JP2006170250A - 防振支持装置 - Google Patents

防振支持装置 Download PDF

Info

Publication number
JP2006170250A
JP2006170250A JP2004360147A JP2004360147A JP2006170250A JP 2006170250 A JP2006170250 A JP 2006170250A JP 2004360147 A JP2004360147 A JP 2004360147A JP 2004360147 A JP2004360147 A JP 2004360147A JP 2006170250 A JP2006170250 A JP 2006170250A
Authority
JP
Japan
Prior art keywords
vibration
temperature
elastic member
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360147A
Other languages
English (en)
Inventor
Nobukazu Takahashi
伸和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004360147A priority Critical patent/JP2006170250A/ja
Publication of JP2006170250A publication Critical patent/JP2006170250A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】エンジンの起振力による振動を吸収及び遮断して車体への伝達を抑制防止する。
【解決手段】エンジン4とサブフレーム1との間に介装した能動型防振支持器8F、8Rに弾性力及び減衰力を付与する防振ゴム22を設け、当該防振ゴム22の弾性係数及び減衰係数によってエンジンの振動形態、即ち燃焼起振力及び慣性加振力による振動が良好に吸収及び遮断されるように当該防振ゴム22の基準温度TF0、TR0を設定し、防振ゴム22の温度を温度センサ12でモニタしながら、当該基準温度TF0、TR0が達成されるように熱電素子からなる温度調整部11への制御信号を創成出力する。
【選択図】 図4

Description

本発明は、防振支持装置に関するものであり、特に内燃機関と車体との間に介在して、内燃機関の振動入力を吸収及び遮断するものに好適なものである。
このような防振支持装置としては、例えば振動体、この場合はエンジンと車体との間に弾性バネを介装すると共に、弾性バネの近傍に加温ヒータを配設し、温度センサで検出される弾性バネの温度が一定の範囲内に維持されるように加温ヒータへの電流を制御するものがある(例えば特許文献1)。
特開2002−181127号公報
しかしながら、前記従来の防振支持装置では、単に弾性部材の温度を一定の範囲内に維持してバネ係数を一定に維持するだけなので、振動体、この場合はエンジンのように振動形態が変化するものに対しては、最適な防振或いは制振効果が得られないという問題がある。
本発明は、上記のような問題点に着目してなされたものであり、エンジンの振動形態に応じた最適な防振或いは制振効果が得られる防振支持装置を提供することを目的とするものである。
上記課題を解決するために、本発明の防振支持装置は、弾性部材を具備し、内燃機関と車体との間に介在して、当該内燃機関からの入力振動を吸収及び遮断する防振支持装置であって、前記弾性部材の温度を調整する弾性部材温度調整手段を備え、内燃機関の振動状態を検出し、その検出された内燃機関の振動状態に応じて前記弾性部材温度調整手段による弾性部材の温度を制御することを特徴とするものである。
而して、本発明の防振支持装置によれば、弾性部材の温度を調整する弾性部材温度調整手段を備え、内燃機関の振動状態を検出し、その検出された内燃機関の振動状態に応じて前記弾性部材温度調整手段による弾性部材の温度を制御する構成としたため、エンジンの振動形態に応じた最適な防振或いは制振効果が得られる。
次に、本発明の防振支持装置の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の内燃機関防振支持装置の概略構成図であり、図中の符号1は、パワーユニットを搭載し、或いは図示しないサスペンション装置を取付けるために、車両下部に配設されるサブフレームである。このサブフレーム1は、所謂井桁フレームであり、その四カ所の隅部が懸架支持装置2FL〜2RRによって車体に取付けられる。なお、サブフレーム1は、一般に車体側の部材と見なされ、このサブフレーム1上にパワーユニット3が搭載されている。
前記パワーユニット3は、エンジン(内燃機関)4及び変速機5により構成されており、変速機5がエンジン4に対して車幅方向左側に連結されている。エンジン4は、直列4気筒のガソリンエンジンであり、所謂横置きに搭載されている。このパワーユニット3からは、計3個のブラケット6F、6R、7が突設されており、夫々、サブフレーム1上に取付けられた防振支持器8F、8R、9を介して車体に連結されている。このうち、エンジン4からは車両前後方向に向けて一つずつブラケット6F、6Rが突設されており、それらのブラケット6F、6Rが連結される防振支持器8F、8Rは能動型防振支持器であり、コントロールユニット10からの制御信号によって、後述する弾性部材の温度が制御される。なお、変速機5から突設されたブラケット7を車体に連結する防振支持器9は通常のゴムブッシュ等である。
前記能動型防振支持器8F、8Rは、図2のように構成されている。即ち、下方に開放するドーム状をなした肉厚の弾性体からなる防振ゴム22の上端には、円板23が接合されている。この円板23には、その中心に、前記エンジン4から突設されたブラケット6F、6Rを固定するためのボルト24aが上向きに圧入されており、このボルト24aの側方に、回転を防止する廻止ピン25aが圧入されている。
防振ゴム22の下部の周囲には、円筒状の側部材26が接合されている。また、防振ゴム22の下方には、所定の空間をあけて、上に凸の容器状の仕切部材20が配設されている。そして、底部材27によって、前記側部材26の下端縁周部、防振ゴム22の下端縁周部、仕切部材21の下端縁周部を同時にカシメて固定され、これにより、前記仕切部材21と防振ゴム22との間に空気室21が形成されている。
更に、底部材27には、その中心に、前記サブフレーム1に固定するためのボルト24bが下向きに圧入されており、このボルト25bの側方に、回転を防止する廻止ピン25bが圧入されている。
また、この能動型防振支持器8F、8Rでは、前記防振ゴム22の上端部中央に丸い窪みが形成されている。従って、窪みと円板23との間には隙間がある。そして、この窪みの内側面に、防振ゴム22の温度を調整する温度調整部11が取付けられている。温度調整部11の構成は、後段に詳述する。また、前記防振ゴム22の内部には、当該防振ゴム22自体の温度を検出する温度センサ12が埋設されている。
この能動型防振支持器8F、8Rでは、前記防振ゴム22の弾性力と、前記空気室21の空気バネ作用によって、パワーユニット3の荷重を支持し、或いはパワーユニット3からの振動入力を吸収或いは遮断することができる。
次に、前記温度調整部11の構成について、図3を用いて説明する。図3は、温度調整部11の断面図であり、理解を容易にするために、前記丸い窪みに沿った形状を平坦にならして記述したものである。この温度調整部11では、二枚の絶縁電熱板31の間に、複数のN型半導体32とP型半導体33とが交互に且つ連続的に配設されている。そして、交互に並んでいるN型半導体32とP型半導体33のうち、図示上方の絶縁電熱板31a側では、図示右方のN型半導体32と図示左方のP型半導体33とが金属電極34によって接続され、図示下方の絶縁電熱板31b側では、図示左方のN型半導体32と図示右方のP型半導体33とが金属電極34によって接続されている。つまり、交互に配設されたN型半導体32PN型半導体33とは、二枚の絶縁電熱板31の間で、交互に接続されていることになる。なお、図示両端の金属電極34は、前記コントロールユニット10に接続されている。また、図示下方の絶縁電熱板31bは、前記能動型防振支持器8F、8Rの防振ゴム22に接着されている。
一般に、このような構成の温度調整部11は、熱電素子(ペルチェ素子)と呼ばれており、例えば両端の金属電極34に直流電流を印加すると、絶縁電熱板31の上下面で吸熱現象と放熱現象が同時に起こる。例えば、図示左端の金属電極34にマイナス、図示右端の金属電極34にプラスの電圧を印加し、直流電流を流すと、絶縁電熱板31aの上側で吸熱現象が、絶縁電熱板31bの下側で放熱現象が起こる。逆に、図示左端の金属電極34にプラス、図示右端の金属電極34印マイナスの電圧を印加し、直流電流を流すと、絶縁電熱板31aの上側で放熱現象が、絶縁電熱板31bの下側で吸熱現象が起こる。従って、この熱電素子からなる温度調整部11に供給する電力、つまり印加電圧、電流の向き、電流の大きさを制御することによって、加熱と吸熱とを自在に行うことができるので、防振ゴム22の温度を自在に調整することが可能となる。
また、エンジン4内のクランクシャフトには、その回転角信号を検出する電磁ピックアップ式のクランク角センサが取付けられている。このクランク角センサは、クランクシャフトと共に回転するロータの外周面に10°間隔で形成されたセレーションを検出して、回転角信号をクランク角信号として出力する。また、セレーションには、180°間隔で2つの欠歯部が形成されているので、出力されるクランク角信号からクランクシャフト6の回転位置を把握できるように構成されている。
また、エンジン1は、マイクロコンピュータ等の演算処理装置を備えたエンジンコントロールユニットによって運転状態が制御され、その制御出力には燃料噴射器(インジェクタ)による燃料噴射量(燃料噴射時間)や点火栓による点火時期等も含まれている。そこで、エンジンコントロールユニットによる燃料噴射信号、前記クランク角センサからのクランク角信号が、例えばマイクロコンピュータ等の演算処理装置を備えて構成されたコントロールユニット10に入力される。このコントロールユニット24は、エンジン1が運転状態にあるときに、図34示す防振ゴム温度制御を実行して、前述した温度調整部11に対する制御信号を創成出力するように構成されている。
次に、コントロールユニット24で実行する連通制御処理を、図4のフローチャートに従って説明する。
この連通制御処理は、まずステップS1で、エンジンコントロールユニットから入力されるクランク角信号及び燃料噴射信号並びに温度センサ12で検出される前後の能動型防振支持器8F、8Rの防振ゴム22の温度TF 、TR を読込む。このうち、クランク角信号は、例えば図5に示すように、クランクシャフト6の回転に応じて、10°CA(クランク角)毎に1パルスが出力されると共に、このパルス信号が180°CA毎に非出力となる。また、図5に示すように、HiーLoで表れる燃料噴射信号は、Loのときに燃料が噴射される。
次にステップS2に移行して、前記ステップS1で読込んだクランク角信号に基づいて、エンジン4の回転速度NEを算出すると共に、燃料噴射信号に基づいて、燃料噴射時間TINJ を算出する。
次にステップS3に移行して、前記ステップS2で算出Sれたエンジン回転速度NE及び燃料噴射時間TINJ に基づいて、例えば図6の制御マップに従って、前後能動型防振支持器8F、8Rの基準温度TF0、TR0を算出設定する。この制御マップの意味合いについては後段に詳述する。
次にステップS4に移行して、前記ステップS3で算出された前後能動型防振支持器8F、8Rの基準温度TF0、TR0から前記ステップS1で読込まれた温度TF 、TR を減じて温度差ΔTF 、ΔTR を算出する。
次にステップS5に移行して、前記ステップS4で算出された前後能動型防振支持器8F、8Rの温度差ΔTF 、ΔTR に基づいて前記熱電素子からなる温度調整部11への制御信号、つまり印加電圧、電流の向き、電流の大きさといった電力制御信号を創成し、それを出力してからメインプログラムに復帰する。
次に、前記前後能動型防振支持器8F、8Rの基準温度TF0、TR0並びに温度調整部11への制御信号の創成方法について説明する。
まず、エンジンの振動形態について考える。本実施形態では4気筒ガソリンエンジンを内燃機関として用いている。エンジンの振動の起振力或いは加振力には、燃焼爆発の圧力変動に起因する燃焼起振力と、ピストンやコネクティングロッド等がシリンダ内を往復移動することによって発生する慣性加振力とがある。燃焼によって発生する圧力変動は、ピストンからクランクシャフトに伝達されてトルク変動を生じる。このとき、エンジンブロックは、ピストンからトルク反力を受けるため、エンジンブロックにはクランクシャフトの軸周りの回転振動が発生する。これが燃焼起振力による内燃機関のロール振動である。この燃焼起振力は燃焼爆発に起因するものであるから、その大きさは燃料噴射量に応じて変化し、燃料噴射量は、後述するように、燃料噴射器による燃料噴射時間TINJ に比例する。
また、ピストンは、燃焼爆発の力を受けてシリンダ内を往復移動し、このときに発生する往復慣性力の反力によってエンジンブロックがシリンダの軸方向に振動する。これがエンジンの慣性加振力による振動である。従って、この慣性加振力による振動は、クランクシャフトの回転速度の2乗に比例して大きくなる。つまり、慣性加振力の変数はクランクシャフトの回転速度、即ちエンジン回転速度NEとなる。
このように、エンジンの振動形態は、燃料噴射信号等のエンジンの負荷を示す情報と、エンジン回転速度NEやクランクシャフトの回転角、即ちクランク角とから把握することができる。図4に示す燃料噴射信号(INJ信号)は、前記エンジンコントローラから入力される信号であり、例えば#1、#2…は、夫々、気筒番号を示している。この実施形態では、燃料噴射器へのINJ信号がLoのときに開弁して燃料が噴射される構成となっている。これらの燃料噴射信号から燃料噴射時間TINJ が得られ、この燃料噴射時間TINJ に燃料噴射器の流量を乗ずれば燃料噴射量が得られることから、燃料噴射時間TINJ をパラメータとして燃焼起振力の大きさを求めることができる。
そこで、この燃料噴射時間TINJ とエンジン回転速度NEとを用い、図6に示す三次元制御マップから、前後能動型防振支持器8F、8Rの防振ゴム22の基準温度TF0、TR0を設定する。この基準温度TFO、TR0は、燃料噴射時間TINJ 及びエンジン回転速度NEで決まるエンジンの振動形態を、前後能動型防振支持器8F、8Rの防振ゴム22で最も効率よく吸収及び遮断できる温度、つまり防振ゴム22の弾性係数や減衰係数を得るためのものであり、前後能動型防振支持器8F、8Rの防振ゴム22の温度を基準温度TFO、TR0に追従させることでエンジン振動の車体への伝達を抑制防止することができる。本実施形態では、例えば各能動型防振支持器8F、8Rのサブフレーム1側取付点における振動が最小となる温度を基準温度TF0、TR0としたが、その他にも、フロア振動、ステアリング振動、車室内振動などを評価点とすることも可能である。また、エンジンの回転速度NEに応じて評価点を使い分けたり、複数の評価点の重み付け和を用いたりすることも可能である。
このようにして設定された能動型防振支持器8F、8Rの基準温度TF0、TR0と現在の温度TF 、TR との温度差ΔTF 、ΔTR を算出し、その温度差ΔTF 、ΔTR がゼロになるように温度調整部11への制御信号を創成することにより、能動型防振支持器8F、8Rの弾性係数や減衰係数を調整してエンジン振動の車体への伝達を抑制防止することができる。
従って、本実施形態の防振支持装置によれば、弾性部材である防振ゴム22の温度を調整する温度調整部11を備え、エンジン4の振動状態を検出し、その検出されたエンジン4の振動状態に応じて前記温度調整部11による防振ゴム22の温度を制御する構成としたため、エンジン4の振動形態に応じた最適な防振或いは制振効果が得られる。また、流体配管が不要なので、実施化し易い。
また、温度センサ12で検出された防振ゴム22の温度に応じて前記温度調整部11による防振ゴム22の温度を制御する構成としたため、防振ゴム22の温度制御の精度を高めて、エンジン4の振動形態に応じた最適な防振或いは制振効果が得られる。
また、熱電素子からなる温度調整部11への印加電力を調整することにより防振ゴム22の温度を制御する構成としたため、防振ゴム22の加熱・吸熱とを自在に行うことができるので、防振ゴム22の温度を自在に調整することが可能となる。
以上より、前記図2の防振ゴム22が本発明の弾性部材を構成し、以下同様に、前記図2及び図3の温度調整部11が弾性部材温度調整手段を構成し、前記図4の演算処理のステップS1及びステップS2が内燃機関振動状態検出手段を構成し、前記図4の演算処理のステップS3〜ステップS5が弾性部材温度制御手段を構成し、前記図2の温度センサ12及び図4の演算処理のステップS1が弾性部材温度検出手段を構成している。
次に、本発明の防振支持装置の他の実施形態として、前記コントロールユニット24で実行する連通制御処理の他の例を、図7のフローチャートに従って説明する。
この連通制御処理は、まずステップS11で、走行状態検出手段として設けられた各種のセンサから、スロットル開度、ブレーキ液圧、変速装置のシフト位置、エンジン回転数、前後加速度、横加速度並びに温度センサ12で検出される前後の能動型防振支持器8F、8Rの防振ゴム22の温度TF 、TR を読込む。
次にステップS12に移行して、前記ステップS11で読込んだ各状態に応じた前後能動型防振支持器8F、8Rの基準温度TF0、TR0を、例えば前記第1実施形態と同様に制御マップなどに従って算出設定する。
次にステップS13に移行して、前記ステップS12で算出された前後能動型防振支持器8F、8Rの基準温度TF0、TR0から前記ステップS11で読込まれた温度TF 、TR を減じて温度差ΔTF 、ΔTR を算出する。
次にステップS14に移行して、前記ステップS13で算出された前後能動型防振支持器8F、8Rの温度差ΔTF 、ΔTR に基づいて前記熱電素子からなる温度調整部11への制御信号、つまり印加電圧、電流の向き、電流の大きさといった電力制御信号を創成し、それを出力してからメインプログラムに復帰する。
従って、本実施形態の防振支持装置によれば、車両の走行状態を検出し、その検出された車両の走行状態に応じて前記温度調整部11による防振ゴム22の温度を制御する構成としたため、車両の走行状態に応じた最適な防振或いは制振効果が得られる。また、流体配管が不要なので、実施化し易い。
以上より、前記図2の防振ゴム22が本発明の弾性部材を構成し、以下同様に、前記図2及び図3の温度調整部11が弾性部材温度調整手段を構成し、前記図7の演算処理のステップS11が走行状態検出手段を構成し、前記図7の演算処理のステップS3〜ステップS4が弾性部材温度制御手段を構成し、前記図2の温度センサ12及び図7の演算処理のステップS1が弾性部材温度検出手段を構成している。
なお、前記実施形態では、防振ゴムを弾性部材として用い、その温度を調整することで弾性係数や減衰係数を制御し、もってエンジンから車体に伝達される振動を抑制防止するものとしたが、流体室やオリフィスを設けて流体を流動させることにより防振効果を得る防振支持器とし、流体を弾性部材として、その温度を調整することで流体室の弾性係数やオリフィスの減衰係数を制御するものとしてもよい。
また、前記各実施形態では、能動型防振支持器を二つ用いた場合についてのみ詳述したが、本発明の内燃機関防振支持装置は、能動型防振支持器を一つだけ、或いは三つ以上用いた場合にも、同様に適用可能である。
また、前記各実施形態では、直列4気筒のガソリンエンジンについてのみ詳述したが、本発明の内燃機関防振支持装置は、その他のどのような形態のエンジンにも適用可能である。
また、弾性部材の温度制御信号を制御マップに従って求める場合について詳述したが、その他の手法を用いて制御信号を創成するようにしてもよい。
また、前記各実施形態では、コントロールユニットにマイクロコンピュータ等の演算処理装置を用いたが、その他の理論回路や演算回路を組合わせて用いてもよい。
本発明の内燃機関防振支持装置の一実施形態を示す概略構成図である。 図1の能動型防振支持器の断面図である。 図2の温度調整部に用いられる熱電素子の縦断面図である。 図1のコントロールユニットで行われる演算処理を示すフローチャートである。 クランク角信号及び燃料噴射信号の説明図である。 図4の演算処理に用いられる制御マップである。 図1のコントロールユニットで行われる演算処理の他の例を示すフローチャートである。
符号の説明
1はサブフレーム(車体)
2FL〜2RRは懸架支持装置
3はパワーユニット
4はエンジン(内燃機関)
5は変速機
8F、8Rは能動型防振支持器
10はコントロールユニット
11は温度調整部
12は温度センサ
21は空気室
22は防振ゴム(弾性部材)

Claims (4)

  1. 弾性部材を具備し、内燃機関と車体との間に介在して、当該内燃機関からの入力振動を吸収及び遮断する防振支持装置であって、前記弾性部材の温度を調整する弾性部材温度調整手段と、前記内燃機関の振動状態を検出する内燃機関振動状態検出手段と、前記内燃機関振動状態検出手段で検出された内燃機関の振動状態に応じて前記弾性部材温度調整手段による弾性部材の温度を制御する弾性部材温度制御手段とを備えたことを特徴とする防振支持装置。
  2. 弾性部材を具備し、内燃機関と車体との間に介在して、当該内燃機関からの入力振動を吸収及び遮断する防振支持装置であって、前記弾性部材の温度を調整する弾性部材温度調整手段と、車両の走行状態を検出する走行状態検出手段と、前記走行状態検出手段で検出された車両の走行状態に応じて前記弾性部材温度調整手段による弾性部材の温度を制御する弾性部材温度制御手段とを備えたことを特徴とする防振支持装置。
  3. 前記弾性部材の温度を検出する弾性部材温度検出手段を備え、前記弾性部材温度制御手段は、前記弾性部材温度検出手段で検出された弾性部材の温度に応じて前記弾性部材温度調整手段による弾性部材の温度を制御することを特徴とする請求項1又は2に記載の防振支持装置。
  4. 前記弾性部材温度調整手段が熱電素子で構成され、前記弾性部材温度制御手段は、前記熱電素子からなる弾性部材温度調整手段への印加電力を調整することにより弾性部材の温度を制御することを特徴とする請求項1乃至3の何れか一項に記載の防振支持装置。
JP2004360147A 2004-12-13 2004-12-13 防振支持装置 Pending JP2006170250A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360147A JP2006170250A (ja) 2004-12-13 2004-12-13 防振支持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360147A JP2006170250A (ja) 2004-12-13 2004-12-13 防振支持装置

Publications (1)

Publication Number Publication Date
JP2006170250A true JP2006170250A (ja) 2006-06-29

Family

ID=36671227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360147A Pending JP2006170250A (ja) 2004-12-13 2004-12-13 防振支持装置

Country Status (1)

Country Link
JP (1) JP2006170250A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225376A (ja) * 2011-04-18 2012-11-15 Tokai Rubber Ind Ltd 流体封入式防振装置
CN117108690A (zh) * 2023-10-25 2023-11-24 江苏博盟科技有限公司 一种汽车橡胶衬套组件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225376A (ja) * 2011-04-18 2012-11-15 Tokai Rubber Ind Ltd 流体封入式防振装置
CN117108690A (zh) * 2023-10-25 2023-11-24 江苏博盟科技有限公司 一种汽车橡胶衬套组件
CN117108690B (zh) * 2023-10-25 2023-12-26 江苏博盟科技有限公司 一种汽车橡胶衬套组件

Similar Documents

Publication Publication Date Title
US8763996B2 (en) Active vibration isolating support apparatus and method for controlling the same
US8659245B2 (en) Active vibration control apparatus
JP3811469B2 (ja) 能動型防振支持装置のアクチュエータ駆動制御装置
US7717409B2 (en) Active vibration isolating support apparatus
JPH0641248B2 (ja) パワ−ユニツトの制振装置
JP2005256933A (ja) ハイブリッド車両の制振方法
JP2004262389A (ja) エンジンの防振支持装置
JP4657037B2 (ja) 能動型防振支持装置の制御装置
JP4806479B2 (ja) 能動型防振支持装置の制御装置
JP2006170250A (ja) 防振支持装置
JP5563834B2 (ja) 防振装置
JP3914177B2 (ja) 能動型防振支持装置のアクチュエータ駆動制御装置
JP2007023793A (ja) エンジンの防振装置
JP3914176B2 (ja) 能動型防振支持装置のアクチュエータ駆動制御装置
JP4839286B2 (ja) 能動型防振支持装置
JP6536486B2 (ja) エンジンの防振制御装置
JP2005280687A (ja) エンジンの防振制御装置および車両の防振制御装置
JPH04302729A (ja) パワーユニット用マウント
JP4036448B2 (ja) 能動型防振支持装置のアクチュエータ駆動制御装置
JP2000168332A (ja) サスペンション装置
JP2004036435A (ja) 気筒休止エンジンの振動防止制御方法
JP4615879B2 (ja) 能動型防振支持装置
JP3642140B2 (ja) 能動型騒音振動制御装置
JP3959857B2 (ja) 防振装置
JP2004036531A (ja) エンジンの振動防止制御方法