JP2005313780A - 先行車両認識装置 - Google Patents

先行車両認識装置 Download PDF

Info

Publication number
JP2005313780A
JP2005313780A JP2004134421A JP2004134421A JP2005313780A JP 2005313780 A JP2005313780 A JP 2005313780A JP 2004134421 A JP2004134421 A JP 2004134421A JP 2004134421 A JP2004134421 A JP 2004134421A JP 2005313780 A JP2005313780 A JP 2005313780A
Authority
JP
Japan
Prior art keywords
vehicle
preceding vehicle
rear surface
reception signal
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004134421A
Other languages
English (en)
Other versions
JP3941795B2 (ja
Inventor
Seiwa Takagi
聖和 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004134421A priority Critical patent/JP3941795B2/ja
Priority to DE102005019269.6A priority patent/DE102005019269B4/de
Priority to US11/116,042 priority patent/US7218385B2/en
Publication of JP2005313780A publication Critical patent/JP2005313780A/ja
Application granted granted Critical
Publication of JP3941795B2 publication Critical patent/JP3941795B2/ja
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders

Abstract

【課題】一時的または継続的にリフレクタからの反射波が得られない場合であっても、先行車両を識別しながら継続的に認識することが可能な先行車両認識装置を提供すること。
【解決手段】リフレクタによって反射された反射波の個々の受光信号から先行車両のリフレクタ位置を算出するとともに、複数の受光信号を積算した積算信号から先行車両の車体後面領域の位置を算出する。積算信号を用いることにより、車体部分から反射された個々の反射波の受信信号の強度が増幅される。従って、積算信号を用いれば、比較的高精度に先行車両の車体後面領域の位置を算出することができる。このため、一対のリフレクタの一方のみしか検出できない場合や、両方とも検出できない場合であっても、先行車両の車幅を求めることが可能になり、この先行車両の車幅を用いて同一の先行車両の動きを確実にトラッキングできる。
【選択図】 図11

Description

本発明は、先行車両を識別しつつ、継続的に認識する先行車両認識装置に関するものである。
従来、車両前方の所定角度範囲に渡って、光波,ミリ波などの送信波を照射し、その反射波を検出することによって、車両の前方に存在する先行車両等を認識する先行車両認識装置が考えられている。この種の装置は、例えば、先行車両等との間隔が短くなったことを検出して警報を発生する装置や、先行車両と所定の車間距離を維持するように車速を制御する装置などに適用される。
そのような先行車両認識装置の一例が、例えば特許文献1に記載されている。この従来装置では、スキャニングレーザレーダによって検知領域内に存在する物体までの距離計測を行ない、同じ物体と判断される部分にグルーピング処理を施すことで、その物体までの距離、方位、及びその物体の大きさを求める。グルーピング処理では、同じ距離に位置し、時間的に連続して同じ方向に動くものを同じ物体と判断する。
特に、上記の装置では、検出された物体の中から幅の狭い物体を選択し、その物体が、その物体よりも手前の物体により一部が隠れている可能性があるかどうかを判定する。このような判定を行なっておくことで、手前の物体が横方向に移動した場合など、正面にあたらに物体が現れたのかどうか等の判断を行ない得る。
例えば、図14に示すように、自車両の正面に先行車両201が走行しており、その先行車両201の左斜め前方を先行車両202が走行している場合、レーザレーダ200によって先行車両201の後面の左右の反射面(リフレクタ)と、先行車両202の後面の左側の反射面までの距離は計測できる。しかし、先行車両202の右側の反射面は車両201の背後に隠れる位置にあるため、その右側の反射面までの距離計測ができない。
そのため、従来装置では、一部が隠れている先行車両202の幅を所定の幅と仮定した場合に、その右端が、手前の先行車両201の左右端の座標を基準として算出される先行車両202の投影領域に属するか否かによって、先行車両202の一部が隠されているか否かを判定する。
特開2002−181936号公報
上述したように、従来装置では、先行車両の後面の左右両端部に設けられた反射面(リフレクタ)によって、その先行車両の左右端の位置を検出している。リフレクタは、車体部分に比較して再帰性が高いため、リフレクタからは強度の高い反射波が得られる。従って、通常、このリフレクタからの反射波による受信信号に基づいて、先行車両の左右端の位置を精度良く検出することができる。そして、左右両端位置を検出し、その左右端点の時間的な動きを動きベクトルで繋ぐことによって、先行車両の軌跡を求めることができる。
しかし、例えば、リフレクタが汚れていたり、先行車両がカーブを走行したりする場合など、リフレクタの検出が困難になる場合がある。このような場合、上述した従来装置では、先行車両の左右両端位置を検出することができなくなるため、先行車両と並走する別の先行車両とを誤ってグルーピングしてしまったり、先行車両の動き(軌跡)を確実にトラッキングすることが困難になるとの問題がある。
本発明は上述した点に鑑みてなされたものであり、一時的または継続的にリフレクタからの反射波が得られない場合であっても、先行車両を識別しながら継続的に認識することが可能な先行車両認識装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載の先行車両認識装置は、
少なくとも車両の車幅方向において、所定の角度範囲に渡って複数の送信波を照射し、当該送信波が反射物によって反射されると、その反射波の強度に応じた受信信号を出力するレーダ手段と、
少なくとも受信信号の強度に基づいて、先行車両の後面に装着されたリフレクタによる反射に相当する強度の反射波の受信信号を抽出する抽出手段と、
抽出手段によって抽出された受信信号から、先行車両のリフレクタ位置を算出するリフレクタ位置算出手段と、
レーダ手段から隣接して照射される所定個数の送信波に対応する所定個数の受信信号からなる積算対象受信信号範囲を、一部の受信信号が重複して複数の積算対象受信信号範囲に属するように、所定個数よりも少ない個数分だけ積算対象受信信号範囲に属する受信信号をずらしながら複数設定するとともに、この複数設定された積算対象受信信号範囲の各々に属する所定個数の受信信号を積算して、積算受信信号を出力する積算手段と、
積算手段から出力される積算受信信号から、先行車両の車体後面領域を算出する車体後面領域算出手段と、
リフレクタ位置と車体後面領域とに基づいて、先行車両の車幅を算出して保持する算出保持手段と、
保持された先行車両の車幅を利用して、先行車両を識別しながら継続的に認識する認識手段とを備えることを特徴とする。
上述したように、請求項1に記載の先行車両認識装置は、リフレクタによって反射された反射波の受信信号から先行車両のリフレクタ位置を算出するリフレクタ位置算出手段に加え、所定個数の受信信号を積算した積算受信信号から先行車両の車体後面領域を算出する車体高面領域算出手段を備えている。
先行車両の車体部分による反射波の強度は、リフレクタに比較して弱い。しかしながら、上述したように複数の受信信号を積算することにより、結果的に、車体部分から反射された個々の反射波の強度が増幅される。従って、積算受信信号を用いれば、比較的高精度に先行車両の車体後面の領域を算出することができる。
なお、積算受信信号を求めるための積算対象受信信号範囲は、一部の受信信号が重複して複数の積算対象受信信号範囲に属するように、所定個数よりも少ない個数分だけ積算対象受信信号範囲に属する受信信号をずらしながら複数設定される。このため、所定個数の受信信号を積算しながら、積算受信信号による先行車両の検出分解能の低下を抑制することができる。
このように、請求項1に記載の先行車両認識装置では、積算受信信号に基づいて比較的高精度に先行車両の車体後面領域を算出することができるので、一対のリフレクタの一方のみしか検出できない場合や、両方とも検出できない場合であっても、先行車両の車幅を求めることが可能になる。従って、先行車両の車幅の算出頻度を高めることができるため、この先行車両の車幅を用いて同一の先行車両の動きをトラッキングでき、先行車両の認識性能を向上することができる。
請求項2に記載したように、レーダ手段において、先行車両の後面に装着された一対のリフレクタから反射波が得られた場合、算出保持手段は、その反射波の受信信号から一対のリフレクタ間の距離を求め、その一対のリフレクタ間の距離から先行車両の車幅を算出して保持することが好ましい。積算受信信号を用いることにより、比較的高精度に車体後面領域を算出することはできるが、この車体後面領域を用いるよりも、やはり一対のリフレクタ間の距離を用いる方が、車幅を算出する精度は高くなる。従って、一対のリフレクタから反射波が得られた場合には、その一対のリフレクタ間の距離を求め、その距離から先行車両の車幅を算出すべきである。
なお、請求項3に記載したように、算出保持手段は、一対のリフレクタ間の距離に所定のオフセット値を加えた距離を先行車両の車幅とすることが好ましい。一対のリフレクタは、車両後面の左右両端位置から僅かに中央よりに設けられることが多い。このため、一対のリフレクタ間の距離に所定のオフセット値を加えることにより、先行車両の車幅をより正確に算出することができる。なお、所定のオフセット値は、多数の車両に関して、実際の車幅に対し、リフレクタ間距離がどの程度短いかの度数分布を求め、その度数分布から最も確からしい値として求めることができる。
一方、請求項4に記載したように、レーダ手段において、先行車両の後面に装着された一対のリフレクタの一方のみから反射波が得られた場合、算出保持手段は、その反射波の受信信号から算出されるリフレクタ位置と、積算受信信号から算出される車体後面領域とを組み合わせて、先行車両の車幅を算出することが好ましい。たとえ一方でもリフレクタ位置が算出できれば、そのリフレクタ位置の信頼性は高いので、そのリフレクタ位置を先行車両の車幅の算出に利用すべきだからである。
請求項5に記載したように、算出保持手段において、過去に一対のリフレクタ間距離から先行車両の車幅が算出され保持されており、かつレーダ手段において、当該先行車両の後面に装着された一対のリフレクタの一方のみから反射波が得られた場合、算出保持手段は、その反射波の受信信号から算出されるリフレクタ位置と、積算受信信号から算出される車体後面領域とを組み合わせて、他方のリフレクタの位置を推定しつつ、保持されている先行車両の車幅を当該先行車両の車幅としてそのまま保持することが好ましい。先行車両がカーブを走行したり、車体後面の一部が障害物の陰に隠れたりした場合など、一時的に、一方のリフレクタのみしか検出できなくなる場合がある。このような場合、当該先行車両の車幅が過去に一対のリフレクタ間の距離から算出され保持されていれば、その算出済みの車幅の精度が高いため、その先行車両の車幅としてそのまま保持することが好ましい。
請求項6に記載したように、レーダ手段において、先行車両の後面に装着された一対のリフレクタのいずれからも反射波が得られない場合、算出保持手段は、積算受信信号から算出される車体後面領域のみに基づいて、先行車両の車幅を算出することができる。例えば一対のリフレクタに泥等が付着している場合には、リフレクタの検出が困難になる。このような場合でも、積算受信信号を用いることにより、先行車両の車幅が算出できる。
この場合、請求項7に記載したように、レーダ手段は、車両の高さ方向においても、所定の角度範囲に渡って複数の送信波を照射するものであり、算出保持手段が積算受信信号に基づいて先行車両の車幅を算出する際、併せて当該先行車両の高さも算出することが好ましい。これにより、先行車両を識別するための情報を増加することができるので、先行車両を識別しつつ、継続的に認識する可能性を向上できる。
請求項8に記載したように、積算手段は、積算対象受信信号範囲に属する受信信号を1個分ずつずらしながら、複数の積算対象受信信号範囲を設定することが好ましい。これにより、複数の受信信号を積算しながら、積算受信信号による先行車両の検出分解能の低下を最小限に抑えることができる。
以下、本発明の実施形態における先行車両認識装置について説明する。なお、本実施形態においては、車両用制御装置1に先行車両認識装置が適用されており、車両用制御装置1は、先行車両認識装置による先行車両の認識結果に基づいて、自車の走行車線上に存在する先行車両との車間距離を所定の車間距離に維持するため、車速を制御する機能を備えている。
図1は、車両用制御装置1のシステムブロック図である。車両用制御装置1は認識・車間制御ECU3を中心に構成されている。認識・車間制御ECU3はマイクロコンピュータを主な構成として、入出力インターフェース(I/O)及び各種の駆動回路や検出回路を備えている。これらのハード構成は一般的なものであるので詳細な説明は省略する。
認識・車間制御ECU3は、レーザレーダセンサ5、車速を検出する車速センサ7、ブレーキペダル操作を検出するブレーキスイッチ9、スロットルバルブの開度を検出するスロットル開度センサ11、ステアリングホイールの操作量を検出するステアリングセンサ27、及び自動車に発生したヨーレートを検出するヨーレートセンサ28から各々検出信号を入力する。また、認識・車間制御ECU3は、警報音発生器13、距離表示器15、ブレーキ駆動器19、スロットル駆動器21及び自動変速機制御器23に駆動信号を出力する。さらに、認識・車間制御ECU3には、警報音量を設定する警報音量設定器24、警報判定処理における感度を設定する警報感度設定器25、クルーズコントロールスイッチ26が接続されている。この認識・車間制御ECU3は、電源スイッチ29を備え、電源スイッチ29がオンされることにより、所定の処理を開始する。
レーザレーダセンサ5は、図2(a)に示すように、発光部、受光部及びレーザレーダCPU70などを主要部として構成されている。発光部は、パルス状のレーザ光を、発光レンズ71及びスキャナ72を介して放射する半導体レーザダイオード(以下、単にレーザダイオードと記載)75を備えている。そして、レーザダイオード75は、レーザダイオード駆動回路76を介してレーザレーダCPU70に接続され、レーザレーダCPU70からの駆動信号によりレーザ光を放射(発光)する。また、スキャナ72にはポリゴンミラー73が鉛直軸を中心に回転可能に設けられ、レーザレーダCPU70からの駆動信号がモータ駆動部74を介して入力されると、このポリゴンミラー73は図示しないモータの駆動力により回転する。なお、このモータの回転位置は、モータ回転位置センサ78によって検出され、レーザレーダCPU70に出力される。
本実施形態のポリゴンミラー73は、面倒れ角が異なる6つのミラーを備えているため、車幅方向及び車高方向それぞれの所定角度の範囲で不連続なレーザ光が走査(スキャン)するように、レーザ光を出力することができる。このようにレーザ光を2次元的に走査するのであるが、その走査パターンを図3を参照して説明する。なお、図3において、出射されたレーザビームのパターン122は測定エリア121内の右端と左端に出射された場合のみを示しており、途中は省略している。
図3に示すように、レーザ光は、その照射方向をZ軸としたとき、Z軸に垂直なXY平面内の所定エリアを順次走査するように照射される。本実施形態では、高さ方向であるY軸を基準方向、車幅方向であるX軸を走査方向とする。レーザ光が2次元走査を行なうスキャンエリアは、例えば、X軸方向には0.08deg×451点=±18degであり、Y軸方向には0.7deg×6ライン=4degである。ただし、スキャンエリアの角度範囲や、ビームステップ角、ビーム数は、これらに何ら限定されることなく、任意に設定可能である。
スキャンエリアにおける走査方向はX軸方向については図3において左から右へ、Y軸方向については図3において上から下へである。具体的には、まずY軸方向に見た最上部に位置する第1走査ラインについてX軸方向に0.08°おきにレーザ光を順次照射する。次に、Y軸方向の最上部から1列下の第2走査ラインにおいても同様に、X軸方向に0.08°おきにレーザ光を順次照射する。このようにして、第6走査ラインまで同様にレーザ光を照射していく。従って、第1走査ラインから第6走査ラインまで、走査ラインごとに、複数のレーザ光が照射されることになる。
上述したスキャンエリアにレーザ光を照射した際に、このレーザ光の反射光が受光された場合、レーザ光の照射角度を示すスキャン角度θx、θyと反射物までの距離に相当するレーザ光の照射から受光までの時間差とが得られる。なお、スキャン角度θx、θyは、出射されたレーザ光をXZ平面に投影した線とZ軸との角度を横スキャン角度θx、出射されたレーザ光をYZ平面に投影した線とZ軸との角度を縦スキャン角度θyと定義する。
レーザレーダセンサ5の受光部には、図示しない物体に反射されたレーザ光を集光する集光レンズ81と、集光された反射光の強度に対応する電圧(受光信号)を出力する受光素子83とが設けられている。この受光素子83が出力する受光信号は、増幅器85にて増幅された後に、所定の振幅以上の振幅を有する受光信号を個々に検出する第1検出回路86と、所定個数の受光信号を積算してその積算受信信号を検出する第2検出回路90とにそれぞれ入力される。以下、第1検出回路86及び第2検出回路90の構成及び作動について説明する。
第1検出回路は、図2(b)に示されるように、入力された個々の受光信号と所定の基準電圧とを比較するコンパレータ87と、コンパレータ87の出力に基づいて、反射物体までの距離Lに相当するレーザ光の照射から受光までの時間を計測する時間計測回路88とを備えている。
コンパレータ87は、増幅器85から出力された受光信号と基準電圧とを比較し、受光信号が基準電圧よりも大きくなっているときに、比較信号を時間計測回路88へ出力する。時間計測回路88は、コンパレータ87からの比較信号に基づいて、図4(b)に示すように、受光信号が基準電圧V0を超えた立上がり時刻(t11、t21)と基準電圧V0よりも低下した立下り時刻(t12、t22)とを検出する。そして、これらの立上がり時刻及び立下り時刻に基づいて、ピーク値が発生する時間tpを算出する。なお、基準電圧V0は、ノイズ成分による影響を避けることができる大きさに設定されている。
ここで、図4(b)は、強度が異なる2つの反射光による受光信号L1,L2を示している。図4(b)において、曲線L1は、強度が比較的強い反射光の受光信号を示し、曲線L2は、強度が比較的弱い反射光の受光信号を示す。図4(b)に示すように、反射光の強度に対応した受光信号は、左右非対称の形状を示し、その非対称の度合いは受光信号の振幅が大きくなるほど強くなる。そのため、時間計測回路88は、例えば、受光信号の振幅に対応するパラメータである立上がり時刻(t11、t21)と立下り時刻(t12,t22)との時間間隔(Δt1、Δt2)を求める。そして、時間間隔(Δt1、Δt2)を考慮しつつ、立上がり時刻(t11、t21)と立下り時刻(t12、t22)とに基づいて、ピーク値発生時刻tpを算出する。
さらに、図4(b)から明らかなように、強い強度を持った反射光の受光信号のパルス幅(t12−t11)は、弱い強度を持った反射光の受光信号のパルス幅(t22−t21)よりも大きくなる。すなわち、反射光の受光信号のパルス幅は、受光強度と対応し、受光強度が小さい時にはパルス幅が短くなり、受光強度が大きい時にはパルス幅が長くなる。従って、このパルス幅は、受光した反射光の強度を特徴付ける指標となる。
電圧信号のピーク値発生時刻tpを算出した後、図4(a)に示すように、レーザ光を発光した時刻t0とピーク値発生時刻tpとの時間差Δtを求める。すなわち、時間計測回路88には、レーザレーダCPU70からレーザダイオード駆動回路76へ出力される駆動信号が入力されており、その駆動信号からレーザ光の発光時刻t0を検出することができる。レーザ光発光時刻t0とピーク値発生時刻tpとの時間差Δtは、2進デジタル信号に符号化され、受光強度データとしての、上述した受光信号の立ち上がり時刻(t11、t21)と立下り時刻(t12,t22)との時間間隔(Δt1、Δt2)とともにレーザレーダCPU70に出力される。
次に、第2検出回路90について説明する。第2検出回路90は、図2(c)に示すように、アナログ/デジタル(A/D)変換回路91を備えている。増幅器85から出力された受光信号は、このA/D変換回路91に入力され、デジタル信号に変換される。そして、デジタル信号に変換された受光信号は、記憶回路93に入力され、記憶される。なお、デジタル変換される受光信号は、レーザ光発光時間t0から所定時間(例えば2000ns)経過するまでの間に、増幅回路85から出力された信号である。そして、A/D変換回路91においては、図5に示すように、この受光信号を所定時間間隔(例えば25ns)でN個の区間に分割し、それぞれの区間の受光信号の平均値をデジタル値に変換する。
積算範囲指定回路95は、記憶回路93に記憶された受光信号の中から、X軸方向において隣接して照射された所定個数のレーザ光に対応する所定個数の受光信号を、後段の積算回路97に出力させる。この積算範囲指定回路95が指定する積算すべき受光信号の範囲について、図6〜図8を用いて説明する。
図6は、レーザ光の照射エリア及び、検知対象物体である先行車両との関係を示している。なお、図6においては、簡略化のため、1走査ライン分の照射エリアのみを示している。
図6に示す先行車両は、その後面にレーザ光に対して反射率の高いリフレクタを備え、また車体もリフレクタほどではないが比較的高い反射率を備えている。従って、通常は、先行車両によって反射される反射光の強度は十分に高くなり、その反射光による受光信号も、図4(b)に示した基準電圧V0を超える大きさとなる。図7に、車体後面部分によって反射された反射波の受光信号強度分布の一例を示す。図7に示すように、リフレクタ部分において、受光強度に対応する受光信号のパルス幅が極めて大きくなり、また、車体部分においても、リフレクタによる反射光の受光信号の約40%程度の強度を持つ受光信号が得られている。
しかしながら、例えば、先行車両の後面に泥や雪等が付着している場合、その先行車両のリフレクタや車体部分によって反射される反射光の強度が低下する。従って、先行車両のリフレクタによって反射された反射光に対応する個々の受光信号でさえ、基準電圧V0を超えない可能性が生じる。受光信号が基準電圧V0を超えない場合、個々の受光信号に基づいて先行車両を検出することはできない。特に、リフレクタが検出できない場合、先行車両の車幅を算出することが困難になる。
そのため、本実施形態においては、複数の受光信号を積算して、先行車両の反射波による受光信号を増幅し、強度の弱い反射波の受光信号によっても、車体後面領域の位置を検出可能とした。これにより、先行車両の後面に泥や雪が付着して、レーザ光の反射率が低下している場合などにおいても、先行車両の車幅を求めることが可能となり、この車幅を利用して先行車両を継続して認識(トラッキング)することが可能になる。
積算範囲指定回路95は、積算すべき受光信号の範囲を指定する。図6に示す例では、積算範囲指定回路95は積算すべき受光信号の数を16に設定している。しかし受光信号の数は、検知対象物体の車幅方向の長さ、狙いとする検出上限距離、及びレーザ光の車幅方向のビームステップ角等に基づいて任意に設定可能である。
また、積算範囲指定回路95は、積算回路97が16個の受光信号の積算信号を算出して、後段のコンパレータ99における比較処理、補間回路103における直線補間処理、及び時間計測回路105における時間差Δtの算出処理が完了する時間間隔で、積算する受光信号の範囲を移動させる。すなわち、図8に示すように、X軸方向において左から右に向かって走査するように451本照射されるレーザ光に対応して、受光信号に1から451までの番号を付与したとすると、まず、積算範囲指定回路95は1番から16番の受光信号を積算すべき受光信号の範囲として指定する。そして、上記時間間隔が経過すると、2番から17番の受光信号を、積算すべき受光信号の範囲として指定する。このように、積算範囲指定回路95は、受光信号を1個分ずつずらしながら、積算する受光信号の範囲を移動させる。このようにすれば、16個の受光信号を積算しながら、その積算信号による検知分解能の低下を最小限に抑制することができる。
積算範囲指定回路95によって指定された範囲に属する16個の受光信号が、記憶回路93から読み出され、積算回路97に出力される。積算回路97は、図9(a)に示すように、それぞれデジタル信号に変換済みの16個の受光信号を積算する。
このとき、この16個の受光信号の全てが同じ反射物体からの反射波に応じた受光信号成分Sを含んでいた場合には、その受光信号成分Sは、レーザ光の発光時刻から同じ時間だけ経過した時刻に現れる。従って、積算信号における受光信号成分S0は、各受光信号の受光信号成分Sが16倍に増幅されたものとなる。一方、各受光信号に含まれるノイズ成分Nは、基本的に外来光等によってランダムに発生するため、16個の受光信号を積算した場合であっても、そのノイズ成分N0は、√16=4倍に増幅されるのみである。従って、積算回路97によって積算信号を算出することにより、受光信号成分S0とノイズ成分N0との比(S/N比)は4倍に向上する。このため、先行車両による個々の受光信号に含まれる受光信号成分Sが小さくて、ノイズ成分Nと区別することが困難な場合でも、上述した積算信号を用いることによって、増幅された受光信号成分S0に基づき先行車両の車体の後面部分を検出することが可能になる。
図2(c)に示すように、積算信号は、コンパレータ99において、しきい値設定回路101から出力されるしきい値VDと比較される。このしきい値VDは、図2(b)において説明した基準電圧V0に対応する値である。
すなわち、図10に示すように、所定の時間間隔で離散的に算出されている各デジタル値と基準電圧V0に対応するしきい値VDとを比較する。このとき、例えば、デジタル値Db、Dcの値がしきい値VDよりも大きい場合には、その比較結果を補間回路103に出力する。
補間回路103では、しきい値を横切ったと推測される立上がり時刻t1及び立下り時刻t2を直線補間によって求める。すなわち、しきい値を超えたデジタル値Dbとその直前のデジタル値Daとを結ぶ直線を想定し、その直線としきい値VDとの交点に対応する時刻を求め、これを立上がり時刻t1とする。同様に、しきい値を超えたデジタル値Dcとその直後のデジタル値Ddとを結ぶ直線を想定し、その直線としきい値VDとの交点に対応する時刻を求め、これを立下り時刻t2とする。
時間計測回路105は、図2(b)の時間計測回路88と同様に構成され、立上がり時刻t1と立下り時刻t2とに基づいて、受光信号成分Sのピーク値の発生時刻を求め、図9(b)に示すように、レーザ光発光時刻とピーク値発生時刻との時間差Δtを算出する。そして、時間計測回路105は、算出した時間差Δtと、受光強度データである受光信号の立ち上がり時刻t1と立下り時刻t2との時間間隔をレーザレーダCPU70に出力する。
レーザレーダCPU70は、時間計測回路88、105から入力された時間差Δtから反射物体までの距離を算出し、その距離及び対応するレーザ光のスキャン角度θx,θyを基にして位置データを作成する。具体的には、距離及びスキャン角度θx,θyから、レーザレーダ中心を原点(0,0,0)とし、車幅方向をX軸、車高方向をY軸、車両前方方向をZ軸とするXYZ直交座標系における反射物体の位置データを求める。そして、このXYZ直交座標系における位置データ及び受光強度データを測距データとして認識・車間制御ECU3へ出力する。
なお、積算信号に基づいて反射物体の位置データを算出する場合、その積算信号に対応するレーザ光のスキャン角度θxは、積算した複数個の受光信号に対応する複数のレーザ光の中心に位置するレーザ光のスキャン角度θxとされる。
認識・車間制御ECU3は、レーザレーダセンサ5からの測距データを基にして先行車両を認識し、その先行車両の状況に合わせて、ブレーキ駆動器19、スロットル駆動器21および自動変速機制御器23に駆動信号を出力することにより車速を制御する、いわゆる車間制御を実施する。また、先行車両が所定の警報領域に所定時間存在した場合等に警報する警報判定処理も同時に実施する。
続いて認識・車間制御ECU3の内部構成について、制御ブロックとして説明する。レーザレーダセンサ5から出力された測距データは物体認識ブロック43に送られる。物体認識ブロック43では、レーザレーダセンサ5から入力された測距データに基づいて、自車両の前方に存在する先行車両を認識する。この物体認識ブロック43における先行車両の認識処理を図11〜図13に基づいて説明する。なお、本実施形態では、認識車間制御ECU3に物体認識ブロック43を設けているが、レーザレーダセンサ5に設けることも可能である。
図11は先行車両認識処理を示すフローチャートである。まず、ステップS110では、レーザレーダセンサ5から測距データの読込みが行なわれ、ステップS120では、読み込まれた測距データの受光強度データに関して補正を行なう。レーザレーダセンサ5は、図3に示す測定エリア121を有しており、その測定エリア121の周辺領域では中心領域に比較して、反射光の受光量が小さくなる傾向がある。このため、測定エリア121の周辺領域と中心領域との受光量の差を小さくするように、レーザ光のスキャン角度に応じて受光強度データを補正する。
ステップS130では、測距データから、ノイズと想定される測距データを抽出し、除外する。すなわち、検知距離範囲において、認識対象物体である先行車両は、所定数のレーザ光が当たる大きさを備えており、その所定数よりも少ない(例えば2以下)測距データが、他の測距データとは空間的に分離して得られた場合、それは何らかの要因で発生したノイズとみなすことができる。ノイズとみなされた測距データは、以降の先行車両の認識処理に用いられる測距データから除外される。
次に、ステップS140では、得られた測距データから、路側のデリニエータによって生じた測距データを抽出し、除外する。デリニエータは、所定間隔で路側に設けられた反射物であり、自車両の走行速度によっては、自車両と同じ速度で走行している物体と認識される場合がある。しかし、このデリニエータは、受光強度、大きさ及び自車両との相対速度から、先行車両とは識別することができる。
ステップS150では、第1の検出回路86の検出結果に基づき、個々の受光信号から生成された測距データを用いて先行車両のリフレクタを検出する。図7に示すように、リフレクタは車体部分よりも高い反射率を有しているので、測距データの中から、リフレクタ検出用の閾値以上の受光強度データを持つ測距データを抽出することによって、リフレクタに対応する測距データを抽出できる。また、リフレクタとそれ以外の部分は反射率が大きく違うため、画像処理におけるエッジ抽出と同じ手法を用いて受光強度データに対して処理を行なうと、X軸方向において反射率の差が大きい部分を抽出できる。このようにして、リフレクタに対応する測距データを抽出することもできる。さらに、上述した2つの手法を併用してリフレクタに対応する測距データを抽出しても良い。
リフレクタに対応する測距データを抽出した後に、自車両から略同一の距離において、車幅方向で所定の距離範囲内にある測距データをグルーピングする。このグルーピングによって先行車両の一対のリフレクタ部分を特定できる。このグルーピング処理について、以下に説明する。
リフレクタに対応する測距データの位置データからリフレクタ部分の座標を得て、このリフレクタの座標に基づいて、自車両から略同一の距離に位置し、車幅相当の左右方向の距離を持つリフレクタ対を選定する。その車幅は車両の規格から設定する。すなわち、4輪車の場合、車種によって多少異なるものの、軽自動車の車幅は約1.4m、小型車の車幅は約1.7m、普通車の車幅は約1.9m、及び大型車の車幅は約2.5mである。実際、4輪車の車幅の分布について調査したところ、図12に示すように、1.4m〜2.5mの範囲でほぼ全ての車両を網羅できることを確認した。一方、リフレクタ取付位置は図13に示すように、車体の左右端から0.4m以内と決まっているため、レーザレーダセンサ5の測定精度を考慮しても、車幅の設定範囲は1〜2.5mにすればよい。
なお、片方のリフレクタが汚れていたり、先行車両がカーブ走行中であったり、片方のリフレクタが直前の先行車両の陰に隠れたり、あるいは二輪車のリフレクタである等の理由から、リフレクタに対応する測距データがグルーピングできない場合には、そのまま保持しておく。
次に、ステップS160では、第2の検出回路90の検出結果に基づき、所定個数の受光信号を積算した積算信号から生成された測距データを用いて先行車両の車体後面領域を検出する。すなわち、積算信号から生成した測距データの中から、車体検出用の閾値以上の受光強度データを持つ測距データを抽出することによって、車体後面領域に対応する測距データを抽出する。その後、上述した車幅相当の大きさとなる測距データの集まりをグルーピングすることにより、先行車両の車体後面領域の座標位置を検出する。この車体後面領域は、車幅及び車高に関するデータを含む。
次に、ステップS170では、ステップS150及びS160にて検出された一対のリフレクタ及び車体後面領域に基づいて、車両候補データを算出する。一対のリフレクタが検出できている場合は、その一対のリフレクタ間の距離及びその中心位置を車両候補データとして用いる。前述したように、リフレクタは非常に高い反射率を有しているので、一対のリフレクタ間の距離を算出することにより、非常に高い精度で先行車両の車幅及び中心位置を求めることができる。
なお、一対のリフレクタ距離から先行車両の車幅を求める場合、一対のリフレクタ距離そのものを先行車両の車幅としても良いが、一対のリフレクタ間の距離に、所定のオフセット値を加えた距離を先行車両の車幅としても良い。一対のリフレクタは、車両後面の左右両端位置から僅かに中央よりに設けられることが多い。このため、一対のリフレクタ間の距離に所定のオフセット値を加えることにより、先行車両の車幅をより正確に算出することができる。なお、所定のオフセット値は、多数の車両に関して、実際の車幅に対し、リフレクタ間距離がどの程度短いかの度数分布を求め、その度数分布から最も確からしい値として求めることができる。
また、一対のリフレクタが検出されている場合、その間に含まれる測距データは車体部分に起因するデータであるので、他の物体と判断するような処理には使用しない。さらに、一対のリフレクタ対の中間位置を車両候補データの中心座標とし、一対のリフレクタ間の距離から算出した車幅を、その先行車両の車幅として確定する。
しかしながら、どちらか一方のリフレクタしか検出できない、あるいは両方のリフレクタが検出できない場合、車両候補データとして先行車両の車幅を算出するには、積算信号による車体後面領域の検出データを用いる必要がある。
片方のリフレクタのみしか検出できない場合は、リフレクタに相当する位置付近に存在する車体後面領域の車幅データを用いて、先行車両の車幅を算出する。リフレクタは車体の左右端部に装備されているため、車体後面領域はそのリフレクタ位置に対して、左右どちらかにオフセットした位置に存在することになる。これによって、そのリフレクタが左右どちらのリフレクタであるか判定でき、検出できていないリフレクタの位置が仮定できる。
ただし、積算信号による測距データをグルーピングして車体後面領域の車幅データを求めた場合、車体後面の左右両端位置の精度がリフレクタを用いる場合に比較して劣るため、車体後面領域の車幅データから設定される端部位置に関して、次回にリフレクタを再探索する際のことを考えて、所定の許容範囲を与えておくことが好ましい。具体的には、車幅は、リフレクタの位置及び車体後面領域の端部位置に所定値を加減算した範囲とから算出する。この場合、車両候補データの中心位置も、所定の範囲を有するように設定しても良い。
このように、車体後面領域の車幅データを用いて車両候補データの車幅や中心位置を算出する場合には、データを一意に確定せず、許容範囲を持ったデータとしても良い。
また、両方のリフレクタが検出できない場合には、車体後面領域の車幅及び車高データに基づいて、車幅、車高及び中心位置からなる車両候補データが算出される。この場合、上述したように、車幅や車高の両端位置に許容範囲が設定されることが好ましい。車幅の両端位置に許容範囲を設定した場合には、車幅が採りえる値の範囲は、片方のリフレクタが検出されている場合に比較して大きくなる。
ステップ180では、ステップS170にて算出した車両候補データに対応する車両データが、前回処理時に認識され、保持されているか検索する。すなわち、前回処理時の車両データの位置から前回処理時における相対速度で移動したと仮定した場合、その車両データが存在するであろう推定移動位置を算出する。その推定移動位置を中心とし、所定の領域を持つエリアを推定移動範囲として設定する。そして、車両候補データが、その推定移動範囲に少なくとも一部が含まれ、かつ、車幅が略一致する場合、既に認識している車両データに対応するデータであると判断する。なお、上述したように、車体後面領域の座標位置を利用して車幅が求められる場合、一意の値ではなく、許容範囲が設けられるため、その許容範囲に属する限り、車幅は略一致するとみなされる。
ただし、この車両候補データに対応する車両データの検索時に、今回処理時に得られた車両候補データが積算信号に基づく車体後面領域とリフレクタの一方とから算出されているが、前回以前の処理時に、その車両候補データに対応する車両データが、一対のリフレクタ間距離から算出され保持されている場合、その一方のリフレクタ位置と、積算信号から算出される車体後面領域とを組み合わせて他方のリフレクタが位置するサイドを推定する。そして、その推定したサイドにおいて、保持されている車両データの車幅だけ離れた位置に他方のリフレクタが存在するものとみなして、先行車両の車幅及び中心位置を算出して車両データとする。先行車両がカーブを走行したり、車体後面の一部が障害物の陰に隠れたりした場合など、一時的に、一方のリフレクタのみしか検出できなくなる場合がある。このような場合、当該先行車両の車幅を含む車両データが過去に一対のリフレクタ間の距離から算出され保持されていれば、その保持されている車両データを用いることにより、今回処理時の先行車両の車幅や位置等を正確に算出できる。従って、その後、一対のリフレクタが検出できる状態となったとき、その車両を誤って他車両とみなす可能性を低減、すなわち、同一の先行車両の動きを確実にトラッキングできる。
ステップS190では、保持している車両データと車両候補データとの対応関係に基づいて、車両データを更新する。更新されるデータは、各車両データの中心位置(X,Y,Z)、車幅、高さ及び中心位置の時間的変化に基づく相対速度である。この相対速度の算出のため、物体認識ブロック43には、車速センサ7の検出値に基づいて車速演算ブロック47から出力される車速(自車速)が入力されている。
なお、車幅が更新されるのは、以前の車両データにおける車幅が車体後面領域の座標位置を用いて算出されていた場合のみであり、既にリフレクタ間の距離から車幅が求められている場合には、車幅の更新は行なわない。また、いずれの推定移動範囲にも属さない車両候補データ及び車幅の一致しない車両候補データは、新規に検出エリアに進入してきた先行車両として、その車両データを仮に保持する。そして、所定の処理回数、継続して検出された場合、車両データとして確定する。
このようにして、物体認識ブロック43において、先行車両の認識が行なわれると、その先行車両に関するデータが先行車判定ブロック53に与えられる。この先行車判定ブロック53には、カーブ半径算出ブロック57からカーブ半径が与えられる。すなわち、カーブ半径算出ブロック57は、操舵角演算ブロック49にてステアリングセンサ27からの信号に基づいて演算される操舵角、ヨーレート演算ブロック51にてヨーレートセンサ28からの信号に基づき演算されるヨーレート、及び車速演算ブロック47から車速を入力する。そして、これら車速、操舵角、及びヨーレートとに基づいて、カーブ半径を算出する。
先行車判定ブロック53では、このカーブ半径および中心位置座標(X,Y,Z)などに基づいて、自車両と同一車線に存在し、かつ自車両と最も接近している先行車両を判定し、その先行車に対するZ軸方向の距離Zおよび相対速度Vzを求める。
そして、車間制御部及び警報判定部ブロック55が、この先行車との距離Z、相対速度Vz、クルーズコントロールスイッチ26の設定状態およびブレーキスイッチ9の踏み込み状態、スロットル開度センサ11からの開度および警報感度設定器25による感度設定値に基づいて、警報判定ならば警報するか否かを判定し、クルーズ判定ならば車速制御の内容を決定する。その結果を、警報が必要ならば、警報発生信号を警報音発生器13に出力する。また、クルーズ判定ならば、自動変速機制御器23、ブレーキ駆動器19およびスロットル駆動器21に制御信号を出力して、必要な制御を実施する。そして、これらの制御実行時には、距離表示器15に対して必要な表示信号を出力して、状況をドライバーに告知する。
上述したように、本実施形態においては、個々の受光信号に基づいて先行車両のリフレクタ位置を算出するとともに、複数の受光信号を積算した積算信号に基づいて車体後面領域の位置を算出する。このように算出したリフレクタ位置と車体後面領域の位置とを用いて、先行車両の車幅を算出するように構成した。
先行車両の車体部分による反射波の強度は、リフレクタに比較して弱い。しかしながら、複数の受信信号を積算することにより、結果的に、車体部分から反射された個々の反射波の強度を増幅できる。従って、積算受信信号を用いれば、比較的高精度に先行車両の車体後面領域の位置を算出することができる。従って、一対のリフレクタの一方のみしか検出できない場合や、両方とも検出できない場合であっても、先行車両の車幅を求めることが可能になる。この先行車両の車幅を用いて同一の先行車両の動きをトラッキングでき、先行車両の認識性能を向上することができる。
なお、本発明は上述した実施形態に何等限定されるものではなく、本発明の主旨を逸脱しない範囲において種々なる形態で実施し得る。
(1)上述した実施形態では、一対のリフレクタ間の距離や、車体後面領域の左右端位置を用いて、車幅及び中心位置からなる車両候補データを算出し、その後、既に認識されている車両データと対応するか否かを判定した。
しかしながら、車両候補データの算出時に、既に認識されている車両データを参酌しても良い。すなわち、既に認識され保持されている車両データに基づいて、今回処理時の推定移動範囲を推定し、その推定移動範囲近傍に複数のリフレクタや車体後面領域がある場合、その保持されている車両データの車幅を用いて一対のリフレクタを選定したり、車両光面領域の車幅や車高を算出しても良い。
すなわち、リフレクタは車両の後面両端に装備されているため、同じ間隔で前後左右に移動する。このため、前回の処理時に、既に一対のリフレクタが検出され、車幅が確定されている車両データがある場合、今回の処理時における推定移動範囲を算出するとともに、その推定移動範囲近傍に複数のリフレクタがある場合、既に検出されている一対のリフレクタと同様の距離を持つリフレクタ対を選定する。これにより、先行車両と並走車両や路側反射物との誤った結合を確実に防止できる。
また、例えば、片方のリフレクタ位置及び車体後面領域の座標位置を用いて車両候補データの車幅等を算出する場合であっても、前回の処理時に認識され保持された車両データに、その車両候補データに対応する車両データがあり、その対応車両データにおいては、一対のリフレクタ間の距離から車幅が算出されていれば、その一対のリフレクタ間の距離を車幅とし、その中間位置を中心位置として、車両候補データを算出しても良い。
(2)上述した実施形態においては、レーザレーダセンサ5が第1検出回路86及び第2検出回路90を備え、個々の受光信号基づく、距離に相当する時間間隔や受光強度データの算出、及び複数の受光信号の積算した後に、その積算信号に基づく、距離に相当する時間間隔や受光強度データの算出を行なう例について説明した、しかしながら、それらの処理の一部または全部をレーザレーダCPU70や認識・車間制御ECU3においてソフトウエアによって実現しても良い。また、上記実施形態では、レーザレーダセンサ5内部において、距離及び対応するスキャン角度θx,θyを極座標系からXYZ直交座標系に変換していたが、その処理を物体認識ブロック43において行っても良い。
(3)上記実施形態では、積算範囲指定回路95は、受光信号を1個分ずつずらしながら、積算する受光信号の範囲を移動させた。しかしながら、積算範囲指定回路95は、積算する受光信号の個数よりも少ない範囲で、複数個の受信信号分だけずらしながら、積算する受光信号の範囲を移動させても良い。このようにした場合であっても、少なくとも、受信信号を所定個数ごとに分けて、それぞれ積算信号を求めた場合に比較して、積算信号の検知分解能を向上することができる。
(4)上述した実施形態においては、X軸方向に走査される各走査ラインにおいて、隣接して照射される複数本のレーザ光に基づく受光信号を積算する例について説明した。しかしながら、積算する受光信号は、X軸方向に隣接して照射されるレーザ光に限らず、Y軸方向に隣接して照射されるレーザ光によるものであっても良い。さらに、隣接して照射されるレーザ光の範囲は、X軸及びY軸の複数の走査ラインに及ぶものであっても良い。
本発明が適用された車両用制御装置の構成を示すブロック図である。 (a)はレーザレーダセンサの構成を示す構成図であり、(b)はレーザレーダセンサにおける第1検出回路の構成を示す回路構成図であり、(c)はレーザレーダセンサにおける第2検出回路の構成を示す回路構成図である。 レーザレーダセンサの照射領域を示す斜視図である。 (a)は、距離検出の原理を説明するための波形図であり、(b)は受光信号におけるピーク値の算出方法について説明するための波形図である。 第2検出回路において、A/D変換回路による受光信号に対するデジタル変換処理を説明するための波形図である。 積算すべき受光信号の個数の設定方法を説明するための説明図である。 車体後面部分の受光強度分布の一例を示すグラフである。 第2検出回路の積算範囲指定回路による、積算すべき受光信号の範囲の移動を説明するための説明図である。 (a)は、複数の受光信号を積算した場合、反射光の強度に対応した受光信号成分の増幅の程度が、ノイズ信号成分の増幅の程度よりも大きいことを説明するための説明図であり、(b)は、その積算信号に基づく、反射物体までの距離検出の原理を説明するための波形図である。 第2検出回路の補間回路において行なわれる、直線補間処理を説明するための波形図である。 先行車両認識処理を示すフローチャートである。 4輪車の車幅の分布を表すグラフである。 車体におけるリフレクタ取付位置を説明するための説明図である。 従来の先行車両認識装置を説明するための説明図である。
符号の説明
1…車両用制御装置、3…認識・車間制御ECU、5…レーザレーダセンサ、7…車速センサ、9…ブレーキスイッチ、11…スロットル開度センサ、13…警報音発生器、15…距離表示器、19…ブレーキ駆動器、21…スロットル駆動器、23…自動変速機制御器、24…警報音量設定器、25…警報感度設定器、26…クルーズコントロールスイッチ、27…ステアリングセンサ、28…ヨーレートセンサ、29…電源スイッチ、43…物体認識ブロック、47…車速演算ブロック、49…操舵角演算ブロック、51…ヨーレート演算ブロック、53…先行車判定ブロック、55…車間制御部及び警報判定部ブロック、57…カーブ半径算出ブロック、70…レーザレーダCPU、71…発光レンズ、72…スキャナ、73…ミラー、74…モータ駆動回路、75…半導体レーザダイオード、76…レーザダイオード駆動回路、81…受光レンズ、83…受光素子、85…増幅器、86…第1検出回路、90…第2検出回路

Claims (8)

  1. 少なくとも車両の車幅方向において、所定の角度範囲に渡って複数の送信波を照射し、当該送信波が反射物によって反射されると、その反射波の強度に応じた受信信号を出力するレーダ手段と、
    少なくとも前記受信信号の強度に基づいて、先行車両の後面に装着されたリフレクタによる反射に相当する強度の反射波の受信信号を抽出する抽出手段と、
    前記抽出手段によって抽出された受信信号から、前記先行車両のリフレクタ位置を算出するリフレクタ位置算出手段と、
    前記レーダ手段から隣接して照射される所定個数の送信波に対応する所定個数の受信信号からなる積算対象受信信号範囲を、一部の受信信号が重複して複数の積算対象受信信号範囲に属するように、前記所定個数よりも少ない個数分だけ積算対象受信信号範囲に属する受信信号をずらしながら複数設定するとともに、この複数設定された積算対象受信信号範囲の各々に属する前記所定個数の受信信号を積算して、積算受信信号を出力する積算手段と、
    前記積算手段から出力される積算受信信号から、前記先行車両の車体後面領域を算出する車体後面領域算出手段と、
    前記リフレクタ位置と前記車体後面領域とに基づいて、前記先行車両の車幅を算出して保持する算出保持手段と、
    前記保持された先行車両の車幅を利用して、先行車両を識別しながら継続的に認識する認識手段とを備えることを特徴とする先行車両認識装置。
  2. 前記レーダ手段において、前記先行車両の後面に装着された一対のリフレクタから反射波が得られた場合、前記算出保持手段は、その反射波の受信信号から一対のリフレクタ間の距離を求め、その一対のリフレクタ間の距離から前記先行車両の車幅を算出して保持することを特徴とする請求項1に記載の先行車両認識装置。
  3. 前記算出保持手段は、前記一対のリフレクタ間の距離に所定のオフセット値を加えた距離を前記先行車両の車幅とすることを特徴とする請求項2に記載の先行車両認識装置。
  4. 前記レーダ手段において、前記先行車両の後面に装着された一対のリフレクタの一方のみから反射波が得られた場合、前記算出保持手段は、その反射波の受信信号から算出されるリフレクタ位置と、前記積算受信信号から算出される車体後面領域とを組み合わせて、前記先行車両の車幅を算出することを特徴とする請求項1に記載の先行車両認識装置。
  5. 前記算出保持手段において、過去に一対のリフレクタ間距離から先行車両の車幅が算出され保持されており、かつ前記レーダ手段において、当該先行車両の後面に装着された一対のリフレクタの一方のみから反射波が得られた場合、前記算出保持手段は、その反射波の受信信号から算出されるリフレクタ位置と、前記積算受信信号から算出される車体後面領域とを組み合わせて、他方のリフレクタの位置を推定しつつ、前記保持されている先行車両の車幅を当該先行車両の車幅としてそのまま保持することを特徴とする請求項1に記載の先行車両認識装置。
  6. 前記レーダ手段において、前記先行車両の後面に装着された一対のリフレクタのいずれからも反射波が得られない場合、前記算出保持手段は、前記積算受信信号から算出される車体後面領域のみに基づいて、前記先行車両の車幅を算出することを特徴とする請求項1に記載の先行車両認識装置。
  7. 前記レーダ手段は、車両の高さ方向においても、所定の角度範囲に渡って複数の送信波を照射するものであり、前記算出保持手段が前記積算受信信号に基づいて前記先行車両の車幅を算出する際、併せて当該先行車両の高さも算出することを特徴とする請求項6に記載の先行車両認識装置。
  8. 前記積算手段は、前記積算対象受信信号範囲に属する受信信号を1個分ずつずらしながら、複数の積算対象受信信号範囲を設定することを特徴とする請求項1乃至請求項7のいずれかに記載の先行車両認識装置。
JP2004134421A 2004-04-28 2004-04-28 先行車両認識装置 Active JP3941795B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004134421A JP3941795B2 (ja) 2004-04-28 2004-04-28 先行車両認識装置
DE102005019269.6A DE102005019269B4 (de) 2004-04-28 2005-04-26 Vorrichtung zur Erkennung eines vorhergehenden Fahrzeugs
US11/116,042 US7218385B2 (en) 2004-04-28 2005-04-27 Preceding vehicle recognition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134421A JP3941795B2 (ja) 2004-04-28 2004-04-28 先行車両認識装置

Publications (2)

Publication Number Publication Date
JP2005313780A true JP2005313780A (ja) 2005-11-10
JP3941795B2 JP3941795B2 (ja) 2007-07-04

Family

ID=35186713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134421A Active JP3941795B2 (ja) 2004-04-28 2004-04-28 先行車両認識装置

Country Status (3)

Country Link
US (1) US7218385B2 (ja)
JP (1) JP3941795B2 (ja)
DE (1) DE102005019269B4 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163431A (ja) * 2005-12-16 2007-06-28 Daihatsu Motor Co Ltd 車両の物標認識装置及び物標認識方法
JP2011089879A (ja) * 2009-10-22 2011-05-06 Honda Motor Co Ltd 物体検出装置
WO2011114815A1 (ja) * 2010-03-17 2011-09-22 本田技研工業株式会社 車両周辺監視装置
JP2013033024A (ja) * 2011-07-05 2013-02-14 Denso Corp 距離,速度測定装置
JP2013096742A (ja) * 2011-10-28 2013-05-20 Denso Corp レーダ装置
JP2013253923A (ja) * 2012-06-08 2013-12-19 Denso Corp 車両判定装置、及び、プログラム
JP2015135271A (ja) * 2014-01-17 2015-07-27 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置
WO2015121935A1 (ja) * 2014-02-13 2015-08-20 株式会社日立製作所 車両連結制御システム
JP2016143264A (ja) * 2015-02-03 2016-08-08 富士重工業株式会社 車外環境認識装置
JP6027659B1 (ja) * 2015-08-27 2016-11-16 富士重工業株式会社 車両の走行制御装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274028B2 (ja) * 2004-04-07 2009-06-03 株式会社デンソー 車両用レーダ装置
JP3941795B2 (ja) * 2004-04-28 2007-07-04 株式会社デンソー 先行車両認識装置
JP4400634B2 (ja) * 2007-02-28 2010-01-20 トヨタ自動車株式会社 衝突予測装置
US8699755B2 (en) * 2009-02-20 2014-04-15 Navteq B.V. Determining travel path features based on retroreflectivity
US8169596B2 (en) * 2009-08-17 2012-05-01 Seegrid Corporation System and method using a multi-plane curtain
DE102009045286A1 (de) * 2009-10-02 2011-04-21 Robert Bosch Gmbh Verfahren zur Abbildung des Umfelds eines Fahrzeugs
TWI408698B (zh) * 2009-12-15 2013-09-11 Ind Tech Res Inst 二維亮度色度計的校正裝置
JP5316471B2 (ja) * 2010-04-27 2013-10-16 株式会社デンソー 物体認識装置、及びプログラム
US20140293263A1 (en) * 2013-03-28 2014-10-02 James Justice LIDAR Comprising Polyhedron Transmission and Receiving Scanning Element
DE102013216994A1 (de) * 2013-08-27 2015-03-05 Robert Bosch Gmbh Geschwindigkeitsassistent für ein Kraftfahrzeug
KR102192252B1 (ko) * 2014-03-05 2020-12-17 현대모비스 주식회사 센서를 이용한 차량 인식 시스템 및 그 방법
JP6321532B2 (ja) * 2014-11-28 2018-05-09 株式会社デンソー 車両の走行制御装置
DE102016216251B4 (de) 2016-08-30 2023-09-21 Audi Ag Kraftfahrzeug zur Nutzung im Straßenverkehr und Verfahren zur Ermittlung einer Ausdehnung eines Fremdfahrzeugs in einem Kraftfahrzeug
US20180357314A1 (en) * 2017-06-13 2018-12-13 TuSimple Time synchronization and data acquisition system for ground truth static scene sparse flow generation
US10866101B2 (en) 2017-06-13 2020-12-15 Tusimple, Inc. Sensor calibration and time system for ground truth static scene sparse flow generation
US11415675B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Lidar system with adjustable pulse period
US11415676B2 (en) 2017-10-09 2022-08-16 Luminar, Llc Interlaced scan patterns for lidar system
US11474254B2 (en) 2017-11-07 2022-10-18 Piaggio Fast Forward Inc. Multi-axes scanning system from single-axis scanner
DE102018125591B4 (de) * 2018-10-16 2021-02-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Optisches Abstandsermittlungsmodul
DE102018126631A1 (de) * 2018-10-25 2020-04-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Bestimmung einer Entfernung eines Objekts mithilfe einer optischen Detektionsvorrichtung und optische Detektionsvorrichtung
US10832438B2 (en) 2018-12-19 2020-11-10 Murat Gozu Object distancing system for a vehicle
DE102020202592A1 (de) 2020-02-28 2021-09-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Steuern einer Folgefahrt eines Folgefahrzeugs
US11194048B1 (en) * 2020-05-13 2021-12-07 Luminar, Llc Lidar system with high-resolution scan pattern
EP3955023A1 (en) * 2020-08-13 2022-02-16 Stichting IMEC Nederland Method and device for extracting spatial/velocity resolution of a single-input single-output radar
DE102020212232A1 (de) 2020-09-29 2022-03-31 Zf Friedrichshafen Ag Ortung von Fahrzeugen mittels Radarreflektoren
DE102021200968A1 (de) 2021-02-03 2022-08-04 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-System sowie Mehrfachpolygonspiegel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142520A (ja) * 1997-11-06 1999-05-28 Omron Corp 測距装置の軸調整方法及び軸ずれ検出方法並びに測距装置
JP2001215274A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp 車両周辺監視装置
JP2002181936A (ja) * 2000-12-11 2002-06-26 Nissan Motor Co Ltd 障害物位置計測方法および障害物位置計測装置
JP2003014844A (ja) * 2001-07-04 2003-01-15 Nissan Motor Co Ltd 物体種別判定装置及び物体種別判定方法
JP2003057339A (ja) * 2001-06-07 2003-02-26 Nissan Motor Co Ltd 物体検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661485B2 (ja) 1999-05-06 2005-06-15 日産自動車株式会社 距離測定装置
JP3642227B2 (ja) 1999-05-06 2005-04-27 日産自動車株式会社 車両用レーザレーダ装置
JP3718411B2 (ja) * 2000-05-30 2005-11-24 ペンタックス株式会社 Af測量機
JP2002228734A (ja) 2001-02-05 2002-08-14 Nissan Motor Co Ltd 周囲物体認識装置
JP2002243857A (ja) 2001-02-14 2002-08-28 Nissan Motor Co Ltd 周囲物体認識装置
JP3649163B2 (ja) 2001-07-12 2005-05-18 日産自動車株式会社 物体種別判別装置及び物体種別判別方法
US6810330B2 (en) 2001-07-31 2004-10-26 Omron Corporation Apparatus for and method of detecting object on road
JP3947905B2 (ja) 2001-07-31 2007-07-25 オムロン株式会社 車両用測距装置
JP3823796B2 (ja) 2001-09-28 2006-09-20 日産自動車株式会社 物体検出装置
JP3690366B2 (ja) 2001-12-27 2005-08-31 日産自動車株式会社 前方物体検出装置
JP3838432B2 (ja) 2002-02-08 2006-10-25 オムロン株式会社 測距装置
JP2004177350A (ja) 2002-11-28 2004-06-24 Denso Corp 車両用レーダ装置
JP3941795B2 (ja) * 2004-04-28 2007-07-04 株式会社デンソー 先行車両認識装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142520A (ja) * 1997-11-06 1999-05-28 Omron Corp 測距装置の軸調整方法及び軸ずれ検出方法並びに測距装置
JP2001215274A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp 車両周辺監視装置
JP2002181936A (ja) * 2000-12-11 2002-06-26 Nissan Motor Co Ltd 障害物位置計測方法および障害物位置計測装置
JP2003057339A (ja) * 2001-06-07 2003-02-26 Nissan Motor Co Ltd 物体検出装置
JP2003014844A (ja) * 2001-07-04 2003-01-15 Nissan Motor Co Ltd 物体種別判定装置及び物体種別判定方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163431A (ja) * 2005-12-16 2007-06-28 Daihatsu Motor Co Ltd 車両の物標認識装置及び物標認識方法
JP2011089879A (ja) * 2009-10-22 2011-05-06 Honda Motor Co Ltd 物体検出装置
US8988276B2 (en) 2010-03-17 2015-03-24 Honda Motor Co., Ltd. Vehicle surroundings monitoring device
WO2011114815A1 (ja) * 2010-03-17 2011-09-22 本田技研工業株式会社 車両周辺監視装置
CN102713989A (zh) * 2010-03-17 2012-10-03 本田技研工业株式会社 车辆周围监测装置
JP2013033024A (ja) * 2011-07-05 2013-02-14 Denso Corp 距離,速度測定装置
JP2013096742A (ja) * 2011-10-28 2013-05-20 Denso Corp レーダ装置
JP2013253923A (ja) * 2012-06-08 2013-12-19 Denso Corp 車両判定装置、及び、プログラム
JP2015135271A (ja) * 2014-01-17 2015-07-27 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置
WO2015121935A1 (ja) * 2014-02-13 2015-08-20 株式会社日立製作所 車両連結制御システム
JP2016143264A (ja) * 2015-02-03 2016-08-08 富士重工業株式会社 車外環境認識装置
JP6027659B1 (ja) * 2015-08-27 2016-11-16 富士重工業株式会社 車両の走行制御装置
US9783198B2 (en) 2015-08-27 2017-10-10 Subaru Corporation Vehicle travel control device

Also Published As

Publication number Publication date
JP3941795B2 (ja) 2007-07-04
DE102005019269A1 (de) 2005-11-24
US7218385B2 (en) 2007-05-15
US20050243301A1 (en) 2005-11-03
DE102005019269B4 (de) 2014-10-09

Similar Documents

Publication Publication Date Title
JP3941795B2 (ja) 先行車両認識装置
US7158217B2 (en) Vehicle radar device
JP4984713B2 (ja) レーダ装置
US7136753B2 (en) Object recognition apparatus for vehicle, inter-vehicle control apparatus, and distance measurement apparatus
JP3915742B2 (ja) 車両用物体認識装置
JP4697072B2 (ja) レーダ装置
JP4375064B2 (ja) レーダ装置
US7158075B2 (en) Vehicle radar apparatus
JP3966301B2 (ja) 車両用レーダ装置
JP3736521B2 (ja) 車両用物体認識装置
US8810445B2 (en) Method and apparatus for recognizing presence of objects
JP3639190B2 (ja) 物体認識装置、記録媒体
JP4487715B2 (ja) 車両用レーダ装置
US7468791B2 (en) Object recognition system for vehicle
JP2006146372A (ja) 車両用物体認識装置
JP2002040139A (ja) 物体認識方法及び装置、記録媒体
JP2006105688A (ja) 車両用レーダ装置
JP3757937B2 (ja) 距離測定装置
JP2007132951A (ja) 車両用レーダ装置
JP3841047B2 (ja) 車間制御装置
JP2007198951A (ja) レーダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3941795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250