JP2006261577A - 積層型インダクタ - Google Patents

積層型インダクタ Download PDF

Info

Publication number
JP2006261577A
JP2006261577A JP2005080172A JP2005080172A JP2006261577A JP 2006261577 A JP2006261577 A JP 2006261577A JP 2005080172 A JP2005080172 A JP 2005080172A JP 2005080172 A JP2005080172 A JP 2005080172A JP 2006261577 A JP2006261577 A JP 2006261577A
Authority
JP
Japan
Prior art keywords
magnetic
multilayer inductor
conductor
nonmagnetic
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080172A
Other languages
English (en)
Other versions
JP4213679B2 (ja
Inventor
Masazumi Arata
正純 荒田
Shigetoshi Kiuchi
重俊 木内
Kazuyuki Suzuki
多之 鈴木
Nobunori Mochizuki
宣典 望月
Osami Kumagai
修美 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005080172A priority Critical patent/JP4213679B2/ja
Publication of JP2006261577A publication Critical patent/JP2006261577A/ja
Application granted granted Critical
Publication of JP4213679B2 publication Critical patent/JP4213679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】 初期インダクタンス値が高く、直流重畳特性の改善を十分に図ることが可能な積層型インダクタを提供すること
【解決手段】 積層型インダクタL1は、複数の磁性体4及び複数の非磁性体5からなる積層体1と、各磁性体4内に設けられた複数のコイルと、各コイルをそれぞれ電気的に接続する導体パターンC3,C7,C11とを備えている。各非磁性体5は、各コイルに接触しないように各磁性体4の間に設けられている。
【選択図】 図2

Description

本発明は、積層型インダクタに関する。
この種の積層型インダクタとして、コイルを形成する導体と絶縁体とが積層されてなる積層体を備えており、積層体が、高透磁率の磁性体からなる複数の第一の絶縁体と、積層体の内層に配置された低透磁率の磁性体又は非磁性体からなる少なくとも1つ以上の第二の絶縁体とが積層されることにより形成されているものが知られている(例えば、特許文献1参照)。この特許文献1に記載された積層型インダクタでは、第一の絶縁体及び第二の絶縁体にそれぞれ導体が形成されており、導体が第二の絶縁体を挟持するように構成されている。
特開2001−44037号公報
積層型インダクタにおいては、大きな直流電流を流してもインダクタンス値の低下が少ない、直流重畳特性の良好なものが求められている。
ここで、低透磁率の磁性体又は非磁性体からなる絶縁体のみで積層体を形成して積層型インダクタとした場合には、直流電流を流してもインダクタンス値の低下は生じないが、透磁率が低いために初期インダクタンス値を高くすることができない。一方、高透磁率の磁性体からなる絶縁体のみで積層体を形成して積層型インダクタとした場合には、初期インダクタンス値を高くすることはできるが、磁気飽和現象により直流電流を流した際のインダクタンス値の低下が大きい。これらの理由から、上記特許文献1に記載された従来の積層型インダクタでは、透磁率の異なる2種類の絶縁体を用いて、直流重畳特性の改善を図っている。
しかしながら、従来の積層型インダクタでは、導体が低透磁率の磁性体又は非磁性体からなる第二の絶縁体を挟むように積層体内に形成され、導体が第二の絶縁体に接触している。そのため、導体に電流を流した場合、導体から発生した磁束が第二の絶縁体に接触している部分において阻害されてしまう。この結果、従来の積層型インダクタでは、インダクタンス値が低下してしまい、直流重畳特性の改善が十分でないという問題があった。
上記事情に鑑み、本発明は、初期インダクタンス値が高く、直流重畳特性の改善を十分に図ることが可能な積層型インダクタを提供することを目的とする。
本発明に係る積層型インダクタは、非磁性体及び複数の磁性体とがそれぞれ積層されてなる積層体と、複数の磁性体内にそれぞれ設けられた複数のコイルと、各コイルをそれぞれ電気的に接続する接続導体と、を備えており、非磁性体が、各コイルに接触しないように各磁性体の間に設けられていることを特徴とする。
本発明に係る積層型インダクタでは、各コイルがそれぞれ各磁性体内に設けられ、各磁性体が非磁性体によって隔てられている。このため、積層型インダクタが全て磁性体で形成され、その内部にコイルが設けられている場合に比べて、各磁性体内に存在する各コイルのターン数が少なくなり、コイルに電流が流れることにより発生する磁界の大きさが小さくなる。この結果、各磁性体において磁気飽和が抑制されることとなり、本発明に係る積層型インダクタに大きな電流を流した場合でもインダクタンス値の低下が抑えられ、直流重畳特性の改善を図ることができる。また、本発明に係る積層型インダクタでは、各コイルが非磁性体に接触しないようになっている。このため、各コイルにおいて発生する磁束が非磁性体によって阻害されることがほとんどない。この結果、積層型インダクタの初期インダクタンス値を高くすることができる。
また、接続導体が、非磁性体内に形成されたターン数が1/2ターン以上のコイルであることが好ましい。このように構成すると、非磁性体内に設けられたコイルからもインダクタンス値を得ることができるため、積層型インダクタの初期インダクタンス値を更に高くすることができる。
また、接続導体が、スルーホールであることが好ましい。
また、非磁性体が、粉体であることが好ましい。
本発明によれば、初期インダクタンス値が高く、直流重畳特性の改善を十分に図ることが可能な積層型インダクタを提供することができる。
本発明の実施形態に係る積層型インダクタについて、図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。また、説明中、「上」、「右」及び「左」なる語を使用することがあるが、これは各図の上方向、右方向及び左方向に対応したものである。
(第1実施形態)
図1〜図3を参照して、第1実施形態に係る積層型インダクタL1の構成について説明する。図1は、本発明に係る積層型インダクタの斜視図である。図2は、第1実施形態に係る積層型インダクタの断面構成を説明するための図である。図3は、第1実施形態に係る積層型インダクタに含まれる積層体の分解斜視図である。
積層型インダクタL1は、図1に示されるように、略直方体形状の積層体1と、積層体1の長手方向の両側面にそれぞれ形成された一対の端子電極2,3とを備える。なお、積層体1の底面は、積層型インダクタL1が外部基板(図示せず)に実装されたときに、当該外部基板に対向する面である。
積層体1は、図2及び図3に示されるように、複数(本第1実施形態では14枚)の磁性体グリーンシートA1〜A14がそれぞれシート積層工法によって積層されてなる複数(本第1実施形態では4つ)の磁性体4と、複数(本第1実施形態では6枚)の非磁性体グリーンシートB1〜B6がそれぞれシート積層工法によって積層されてなる複数(本第1実施形態では3つ)の非磁性体5とにより構成される。また、積層体1は、内部に導体パターンC1〜C12からなる複数のコイル10〜16を備えている。実際の積層型インダクタL1は、磁性体グリーンシートA1〜A14及び非磁性体グリーンシートB1〜B6の境界が視認できない程度に一体化されている。
各磁性体4は、それぞれ内部にコイル10,12,14,16を有しており、各コイル10,12,14,16が非磁性体5に接しないようになっている。また、各磁性体4は、後述するように磁性体グリーンシートA1〜A14が焼成されて焼結することで形成され、電気絶縁性を有する絶縁体として機能する。各磁性体4を形成する磁性体グリーンシートA1〜A14は、フェライト(例えば、Ni−Cu−Zn系フェライト)を原料としたスラリーをドクターブレード法によりフィルム上に塗布することで形成される。磁性体グリーンシートA1〜A14の厚みは、例えば70μmである。
各非磁性体5は、内部に各コイル11,13,15をそれぞれ有し、各磁性体4の間にそれぞれ位置している。また、各非磁性体5は、後述するように非磁性体グリーンシートB1〜B6が焼成されて焼結することで形成され、電気絶縁性を有する絶縁体として機能する。各非磁性体5を形成する非磁性体グリーンシートB1〜B6は、フェライト(例えば、Cu−Zn系フェライト)を原料としたスラリーをドクターブレード法によりフィルム上に塗布することで形成される。非磁性体グリーンシートB1〜B6の厚みは、例えば70μmである。
コイル10は、導体パターンC1,C2が電気的に接続されることにより形成される。コイル11,13,15,16は、それぞれ導体パターンC3,C7,C11,C12により構成される。コイル12は、導体パターンC4〜C6が電気的に接続されることにより形成される。コイル14は、導体パターンC8〜C10が電気的に接続されることにより形成される。なお、各コイル11,13,15を構成する導体パターンC3,C7,C11は、各コイル10,12,14,16をそれぞれ電気的に接続する接続導体として機能する。
導体パターンC1は、コイル10の略1/2ターンに相当し、磁性体グリーンシートA2上で略L字状に形成されている。導体パターンC1の一端には、導出部C1aが一体的に形成されている。導体パターンC1の導出部C1aは、磁性体グリーンシートA2の縁に引き出され、その端部が磁性体グリーンシートA2の端面に露出している。このため、導出部C1aは、端子電極2に電気的に接続されることとなる。導体パターンC1の他端は、磁性体グリーンシートA2を厚み方向に貫通して形成されたスルーホール電極D1と電気的に接続されている。このため、導体パターンC1は、積層された状態で、スルーホール電極D1を介して、対応する導体パターンC2の一端と電気的に接続される。
導体パターンC2,C12は、それぞれコイル10,16の略1ターンに相当し、各磁性体グリーンシートA3,A13上でスパイラル状に巻回されている。各導体パターンC2,C12の一端には、積層された状態でスルーホール電極D1,D18と電気的に接続される領域がそれぞれ含まれている。各導体パターンC2,C12の他端は、各磁性体グリーンシートA3,A13を厚み方向に貫通して形成された各スルーホール電極D2,D12とそれぞれ電気的に接続されている。このため、各導体パターンC2,C12は、積層された状態で、各スルーホール電極D2,D12を介して、対応する各導体パターンC13,C19とそれぞれ電気的に接続される。
導体パターンC3,C7,C11は、それぞれコイル11,13,15の略1ターンに相当し、各非磁性体グリーンシートB2,B4,B6上でスパイラル状に巻回されている。各導体パターンC3,C7,C11の一端には、積層された状態で各スルーホール電極D13,D15,D17と電気的に接続される領域がそれぞれ含まれている。各導体パターンC3,C7,C11の他端は、各非磁性体グリーンシートB2,B4,B6を厚み方向に貫通して形成された各スルーホール電極D3,D7,D11とそれぞれ電気的に接続されている。このため、各導体パターンC3,C7,C11は、積層された状態で、各スルーホール電極D3,D7,D11を介して、対応する各導体パターンC14,C16,C18とそれぞれ電気的に接続される。
導体パターンC4〜C6は、それぞれコイル12の略1ターンに相当し、各磁性体グリーンシートA5〜A7上でスパイラル状に巻回されている。各導体パターンC4〜C6の一端には、積層された状態で各スルーホール電極D14,D4,D5と電気的に接続される領域がそれぞれ含まれている。各導体パターンC4〜C6の他端は、各磁性体グリーンシートA5〜A7を厚み方向に貫通して形成された各スルーホール電極D4〜D6とそれぞれ電気的に接続されている。このため、各導体パターンC4〜C6は、積層された状態で、各スルーホール電極D4〜D6を介して、対応する各導体パターンC5,C6,C15とそれぞれ電気的に接続される。
導体パターンC8〜C10は、それぞれコイル14の略1ターンに相当し、各磁性体グリーンシートA9〜A11上でスパイラル状に巻回されている。各導体パターンC8〜C10の一端には、積層された状態で各スルーホール電極D16,D8,D9と電気的に接続される領域がそれぞれ含まれている。各導体パターンC8〜C10の他端は、各磁性体グリーンシートA9〜A11を厚み方向に貫通して形成された各スルーホール電極D8〜D10とそれぞれ電気的に接続されている。このため、各導体パターンC8〜C10は、積層された状態で、各スルーホール電極D8〜D10を介して、対応する各導体パターンC9,C10,C17とそれぞれ電気的に接続される。
導体パターンC13,C15,C17は、各非磁性体グリーンシートB1,B3,B5上で島状に形成されている。各導体パターンC13,C15,C17には、積層された状態で各スルーホール電極D2,D6,D10と電気的に接続される領域がそれぞれ含まれている。また、各導体パターンC13,C15,C17の中央には、各非磁性体グリーンシートB1,B3,B5を厚み方向に貫通して形成された各スルーホール電極D13,D15,D17とそれぞれ電気的に接続されている。このため、各導体パターンC13,C15,C17は、積層された状態で、各スルーホール電極D13,D15,D17を介して、対応する各導体パターンC3,C7,C11とそれぞれ電気的に接続される。
導体パターンC14,C16,C18は、各磁性体グリーンシートA4,A8,A12上で島状に形成されている。各導体パターンC14,C16,C18には、積層された状態で、各スルーホール電極D3,D7,D11と電気的に接続される領域がそれぞれ含まれている。また、各導体パターンC14,C16,C18の中央には、各磁性体グリーンシートA4,A8,A12を厚み方向に貫通して形成された各スルーホール電極D14,D16,D18と電気的に接続されている。このため、各導体パターンC14,C16,C18は、積層された状態で、各スルーホール電極D14,D16,D18を介して、対応する各導体パターンC4,C8,C12とそれぞれ電気的に接続される。
導体パターンC19は、磁性体グリーンシートA14上で略I字状に形成されている。導体パターンC19の一端には、積層された状態で、スルーホール電極D12と電気的に接続される領域が含まれている。導体パターンC19の他端には、導出部C19aが一体的に形成されている。導体パターンC19の導出部C19aは、磁性体グリーンシートA14の縁に引き出され、磁性体グリーンシートA14の端面に露出している。このため、導出部C19aは、端子電極3と電気的に接続されることとなる。
次に、図3を参照して、上述した構成の積層型インダクタL1の製造方法について説明する。
まず、磁性体グリーンシートA1〜A14及び非磁性体グリーンシートB1〜B6を用意する。なお、磁性体グリーンシートA1〜A14及び非磁性体グリーンシートB1〜B6は、形成の際に酸性化合物等の添加又は脱イオン処理等により、密度が例えば2.62g/cm程度に調整される。
続いて、各磁性体グリーンシートA2〜A13及び各非磁性体グリーンシートB1〜B6の所定の位置、すなわちスルーホール電極D1〜D18が形成される予定の位置に、レーザー加工等によってスルーホールをそれぞれ形成する。次に、各磁性体グリーンシートA2〜A14及び各非磁性体グリーンシートB1〜B6の上に、各導体パターンC1〜C19をそれぞれ形成する。ここで、各導体パターンC1〜C19及び各スルーホール電極D1〜D18は、銀又はニッケルを主成分とするペーストをメタルマスク等にて印刷することにより形成される。
続いて、各磁性体グリーンシートA1〜A14及び各非磁性体グリーンシートB1〜B6を図3に示される順序にて積層し、積層方向に圧力を加えて各磁性体グリーンシートA1〜A14及び各非磁性体グリーンシートB1〜B6の間に隙間が生じないよう圧着する。この際、磁性体グリーンシートA1〜A14及び非磁性体グリーンシートB1〜B6の密度(2.62g/cm程度)は、従来のグリーンシートの密度(3.0g/cm程度)と比較して低密度であるため、導体パターンC1〜C19を挟む位置にある各グリーンシートA1〜A14,B1〜B6が大きく凹んで変形し、導体パターンC1〜C19の厚みを吸収することができることとなる。
続いて、この圧着した磁性体グリーンシートA1〜A14及び非磁性体グリーンシートB1〜B6をチップ単位に切断した後に、所定温度(例えば、840〜900℃程度)にて焼成を行い、積層体1を形成する。積層体1は、例えば、焼成後における長手方向の長さが3.2mm、幅が2.5mm、高さが1.3mmとなるようにする。また、各導体パターンC1〜C12は、例えば、焼成後における幅が250μm、厚みが35μmとなるようにする。
続いて、この積層体1に端子電極2,3を形成する。これにより、積層型インダクタL1が形成されることとなる。端子電極2,3は、積層体1の長手方向の両端面にそれぞれ銀、ニッケル又は銅を主成分とする電極ペーストを塗布して、所定温度(例えば、680〜740℃程度)で焼付けを行い、さらに電気めっきを施すことにより形成される。この電気めっきとしては、Cu、Ni及びSn等を用いることができる。
以上のように、本第1実施形態においては、各コイル10,12,14,16がそれぞれ各磁性体4の内部に設けられ、各磁性体4が各非磁性体5によって隔てられている。このため、各磁性体4内に存在する各コイル10,12,14,16のターン数がそれぞれ1〜3ターン程度と少なくなっており、積層体1が全て磁性体によって形成され、その内部にコイルが設けられている場合に比べて、各コイル10,12,14,16に電流が流れることにより発生する磁界の大きさが小さくなる。この結果、各磁性体4において磁気飽和が抑制されることとなり、本第1実施形態に係る積層型インダクタL1に大きな電流を流した場合でもインダクタンス値の低下を抑えることができ、直流重畳特性の改善を図ることができることとなる。また、本第1実施形態においては、各コイル10,12,14,16が非磁性体5に接しないようになっている。このため、この積層型インダクタL1に直流電流を流したときに各コイル10,12,14,16の周囲に発生する磁束Fが、非磁性体5によって阻害されることがほとんどない(図2参照)。この結果、積層型インダクタL1の初期インダクタンス値を高くすることができることとなる。
また、本第1実施形態においては、各コイル11,13,15が各コイル10,12,14,16を電気的に接続する接続導体となっているので、非磁性体5の内部に設けられた各コイル11,13,15によって積層型インダクタL1の初期インダクタンス値をさらに高くすることができることとなる。
(第2実施形態)
次に、図1及び図4を参照して、第2実施形態に係る積層型インダクタL2の構成について説明する。図4は、第2実施形態に係る積層型インダクタの断面構成を説明するための図である。第2実施形態に係る積層型インダクタL2は、後述する印刷積層工法によって形成され、積層体1内部における導体パターンの構成の点で第1実施形態に係る積層型インダクタL1と相違する。
積層型インダクタL2は、図1に示されるように、略直方体形状の積層体1と、積層体1の長手方向の両端面にそれぞれ形成された一対の端子電極2,3とを備える。なお、積層型インダクタL2の底面は、積層型インダクタL2が外部基板(図示せず)に実装されたときに、当該外部基板に対向する面である。
積層体1は、磁性体グリーン層A21〜A35が所定のパターンでスクリーン印刷されて順次積層される印刷積層工法によって形成された複数(本第2実施形態では4つ)の磁性体6と、非磁性体グリーン層B21〜26が所定のパターンでスクリーン印刷されて順次積層される印刷積層方向によって形成された複数(本第2実施形態では3つ)の非磁性体7とにより構成されている。
各磁性体6は、複数の導体パターンからなるコイル20〜23を内部にそれぞれ有しており、各コイル20〜23が非磁性体7に接しないようになっている。また、各磁性体6は、後述するように磁性体グリーン層A21〜A35が印刷積層された後に焼成により焼結することで形成され、電気絶縁性を有する絶縁体として機能する。磁性体グリーン層A21〜A35としては、フェライト(例えば、Ni−Cu−Zn系フェライト)を用いることができる。
各非磁性体7は、各磁性体6に挟まれるように位置し、各コイル20〜23同士をそれぞれ電気的に接続する接続導体として機能する導体パターンC24,C28,C32を内部にそれぞれ有している。また、各非磁性体7は、後述するように非磁性体グリーン層B21〜B26が印刷積層された後に焼成により焼結することで形成され、電気絶縁性を有する絶縁体として機能する。非磁性体グリーン層B21〜B26としては、フェライト(例えば、Cu−Zn系フェライト)を用いることができる。
コイル20〜22は、導体パターンC21〜C23、導体パターンC25〜C27又は導体パターンC29〜C31がそれぞれ印刷積層されて重畳し、積層方向に隣り合う導体パターンC21〜C23、導体パターンC25〜C27又は導体パターンC29〜C31の端部同士がそれぞれ電気的に接続されることにより形成される。コイル23は、導体パターンC33,C34がそれぞれ印刷積層されて重畳し、積層方向に隣り合う導体パターンC33,C34の端部同士がそれぞれ電気的に接続されることにより形成される。また、積層方向に隣り合うコイル20〜23同士は、各導体パターンC24,C28,C32によってそれぞれ電気的に接続されている。さらに、コイル20の一部である導体パターンC21の導体パターンC22と電気的に接続されている一端と反対側の他端には、導出部C21aが一体的に形成されている。導出部C21aは、積層体1の長手方向に位置する側面まで引き出され、端子電極2と電気的に接続されている。また、コイル23の一部である導体パターンC34の導体パターンC33と電気的に接続されている一端と反対側の他端には、導出部C34aが一体的に形成されている。導出部C34aは、積層体1の長手方向に位置する側面まで引き出され、端子電極3と電気的に接続されている。
次に、図5〜図20を参照して、上述した構成の積層型インダクタL2の製造方法について説明する。図5〜図20は、それぞれ積層型インダクタの製造工程の一工程を示す斜視図である。
まず、上述したNi−Cu−Zn系フェライト等の磁性体粉末、バインダ及び溶剤等を混練して、磁性体グリーン層A21〜A35の原料となる磁性体ペーストを生成する。また、上述したCu−Zn系フェライト等の非磁性体粉末、バインダ及び溶剤等を混練して、非磁性体グリーン層B21〜B26の原料となる非磁性体ペーストを生成する。さらに、導体パターンC21〜C34及び導出部C21a,C34aの原料となる導体ペーストを生成する。
次に、以上のようにして得られた磁性体ペーストをシート状に印刷して、磁性体グリーン層A21を形成する(図5参照)。そして、この磁性体グリーン層A21の表面に導体ペーストを略L字状に印刷してコイル20の略1/2ターンに相当する導体パターンC21を形成し、磁性体グリーン層A21の縁に引き出されるように導体ペーストを略矩形状に印刷して導出部C21aを導体パターンC21と一体的に形成する(図6参照)。続いて、導体パターンC21の一部が表面に露出すると共に、中間体の表面の略右半分を覆うように磁性体ペーストを印刷して、磁性体グリーン層A22を形成する(図7参照)。
次に、導体パターンC21の導出部C21aが形成されている一端と反対側の他端に導体パターンC22の一端が重なるように導体ペーストを略L字状に印刷して、磁性体グリーン層A21,A22上にコイル20の略1/2ターンに相当する導体パターンC22を形成する(図8参照)。そして、導体パターンC22の一部が表面に露出すると共に、中間体の表面における左側の略2/3の領域を覆うように磁性体ペーストを印刷して、磁性体グリーン層A23を形成する(図9参照)。さらに、導体パターンC22の導体パターンC21と接続されている一端と反対側の他端に導体パターンC23の一端が重なるように導体ペーストを略L字状に印刷して、磁性体グリーン層A22,A23上にコイル20の略1/2ターンに相当する導体パターンC23を形成する(図10参照)。続いて、導体パターンC23の一部が表面に露出すると共に、中間体の表面における右側の略2/3の領域を覆うように磁性体ペーストを印刷して、磁性体グリーン層A24を形成する(図11参照)。そして、表面に露出している磁性体グリーン層24に重なるように非磁性体ペーストを印刷して、非磁性体グリーン層B21を形成する(図12参照)。
次に、導体パターンC23の導体パターンC22と接続されている一端と反対側の他端に導体パターンC24の一端が重なるように導体ペーストを略L字状に印刷して、磁性体グリーン層A23上及び非磁性体グリーン層B21上に導体パターンC24を形成する(図13参照)。そして、導体パターンC24の一部が表面に露出すると共に、中間体の表面における左側の略2/3の領域を覆うように非磁性体ペーストを印刷して、非磁性体グリーン層B22を形成する(図14参照)。さらに、表面に露出している非磁性体グリーン層B22に重なるように磁性体ペーストを印刷して、磁性体グリーン層A25を形成する(図15参照)。続いて、導体パターンC24の導体パターンC23と接続されている一端と反対側の他端に導体パターンC25の一端が重なるように導体ペーストを略L字状に印刷して、非磁性体グリーン層B21上及び磁性体グリーン層A25上に導体パターンC25を形成する(図16参照)。そして、導体パターンC25の一部が表面に露出すると共に、中間体の表面における右側の略2/3の領域を覆うように磁性体ペーストを印刷して、磁性体グリーン層A26を形成する(図17参照)。
次に、上記した図8〜図17に示される工程を2回繰り返すと、磁性体グリーン層A27〜A34、非磁性体グリーン層B23〜B26及び導体パターンC26〜C33がそれぞれ印刷積層されて、積層方向に隣り合う導体パターンC21〜C33がそれぞれ電気的に接続されることとなる(図18参照)。そして、磁性体グリーン層A33,A34の表面に導体ペーストを略I字状に印刷して導体パターンC34を形成し、磁性体グリーン層A34の縁に引き出されるように導体ペーストを略矩形状に印刷して導出部C34aを導体パターンC34と一体的に形成する(図19参照)。さらに、中間体の表面全体を覆うように磁性体ペーストを印刷して、磁性体グリーン層A35を形成する(図20参照)。続いて、このように印刷積層された中間体をチップ単位に切断し、脱バインダ工程の後に所定温度(例えば、840〜900℃程度)にて焼成すると、積層体1が形成されることとなる。積層体1は、例えば、焼成後の長手方向の長さが3.2mm、幅が2.5mm、高さが1.3mmとなるようにする。また、各導体パターンC21〜C34は、例えば、焼成後における幅が250μm、厚みが35μmとなるようにする。
次に、この積層体1に端子電極2,3を形成する。これにより、積層型インダクタL2が形成されることとなる。端子電極2,3は、積層体1の長手方向の両端面にそれぞれ銀、ニッケル又は銅を主成分とする電極ペーストを塗布して、所定温度(例えば、680〜740℃程度)で焼付けを行い、さらに電気めっきを施すことにより形成される。この電気めっきには、Cu、Ni及びSn等を用いることができる。
以上のように、本第2実施形態においても、上述した積層型インダクタL1と同じく、各コイル20〜23が各磁性体6の内部に設けられ、各磁性体6が各非磁性体7によって隔てられているため、磁気飽和が抑制されて直流重畳特性の改善を図ることができることとなる。また、各コイル20〜23が非磁性体7に接しないようになっているため、この積層型インダクタL2に直流電流を流したときに各コイル20〜23の周囲に発生する磁束Fが非磁性体7によって阻害されることがほとんどなく(図4参照)、積層型インダクタL2の初期インダクタンス値を高くすることができることとなる。
(第3実施形態)
次に、図21を参照して、第3実施形態に係る積層型インダクタL3の構成について説明する。図21は、第3実施形態に係る積層型インダクタの断面構成を説明するための図である。第3実施形態に係る積層型インダクタL3は、各磁性体4内に設けられている各コイル10,12,14,16が、接続導体としてのスルーホール電極D40〜D42によってそれぞれ電気的に接続されている点で第1実施形態に係る積層型インダクタL1と相違する。
すなわち、スルーホール電極D40は、コイル10を形成する導体パターンC2と、コイル12を形成する導体パターンC4との一端同士を電気的に接続している。スルーホール電極D41は、コイル12を形成する導体パターンC6と、コイル14を形成する導体パターンC8との一端同士を電気的に接続している。スルーホール電極D42は、コイル14を形成する導体パターンC10と、コイル16を形成する導体パターンC12との一端同士を電気的に接続している。
以上のように、本第3実施形態においても、上述した積層型インダクタL1と同じく、磁気飽和が抑制されて直流重畳特性の改善を図ることができると共に、初期インダクタンス値を高くすることができることとなる。
ここで、本発明に係る積層型インダクタL1において、初期インダクタンス値が向上すると共に直流重畳特性の改善されることを確認するため、後述する実施例に係る積層型インダクタL1と比較例に係る積層型インダクタL4とで試験を行った。試験では、各積層型インダクタL1,L4にそれぞれ直流電流を通電し、そのときのインダクタンス値の変化を測定した。
(実施例)
実施例としては、上述した積層型インダクタL1を用いた。この積層型インダクタl1では、全体としてのターン数が11.5ターンとなっている。
(比較例)
比較例としては、磁性体グリーンシートA4,A8,A12及び非磁性体グリーンシートB1,B3,B5を備えていないと共に、磁性体グリーンシートA12と磁性体グリーンシートA13との間にスパイラル状に巻回された導体パターンC50が形成された磁性体グリーンシートA50をさらに備えている点を除いて積層型インダクタL1と同じ構成である積層型インダクタL4を用いた(図22及び図23参照)。この積層型インダクタL4では、コイル全体としてのターン数が12.5ターンとなっている。なお、比較例に係る積層型インダクタL4では、導体パターンC50の一端に、積層された状態でスルーホール電極D12と電気的に接続される領域が含まれており、導体パターンC12と導体パターンC50とでコイル50が形成されている。また、導体パターンC50の他端は、磁性体グリーンシートA50を厚み方向に貫通して形成されたスルーホール電極D50と電気的に接続されている。このため、導体パターンC50は、積層された状態で、スルーホール電極D50を介して対応する導体パターンC19と電気的に接続されている。
上記した実施例に係る積層型インダクタL1及び比較例に係る積層型インダクタL4についての試験結果を図24に示す。図24において、曲線aが実施例に係る積層型インダクタL1のインダクタンス値の変化であり、曲線bが比較例に係る積層型インダクタンス値の変化である。
図24に示されるように、実施例に係る積層型インダクタL1では、初期インダクタンス値が2.21μHであり、1Aの電流を通電したときのインダクタンス値が1.73μHであった。一方、比較例に係る積層型インダクタL4では、初期インダクタンス値が2.22μHであり、1Aの電流を通電したときのインダクタンス値が1.61μHであった。従って、実施例に係る積層型インダクタL1では、比較例に係る積層型インダクタL4と略同一の初期インダクタンス値を実現しつつ、1Aの電流を通電したときにおけるインダクタンス値を5%程度向上させることができ、直流重畳特性の改善に有効であることが確認された。
以上、本発明における好適な実施形態について詳細に説明したが、本発明は上記した実施形態に限定されるものではない。例えば、第1実施形態では、非磁性体グリーンシートB2,B4,B6上に各コイル11,13,15の略1ターンに相当する導体パターンC3,C7,C11を形成したが、これらの導体パターンC3,C7,C11を1/2ターン以上に設定することができる。
また、第1及び第2実施形態では、非磁性体5,7の原料としてCu−Zn系フェライト等を用いているため、非磁性体5,7が焼成によって焼結されて形成されていたが、これに限られない。すなわち、非磁性体の原料として、酸化物セラミックス材料(例えば、Al、SiO、ZrO、フォルステライト、ステアタイト、コージライト)、窒化物セラミックス材料(例えば、AlN、Si、ZrN、TiN)等の、焼結温度が900℃以上である材料を用いて、非磁性体が焼結しない粉体となっていてもよい。
本発明に係る積層型インダクタの斜視図である。 第1実施形態に係る積層型インダクタの断面構成を説明するための図である。 第1実施形態に係る積層型インダクタに含まれる積層体の分解斜視図である。 第2実施形態に係る積層型インダクタの断面構成を説明するための図である。 第2実施形態に係る積層型インダクタの製造工程の一工程を示す斜視図である。 図5の後続の工程を示す斜視図である。 図6の後続の工程を示す斜視図である。 図7の後続の工程を示す斜視図である。 図8の後続の工程を示す斜視図である。 図9の後続の工程を示す斜視図である。 図10の後続の工程を示す斜視図である。 図11の後続の工程を示す斜視図である。 図12の後続の工程を示す斜視図である。 図13の後続の工程を示す斜視図である。 図14の後続の工程を示す斜視図である。 図15の後続の工程を示す斜視図である。 図16の後続の工程を示す斜視図である。 図17の後続の工程を示す斜視図である。 図18の後続の工程を示す斜視図である。 図19の後続の工程を示す斜視図である。 第3実施形態に係る積層型インダクタの断面構成を説明するための図である。 比較例に係る積層型インダクタの断面構成を説明するための図である。 比較例に係る積層型インダクタに含まれる積層体の分解斜視図である。 実施例及び比較例に係る積層型インダクタにおけるインダクタンス値の変化を示す図である。
符号の説明
1…積層体、2,3…端子電極、4,6…磁性体、5,7…非磁性体、10〜16,40…コイル、A1〜A14,A40…磁性体グリーンシート、A21〜A35…磁性体グリーン層、B1〜B6…非磁性体グリーンシート、B21〜B26…非磁性体グリーン層、C1〜C19,C21〜C34,C40…導体パターン、D1〜D18…スルーホール電極、L1,L2…積層型インダクタ。

Claims (4)

  1. 非磁性体及び複数の磁性体がそれぞれ積層されてなる積層体と、
    前記複数の磁性体内にそれぞれ設けられた複数のコイルと、
    前記各コイルをそれぞれ電気的に接続する接続導体と、を備えており、
    前記非磁性体が、前記各コイルに接触しないように前記各磁性体の間に設けられていることを特徴とする積層型インダクタ。
  2. 前記接続導体が、前記非磁性体内に形成されたターン数が1/2ターン以上のコイルであることを特徴とする請求項1に記載された積層型インダクタ。
  3. 前記接続導体が、スルーホールであることを特徴とする請求項1に記載された積層型インダクタ。
  4. 前記非磁性体が、粉体であることを特徴とする請求項1〜3のいずれか1項に記載された積層型インダクタ。


JP2005080172A 2005-03-18 2005-03-18 積層型インダクタ Active JP4213679B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080172A JP4213679B2 (ja) 2005-03-18 2005-03-18 積層型インダクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080172A JP4213679B2 (ja) 2005-03-18 2005-03-18 積層型インダクタ

Publications (2)

Publication Number Publication Date
JP2006261577A true JP2006261577A (ja) 2006-09-28
JP4213679B2 JP4213679B2 (ja) 2009-01-21

Family

ID=37100441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080172A Active JP4213679B2 (ja) 2005-03-18 2005-03-18 積層型インダクタ

Country Status (1)

Country Link
JP (1) JP4213679B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018187A1 (en) * 2006-08-08 2008-02-14 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same
EP1983531A1 (en) * 2006-01-31 2008-10-22 Hitachi Metals, Ltd. Laminated component and module using same
JP2009170446A (ja) * 2008-01-10 2009-07-30 Murata Mfg Co Ltd 電子部品及びその製造方法
JP2009176836A (ja) * 2008-01-22 2009-08-06 Murata Mfg Co Ltd 電子部品
JP2010161161A (ja) * 2009-01-07 2010-07-22 Murata Mfg Co Ltd 積層インダクタ
WO2012002133A1 (ja) * 2010-06-28 2012-01-05 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
JP2012178509A (ja) * 2011-02-28 2012-09-13 Japan Aviation Electronics Industry Ltd 多層膜コイルとその作製方法
JP2017199766A (ja) * 2016-04-26 2017-11-02 株式会社村田製作所 積層型コイルアレイおよびモジュール

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983531A4 (en) * 2006-01-31 2014-07-02 Hitachi Metals Ltd LAMINATE COMPONENT AND MODULE USING THE SAME
EP1983531A1 (en) * 2006-01-31 2008-10-22 Hitachi Metals, Ltd. Laminated component and module using same
US7474191B2 (en) 2006-08-08 2009-01-06 Murata Manufacturing Co., Ltd. Layered coil component and method for manufacturing the layered coil component
JPWO2008018187A1 (ja) * 2006-08-08 2009-12-24 株式会社村田製作所 積層コイル部品及びその製造方法
WO2008018187A1 (en) * 2006-08-08 2008-02-14 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same
JP4530043B2 (ja) * 2006-08-08 2010-08-25 株式会社村田製作所 積層コイル部品及びその製造方法
JP2009170446A (ja) * 2008-01-10 2009-07-30 Murata Mfg Co Ltd 電子部品及びその製造方法
JP2009176836A (ja) * 2008-01-22 2009-08-06 Murata Mfg Co Ltd 電子部品
JP2010161161A (ja) * 2009-01-07 2010-07-22 Murata Mfg Co Ltd 積層インダクタ
JPWO2012002133A1 (ja) * 2010-06-28 2013-08-22 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
JP5429376B2 (ja) * 2010-06-28 2014-02-26 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
WO2012002133A1 (ja) * 2010-06-28 2012-01-05 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
US8912874B2 (en) 2010-06-28 2014-12-16 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and producing method therefor
JP2012178509A (ja) * 2011-02-28 2012-09-13 Japan Aviation Electronics Industry Ltd 多層膜コイルとその作製方法
JP2017199766A (ja) * 2016-04-26 2017-11-02 株式会社村田製作所 積層型コイルアレイおよびモジュール

Also Published As

Publication number Publication date
JP4213679B2 (ja) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4539630B2 (ja) 積層型インダクタ
JP4213679B2 (ja) 積層型インダクタ
JP3621300B2 (ja) 電源回路用積層インダクタ
JP5482554B2 (ja) 積層型コイル
JP5900373B2 (ja) 電子部品
JP2007324555A (ja) 積層インダクタ
JP5807650B2 (ja) 積層コイル及びその製造方法
US20090115563A1 (en) Laminated inductor and method of manufacture of same
JP2001044037A (ja) 積層インダクタ
JP2006032430A (ja) コイル部品
WO2009125656A1 (ja) 電子部品
JP2014022723A (ja) チップ素子、積層型チップ素子及びその製造方法
JPWO2005024863A1 (ja) 積層コイル部品及びその製造方法
JP2005294486A (ja) 積層型電子部品
JP4661746B2 (ja) 積層型インダクタ及びその製造方法
JP2007324554A (ja) 積層インダクタ
JP6264774B2 (ja) 積層型コイル部品
JP4780232B2 (ja) 積層型電子部品
JP2006351954A (ja) 積層型コモンモードフィルタ
JPH1197256A (ja) 積層型チップインダクタ
WO2011048873A1 (ja) 積層インダクタ
JP4216856B2 (ja) 積層型電子部品
JP2018125455A (ja) 積層コイル部品
JP2005093547A (ja) 高周波コイル及びその製造方法
JP5136065B2 (ja) 電子部品

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4213679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5