第1実施形態のベーパーチャンバを構成する突出部の他の例を示す斜視図である。 図5は、第2実施形態のベーパーチャンバの一例を示す斜視図である。 図6は、図5のB面の拡大断面図である。 図7は、第2実施形態のベーパーチャンバを構成する突出部の他の例を示す拡大断面図である。
 以下、実施形態に基づき詳細に説明する。
 本発明者は、鋭意研究を重ねた結果、第1金属シートと第2金属シートとを接合する接合部の構成に着目することによって、機械的強度および熱輸送特性の向上を図った。
 実施形態のベーパーチャンバは、第1金属シートと第2金属シートとの間に形成される内部空間に作動流体を有するベーパーチャンバであって、前記第1金属シートは、凹部流路と少なくとも1つ以上の突出部とを備え、前記凹部流路は、前記第1金属シートの内面に設けられ、前記突出部は、前記第1金属シートの内面から前記第2金属シートに向かって突出し、かつ前記突出部の頂面が前記第2金属シートに当接し、前記ベーパーチャンバは、少なくとも1つ以上の頂面接合部と隙間流路部とを備え、前記頂面接合部は、前記突出部の前記頂面の一部と前記第2金属シートとを接合し、前記隙間流路部は、前記頂面と前記第2金属シートが離間している。
(第1実施形態)
 図1は、第1実施形態のベーパーチャンバの一例を示す斜視図である。図2は、図1のA面の拡大断面図である。図1では、便宜上、ベーパーチャンバの内部構造がわかるように部分的に透過した状態を示している。また、図1および2では、気相の作動流体F(G)の流れる方向を黒塗り矢印で示し、液相の作動流体F(L)の流れる方向を白抜き矢印で示している。
 図1~2に示すように、第1実施形態のベーパーチャンバ1は、第1金属シート10および第2金属シート20を有する。第1金属シート10の内面10aおよび第2金属シート20の内面20aが対向するように、第1金属シート10および第2金属シート20が接合される。すなわち、第1金属シート10および第2金属シート20は内部が閉じられている。また、ベーパーチャンバ1は、第1金属シート10および第2金属シート20の間に形成される内部空間Sに作動流体を有する。内部空間Sは、第1金属シート10および第2金属シート20によって密閉されている。ベーパーチャンバ1の内部に設けられる内部空間Sには、作動流体が封入されている。
 内部空間Sに封入されている作動流体は、ベーパーチャンバ1の冷却性能の観点から、純水、エタノール、メタノール、アセトンなどが挙げられる。
 ベーパーチャンバ1を構成する第1金属シート10は、凹部流路11と少なくとも1つ以上の突出部12とを備える。
 図1に示すように、凹部流路11は、第1金属シート10の内面10aに設けられている。内面10a側に設けられる凹部流路11は、第1金属シート10の外縁10cから内面10aの中央に亘って凹んでいる。例えば、凹部流路は、内部空間Sから突出部12および隙間流路部14を除く空間である。凹部流路11には、主に気相の作動流体が流れる。
 突出部12は、第1金属シート10の内面10aから第2金属シート20の内面20aに向かって突出する。突出部12の頂面13は、第2金属シート20の内面20aに当接する。例えば、突出部12は四角柱形である。
 図2に示すように、ベーパーチャンバ1は、少なくとも1つ以上の頂面接合部13aと隙間流路部14とを備える。
 頂面接合部13aは、突出部12の頂面13の一部と第2金属シート20とを接合する。このように、突出部12の頂面13と第2金属シート20の内面20aとの間の当接面において、頂面接合部13aは、突出部12の頂面13の一部と第2金属シート20の内面20aの一部とを接合する。
 ベーパーチャンバ1は、第1金属シート10および第2金属シート20を接合する頂面接合部13aを形成するときの熱によって生じる熱なまし部50について、ベーパーチャンバ1の全体に亘って具備せず、頂面接合部13aと隣接する部分に局所的に具備する。例えば、ベーパーチャンバ1は、図2に示すように、頂面接合部13aと隣接する第2金属シート20に形成される熱なまし部50を備える。熱なまし部50の金属組織および熱なまし部50以外の部分の金属組織は、SEMで観察すると、明確に異なる。
 第1金属シート10および第2金属シート20は頂面接合部13aを介して接合される。頂面13の一部と内面20aの一部とを接合する頂面接合部13aの長さ13axは、突出部12の長さ12xよりも小さい。ベーパーチャンバ1の機械的強度の低下を抑制する観点から、突出部12の長さ12xに対する頂面接合部13aの長さ13axの比(13ax/12x)は、好ましくは0.5より小さい。頂面接合部13aの長さ13axおよび突出部12の長さ12xは、図2のような頂面接合部13aを含むベーパーチャンバ1の断面において、ベーパーチャンバ1の厚み方向に垂直な方向の距離である。
 隙間流路部14は、第1金属シート10の頂面13と第2金属シート20が離間している。隙間流路部14には、液相の作動流体が流れる。
 このような隙間流路部14は、突出部12の頂面13の頂面当接部13bと第2金属シート20の内面当接部21との間に設けられる。第1金属シート10の頂面当接部13bは、第1金属シート10の頂面13のうち、第2金属シート20の内面20aに接合しない部分である。第2金属シート20の内面当接部21は、第2金属シート20の内面20aにおける、頂面当接部13bに当接する部分である。
 頂面当接部13bおよび内面当接部21は、接合されずに、互いに離間可能に当接する。隙間流路部14は、頂面当接部13bおよび内面当接部21の当接で生じる隙間である。なお、ここでは便宜上、隙間流路部14を理解しやすいように、頂面当接部13bおよび内面当接部21が明確に離れている状態を示している。
 また、隙間流路部14は、頂面当接部13bの頂面接合部13a側に閉塞部14aを有する。閉塞部14aは、頂面当接部13bおよび頂面接合部13aが接続している部分であり、頂面接合部13aによって閉塞される。また、隙間流路部14は、頂面当接部13bの突出部側面側に開口部14bを有する。突出部側面側とは、突出部12の側面12a側であり、凹部流路11側である。このように、隙間流路部14は、頂面当接部13bの頂面接合部13a側が閉塞し、頂面当接部13bの突出部側面側が開口する。
 隙間流路部14は、突出部12の頂面13側で、凹部流路11と頂面接合部13aとの間に設けられる。突出部12の頂面13側で、頂面接合部13aの周囲に設けられる隙間流路部14は、ベーパーチャンバ1の厚み方向に垂直な方向に延在する。隙間流路部14は、開口部14bを介して、凹部流路11と連結する。具体的には、隙間流路部14は、凹部流路11と第2金属シート20側で連結する。
 隙間流路部14の隙間幅14wは、凹部流路11の溝間隔pに比べて非常に小さい。隙間流路部14の隙間幅14wは、頂面当接部13bと内面当接部21との間の距離である。凹部流路11の溝間隔pは、隣り合う突出部12の間の距離または突出部12と外縁10cとの間の距離である。上記のように、隙間流路部14は頂面当接部13bおよび内面当接部21の当接で生じる隙間であり、隙間流路部14の隙間幅14wは非常に小さい。そのため、隙間流路部14は、液相の作動流体に対する毛細管現象を発揮する。
 ベーパーチャンバ1は、主に以下の冷却経路によって発熱体30を冷却する。
 第2金属シート20の外面20bと熱的に接続される発熱体30で発生した熱は、第2金属シート20の内面20aに位置する蒸発部41に伝達される。蒸発部41は、発熱体30から伝達された熱によって、図2に示すように、隙間流路部14を流れる液相の作動流体を蒸発させて、矢印F(G)で示すように気相の作動流体に相変化させる。蒸発によって加熱された気相の作動流体は、図1の矢印F(G)で示すように、蒸発部41から離れた位置の凝縮部42に流れる。気相の作動流体が凝縮部42に向かって流れる過程で、作動流体の温度が低下する。凝縮部42では、温度の低下した気相の作動流体が凝縮されて液相の作動流体に相変化する。相変化で生じる潜熱は、第1金属シート10や第2金属シート20に伝達されて、ベーパーチャンバ1の外部に放出される。凝縮された液相の作動流体は、図2の矢印F(L)で示すように、毛細管現象によって隙間流路部14内に容易に浸入する。液相の作動流体は隙間流路部14内を移動して、再び蒸発部41に戻る。このような液相および気相の作動流体の良好な循環によって、ベーパーチャンバ1は発熱体30を効率的に冷却できる。
 ベーパーチャンバ1が突出部12の頂面13側に隙間流路部14を備えると、液相の作動流体に対する隙間流路部14の毛細管現象によって、液相の作動流体は凹部流路11から隙間流路部14に容易に浸入すると共に、隙間流路部14内の液相の作動流体は隙間流路部14の外部に漏出しにくい。一方で、隙間流路部14を備えない従来のベーパーチャンバでは、ベーパーチャンバ1の隙間流路部14に相当する構成が設けられていないため、液相の作動流体は凹部流路内を流れる。このように、従来に比べて、隙間流路部14を備えるベーパーチャンバ1は、液相の作動流体の保持量が増加し、作動流体の還流量が増加する。そのため、内部空間S内での熱輸送量が向上する。さらに、ベーパーチャンバ1の内部空間Sでは、液相の作動流体が蒸発部に存在しない状態、いわゆるドライアウトを抑制でき、液相および気相の作動流体の循環の流れが良好になり、熱輸送が向上する。このようなことから、ベーパーチャンバ1は優れた熱輸送特性を有することができる。
 さらに、隙間流路部14は、毛細管現象によって、液相の作動流体を内部に容易に取り込むと共に、内部に取り入れた液相の作動流体を隙間流路部14の外部に漏出しにくい。例えば、図1に示すベーパーチャンバ1が紙面上で90度傾く状態や上下反対になる状態など、ベーパーチャンバ1がどのような姿勢であっても、液相の作動流体は、隙間流路部14に容易に進入すると共に隙間流路部14から外部に漏出しにくい。このように、ベーパーチャンバ1の配置状態に依存せずに、液相および気相の作動流体の循環の流れが良好であるため、ベーパーチャンバ1の熱輸送特性は優れている。
 さらに、ベーパーチャンバ1は、頂面接合部13aを形成するときの熱によって生じる熱なまし部50を、ベーパーチャンバ1の全体ではなく、頂面接合部13aと隣接する部分に局所的に備える。熱処理によってなまされる熱なまし部50は、材料の機械的強度を低下させる。従来のベーパーチャンバは、熱なまし部について、ベーパーチャンバ1の頂面接合部13aと隣接する部分に局所的に具備するのではなく、第1金属シートや第2金属シートの広域に亘って具備する。このように、従来に比べて、ベーパーチャンバ1では、熱なまし部50の領域が小さく、熱でなまされることによる機械的強度の低下を抑制できる。そのため、ベーパーチャンバ1は優れた機械的強度を有することができる。
 また、隙間流路部14は、頂面当接部13bと内面当接部21との間の隙間幅14wより、閉塞部14aから開口部14bまでの隙間長さ14xが長いことが好ましい。隙間流路部14について、隙間長さ14xが隙間幅14wより長いと、隙間流路部14における液相の作動流体の保持量が増加し、隙間流路部14の毛細管現象が向上する。そのため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 ベーパーチャンバ1の熱輸送特性を向上する観点から、隙間幅14wに対する隙間長さ14xの比(14x/14w)は、好ましくは1.0以上30.0以下、より好ましくは2.0以上10.0以下である。
 また、隙間流路部14の隙間幅14wの平均値は、好ましくは1.0μm以上100.0μm以下、より好ましくは3.0μm以上50.0μm以下、さらに好ましくは5.0μm以上20.0μm以下である。隙間幅14wの平均値が1.0μm以上であると、隙間流路部14を容易に形成できる。隙間幅14wの平均値が100.0μm以下であると、隙間流路部14の毛細管現象が向上するため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 また、隙間流路部14の隙間長さ14xの平均値は、好ましくは40.0μm以上、より好ましくは80.0μm以上、さらに好ましくは150.0μm以上である。また、隙間長さ14xの平均値は、好ましくは1.0mm以下、より好ましくは500.0μm以下、さらに好ましくは200.0μm以下である。隙間長さ14xの平均値が40.0μm以上であると、隙間流路部14における液相の作動流体の保持量が増加し、隙間流路部14の毛細管現象が向上するため、ベーパーチャンバ1の熱輸送特性はさらに向上する。隙間長さ14xの平均値が1.0mm以下であると、隙間流路部14を容易に形成できる。
 また、図2に示すように、隙間流路部14は、隙間拡大部15を閉塞部14a側に備え、隙間拡大部15における頂面当接部13bと内面当接部21との間の隙間幅15wの平均値は、隙間拡大部15以外の隙間流路部14における頂面当接部13bと内面当接部21との間の隙間幅14wの平均値よりも長いことが好ましい。隙間拡大部15の隙間幅15wの平均値が隙間拡大部15以外の隙間流路部14における頂面当接部13bと内面当接部21との間の隙間幅14wの平均値よりも長いと、隙間流路部14および隙間拡大部15における液相の作動流体の保持量が増加し、隙間流路部14の毛細管現象が向上する。そのため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 ベーパーチャンバ1の熱輸送特性を向上する観点から、隙間幅14wに対する隙間幅15wの比(15w/14w)は、好ましくは1.1以上2.0以下である。比(15w/14w)が1.1以上であると、ベーパーチャンバ1の熱輸送特性が向上する。比(15w/14w)が2.0以下であると、隙間拡大部15を容易に形成できる。
 また、ベーパーチャンバ1の熱輸送特性を向上する観点から、隙間拡大部15は、図2に示すように、頂面当接部13bにおける頂面接合部13aに最も近い部分、換言すると、閉塞部14aに設けられることが好ましい。同様に、ベーパーチャンバ1の熱輸送特性を向上する観点から、隙間拡大部15の形状は、図2に示すように球状であることが好ましい。
 また、図1に示すように、突出部12はベーパーチャンバ1の長手方向L1に沿って延在することが好ましい。突出部12がベーパーチャンバ1の長手方向L1に沿って延在すると、蒸発部41から凝縮部42に向かう距離が長くなり、作動流体の還流量が増加する。そのため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 また、ベーパーチャンバ1は、突出部12の1つに頂面接合部13aを複数備えることが好ましい。1つの突出部12に複数の頂面接合部13aが設けられると、第1金属シート10および第2金属シート20の結合力が向上する。各突出部12に複数の頂面接合部13aが設けられると、第1金属シート10および第2金属シート20の結合力はさらに向上する。
 図3は、ベーパーチャンバ1を構成する第2金属シート20の他の例を示す拡大断面図である。図3に示すように、第2金属シート20は、少なくとも1つ以上の突出部22を内面20aに備え、第2金属シート20の突出部22は、第2金属シート20の内面20aから第1金属シート10に向かって突出し、かつ突出部22の頂面23が第1金属シート10の凹部流路11に当接することが好ましい。
 第2金属シート20の突出部22の頂面23は、凹部流路11、すなわち第1金属シート10の内面10aに当接する。そのため、ベーパーチャンバ1の厚み方向に対する機械的強度はさらに向上する。また、突出部22の頂面23と第1金属シート10の内面10aとの間には、当接による隙間が設けられる。この隙間は、隙間流路部14と同様に、液相の作動流体に対する毛細管現象を発揮するため、液相の作動流体を容易に取り込める。そのため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 また、第1金属シート10の内面10aや第2金属シート20の内面20aは、粗化構造や溝構造を有することが好ましい。粗化構造は、内面10aや内面20aに対する粗化処理によって形成される。内面10aや内面20aが粗化構造や溝構造を有すると、液相の作動流体がこれら構造に沿って流れやすくなり、液相および気相の作動流体の循環が良好になる。そのため、ベーパーチャンバ1の熱輸送特性はさらに向上する。
 このようなベーパーチャンバ1の熱輸送特性を向上する頂面接合部13aおよび隙間流路部14の形成、ならびに熱なまし部50の局所的な形成には、レーザーを用いた加工が好ましく、その中でもファイバレーザーを用いた加工がより好ましい。レーザーによる加工では、熱なまし部50の形成拡大を抑制して、頂面接合部13aおよび隙間流路部14を所望の形状に短時間で形成することができる。その結果、熱なまし部50は、ベーパーチャンバ1に広域に形成されずに、局所的に形成される。一方で、従来のベーパーチャンバで採用されている拡散結合を用いた第1金属シートおよび第2金属シートの結合では、頂面接合部13aおよび隙間流路部14の形成、特に隙間流路部14の形成が困難である、熱なまし部がベーパーチャンバの全体に形成されるなど、レーザー加工に比べて加工性が非常に低い。
 また、第1金属シート10および第2金属シート20を構成する材料は、高い熱伝導率やレーザーによる加工容易性などの観点から、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス鋼が好ましい。その中でも、軽量化を図る目的のためには、アルミニウム、アルミニウム合金がより好ましく、機械的強度を高める目的のためには、ステンレス鋼がより好ましい。また、使用環境に応じて、第1金属シート10および第2金属シート20には、スズ、スズ合金、チタン、チタン合金、ニッケル、ニッケル合金などを使用してもよい。
 ベーパーチャンバ1に装着される発熱体30は、例えば半導体素子など、稼動中に熱を発生する電子部品のような部材である。
 次に、上記のベーパーチャンバ1の製造方法について説明する。
 ベーパーチャンバ1の製造方法は、頂面接合部13aをレーザーで形成するレーザー接合工程を有する。レーザー接合工程では、ファイバレーザーで第1金属シート10および第2金属シート20を接合する頂面接合部13aを形成することが好ましい。レーザー加工では、頂面接合部13aを所望の形状に加工制御しやすく、頂面接合部13aを短時間で形成できる。さらに、レーザー加工では、接合したい部分を局所的に加熱できるため、加熱によって生じる熱なまし部50は、ベーパーチャンバ1に広域に形成されずに、頂面接合部13aと隣接する部分に局所的に形成される。レーザーの中でも、ファイバレーザーは、加工制御および短時間加工がさらに優れている。頂面接合部13aが形成されると、結果的に隙間流路部14も形成される。従来のような毛細管構造(ウィック構造)を別途装着する工程が不要であるため、製造コストおよび製造時間の削減、製造の容易化を達成できる。
 具体的には、凹部流路11や突出部12を備える第1金属シート10の内面10aと第2金属シート20の内面20aとが互いに対向し、第1金属シート10の突出部12の頂面13が金属シート20の内面20aに当接している状態で、頂面13の一部に対してレーザーを照射する。例えば、第1金属シート10側から頂面13の一部にレーザーを照射してもよいし、第2金属シート20側から頂面13の一部にレーザーを照射してもよいし、これらレーザーの照射を組み合わせてもよい。
 一方で、従来のベーパーチャンバで採用されている拡散接合などによる接合では、第1金属シートおよび第2金属シートを全体的に熱処理する。このような熱処理では、突出部12における頂面13の全面が第2金属シート20の内面に接合されるので、頂面接合部13aおよび隙間流路部14の形成自体が困難である。そのため、第1金属シートおよび第2金属シートを接合する工程に加えて、毛細管構造を設置する工程を別途行う必要がある。さらに、第1金属シートおよび第2金属シートが全体的に熱処理されて熱でなまされるため、ベーパーチャンバの機械的強度が低下する。
 また、ベーパーチャンバ1の製造方法は、レーザー接合工程の前または後に、第1金属シート10の外縁10cと第2金属シート20の外縁20cとをレーザーで溶接するレーザー溶接工程をさらに有することが好ましい。第1金属シート10の外縁10cおよび第2金属シート20の外縁20cをレーザーで溶接することによって、溶接部51が形成され、内部空間Sを内部に備えるベーパーチャンバ1を容易に製造できる。レーザー接合工程で用いるレーザーとレーザー溶接工程で用いるレーザーとが同じであると、ベーパーチャンバをさらに短時間で容易に製造できる。
 具体的には、第1金属シート10の内面10aと第2金属シート20の内面20aとが互いに対向し、第1金属シート10の外縁10cと金属シート20の外縁20cとが接触している状態の第1金属シート10および第2金属シート20に対して、レーザーを照射する。例えば、第1金属シート10側から外縁10cおよび外縁20cの接触部分にレーザーを照射してもよいし、第2金属シート20側から外縁10cおよび外縁20cの接触部分にレーザーを照射してもよいし、ベーパーチャンバ1の面内方向から外縁10cおよび外縁20cの接触部分にレーザーを照射してもよし、これらレーザーの照射を組み合わせてもよい。
 こうして製造したベーパーチャンバ1は、様々な姿勢であっても良好な熱輸送特性を求められている、携帯電話などの電子機器に好適に用いられる。ベーパーチャンバ1を備える電子機器は、様々な使用状態であっても、ベーパーチャンバ1の高い熱輸送特性を有する。
 以上説明した実施形態によれば、液相の作動流体は隙間流路部に容易に浸入して流れるので、液相および気相の作動流体の循環の流れが向上し、ベーパーチャンバの内部空間内での熱輸送が増加する。そのため、ベーパーチャンバは優れた熱輸送特性を有することができる。また、ベーパーチャンバは、熱なまし部について、全体に亘って広域に具備せずに、局所的に具備する。そのため、熱なまし部によるベーパーチャンバの機械的強度の低下を抑制できる。
 なお、上記では、図1に示すように第2金属シート20の外面20bに発熱体30を装着する例について示したが、発熱体30は第1金属シート10の外面10bに装着してもよい。
 また、重力方向側に第2金属シート20が配置される、すなわち重力方向に沿って、下方に第2金属シート20および上方に第1金属シート10が配置されるように、ベーパーチャンバ1を設置することが好ましい。重力方向側に第2金属シート20を配置するようにベーパーチャンバ1が設置されると、内部空間S内では、隙間流路部14が重力方向側に配置される。液相の作動流体は、隙間流路部14の毛細管現象に加えて、重力によって、隙間流路部14に進入しやすくなる。その結果、ベーパーチャンバの熱輸送特性はさらに向上する。このようなベーパーチャンバの設置状態では、第2金属シート20の外面20b、すなわちベーパーチャンバ1の下部に発熱体30を装着すると、発熱体30を効率よく冷却できる。
 また、上記では、図1に示すように突出部12が四角柱形である例について示したが、突出部12の形状は、頂面13が第2金属シート20の内面20aに当接できればよい。例えば、突出部12の形状は、図4に示すように円柱形でもよい。また、第1金属シート10が複数の突出部12を備える場合、突出部12の形状は、全て同じでもよいし、少なくとも一部が異なってもよい。
(第2実施形態)
 図5は、第2実施形態のベーパーチャンバの一例を示す斜視図である。図6は、図5のB面の拡大断面図である。
 なお、以下に示す実施形態では、第1実施形態のベーパーチャンバの構成と同一の構成部分には同一の符号を付して、重複する説明を省略または簡略する。
 第2実施形態のベーパーチャンバ2において、第1金属シート10の構成が異なること以外は、第1実施形態のベーパーチャンバ1の構成と基本的に同じである。そのため、ここでは、その異なる構成について主に説明する。
 図5~6に示すように、ベーパーチャンバ2の第1金属シート10は、第1実施形態のベーパーチャンバ1の第1金属シート10に比べて、シート厚みの均一性が高い。ベーパーチャンバ1の第1金属シート10では、図2に示すように、突出部12におけるシート厚みが凹部流路11におけるシート厚みよりも明確に大きい。
 図6に示すように、ベーパーチャンバ2において、第1金属シート10の凹部流路11におけるシート厚みt1に対する、第1金属シート10の突出部12におけるシート厚みt2の比(t2/t1)は、好ましくは0.1以上10.0以下、より好ましくは0.2以上5.0以下、さらに好ましくは0.5以上2.0以下、最も好ましくは1.0、すなわち凹部流路11におけるシート厚みt1と突出部12におけるシート厚みt2とが同じである。
 比(t2/t1)が上記範囲内であると、第1金属シート10のシート厚みのばらつきが抑制されるため、ベーパーチャンバ2を軽量化することができる。このような所定の比(t2/t1)を有する第1金属シート10の形成には、プレス成形による加工が好適である。
 図7は、ベーパーチャンバ2を構成する突出部12の他の例を示す拡大断面図である。図7に示すように、第1金属シート10は、頂面13の一部から第2金属シート20の内面20aに向かって突出する凸部16をさらに有してもよい。突出部12の頂面13の一部に設けられる凸部16の頂面は、第2金属シート20の内面20aに接合する。この場合、凸部16の頂面の一部が第2金属シート20の内面20aに接合してもよいし、凸部16の頂面の全面が第2金属シート20の内面20aに接合してもよい。凸部16の形成には、プレス成形による加工が好適である。
 ベーパーチャンバ2が凸部16を備えると、隙間流路部14の形状を容易に制御できるので、液相の作動流体を隙間流路部14に容易に取り込むことができる。そのため、ベーパーチャンバの熱輸送特性を向上できる。また、凸部16を備えないベーパーチャンバにおける頂面接合部13aと第2金属シート20の内面20aとの当接面積に比べて、凸部16の頂面と第2金属シート20の内面20aとの当接面積を容易に小さくでき、熱なまし部50をさらに局所化できる。そのため、熱なまし部によるベーパーチャンバの機械的強度の低下をさらに抑制できる。
 次に、上記のベーパーチャンバ2の製造方法について説明する。
 ベーパーチャンバ2の製造方法は、上記レーザー接合工程および上記レーザー溶接工程の前に、第1金属シート10の凹部流路11および突出部12をプレス成形で形成するプレス加工工程をさらに有することが好ましい。第1金属シート10をプレス成形することによって、凹部流路11および突出部12を容易に形成できる。プレス加工工程では、凹部流路11および突出部12に加えて、凸部16も第1金属シート10に形成することがより好ましい。
 プレス加工工程の後、レーザー接合工程に続いてレーザー溶接工程を行う、またはレーザー溶接工程に続いてレーザー接合工程を行うことによって、ベーパーチャンバ2を製造できる。
 以上説明した実施形態によれば、第1金属シートのシート厚みのばらつきを小さくすることによって、ベーパーチャンバが軽量化できる。このような第1金属シートの凹部流路および突出部は、プレス成形によって短時間に容易に形成できる。そのため、ベーパーチャンバをさらに簡便に製造できる。
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
 1、2 ベーパーチャンバ
 10 第1金属シート
 10a 第1金属シートの内面
 10b 第1金属シートの外面
 10c 第1金属シートの外縁
 11 凹部流路
 12 突出部
 12a 突出部の側面
 13 突出部の頂面
 13a 頂面接合部
 13b 頂面当接部
 14 隙間流路部
 14a 隙間流路部の閉塞部
 14b 隙間流路部の開口部
 15 隙間拡大部
 16 凸部
 20 第2金属シート
 20a 第2金属シートの内面
 20b 第2金属シートの外面
 20c 第2金属シートの外縁
 21 内面当接部
 22 突出部
 23 突出部の頂面
 30 発熱体
 41 蒸発部
 42 凝縮部
 50 熱なまし部
 51 溶接部
 S 内部空間
 F(L) 液相の作動流体の流れ
 F(G) 気相の作動流体の流れ

Claims (13)

  1.  第1金属シートと第2金属シートとの間に形成される内部空間に作動流体を有するベーパーチャンバであって、
     前記第1金属シートは、凹部流路と少なくとも1つ以上の突出部とを備え、
     前記凹部流路は、前記第1金属シートの内面に設けられ、
     前記突出部は、前記第1金属シートの内面から前記第2金属シートに向かって突出し、かつ前記突出部の頂面が前記第2金属シートに当接し、
     前記ベーパーチャンバは、少なくとも1つ以上の頂面接合部と隙間流路部とを備え、
     前記頂面接合部は、前記突出部の前記頂面の一部と前記第2金属シートとを接合し、
     前記隙間流路部は、前記頂面と前記第2金属シートが離間していることを特徴とするベーパーチャンバ。
  2.  前記隙間流路部は、前記第1金属シートの前記頂面のうち、前記第2金属シートに接合しない頂面当接部と、前記第2金属シートにおける、前記頂面当接部に当接する内面当接部と、の間に設けられ、前記頂面当接部の前記頂面接合部側に閉塞部を有し、前記頂面当接部の突出部側面側に開口部を有する、請求項1に記載のベーパーチャンバ。
  3.  前記隙間流路部は、前記頂面当接部と前記内面当接部との間の隙間幅より、前記閉塞部から前記開口部までの隙間長さが長い、請求項2に記載のベーパーチャンバ。
  4.  前記隙間流路部は、前記頂面当接部と前記内面当接部との間の隙間幅の平均値が1.0μm以上100.0μm以下である、請求項2または3に記載のベーパーチャンバ。
  5.  前記隙間流路部は、前記閉塞部から前記開口部までの隙間長さの平均値が40.0μm以上である、請求項2~4のいずれか1項に記載のベーパーチャンバ。
  6.  前記隙間流路部は、隙間拡大部を前記閉塞部側に備え、
     前記隙間拡大部における前記頂面当接部と前記内面当接部との間の隙間幅の平均値は、前記隙間拡大部以外の前記隙間流路部における前記隙間幅の平均値よりも長い、請求項2~5のいずれか1項に記載のベーパーチャンバ。
  7.  前記第1金属シートの前記凹部流路におけるシート厚みt1に対する、前記第1金属シートの前記突出部におけるシート厚みt2の比(t2/t1)は、0.1以上10.0以下である、請求項1~6のいずれか1項に記載のベーパーチャンバ。
  8.  前記突出部は、前記ベーパーチャンバの長手方向に沿って延在する、請求項1~7のいずれか1項に記載のベーパーチャンバ。
  9.  前記ベーパーチャンバは、前記突出部の1つに前記頂面接合部を複数備える、請求項1~8のいずれか1項に記載のベーパーチャンバ。
  10.  前記第2金属シートは、少なくとも1つ以上の突出部を内面に備え、
     前記第2金属シートの前記突出部は、前記第2金属シートの前記内面から前記第1金属シートに向かって突出し、かつ前記突出部の頂面が前記第1金属シートの前記凹部流路に当接する、請求項1~9のいずれか1項に記載のベーパーチャンバ。
  11.  請求項1~10のいずれか1項に記載のベーパーチャンバの製造方法であって、
     前記頂面接合部をレーザーで形成するレーザー接合工程を有することを特徴とするベーパーチャンバの製造方法。
  12.  前記レーザー接合工程の前または後に、前記第1金属シートの外縁と前記第2金属シートの外縁とをレーザーで溶接するレーザー溶接工程をさらに有する、請求項11に記載のベーパーチャンバの製造方法。
  13.  前記レーザー接合工程およびレーザー溶接工程の前に、前記第1金属シートの前記凹部流路および前記突出部をプレス成形で形成するプレス加工工程をさらに有する、請求項11または12に記載のベーパーチャンバの製造方法。
PCT/JP2021/024251 2020-06-30 2021-06-25 ベーパーチャンバおよびベーパーチャンバの製造方法 WO2022004618A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/002,908 US20230258416A1 (en) 2020-06-30 2021-06-25 Vapor chamber and method for producing vapor chamber
CN202180040276.0A CN115698620A (zh) 2020-06-30 2021-06-25 均热板及均热板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112762A JP2022011551A (ja) 2020-06-30 2020-06-30 ベーパーチャンバおよびベーパーチャンバの製造方法
JP2020-112762 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004618A1 true WO2022004618A1 (ja) 2022-01-06

Family

ID=79315332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024251 WO2022004618A1 (ja) 2020-06-30 2021-06-25 ベーパーチャンバおよびベーパーチャンバの製造方法

Country Status (4)

Country Link
US (1) US20230258416A1 (ja)
JP (1) JP2022011551A (ja)
CN (1) CN115698620A (ja)
WO (1) WO2022004618A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158323A (ja) * 2017-02-24 2019-09-19 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
JP2019178860A (ja) * 2018-03-30 2019-10-17 大日本印刷株式会社 ベーパーチャンバー、及び電子機器
JP2019207076A (ja) * 2018-05-29 2019-12-05 古河電気工業株式会社 ベーパーチャンバ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158323A (ja) * 2017-02-24 2019-09-19 大日本印刷株式会社 ベーパーチャンバ、電子機器、ベーパーチャンバ用金属シートおよびベーパーチャンバの製造方法
JP2019178860A (ja) * 2018-03-30 2019-10-17 大日本印刷株式会社 ベーパーチャンバー、及び電子機器
JP2019207076A (ja) * 2018-05-29 2019-12-05 古河電気工業株式会社 ベーパーチャンバ

Also Published As

Publication number Publication date
US20230258416A1 (en) 2023-08-17
JP2022011551A (ja) 2022-01-17
CN115698620A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US11209216B2 (en) Ultra thin heat exchangers for thermal management
JP5788069B1 (ja) 平面型ヒートパイプ
CN217058476U (zh) 均热板
JP7097308B2 (ja) ウィック構造体及びウィック構造体を収容したヒートパイプ
TW202138734A (zh) 蒸氣室
WO2022004618A1 (ja) ベーパーチャンバおよびベーパーチャンバの製造方法
JP4558258B2 (ja) 板型ヒートパイプおよびその製造方法
WO2021246519A1 (ja) ベーパーチャンバおよびベーパーチャンバの製造方法
US20140209285A1 (en) Method for manufacturing cooling device, cooling device and electronic component package equipped with cooling device
TWI337248B (ja)
WO2022004617A1 (ja) ベーパーチャンバおよびベーパーチャンバの製造方法
TW202129215A (zh) 蒸氣室
JP2003083688A (ja) フィン一体型平面型ヒートパイプおよびその製造方法
JP6998794B2 (ja) 冷却装置
JP2021188887A (ja) ベーパーチャンバおよびベーパーチャンバの製造方法
KR102295491B1 (ko) 엠보싱이 형성된 방열 플레이트 모듈
JP7340709B1 (ja) ヒートシンク
TWI832194B (zh) 蒸氣室
JP7444703B2 (ja) 伝熱部材および伝熱部材を有する冷却デバイス
WO2023238626A1 (ja) 熱拡散デバイス及び電子機器
JP2022181034A (ja) 熱伝導部材
JP2024035713A (ja) 沸騰式冷却器および沸騰式冷却器の製造方法
JP2021120611A (ja) 伝熱部材および伝熱部材を有する冷却装置
JP2022181033A (ja) 熱伝導部材
JPH0784107A (ja) レーザ用ミラー及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832771

Country of ref document: EP

Kind code of ref document: A1