JP2005297621A - 車両の自動制動制御装置 - Google Patents

車両の自動制動制御装置 Download PDF

Info

Publication number
JP2005297621A
JP2005297621A JP2004112749A JP2004112749A JP2005297621A JP 2005297621 A JP2005297621 A JP 2005297621A JP 2004112749 A JP2004112749 A JP 2004112749A JP 2004112749 A JP2004112749 A JP 2004112749A JP 2005297621 A JP2005297621 A JP 2005297621A
Authority
JP
Japan
Prior art keywords
vehicle
change pattern
braking control
automatic braking
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004112749A
Other languages
English (en)
Other versions
JP4517705B2 (ja
Inventor
Kazuhiro Kamiya
和宏 神谷
Kazuki Kato
和貴 加藤
Yukio Mori
雪生 森
Masahiro Matsuura
正裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2004112749A priority Critical patent/JP4517705B2/ja
Publication of JP2005297621A publication Critical patent/JP2005297621A/ja
Application granted granted Critical
Publication of JP4517705B2 publication Critical patent/JP4517705B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

【課題】 車両が走行している停止位置接近経路にかかわらず運転者に違和感を与えることがない自動制動制御を達成することができる車両の自動制動制御装置を提供すること。
【解決手段】 この装置は、ナビゲーション装置から得られる現在地・一時停止地点間距離が最終要求制動距離 Lth・KLth以下となったとき自動制動制御を開始する。このとき、車両の実際の減速度が追従制御される目標となる最終要求減速度変化パターンPattfin(x)が作製される。この最終要求減速度変化パターンPattfin(x)は、運転者による実際の制動操作に基づいて予め停止位置接近経路毎に個別にバックアップRAMに記憶・学習されている各基準平均減速度変化パターンのうち車両が現在走行している停止位置接近経路Jに対応する基準平均減速度変化パターンPattnormave(J)に基づいて作製される。
【選択図】 図10

Description

本発明は、車両が一時停止するべき地点に接近している場合に同車両に強制的に制動力を付与する自動制動制御を実行する車両の自動制動制御装置に関する。
従来より、運転者による一時停止の不履行を未然に防止するためのこの種の自動制動制御を実行する車両の自動制動制御装置が知られている(例えば、特許文献1を参照)。この文献に記載の自動制動制御装置(運転操作支援装置)は、車両に搭載されているナビゲーション装置から得られる位置情報に基づいて得られる車両の現在地と一時停止するべき地点との間の距離が所定の制動開始基準距離以下となった場合、車両に一時停止させるための制動力を強制的に付与する自動制動制御を実行するようになっている。
特開平10−76922号公報
ところで、一般に、運転者が車両を停止させるために制動操作を行う場合、運転者は、走行している道路の特徴(例えば、道路の傾斜(特に、車両のピッチング方向における傾斜)の程度、道路のカーブの程度、道路の周囲の環境に起因する運転者の視野の広さ等)に応じた違和感のない適切な制動力の変化パターンをもって制動操作を行う傾向がある。換言すれば、運転者は、一時停止するべき地点に向かう経路(以下、「停止位置接近経路」と称呼することもある。)毎に異なる適切な制動力変化パターンをもって制動操作を行う傾向がある。
従って、上述した自動制動制御により車両を一時停止させる場合においても、同車両が走行している停止位置接近経路毎に同経路の特徴に応じた運転者にとって違和感のない適切な制動力の変化パターンを設定するとともに、同停止位置接近経路毎に同設定された適切な制動力の変化パターンをもって制動力を発生させることが好ましい。
しかしながら、上記文献においては、車両が走行している停止位置接近経路毎に自動制動制御により発生させる制動力の変化パターンを設定・変更すること等の記載がなされていない。よって、自動制動制御実行中において、同自動制動制御により発生する制動力(に応じた値)の変化パターンが、車両が走行している停止位置接近経路の特徴に応じた運転者にとって違和感のない適切な制動力(に応じた値)の変化パターンと異なる場合が生じ、この結果、運転者に違和感を与える場合があるという問題がある。
本発明は上記問題を解決するためになされたものであって、その目的は、車両が走行している停止位置接近経路にかかわらず運転者に違和感を与えることがない自動制動制御を達成することができる車両の自動制動制御装置を提供することにある。
本発明に係る車両の自動制動制御装置は、少なくとも車両の現在地と、一時停止するべき地点とに関する位置情報を取得する位置情報取得手段を備えた車両に適用されるとともに、選択手段と、制動力対応値変化パターン記憶手段と、自動制動制御手段とを備えている。ここにおいて、前記位置情報取得手段は、車両に搭載されたナビゲーション装置であることが好ましい。
前記「一時停止するべき地点」としては、少なくとも、一時停止が義務付けられている地点が含まれる。一時停止が義務付けられている地点としては、例えば、一時停止の標識に対応して停止するべき地点、踏切に対応して停止するべき地点、深夜などにおいて赤色ランプが点滅している信号機に対応して停止するべき地点等が挙げられる。以下、上記各手段について順に説明していく。
選択手段は、車両を一時停止させるための制動力を同車両に強制的に付与する自動制動制御の実行を許可する自動制動制御許可モードと、同自動制動制御の実行を禁止する自動制動制御禁止モードの何れかを選択する手段である。選択手段は、例えば、運転者による手動操作によりモードを選択可能なスイッチにより構成されてもよいし、車両の走行状態等に応じて自動的にモードを選択する手段であってもよい。
制動力対応値変化パターン記憶手段は、前記自動制動制御禁止モードが選択されている場合、前記取得された位置情報により前記車両が前記一時停止するべき地点に向かう経路(即ち、停止位置接近経路)上を走行していて同一時停止するべき地点に接近していることが示される場合において運転者による制動操作が行われたとき、同制動操作に基づいて発生する制動力に応じた値の変化パターンを同停止位置接近経路毎に個別に記憶する手段である。
ここにおいて、前記「制動力に応じた値」は、例えば、ディスクプレートへのブレーキパッドの押し付け力、ホイールシリンダ内の液圧、車両の減速度等であって、これらに限定されない。また、前記「制動力に応じた値の変化パターン」は、制動操作が開始されてから車両が停止するまでの間(以下、「制動区間」と呼ぶこともある。)に亘る制動力に応じた値の逐次の推移であってもよいし、同逐次の推移の特徴を表す値、例えば、制動区間内における車両の走行距離(即ち、制動距離)、制動区間内における平均減速度等であってもよい。
これによれば、車両が走行している停止位置接近経路の特徴に応じて運転者が操作した、同運転者にとって違和感のない適切な制動力に応じた値の変化パターンが同停止位置接近経路毎に個別に取得・記憶され得る。
この場合、前記選択手段は、自動制動制御禁止モードが選択されている場合において更に、前記制動力に応じた値の変化パターンの記憶(学習)を許可する記憶(学習)許可モードと、同記憶を禁止する記憶(学習)禁止モードの何れかを選択できるように構成されていて、前記制動力対応値変化パターン記憶手段は、前記自動制動制御禁止モードが選択されている場合であって、且つ前記記憶許可モードが選択されている場合に限り同制動力に応じた値の変化パターンを記憶するように構成されることが好適である。
これにより、選択手段が運転者による手動操作によりモードを選択可能な構成になっている場合、運転者が制動力に応じた値を記憶したいという意思があるときになされた同運転者の制動操作により発生する制動力に応じた値の変化パターンのみが記憶されるから、同運転者にとってより一層、違和感のない適切な制動力に応じた値の変化パターンが記憶され得る。
自動制動制御手段は、前記自動制動制御許可モードが選択されている場合、前記取得された位置情報により前記車両が前記一時停止するべき地点に向かう経路上を走行していて同一時停止するべき地点に接近していることが示されるとき、前記車両を一時停止させるための制動力を、同制動力に応じた値が前記記憶されている同車両が走行している経路に対応する変化パターンをもって発生するように同車両に強制的に付与する前記自動制動制御を実行する手段である。
これによれば、上記制動力対応値変化パターン記憶手段により同停止位置接近経路毎に個別に記憶されている運転者にとって違和感のない適切な制動力に応じた値の変化パターンのうち同車両が走行している停止位置接近経路に対応する適切な変化パターンをもって制動力に応じた値が発生するように車両を一時停止させるための制動力が同車両に強制的に付与され得る。
従って、車両が走行している停止位置接近経路にかかわらず同停止位置接近経路に応じた運転者にとって適切な制動力に応じた値の変化パターンが発生し得るから、車両が走行している停止位置接近経路にかかわらず運転者に違和感を与えることがない自動制動制御を達成することができる。
上記本発明に係る自動制動制御装置においては、前記制動力対応値変化パターン記憶手段は、前記自動制動制御禁止モードが選択されている間において、前記車両が前記一時停止するべき地点に向かう同じ経路上を走行していて前記同じ一時停止するべき地点に接近していることが示されるとともに運転者による制動操作が行われる場合が複数回発生するとき、同制動操作に基づいて発生する前記制動力に応じた値の変化パターンを同制動操作毎に取得するとともに同取得された複数の変化パターンに基づいて得られる変化パターンを前記同じ経路に対応する変化パターンとして記憶するように構成されることが好適である。
この場合、前記制動力対応値変化パターン記憶手段は、前記取得された複数の変化パターンに基づいて得られる変化パターンとして同複数の変化パターンを平均化することで得られる変化パターンを使用することが好適である。
これによれば、同じ停止位置接近経路上を走行していて同じ一時停止するべき地点に接近していることが示されるとともに運転者による制動操作が行われる場合が複数回発生したとき、その同じ経路に対応する変化パターンとして、同運転者にとって違和感のない適切な制動力に応じた値の変化パターンがより高い信頼度をもって取得・記憶され得、この結果、運転者により一層違和感を与えることがない自動制動制御を達成することができる。
上記何れかの本発明に係る自動制動制御装置においては、前記制動力が付与された場合における前記車両の減速の程度に影響を与える因子の状態を取得する因子状態取得手段を更に備え、前記制動力対応値変化パターン記憶手段は、前記制動操作に基づいて発生する制動力に応じた値の変化パターンを前記取得された因子の状態に応じて補正することで得られる変化パターンを記憶するように構成されることが好適である。
ここにおいて、前記「制動力が付与された場合における車両の減速の程度に影響を与える因子の状態」は、運転者により制動操作(例えば、ブレーキペダル操作)がなされた場合における車両に発生する減速度を異ならしめる因子の状態であって、例えば、車両の総質量、又は同車両の総質量に影響を与える値、或いは、同車両が走行している地点の天候に関連する情報等であって、これらに限定されない。
ここにおいて、前記「車両の総質量に影響を与える値」とは、例えば、車両の乗車人数である。車両の総質量は、例えば、車両の車高を計測する車高センサ等により取得することができ、車両の乗車人数は、例えば、乗員がシートに座っているか否かを識別可能な乗員検知センサ(具体的には、荷重センサ、カメラ)等により取得することができる。また、前記「車両が走行している地点の天候に関連する情報」とは、例えば、車両のワイパーが作動しているか否かについての情報、外気温センサからの情報等である。
一般に、車両が同一の停止位置接近経路を走行中において一時停止のために運転者により制動操作が行われた場合であっても、同制動操作により発生する制動力に応じた値(例えば、車両の減速度)の変化パターンは上記「因子の状態」に応じて異なる傾向がある。換言すれば、運転者にとって違和感のない適切な制動力に応じた値の変化パターンは、同じ停止位置接近経路についても上記「因子の状態」に応じて異なる。
更には、車両が同一の停止位置接近経路を走行している場合において、運転者による制動操作に基づく制動力に応じた値の変化パターンを取得・記憶した時点と、その後において同記憶された変化パターンに基づいて自動制動制御が実行される時点とで上記「因子の状態」が異なる場合がある。
従って、制動力対応値変化パターン記憶手段により記憶された制動力に応じた値の変化パターンに基づいて自動制動制御が実行される場合において、運転者にとって違和感のない適切な制動力に応じた値の変化パターンを高い信頼度をもって発生させるためには、少なくとも、取得・記憶されている制動力に応じた値の変化パターンに含まれ得る「因子の状態」に基づく誤差の影響を排除することが好ましいと考えられる。
他方、上記取得・記憶されている変化パターンに含まれ得る「因子の状態」に基づく誤差の影響を排除するためには、取得された変化パターンの総てを、同変化パターンを取得した時点での「因子の状態」が統一された所定の状態(例えば、乗車人数が一人であって、且つ天候が晴れである状態等)であったと仮定したときに得られるであろう変化パターンに補正し、同補正された変化パターンを記憶すればよい。
以上のことから、上記のように、運転者による制動操作に基づいて発生する制動力に応じた値の変化パターンを取得された(同変化パターンが取得された時点での)「因子の状態」に応じて補正することで得られる変化パターンを記憶するように構成すれば、記憶されている制動力に応じた値の変化パターンの総てを、同変化パターンが取得された時点での「因子の状態」が統一された所定の状態であったと仮定した場合に得られるであろう変化パターンと一致せしめることができ、この結果、記憶されている変化パターンに含まれ得る上記「因子の状態」に基づく誤差の影響を排除することができる。
また、この場合、前記自動制動制御手段は、前記記憶されている前記車両が走行している経路に対応する変化パターンを前記取得された因子の状態に応じて補正することで得られる変化パターンをもって前記制動力に応じた値が発生するように、前記車両を一時停止させるための制動力を同車両に強制的に付与するように構成されることが好適である。
これによれば、自動制動制御において、記憶されている変化パターンを自動制動制御が実行される時点での「因子の状態」に応じた運転者にとって違和感のない適切な変化パターンに補正した後の変化パターンをもって制動力に応じた値を発生させることができる。従って、自動制動制御において、同自動制動制御実行時における「因子の状態」にかかわらず、運転者にとって違和感のない適切な制動力に応じた値の変化パターンをより確実に発生させることができる。
また、上記何れかの本発明に係る自動制動制御装置においては、前記自動制動制御手段は、運転者による制動操作に基づいて発生し得る前記制動力に応じた値が前記自動制動制御により発生する同制動力に応じた値よりも大きくなる場合、同自動制動制御により発生する同制動力に応じた値の代わりに同運転者による制動操作に基づいて発生し得る同制動力に応じた値を発生せしめるように構成されることが好適である。
これによれば、自動制動制御中において、運転者が自動制動制御により発生している制動力に応じた値よりも大きい制動力に応じた値が発生し得る制動操作を行うことで、同制動操作に基づいて発生し得る制動力に応じた値が発生する。従って、例えば、自動制動制御中において、一時停止するべき位置よりも手前で車両を停止させる必要が生じた場合等において、自動制動制御よりも運転者の意思が優先されて、車両を所望の位置に停止させることができる。
以下、本発明による車両の自動制動制御装置の実施形態について図面を参照しつつ説明する。図1は、本発明の実施形態に係る自動制動制御装置を含む車両の運動制御装置10を搭載した車両の概略構成を示している。この車両は、非駆動輪(従動輪)である前2輪(左前輪FL及び右前輪FR)と、駆動輪である後2輪(左後輪RL及び右後輪RR)を備えた後輪駆動(FR)方式の4輪車両である。
この車両の運動制御装置10は、各車輪にブレーキ液圧によるブレーキ力を発生させるためのブレーキ液圧制御部30を含んでいて、ブレーキ液圧制御部30は、その概略構成を表す図2に示すように、ブレーキペダルBPの操作力に応じたブレーキ液圧を発生するブレーキ液圧発生部32と、各車輪FR,FL,RR,RLにそれぞれ配置されたホイールシリンダWfr,Wfl,Wrr,Wrlに供給するブレーキ液圧をそれぞれ調整可能なFRブレーキ液圧調整部33,FLブレーキ液圧調整部34,RRブレーキ液圧調整部35,RLブレーキ液圧調整部36と、還流ブレーキ液供給部37とを含んで構成されている。
ブレーキ液圧発生部32は、ブレーキペダルBPの作動により応動するバキュームブースタVBと、同バキュームブースタVBに連結されたマスタシリンダMCとから構成されている。バキュームブースタVBは、図示しないエンジンの吸気管内の空気圧力(負圧)を利用してブレーキペダルBPの操作力を所定の割合で助勢し同助勢された操作力をマスタシリンダMCに伝達するようになっている。
マスタシリンダMCは、第1ポート、及び第2ポートからなる2系統の出力ポートを有していて、リザーバRSからのブレーキ液の供給を受けて、前記助勢された操作力に応じた第1マスタシリンダ圧を第1ポートから発生するようになっているとともに、同第1マスタシリンダ圧と略同一の液圧である前記助勢された操作力に応じた第2マスタシリンダ圧を第2ポートから発生するようになっている。
これらマスタシリンダMC及びバキュームブースタVBの構成及び作動は周知であるので、ここではそれらの詳細な説明を省略する。このようにして、マスタシリンダMC及びバキュームブースタVB(ブレーキ液圧発生手段)は、ブレーキペダルBPの操作力に応じた第1マスタシリンダ圧及び第2マスタシリンダ圧をそれぞれ発生するようになっている。
マスタシリンダMCの第1ポートと、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の各々との間には、常開リニア電磁弁PCfが介装されている。同様に、マスタシリンダMCの第2ポートと、RRブレーキ液圧調整部35の上流部及びRLブレーキ液圧調整部36の上流部の各々との間には、常開リニア電磁弁PCrが介装されている。係る常開リニア電磁弁PCf,PCrの詳細については後述する。
FRブレーキ液圧調整部33は、2ポート2位置切換型の常開電磁開閉弁である増圧弁PUfrと、2ポート2位置切換型の常閉電磁開閉弁である減圧弁PDfrとから構成されている。増圧弁PUfrは、FRブレーキ液圧調整部33の上流部とホイールシリンダWfrとを連通、或いは遮断できるようになっている。減圧弁PDfrは、ホイールシリンダWfrとリザーバRSfとを連通、或いは遮断できるようになっている。この結果、増圧弁PUfr、及び減圧弁PDfrを制御することでホイールシリンダWfr内のブレーキ液圧が増圧・保持・減圧され得るようになっている。
加えて、増圧弁PUfrにはブレーキ液のホイールシリンダWfr側からFRブレーキ液圧調整部33の上流部への一方向の流れのみを許容するチェック弁CV1が並列に配設されていて、これにより、操作されているブレーキペダルBPが開放されたときホイールシリンダWfr内のブレーキ液圧が迅速に減圧されるようになっている。
同様に、FLブレーキ液圧調整部34,RRブレーキ液圧調整部35、RLブレーキ液圧調整部36は、それぞれ、増圧弁PUfl及び減圧弁PDfl,増圧弁PUrr及び減圧弁PDrr,増圧弁PUrl及び減圧弁PDrlから構成されており、これらの各増圧弁及び各減圧弁が制御されることにより、ホイールシリンダWfl,ホイールシリンダWrr及びホイールシリンダWrl内のブレーキ液圧をそれぞれ増圧、保持、減圧できるようになっている。また、増圧弁PUfl,PUrr及びPUrlの各々にも、上記チェック弁CV1と同様の機能を達成し得るチェック弁CV2,CV3及びCV4がそれぞれ並列に配設されている。
還流ブレーキ液供給部37は、直流モータMTと、同モータMTにより同時に駆動される2つの液圧ポンプHPf,HPrを含んでいる。液圧ポンプHPfは、減圧弁PDfr,PDflから還流されてきたリザーバRSf内のブレーキ液をチェック弁CV7を介して汲み上げ、同汲み上げたブレーキ液をチェック弁CV8,CV9を介してFRブレーキ液圧調整部33及びFLブレーキ液圧調整部34の上流部に供給するようになっている。
同様に、液圧ポンプHPrは、減圧弁PDrr,PDrlから還流されてきたリザーバRSr内のブレーキ液をチェック弁CV10を介して汲み上げ、同汲み上げたブレーキ液をチェック弁CV11,CV12を介してRRブレーキ液圧調整部35及びRLブレーキ液圧調整部36の上流部に供給するようになっている。なお、液圧ポンプHPf,HPrの吐出圧の脈動を低減するため、チェック弁CV8及びCV9の間の液圧回路、及びチェック弁CV11及びCV12の間の液圧回路には、それぞれ、ダンパDMf,DMrが配設されている。
次に、常開リニア電磁弁PCfについて説明する。常開リニア電磁弁PCrの構成・作動については常開リニア電磁弁PCfのものと同様であるからそれらの説明を省略する。常開リニア電磁弁PCfの弁体には、図示しないコイルスプリングからの付勢力に基づく開方向の力が常時作用しているとともに、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の圧力から第1マスタシリンダ圧を減じることで得られる差圧(以下、単に「実差圧」と云うこともある。)に基づく開方向の力と、常開リニア電磁弁PCfへの通電電流(従って、指令電流Idf)に応じて比例的に増加する吸引力に基づく閉方向の力が作用するようになっている。
この結果、図3に示したように、上記吸引力に相当する指令差圧ΔPdが指令電流Idfに応じて比例的に増加するように決定される。ここで、I0はコイルスプリングの付勢力に相当する電流値である。そして、常開リニア電磁弁PCfは、係る指令差圧ΔPdが上記実差圧よりも大きいときに閉弁してマスタシリンダMCの第1ポートと、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部との連通を遮断する。
一方、常開リニア電磁弁PCfは、指令差圧ΔPdが同実差圧よりも小さいとき開弁してマスタシリンダMCの第1ポートと、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部とを連通する。この結果、(液圧ポンプHPfから供給されている)FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部のブレーキ液がマスタシリンダMCの第1ポートに流れることで同実差圧が指令差圧ΔPdに一致するように調整され得るようになっている。
換言すれば、モータMT(従って、液圧ポンプHPf,HPr)が駆動されている場合、常開リニア電磁弁PCfへの指令電流Idfに応じて上記実差圧(の許容最大値)が制御され得るようになっている。このとき、FRブレーキ液圧調整部33の上流部、及びFLブレーキ液圧調整部34の上流部の圧力は、第1マスタシリンダ圧に実差圧(従って、指令差圧ΔPd)を加えた値となる。
他方、常開リニア電磁弁PCfを非励磁状態にすると(即ち、指令電流Idfを「0」に設定すると)、常開リニア電磁弁PCfはコイルスプリングの付勢力により開状態を維持するようになっている。このとき、実差圧が「0」になって、FRブレーキ液圧調整部33の上流部、及びFLブレーキ液圧調整部34の上流部の圧力が第1マスタシリンダ圧と等しくなる。
加えて、常開リニア電磁弁PCfには、ブレーキ液の、マスタシリンダMCの第1ポートから、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部への一方向の流れのみを許容するチェック弁CV5が並列に配設されている。これにより、常開リニア電磁弁PCfへの指令電流Idfに応じて実差圧が制御されている間においても、ブレーキペダルBPが操作されることで第1マスタシリンダ圧がFRブレーキ液圧調整部33の上流部、及びFLブレーキ液圧調整部34の上流部の圧力よりも高い圧力になったとき、ブレーキペダルBPの操作力に応じたブレーキ液圧(即ち、第1マスタシリンダ圧)そのものがホイールシリンダWfr,Wflに供給され得るようになっている。また、常開リニア電磁弁PCrにも、上記チェック弁CV5と同様の機能を達成し得るチェック弁CV6が並列に配設されている。
以上、説明した構成により、ブレーキ液圧制御部30は、全ての電磁弁が非励磁状態にあるときブレーキペダルBPの操作力に応じたブレーキ液圧(即ち、マスタシリンダ圧)を各ホイールシリンダに供給できるようになっている。他方、この状態において、モータMT(従って、液圧ポンプHPf,HPr)を駆動するとともに、常開リニア電磁弁PCf,PCrを指令電流Idf,Idr(=Idf)をもってそれぞれ励磁すると、マスタシリンダ圧よりも指令電流Idf,Idrに応じて決定される指令差圧ΔPdだけ高いブレーキ液圧を各ホイールシリンダに供給できるようになっている。従って、常開リニア電磁弁PCf,PCrへの指令電流Idf,Idrを制御することで上述した自動制動制御が達成できるようになっている。
再び、図1を参照すると、この車両の運動制御装置10は、更に、対応する車輪の回転速度に応じた周波数で変動する値を出力する磁気ピックアップ式(コイル式)の車輪速度センサ41fr,41fl,41rr,41rlと、ブレーキペダルBPの操作の有無に応じてオン状態(High信号)又はオフ状態(Low信号)を示す信号を出力するブレーキスイッチ42と、前後左右の4つの各座席にそれぞれ対応して配設された、乗員がシートに座っているか否かを識別可能な乗員検知センサ43fr,43fl,43rr,43rlと、ワイパースイッチ(SW)44と、自動制動モードスイッチ(SW)45と、学習モードスイッチ(SW)46と、電気式制御装置50と、ナビゲーション装置60を備えている。
ワイパーSW44は、図示しないワイパーの作動・停止を選択するための手動スイッチであって、ワイヤSW44がON状態のとき同ワイパーの作動指示信号を発生するとともにOFF状態のとき同ワイパーの停止指示信号を発生するようになっている。自動制動モードSW45は、後述する自動制動制御の実行の許可・禁止を選択するための手動スイッチであって、自動制動モードSW45がON状態のとき同自動制動制御の実行が許可されるとともにOFF状態のとき同自動制動制御の実行が禁止されるようになっている。学習モードSW46は、後述する減速度変化パターン(制動力に応じた値の変化パターン)の記憶(学習)の許可・禁止を選択するための手動スイッチであって、学習モードSW46がON状態のとき同減速度変化パターンの記憶が許可されるとともにOFF状態のとき同記憶が禁止されるようになっている。
電気式制御装置50は、互いにバスで接続された、CPU51、CPU51が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、定数等を予め記憶したROM52、CPU51が必要に応じてデータを一時的に格納するRAM53、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM54、及びADコンバータを含むインターフェース55等からなるマイクロコンピュータである。
インターフェース55は、各車輪速度センサ41、ブレーキスイッチ42、各乗員検知センサ43、ワイパーSW44、自動制動モードSW45、学習モードSW46、及びナビゲーション装置60と接続され、CPU51に各車輪速度センサ41、ブレーキスイッチ42、各乗員検知センサ43、ワイパーSW44、自動制動モードSW45、学習モードSW46、及びナビゲーション装置60からの信号を供給するとともに、同CPU51の指示に応じて、ブレーキ液圧制御部30の各電磁弁、モータMT、及び図示しないワイパーに駆動信号を送出するようになっている。
これにより、上述した常開リニア電磁弁PCf,PCrへの指令電流Idf,Idr(通電電流)は、CPU51により制御される。具体的には、CPU51は、通電電流のデューティ比を調整することでその平均(実効)電流を指令電流Idf,Idrとして調整するようになっている。
ナビゲーション装置60は、車両の現在地を人工衛星等から得られる情報に基づいて特定し、同現在地から運転者が指定する目的地までの経路を案内する周知の経路案内装置である。このナビゲーション装置60は、更に、所定の領域内に存在する道路上における多数の一時停止するべき地点に関する情報を記憶している。「一時停止するべき地点」は、本例では、一時停止が義務付けられている地点としての、一時停止の標識に対応して停止するべき地点(一時停止線の地点)、踏切に対応して停止するべき地点、深夜などにおいて赤色ランプが点滅している信号機に対応して停止するべき地点である。
そして、ナビゲーション装置60は、少なくとも、走行中の道路上における、現在地から接近中の最も近い一時停止するべき地点までの距離(以下、「現在地・一時停止地点間距離L」と称呼する。)を示す信号を逐次インターフェース55を介してCPU51に供給するようになっている。
(自動制動制御の概要)
次に、上記本発明の実施形態に係る自動制動制御装置を含む車両の運動制御装置10(以下、「本装置」と云うこともある。)による、自動制動制御の概要について説明する。
本装置は、自動制動モードSW45がON状態となっていて運転者が自動制動制御の実行を望んでいることが示される場合であって、走行中の車両が一時停止するべき地点に接近している場合、即ち、ナビゲーション装置60から逐次得られる上記現在地・一時停止地点間距離Lが後述するように逐次計算されている最終要求制動距離 Lth・KLth以下となったとき(即ち、自動制動制御開始条件が成立したとき)、運転者によるブレーキペダルBPの操作の有無にかかわらず自動制動制御を開始する。
この自動制動制御が開始されると、本装置は、同制御開始後、車両が停止するまでの間に亘って車両の実際の減速度Gact(制動力に応じた値)が採るべき、運転者にとって違和感のない適切な減速度変化パターンを作製する。ここで、先に説明したように、係る適切な減速度変化パターンは一時停止するべき地点に向かう経路(即ち、上記停止位置接近経路)の特徴に応じて異なる。
具体的に説明すると、例えば、図4に示した道路状況においては、道路Aと道路BからなるT字交差点に設けられた1本の一時停止線に向かう停止位置接近経路1、道路Bと道路Cからなる十字交差点に設けられた2本の一時停止線にそれぞれ向かう停止位置接近経路2,3、並びに、道路Aと鉄道線路からなる踏切に設けられた2本の一時停止線にそれぞれ向かう停止位置接近経路4,5が存在する。
係る停止位置接近経路1〜5の道路の特徴、例えば、形状、傾斜の程度、カーブの程度、運転者の視野の広さ等、はそれぞれ異なり、運転者は、走行している停止位置接近経路の特徴に応じた、違和感のない適切な減速度の変化パターンをもって制動操作を行う。従って、運転者にとって違和感のない適切な減速度変化パターンは停止位置接近経路毎に異なる。
そこで、本装置は、運転者のブレーキペダルBPの操作により発生した減速度変化パターンを停止位置接近経路毎に記憶・学習する。以下、係る減速度変化パターンの記憶・学習方法について説明する。
<減速度変化パターンの記憶・学習>
本装置は、所定の領域内に存在する道路上における一時停止するべき各地点にそれぞれ対応する停止位置接近経路に通し番号(1,2,3,・・・)を付している。そして、学習モードSW46がON状態となっていて運転者が減速度変化パターンの記憶・学習を望んでいることが示される場合であって現在地・一時停止地点間距離Lが所定の基準距離Lref未満となっている場合、運転者により制動操作が行われると(即ち、減速度変化パターン記憶条件が成立すると)、本装置は、同制動操作に基づいて発生する減速度変化パターンを現在走行している停止位置接近経路I(I:任意の自然数)に対応させた形で取得する。
より具体的に述べると、図5に示すように、本装置は、運転者による制動操作が開始された地点から車両が停止するまでの制動区間内において、停止位置接近経路I上を車両が所定の微小距離ΔLだけ走行する毎に車両の実際の減速度Gactの値をサンプル値(G(I,0),G(I,1),・・・,G(I,M-1),G(I,M))として順に取得していく。この例では、サンプル値は(M+1)個であり、従って、制動距離は「ΔL・M」となっている(M:自然数)。
次に、本装置は、上記取得した(M+1)個のサンプル値に基づいて図6に示す学習減速度変化パターンPattlrn(I)を作製する。ここで、図6に示した学習制動距離Llrnは上記制動距離「ΔL・M」と等しい。
次いで、本装置は、図7に示す補正減速度変化パターンPattmod(I)を作製する。この補正減速度変化パターンPattmod(I)は、上記各サンプル値(即ち、学習減速度変化パターンPattlrn(I))を取得した時点において乗車人数Nが一人であって、且つ天候が晴れであったと仮定したときに得られるであろう減速度変化パターンである。
一般に、車両の総質量が大きくなるほど(従って、乗車人数Nが大きくなるほど)、運転者により同じ強さの制動操作がなされた場合における車両に発生する減速度が小さくなって、その結果、制動距離が長くなる傾向がある。また、天候が雨である場合、天候が晴れである場合に比して、運転者は弱い制動操作を行うことにより車両に発生する減速度が小さくなって、その結果、制動距離が長くなる傾向がある。
換言すれば、運転者にとって違和感のない適切な制動力に応じた値の変化パターン(具体的には、制動距離、及び減速度の大きさ)は、同じ停止位置接近経路についても係る乗車人数N、及び天候(即ち、前記「因子の状態」)に応じて異なる。従って、上記作製される学習減速度変化パターンPattlrn(I)もサンプル値取得時点での乗車人数N、及び天候に応じて異なる。
従って、その後において実行される自動制動制御において係る「因子の状態」に基づく誤差の影響を排除するためには、上記作製された学習減速度変化パターンPattlrn(I)を、サンプル値取得時点での「因子の状態」が統一された所定の状態(本例では、乗車人数が一人であって、且つ天候が晴れである状態)であったと仮定したときに得られるであろう変化パターンに補正する必要がある。
このため、本装置は、補正係数KN、及び補正係数KWを導入するとともに、これら補正係数KN,KWに基づいて、学習減速度変化パターンPattlrnの形状を補正減速度変化パターンPattmodの形状に補正するための値である最終補正係数KL(≧1)を決定する。
補正係数KNは、乗車人数Nの増大に応じて増加する値(N=1のときKN=1)であって、図8にグラフにより示す乗車人数Nと補正係数KNとの関係を規定するテーブルMapKNと、上記サンプル値取得時点での乗車人数Nとに基づいて求められる値である。ここで、乗車人数Nは、各乗員検知センサ43のうち対応するシートに乗員が座っていることを示す信号を出力しているものの数をカウントすることにより取得することができる。このようにして、乗車人数Nを取得する手段が因子状態取得手段に相当する。
また、補正係数KWは、「1」より大きい定数であって、ワイパーSW44がON状態となっている場合(即ち、天候が雨であると想定される場合)にのみ使用される。即ち、本装置は、上記サンプル値取得時点において、ワイパーSW44がON状態となっている場合にのみ、最終補正係数KLを上記補正係数KNと補正係数KWの積の値に設定するとともに、ワイパーSW44がOFF状態となっている場合(即ち、天候が晴れであると想定される場合)には最終補正係数KLを上記補正係数KNそのものの値に設定する。このようにして、天候に関連する情報を取得する手段が因子状態取得手段に相当する。
そして、本装置は、値「Llrn・KL」を補正制動距離Lmodとして採用するとともに、図6に示す学習減速度変化パターンPattlrn(I)の形状を、割合(1/KL)をもって距離軸の方向(横方向)に縮小変換させ、且つ、割合KLをもって減速度軸の方向(縦方向)に拡大変換することで得られる形状を図7に示す補正減速度変化パターンPattmod(I)として採用する。
続いて、本装置は、上記作製された補正減速度変化パターンPattmod(I)を正規化して図9に示す基準減速度変化パターンPattnorm(I)を作製する。具体的には、本装置は、図7に示す補正減速度変化パターンPattmod(I)の形状を、割合(Lnorm/Lmod)をもって距離軸の方向(横方向)に拡縮変換させることで得られる形状を基準減速度変化パターンPattnorm(I)として採用する。Lnormは減速度変化パターンを正規化するための基準制動距離である。なお、このとき、減速度軸の方向(縦方向)については拡縮変換がなされない。
この基準減速度変化パターンPattnorm(I)は、乗車人数Nが一人であって、且つ天候が晴れである場合であって、車両が停止位置接近経路Iを走行中において同車両の速度が下記(1)式に示した関係から計算される所定の基準速度Vnorm(I)となっている状態から同一の運転者が一時停止するために制動操作を行った場合に発生するであろう同運転者にとって違和感のない適切な減速度変化パターンに相当する。
Lnorm=(1/2)・Gave(I)・(Vnorm(I)/Gave(I))2 ・・・(1)
上記(1)式において、Gave(I)は基準減速度変化パターンPattnorm(I)における平均減速度である。値(Vnorm(I)/Gave(I))は、車両の速度が基準速度Vnorm(I)となっている状態から車両の減速度を基準平均減速度Gave(I)に維持した状態で車両を減速・停止させた場合において、減速開始から停止までに要する時間を表す値である。
次いで、本装置は、このようにして初めて取得された停止位置接近経路Iに対応する基準減速度変化パターンPattnorm(I)をそのまま停止位置接近経路Iに対応する基準平均減速度変化パターンPattnormave(I)として設定するとともに、同基準平均減速度変化パターンPattnormave(I)における平均減速度を基準平均減速度Gave(I)として求める。
そして、本装置は、係る基準平均減速度変化パターンPattnormave(I)、基準平均減速度Gave(I)の値、並びに停止位置接近経路Iに対応する変化パターン取得回数REPEAT(I)(この時点では、「1」)を、バックアップRAM54における停止位置接近経路Iに対応するメモリ内に記憶する。
以降、本装置は、車両が停止位置接近経路I上を走行中に上述した減速度変化パターン記憶条件が成立する毎に、上述した手法により停止位置接近経路Iに対応する新たな基準減速度変化パターンPattnorm(I)を取得する。このとき、本装置は、係る新たに取得された基準減速度変化パターンPattnorm(I)と、バックアップRAM54内に現時点で記憶されている基準平均減速度変化パターンPattnormave(I)とを平均化して新たな基準平均減速度変化パターンPattnormave(I)を作製し、同新たな基準平均減速度変化パターンPattnormave(I)における平均減速度を新たな基準平均減速度Gave(I)として求める。
そして、本装置は、バックアップRAM54における停止位置接近経路Iに対応するメモリ内に記憶されている、Pattnormave(I)、Gave(I)の値、及びREPEAT(I)の値をそれぞれ、上記新たな基準平均減速度変化パターンPattnormave(I)、上記新たな基準平均減速度Gave(I)の値、及び現時点でのREPEAT(I)の値に「1」を加えた値に更新して記憶する。
本装置は、このようにして、車両が停止位置接近経路I上を走行中に上述した減速度変化パターン記憶条件が成立する毎に、バックアップRAM54内における停止位置接近経路Iに対応するPattnormave(I)、Gave(I)の値、及びREPEAT(I)の値をそれぞれ更新していく。以上のような作業は、通し番号が付されている停止位置接近経路の総てに対して実行され得る。下記表1は、バックアップRAM54のメモリ内においてPattnormave(I)、Gave(I)の値、及びREPEAT(I)の値が停止位置接近経路Iに対応する形で記憶されている様子を示したものである。このようにして、制動力に応じた値としての車両の減速度の変化パターン(Pattnormave(I))を停止位置接近経路毎に記憶する手段が制動力対応値変化パターン記憶手段に相当する。
Figure 2005297621
<自動制動制御>
次に、以上のようにして記憶・学習されている基準平均減速度変化パターンPattnormave(J)(J:任意の自然数)に基づいて実行される自動制動制御の実行方法について説明する。本装置は、上記自動制動制御開始条件が成立すると、現在走行している停止位置接近経路Jに応じた運転者にとって違和感のない適切な減速度変化パターン(具体的には、図10(c)にグラフにて示す最終要求減速度変化パターンPattfin(x))を作製する。この適切な減速度変化パターンを作製するためには、後述するように、基準平均減速度変化パターンPattnormave(J)を、自動制動制御開始時点での車両の速度(即ち、後述する推定車体速度Vso)、乗車人数N及び天候に応じて変換・補正する必要がある。
そこで、本装置は、先ず、図10(a)に示す停止位置接近経路Jに対応する基準平均減速度変化パターンPattnormnorm(J)をバックアップROM54から読み出す。次いで、本装置は、図10(b)に示す要求減速度変化パターンPattthを作製する。この要求減速度変化パターンPattthは、乗車人数Nが一人であって、且つ天候が晴れである場合であって、車両が停止位置接近経路Jを走行中において同車両の速度が推定車体速度Vsoとなっている状態から同一の運転者が一時停止するために制動操作を行った場合に発生するであろう同運転者にとって違和感のない適切な減速度変化パターンに相当する。
一般に、車両の速度が高くなるほど制動距離が長くなる。従って、自動制動制御開始時点での推定車体速度Vsoが高くなるほど自動制動制御に要求される制動距離(以下、「要求制動距離Lth」と称呼する。)を長くする必要がある(即ち、自動制動制御の開始タイミングを早めに設定する必要がある)。ここで、車両の速度が推定車体速度Vsoとなっている状態から車両の減速度を上述したバックアップRAM54内に記憶されている停止位置接近経路Jに対応する基準平均減速度Gave(J)に維持した状態で車両を減速・停止させたと仮定した場合における制動距離は「(1/2)・Gave(J)・(Vso/Gave(J))2」と表すことができる。本装置は、この値を要求制動距離Lthとして採用する。即ち、要求制動距離Lthは下記(2)式に従って求めることができる。
Lth=(1/2)・Gave(J)・(Vso/Gave(J))2 ・・・(2)
そして、本装置は、図10(a)に示す基準平均減速度変化パターンPattnormave(J)の形状を、割合(Lth/Lnorm)をもって距離軸の方向(横方向)に拡縮変換させることで得られる形状を要求減速度変化パターンPattthとして採用する。なお、このとき、減速度軸の方向(縦方向)については拡縮変換がなされない。この要求減速度変化パターンPattthにおける平均減速度も上記基準平均減速度Gave(J)となっている。
続いて、本装置は、図10(c)に示す最終要求減速度変化パターンPattfinを作製する。この最終要求減速度変化パターンPattfinは、自動制動制御開始時点での推定車体速度Vsoが考慮されている上記要求減速度変化パターンPattthに対して、更に、自動制動制御開始時点での乗車人数N、及び天候が考慮されることで得られる、現在走行している停止位置接近経路Jに応じた運転者にとって違和感のない適切な減速度変化パターンに相当する。
先に述べたように、車両の総質量が大きくなるほど(従って、乗車人数Nが大きくなるほど)、或いは、天候が雨である場合、天候が晴れである場合に比して、運転者にとって違和感のない適切な減速度変化パターンは、その減速度が小さくなるとともにその制動距離が長くなる傾向がある。このため、本装置は、自動制動制御開始時点での乗車人数N、及び天候に基づいて、要求減速度変化パターンPattthの形状を最終要求減速度変化パターンPattfin(x)の形状に補正するための値である上述した最終補正係数KLに相当する最終補正係数KLth(≧1)を求める。
そして、本装置は、値「Lth・KLth」を最終要求制動距離として採用するとともに、図10(b)に示す要求減速度変化パターンPattthの形状を、割合KLthをもって距離軸の方向(横方向)に拡大変換させ、且つ、割合(1/KLth)をもって減速度軸の方向(縦方向)に縮小変換することで得られる形状を最終要求減速度変化パターンPattfin(x)として採用する。ここで、xは自動制動制御開始後の走行距離である。
係る最終要求減速度変化パターンPattfin(x)が自動制動制御において実際に使用される。これにより、乗車人数Nが大きくなるほど(従って、車両の総質量が大きくなるほど)、或いは、天候が雨である場合(天候が晴れである場合に比して)、最終要求制動距離Lth・KLthが大きめに設定される(即ち、自動制動制御の開始タイミングが早めに設定される)とともに自動制動制御中の減速度(平均減速度)が小さめに設定されることになる。
<自動制動制御による制動力の付与>
本装置は、自動制動制御が実行されていない場合、停止位置接近経路Jを逐次特定するとともに、上述した要求制動距離Lth、及び上述した最終補正係数KLthを逐次計算している。そして、先に述べたように、本装置は、上記自動制動制御開始条件が成立すると、運転者によるブレーキペダルBPの操作の有無にかかわらず自動制動制御を開始する。
このとき、本装置は、自動制動制御開始時点での要求制動距離Lth及び最終補正係数KLthと、基準平均減速度変化パターンPattnormave(J)と、に基づいて、上述した手法により最終要求減速度変化パターンPattfin(x)を作製する。
自動制動制御が開始されると、本装置は、常開リニア電磁弁PCf,PCrへの指令電流Idf,Idrを制御することで、自動制動制御開始後走行距離xの増大に伴って車両の実際の減速度Gactが上記作製した最終要求減速度変化パターンPattfin(x)に追従していくようにホイールシリンダ圧(従って、制動力)を強制的に制御していく。
この間、運転者がブレーキペダルBPを操作することにより、車両の実際の減速度Gactが最終要求減速度変化パターンPattfin(x)を上回る場合、本装置は、常開リニア電磁弁PCf,PCrへの通電を停止して同常開リニア電磁弁PCf,PCrを開弁状態に維持する。これにより、ブレーキペダルBPの操作力に応じたブレーキ液圧(即ち、マスタシリンダ圧)がホイールシリンダに供給されるようになり、運転者の意思が優先される。
本装置は、係る自動制動制御を車両が停止するまで継続して実行する。この結果、車両は少なくとも一時停止するべき地点よりも手前の地点で停止することになる。以上が、本発明による自動制動制御の概要である。
(実際の作動)
次に、以上のように構成された本発明の実施形態に係る自動制動制御装置を含む車両の運動制御装置10の実際の作動について、電気式制御装置50のCPU51が実行するルーチンをフローチャートにより示した図11〜図17を参照しながら説明する。
CPU51は、図11に示した車輪速度等の算出を行うルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1100から処理を開始し、ステップ1105に進んで、車輪**の車輪速度(車輪**の外周の速度)Vw**をそれぞれ算出する。具体的には、CPU51は車輪速度センサ41**の出力値の変動周波数に基づいて車輪速度Vw**をそれぞれ算出する。
なお、各種変数等の末尾に付された「**」は、同各種変数等が各車輪FR等のいずれに関するものであるかを示すために同各種変数等の末尾に付される「fl」,「fr」等の包括表記であって、例えば、車輪速度Vw**は、左前輪車輪速度Vwfl,
右前輪車輪速度Vwfr, 左後輪車輪速度Vwrl, 右後輪車輪速度Vwrrを包括的に示している。
次いで、CPU51はステップ1110に進み、前記車輪速度Vw**のうちの最大値を推定車体速度Vsoとして算出する。なお、車輪速度Vw**の平均値を推定車体速度Vsoとして算出してもよい。次に、CPU51はステップ1115に進み、下記(3)式に従って、現時点での車両の実際の減速度Gactを算出する。
Gact=(Vsob−Vso)/Δt ・・・(3)
上記(3)式において、Vsoは先のステップ1110にて計算されている最新値である。Vsobは前回の本ルーチン実行時にて後述するステップ1120にて計算されている前回の推定車体速度である。Δtは本ルーチンの実行周期である。
そして、CPU51はステップ1120に進んで、ステップ1110にて今回計算した推定車体速度Vsoの値を前回の推定車体速度Vsobとして設定した後、ステップ1195に進んで本ルーチンを一旦終了する。以降も、CPU51は本ルーチンを繰り返し実行する。
次に、学習開始判定における作動について説明すると、CPU51は、図12に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1200から処理を開始し、ステップ1205に進んで、学習モードSW46がON状態となっていて、且つ学習フラグLEARNの値が「0」になっているか否かを判定し、「No」と判定する場合、ステップ1295に直ちに進んで本ルーチンを一旦終了する。ここで、学習フラグLEARNは、その値が「1」のとき減速度変化パターンを取得中であることを示し、その値が「0」のとき同減速度変化パターンを取得中でないことを示す。
いま、車両が停止位置接近経路I上を走行中において上記減速度変化パターン記憶条件が成立したものとすると(即ち、学習モードSW46がON状態であって、現在地・一時停止地点間距離Lが前記基準距離Lref未満となっていて、且つ、運転者によりブレーキペダルBPの操作が行われたものとすると)、CPU51はステップ1205にて「Yes」と判定してステップ1210に進み、ナビゲーション装置60より現時点での上記現在地・一時停止地点間距離Lを取得する。
次に、CPU51はステップ1215に進み、上記取得した現在地・一時停止地点間距離Lが基準距離Lref未満となっているか否かを判定し、同ステップ1215にて「Yes」と判定し、続くステップ1220にてブレーキスイッチ42がON状態となっているか否かを判定し、ここでも「Yes」と判定してステップ1225に進む。
CPU51はステップ1225に進むと、学習フラグLEARNの値を「0」から「1」に変更し、続くステップ1230にて登録されている停止位置接近経路の中から現在走行している停止位置接近経路Iを特定する。続いて、CPU51はステップ1235に進み、各乗員検知センサ43の出力値に基づいて乗車人数Nを取得し、続くステップ1240にて、取得した乗車人数Nと、図8に示したテーブルMapKNとに基づいて現時点(即ち、サンプル値取得時点)での補正係数KNを取得する。なお、係るテーブルMapKNはROM52内に記憶されている。
次いで、CPU51はステップ1245に進んで、ワイパーSW44がON状態となっているか否かを判定し、「Yes」と判定する場合、ステップ1250に進んで上記取得された補正係数KNと上記補正係数KW(「1」より大きい定数)の積の値を最終補正係数KLとして設定してステップ1295に進んで本ルーチンを一旦終了する。一方、ステップ1245の判定にて「No」と判定する場合、CPU51はステップ1255に進んで上記取得された補正係数KNの値そのものを最終補正係数KLとして設定してステップ1295に進んで本ルーチンを一旦終了する。
以降、学習フラグLEARNの値が「1」になっている間に亘り、CPU51はステップ1205にて「No」と判定してステップ1295に直ちに進むようになる。このようにして、学習開始判定が行われる。
次に、学習の実行における作動について説明すると、CPU51は、図13に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1300から処理を開始し、ステップ1305に進んで学習フラグLEARNの値が「1」となっているか否かを判定する。
いま、先のステップ1225の実行により学習フラグLEARNの値が「0」から「1」に変化した直後であるものとすると、CPU51はステップ1305にて「Yes」と判定してステップ1310に進み、フラグLEARNの値が「0」から「1」に変化したか否かを判定し、ここでも「Yes」と判定してステップ1315に進む。
CPU51はステップ1315に進むと、先のステップ1115にて計算されている現時点(即ち、減速度変化パターン記憶条件成立時点、サンプル値取得開始時点)での実際の減速度Gactの値をサンプル値G(I,0)として格納する。値Iは先のステップ1230の処理にて特定された値である。続いて、CPU51はステップ1320に進んで、走行距離Zの値を「0」にクリアするとともに、続くステップ1325にて減速度のサンプル数を表すカウンタMの値を「0」にクリアする。走行距離Zについては後述する。
続いて、CPU51はステップ1330に進み、走行距離Zが前記微小距離ΔL以上となっているか否かを判定する。現時点では、走行距離Zは「0」であるからCPU51はステップ1330にて「No」と判定してステップ1350に進み、その時点での走行距離Zの値に、先のステップ1110にて計算されているその時点での推定車体速度Vsoに本ルーチンの実行周期Δtを乗じた値(即ち、本ルーチンの一実行周期中に車両が走行した距離)を加えた値を新たな走行距離Zとして設定する。
次いで、CPU51はステップ1355に進み、上記推定車体速度Vsoが「0」であるか否か(即ち、車両が停止したか否か)を判定する。現時点では、運転者によりブレーキペダルBPの操作が行われた直後であるからCPU51はステップ1355にて「No」と判定してステップ1395に進んで本ルーチンを一旦終了する。
以降、走行距離Zが微小距離ΔL以上とならない限りにおいて、CPU51はステップ1300、1305、1310、1330、1350、1355の処理を繰り返し実行する。そして、走行距離Zが微小距離ΔL以上となると、CPU51はステップ1330に進んだとき「Yes」と判定してステップ1335に進むようになる。
CPU51はステップ1335に進むと、その時点でのカウンタMの値(現時点では、「0」である)を「1」だけ増大した値を新たなカウンタMとして設定し、続くステップ1340にて先のステップ1115にて計算されている現段階(即ち、減速度変化パターン記憶条件成立段階から微小距離ΔLだけ車両が走行した段階)での実際の減速度Gactの値をサンプル値G(I,M)(現時点では、G(I,1))として格納する。
続いて、CPU51はステップ1345に進んで、走行距離Zの値を再び「0」にクリアした後、上述したステップ1350以降の処理を実行する。即ち、走行距離Zは、減速度変化パターン記憶条件成立段階から微小距離ΔLだけ車両が走行する毎に「0」にクリアされる走行距離である。以上、係る処理を繰り返していくことにより、車両が減速度変化パターン記憶条件成立段階から微小距離ΔLだけ走行する毎に、同車両の実際の減速度Gactの値がサンプル値(G(I,1),G(I,2),・・・)として順次取得されていく。
そして、所定時間が経過して車両が停止すると、CPU51はステップ1355に進んだとき「Yes」と判定してステップ1360に進むようになり、学習フラグLEARNの値を「1」から「0」に変更し、続くステップ1365にてバックアップRAM54に記憶されている変化パターン取得回数REPEAT(I)の値を「1」だけ増大した後、ステップ1395に進んで本ルーチンを一旦終了する。なお、この変化パターン取得回数REPEAT(I)の初期値は総て「0」になっている。
以降、CPU51はステップ1305に進んだとき「No」と判定してステップ1395に直ちに進んで本ルーチンを一旦終了するようになる。これにより、今回の減速度のサンプル値((M+1)個のサンプル値G(I,0)〜G(I,M))の取得処理が終了する。また、CPU51は所定時間の経過毎に繰り返し実行している図12のルーチンのステップ1205に進んだとき、学習モードSW46がON状態になっていることを条件に「Yes」と判定するようになり、これにより、減速度変化パターン記憶条件が成立しているか否かを再びモニタするようになる。
次に、基準平均減速度変化パターンの作製における作動について説明すると、CPU51は、図14に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1400から処理を開始し、ステップ1405に進んで学習フラグLEARNの値が「1」から「0」に変化したか否かを判定し、「No」と判定する場合、ステップ1495に直ちに進んで本ルーチンを一旦終了する。
いま、先のステップ1360の実行により学習フラグLEARNの値が「1」から「0」に変化した直後であるものとすると、CPU51はステップ1405にて「Yes」と判定してステップ1410に進み、上記今回取得された(M+1)個のサンプル値G(I,0)〜G(I,M)に基づいて学習減速度変化パターンPattlrn(I)を作製するとともに、同作製した学習減速度変化パターンPattlrn(I)をRAM53の所定領域に記憶する。
続いて、CPU51はステップ1415に進んで、先のステップ1250、或いはステップ1255にて計算されている最新の最終補正係数KLの値に基づいて、上記作製したRAM53内に記憶されている学習減速度変化パターンPattlrn(I)を補正して補正減速度変化パターンPattmod(I)を作製するとともに、同作製した補正減速度変化パターンPattmod(I)をRAM53の所定領域に記憶する。
次いで、CPU51はステップ1420に進み、上記作製したRAM53内に記憶されている補正減速度変化パターンPattmod(I)を正規化して基準減速度変化パターンPattnorm(I)を作製し、続くステップ1425にて停止位置接近経路Iに対応する変化パターン取得回数REPEAT(I)の値が「1」であるか否かを判定する。
ステップ1425の判定において「Yes」と判定する場合、CPU51はステップ1430に進んで、上記作製した基準減速度変化パターンPattnorm(I)をそのまま基準平均減速度変化パターンPattnormave(I)としてバックアップRAM54の所定領域に停止位置接近経路Iに対応させる形で記憶する。一方、ステップ1425の判定において「No」と判定する場合、CPU51はステップ1435に進み、上記作製した基準減速度変化パターンPattnorm(I)と、バックアップRAM54に記憶されている基準平均減速度変化パターンPattnormave(I)とを平均化して新たな基準平均減速度変化パターンPattnormave(I)を作製し、同作製した新たな基準平均減速度変化パターンPattnormave(I)をバックアップRAM54の所定領域に停止位置接近経路Iに対応させる形で記憶する。
そして、CPU51はステップ1440に進んで、上記記憶されている基準平均減速度変化パターンPattnormave(I)における平均減速度を基準平均減速度Gave(I)として算出・更新し、同更新した基準平均減速度Gave(I)の値をバックアップRAM54の所定領域に停止位置接近経路Iに対応させる形で記憶した後、ステップ1495に進んで本ルーチンを一旦終了する。
以降、CPU51は、次回の減速度の記憶・学習処理が実行されるまでの間(即ち、先のステップ1360の処理が再び実行されるまでの間)、ステップ1405にて「No」と判定してステップ1495に直ちに進んで本ルーチンを一旦終了するようになる。このように、基準平均減速度変化パターンPattnormave(I)、基準平均減速度Gave(I)の値、及び変化パターン取得回数REPEAT(I)の値は、車両が停止位置接近経路Iを走行中において上記減速度変化パターン記憶条件が成立する毎に更新されていく。
また、CPU51は、図15に示した自動制動制御開始判定を行うルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1500から処理を開始し、ステップ1505に進んで、自動制動モードSW45がON状態となっていて、且つ自動制動制御実行中フラグCONTの値が「0」になっているか否かを判定し、「No」と判定する場合、ステップ1595に直ちに進んで本ルーチンを一旦終了する。ここで、自動制動制御実行中フラグCONTは、その値が「1」のとき自動制動制御が実行されていることを示し、その値が「0」のとき自動制動制御が実行されていないことを示す。また、学習モードSW46も自動制動モードSW45も共にON状態となっている場合には、自動制動モードSW45が優先される。
いま、運転者が、上述した減速度変化パターンの記憶・学習処理を完了したと判断して学習モードSW46をOFF状態に変更するとともに、自動制動モードSW45をON状態にしたとし、且つ自動制動制御が実行されていないものとして説明を続けると、自動制動制御実行中フラグCONTの値が「0」になっているから、CPU51はステップ1505にて「Yes」と判定してステップ1510に進み、ナビゲーション装置60より現時点での上記現在地・一時停止地点間距離Lを取得する。
次に、CPU51はステップ1515に進んで、登録されている停止位置接近経路の中から現在走行している停止位置接近経路Jを特定し、続くステップ1520にて停止位置接近経路Jに対応する変化パターン取得回数REPEAT(J)の値が「0」となっているか否か(即ち、停止位置接近経路Jについては減速度の変化パターンの記憶・学習処理が未だ実行されていないか否か)を判定し、「Yes」と判定する場合、ステップ1595に直ちに進んで本ルーチンを一旦終了する。
いま、変化パターン取得回数REPEAT(J)の値が「1」以上になっているものとすると、CPU51はステップ1520にて「No」と判定してステップ1525に進み、先のステップ1110にて計算されている最新の推定車体速度Vsoと、バックアップRAM54に記憶されている基準平均減速度Gave(J)と、上記(2)式とに基づいて現時点での要求制動距離Lthを求める。
続いて、CPU51は上述した図12のステップ1235〜1255の処理と同様の処理であるステップ1530〜1550を実行して上記最終補正係数KLに相当する最終補正係数KLthを求める。
そして、CPU51はステップ1555に進み、ステップ1510にて取得されている現時点での現在地・一時停止地点間距離Lが、ステップ1525にて求められている現時点での要求制動距離Lthとステップ1545或いはステップ1550にて設定されている最終補正係数KLthの積である最終要求制動距離Lth・KLth以下となっているか否かを判定する(即ち、自動制動制御開始条件が成立しているか否かを判定する)。
いま、現時点での現在地・一時停止地点間距離Lが最終要求制動距離Lth・KLthより大きいものとして説明を続けると、CPU51はステップ1555にて「No」と判定してステップ1595に直ちに進んで本ルーチンを一旦終了する。以降、CPU51は、ステップ1510にて逐次更新されている現時点での現在地・一時停止地点間距離Lがステップ1545、或いは1550にて逐次更新されている最終要求制動距離Lth・KLth以下となるまでの間、ステップ1500〜1555、1595の一連の処理を繰り返し実行する。
次に、この状態から、車両が停止位置接近経路J上を走行していて対応する一時停止するべき地点に接近することにより、現時点での現在地・一時停止地点間距離Lが最終要求制動距離Lth・KLth以下となったものとすると、CPU51はステップ1555に進んだとき「Yes」と判定してステップ1560に進むようになり、同ステップ1560にて自動制動制御実行中フラグCONTの値を「0」から「1」に変更し、ステップ1595に進んで本ルーチンを一旦終了する。
以降、自動制動制御実行中フラグCONTの値が「1」になっているから、CPU51はステップ1505にて「No」と判定してステップ1595に直ちに進んで本ルーチンを一旦終了するようになる。このように、自動制動制御が実行されていない間、現在地・一時停止地点間距離Lと最終要求制動距離Lth・KLthが逐次更新されていくとともに、両者の比較結果に基づいて自動制動制御開始条件が成立したか否かが判定される。
次に、最終要求減速度変化パターンの作製についての実際の作動について説明する。CPU51は、図16に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1600から処理を開始し、ステップ1605に進んで自動制動制御実行中フラグCONTの値が「0」から「1」に変更されたか否か(即ち、現時点が自動制動制御開始時点であるか否か)を判定し、「No」と判定する場合、ステップ1695に直ちに進んで本ルーチンを一旦終了する。
いま、現時点が自動制動制御開始時点であって先のステップ1560の処理が実行された直後であるものとすると、自動制動制御実行中フラグCONTの値が「0」から「1」に変更された直後であるから、CPU51はステップ1605にて「Yes」と判定してステップ1610に進み、先のステップ1525にて計算されている最新の要求制動距離Lthの値に基づいてROM52内に記憶されている基準平均減速度変化パターンPattnormave(J)を変換して要求減速度変化パターンPattthを作製するとともに、同作製した要求減速度変化パターンPattthをRAM53の所定領域に記憶する。ここで、値Jは先のステップ1515にて特定された値である。
続いて、CPU51はステップ1615に進んで、先のステップ1545、或いはステップ1550にて計算されている最新の最終補正係数KLthの値に基づいて、上記作製したRAM53内に記憶されている要求減速度変化パターンPattthを補正して最終要求減速度変化パターンPattfin(x)を作製するとともに、同作製した最終要求減速度変化パターンPattfin(x)をRAM53の所定領域に記憶した後、ステップ1695に進んで本ルーチンを一旦終了する。
以降、CPU51は、次に、自動制動制御開始条件が成立するまでの間(即ち、先のステップ1560の処理が実行されるまでの間)、ステップ1605にて「No」と判定してステップ1695に直ちに進んで本ルーチンを一旦終了するようになる。このように、最終要求減速度変化パターンPattfinは、自動制動制御開始条件が成立する毎に更新される。
次に、自動制動制御の実行についての実際の作動について説明する。CPU51は、図17に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1700から処理を開始し、ステップ1705に進んで自動制動制御実行中フラグCONTの値が「1」になっているか否か(即ち、自動制動制御が実行中であるか否か)を判定し、「No」と判定する場合、ステップ1780に進んで、常開リニア電磁弁PCf,PCrを非励磁状態に維持するとともにモータMTを停止状態に維持した後、ステップ1795に直ちに進んで本ルーチンを一旦終了する。即ち、ステップ1780の処理は自動制動制御を実行しない場合に対応する処理である。
いま、現時点が自動制動制御開始時点であって先のステップ1560の処理が実行された直後であるものとすると、自動制動制御実行中フラグCONTの値が「0」から「1」に変更された直後であるから、CPU51はステップ1705にて「Yes」と判定してステップ1710に進み、自動制動制御実行中フラグCONTの値が「0」から「1」に変更されたか否かを判定するとともに同ステップ1710でも「Yes」と判定してステップ1715に進む。
CPU51はステップ1715に進むと、自動制動制御を開始するための準備として、自動制動制御開始後走行距離xの値を「0」に初期化し、続くステップ1720にて常開リニア電磁弁PCf,PCrへの指令差圧ΔPdを「0」に初期化する。
続いて、CPU51はステップ1725に進んで、自動制動制御開始後走行距離x(現時点では「0」)と、先のステップ1615の処理にてRAM53の所定領域に記憶されている最新の最終要求減速度変化パターンPattfin(x)とからPattfin(x)の値を求め、同Pattfin(x)の値から先のステップ1115にて求められている現時点での車両の減速度Gactの値を減じた値を減速度偏差ΔGとして設定する。
次に、CPU51はステップ1730に進んで、その時点での指令差圧ΔPd(現時点では「0」)に、上記減速度偏差ΔGに所定の定数α(>0)を乗じた値を加えた値を新たな指令差圧ΔPdとして設定する。これにより、減速度偏差ΔGの値が正のとき(即ち、実際の減速度Gactが自動制動制御における要求値(Pattfin(x))に達していないとき)、指令差圧ΔPdが同減速度偏差ΔGに応じた分だけ増加せしめられる。一方、減速度偏差ΔGの値が負のとき(即ち、実際の減速度Gactが自動制動制御における要求値(Pattfin(x))を超えているとき)、指令差圧ΔPdが同減速度偏差ΔGの絶対値に応じた分だけ減少せしめられる。
続いて、CPU51はステップ1735に進み、上記新たな指令差圧ΔPdの値が正となっているか否かを判定し、「No」と判定する場合(即ち、ΔPd≦0のとき)、ステップ1755に進んで、指令差圧ΔPdの値を「0」にクリアし、続くステップ1760にて先に説明したステップ1780の処理と同様の処理を実行した後、ステップ1765に進む。
一方、ステップ1735の判定にて「Yes」と判定する場合、CPU51はステップ1740に進んで、現時点での指令差圧ΔPdの値(>0)と、図3に示したテーブルMapIdとに基づいて常開リニア電磁弁PCf,PCrへの指令電流Idf,Idr(=Idf)を設定する。続いて、CPU51はステップ1745に進んで、モータMT(従って、液圧ポンプHPf,HPr)を駆動するとともに、続くステップ1750にて常開リニア電磁弁PCf,PCrへの通電電流を上記設定された指令電流Idf,Idrとなるようにそれぞれデューティ制御した後、ステップ1765に進む。
CPU51はステップ1765に進むと、その時点での自動制動制御開始後走行距離xの値(現時点では「0」)に、現時点での推定車体速度VsoにΔtを乗じた値を加えた値を新たな自動制動制御開始後走行距離xとして更新する。ここで、Δtは本ルーチンの実行周期である。即ち、値
Vso・Δt は本ルーチンの一実行周期中に車両が走行した距離を表している。
そして、CPU51はステップ1770に進み、ステップ1110にて計算されている現時点での推定車体速度Vsoが「0」となっているか否か(即ち、車両が停止したか否か)を判定する。現時点は、自動制動制御が開始された直後であるから、車両が停止していない。従って、CPU51はステップ1770にて「No」と判定してステッ1795に直ちに進んで本ルーチンを一旦終了する。
以降、車両が停止しない限りにおいて、CPU51は、逐次更新されていく減速度偏差ΔGの値に応じて逐次変動していく指令差圧ΔPdの値が正となる場合、ステップ1700〜1710、1725〜1735、1740〜1750、1765、1770の処理を繰り返し実行する。これにより、減速度偏差ΔGが「0」に近づいていくように、即ち、車両の実際の減速度Gactが自動制動制御開始後走行距離xの更新により逐次更新されていくPattfin(x)の値に追従していくように、指令差圧ΔPd(>0)が逐次設定・変更されていく。この結果、運転者によるブレーキペダルBPの操作の有無にかかわらず、原則的に車両の実際の減速度GactがPattfin(x)の値に追従していくように、ホイールシリンダ内のブレーキ液圧が制御されていく。
一方、車両が停止しない限りにおいてこの状態から、指令差圧ΔPdの値が「0」、又は負となる場合、ステップ1700〜1710、1725〜1735、1755、1760、1765、1770の処理を繰り返し実行する。この場合は、自動制動制御中において運転者が、ブレーキペダルBPを強く操作することにより、車両の実際の減速度Gactを最終要求減速度変化パターンPattfin(x)を上回った状態で推移させる要求を行った場合に相当する。この場合、常開リニア電磁弁PCf,PCrが開弁状態に維持されるから、ブレーキペダルBPの操作力に応じたマスタシリンダ圧そのものがホイールシリンダに供給されるようになり、運転者の意思が優先される。
なお、この状態から運転者がブレーキペダルBPの操作を中止した場合、ステップ1725の処理にて減速度偏差ΔGが大きい正の値となるからステップ1730の処理にて指令差圧ΔPdが再び正の値となって、車両の実際の減速度GactがPattfin(x)の値に追従していくように、ホイールシリンダ内のブレーキ液圧が再び制御されていく。
そして、所定時間の経過後、車両が停止すると、CPU51はステップ1770に進んだとき「Yes」と判定してステップ1775に進み、自動制動制御実行中フラグCONTの値を「1」から「0」に変更する。これにより、以降、CPU51はステップ1705に進んだとき「No」と判定するようになり、この結果、自動制動制御が終了する。また、これにより、CPU51は図15のステップ1505に進んだとき再び「Yes」と判定するようになって、自動制動制御開始条件が成立しているか否かを再びモニタするようになる。
以上、説明したように、本発明の実施形態に係る車両の自動制動制御装置によれば、ナビゲーション装置60から逐次得られる上記現在地・一時停止地点間距離Lが最終要求制動距離 Lth・KLth 以下となったとき、運転者によるブレーキペダルBPの操作の有無にかかわらず自動制動制御が開始される。このとき、車両の実際の減速度Gact(制動力に応じた値)が追従していくべき、運転者にとって違和感のない適切な減速度変化パターン(即ち、最終要求減速度変化パターンPattfin(x))が作製される。
この最終要求減速度変化パターンPattfin(x)は、運転者による実際の制動操作に基づいて、停止位置接近経路毎に個別にバックアップRAM54に記憶・学習されている基準平均減速度変化パターンのうち車両が現在走行している停止位置接近経路Jに対応する基準平均減速度変化パターンPattnormave(J)に基づいて作製される。
これにより、車両が走行している停止位置接近経路にかかわらず同停止位置接近経路に応じた運転者にとって適切な減速度の変化パターンが発生し得るから、車両が走行している停止位置接近経路にかかわらず運転者に違和感を与えることがない自動制動制御を達成することができる。
本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態においては、記憶・学習される「制動力に応じた値の変化パターン」として、制動区間に亘る減速度Gactの逐次の推移(具体的には、(M+1)個のサンプル値G(I,0)〜G(I,M)に基づく基準平均減速度変化パターンPattnormave(I))を取得するようになっているが(図13のルーチンを参照)、「制動力に応じた値の変化パターン」として、制動距離、及び制動区間内における平均減速度を取得するように構成してもよい。ここで、平均減速度は、制動開始時点での車速を制動開始から車両停止までに要した時間で除することで取得することができる。
また、上記実施形態においては、新たに基準減速度変化パターンPattnorm(I)が取得される毎に、同新たに取得された基準減速度変化パターンPattnorm(I)とバックアップRAM54に記憶されている基準平均減速度変化パターンPattnormave(I)とを平均化して新たな基準平均減速度変化パターンPattnormave(I)を作製しているが(ステップ1435を参照)、学習モードSW46がON状態となっている間に亘って取得された総ての基準減速度変化パターンPattnorm(I)をバックアップRAM54(又はRAM53)に予め個々に記憶しておき、学習モードSW46がON状態からOFF状態に変更された時点で、記憶されている総ての基準減速度変化パターンPattnorm(I)を平均化して基準平均減速度変化パターンPattnormave(I)を作製するように構成してもよい。
また、上記実施形態においては、運転者による学習モードSW46、及び自動制動モードSW45の2つのスイッチの手動操作で、減速度変化パターンの記憶の許可・禁止、及び自動制動制御の許可・禁止をそれぞれ選択可能に構成されているが、一つの手動スイッチにより、学習モードと自動制動モードとを切換可能に構成してもよい。
また、車両の延べ走行距離が所定距離未満の場合に減速度変化パターンの記憶のみを許可し、車両の延べ走行距離が所定距離以上になると自動制動制御の実行のみを許可するような自動切換機構を設けてもよい。
また、上記実施形態においては、乗車人数Nと、天候に関連する情報とが、図12、或いは図15のルーチンが実行される毎に逐次取得され得るようになっているが、乗車人数Nと、天候に関連する情報とを、車両が発進した直後に1回だけ取得するとともにその後、車両が停止するまでの間に亘って取得しないように構成してもよい。
また、上記実施形態においては、前記「因子の状態」の一つとして車両の総質量に影響を与える値である乗車人数Nが選択されているが、車両の車高を検出する車高センサを設け、同車高センサの出力から得られる車高(特に、停止時における車高)に基づいて車両の総質量そのものを取得し、「因子の状態」の一つとして同取得された車両の総質量を選択するように構成してもよい。
また、上記実施形態においては、「制動力に応じた値」として車両の減速度が選択されているが、「制動力に応じた値」としてホイールシリンダ圧が選択されるように構成してもよい。
また、上記実施形態においては、自動制動制御の対象となる「一時停止するべき地点」として、一時停止が義務付けられている地点としての、一時停止の標識に対応して停止するべき地点、踏切に対応して停止するべき地点、深夜などにおいて赤色ランプが点滅している信号機に対応して停止するべき地点のみが登録されているが、運転者により個別に新規に登録された「一時停止するべき地点」等も自動制動制御の対象として加えることができるように構成してもよい。
また、上記実施形態においては、距離に対する「制動力に応じた値」(減速度)の変化パターンを記憶・学習し、同記憶・学習された距離に対する「制動力に応じた値」の変化パターンに基づいて自動制動制御中における「制動力に応じた値」を制御するように構成されているが、時間に対する「制動力に応じた値」(減速度)の変化パターンを記憶・学習し、同記憶・学習された時間に対する「制動力に応じた値」の変化パターンに基づいて自動制動制御中における「制動力に応じた値」を制御するように構成されてもよい。
また、上記実施形態においては、ブレーキ操作部材(ブレーキペダルBP)の操作力に応じて発生するマスタシリンダ圧がホイールシリンダ圧として直接伝達され得る構成(即ち、ブレーキ操作部材の操作力がブレーキ液圧を介して直接ホイールシリンダ圧として伝達され得る構成)を有するブレーキ液圧回路が使用されているが、ブレーキ操作部材とブレーキ液圧回路とが油圧回路として完全に分離されるとともに、ブレーキ操作部材の操作力を検知する操作力センサからの電気信号に基づいて同ブレーキ操作部材の操作力に応じたホイールシリンダ圧を発生させるブレーキ制御システム(所謂ブレーキ・バイ・ワイヤ・システム)を使用するように構成してもよい。
本発明の実施形態に係る車両の自動制動制御装置を含む車両の運動制御装置を搭載した車両の概略構成図である。 図1に示したブレーキ液圧制御部の概略構成図である。 図2に示した常開リニア電磁弁についての指令電流と指令差圧との関係を示したグラフである。 一時停止するべき地点(一時停止線)に向かう停止位置接近経路の例、及び停止位置接近経路に通し番号が付されている様子を示した概念図である。 運転者による制動操作が開始された地点から車両停止地点までの停止位置接近経路I上における制動区間内において、車両が所定の微小距離だけ走行する毎に車両の実際の減速度の値をサンプル値として順に取得した場合における同サンプル値の分布の一例を示したグラフである。 図5に示したサンプル値に基づいて作製された学習減速度変化パターンを示したグラフである。 図6に示した学習減速度変化パターンに基づいて作製された補正減速度変化パターンを示したグラフである。 図1に示したCPUが参照する、乗車人数と補正係数との関係を規定するテーブルを示したグラフである。 図7に示した補正減速度変化パターンに基づいて作製された基準減速度変化パターンを示したグラフである。 図10(a)は停止位置接近経路毎にバックアップRAMに記憶されている基準平均減速度変化パターンを、図10(b)は自動制動制御開始時点での車両の速度を考慮して同基準平均減速度変化パターンを変換した要求減速度変化パターンを、図10(c)は乗車人数と天候とを更に考慮して同要求減速度変化パターンを補正した最終要求減速度変化パターンを、それぞれ示したグラフである。 図1に示したCPUが実行する車輪速度等を算出するためのルーチンを示したフローチャートである。 図1に示したCPUが実行する学習開始判定を行うためのルーチンを示したフローチャートである。 図1に示したCPUが実行する学習を行うためのルーチンを示したフローチャートである。 図1に示したCPUが実行する基準平均減速度変化パターンを作製するためのルーチンを示したフローチャートである。 図1に示したCPUが実行する自動制動制御開始判定を行うためのルーチンを示したフローチャートである。 図1に示したCPUが実行する最終要求減速度変化パターンを作製するためのルーチンを示したフローチャートである。 図1に示したCPUが実行する自動制動制御を行うためのルーチンを示したフローチャートである。
符号の説明
10…車両の運動制御装置、30…ブレーキ液圧制御部、41**…車輪速度センサ、42…ブレーキスイッチ、43**…乗員検知センサ、44…ワイパースイッチ、45…自動制動モードスイッチ、46…学習モードスイッチ、50…電気式制御装置、51…CPU、52…ROM、53…RAM、54…バックアップRAM、PCf,PCr…常開リニア電磁弁、MT…モータ

Claims (7)

  1. 少なくとも車両の現在地と、一時停止するべき地点とに関する位置情報を取得する位置情報取得手段を備えた車両に適用されるとともに、
    前記車両を一時停止させるための制動力を同車両に強制的に付与する自動制動制御の実行を許可する自動制動制御許可モードと、同自動制動制御の実行を禁止する自動制動制御禁止モードの何れかを選択する選択手段と、
    前記自動制動制御禁止モードが選択されている場合、前記取得された位置情報により前記車両が前記一時停止するべき地点に向かう経路上を走行していて同一時停止するべき地点に接近していることが示される場合において運転者による制動操作が行われたとき、同制動操作に基づいて発生する制動力に応じた値の変化パターンを同一時停止するべき地点に向かう経路毎に個別に記憶する制動力対応値変化パターン記憶手段と、
    前記自動制動制御許可モードが選択されている場合、前記取得された位置情報により前記車両が前記一時停止するべき地点に向かう経路上を走行していて同一時停止するべき地点に接近していることが示されるとき、前記車両を一時停止させるための制動力を、同制動力に応じた値が前記記憶されている同車両が走行している経路に対応する変化パターンをもって発生するように同車両に強制的に付与する前記自動制動制御を実行する自動制動制御手段と、
    を備えた車両の自動制動制御装置。
  2. 請求項1に記載の車両の自動制動制御装置において、
    前記制動力対応値変化パターン記憶手段は、
    前記自動制動制御禁止モードが選択されている間において、前記車両が前記一時停止するべき地点に向かう同じ経路上を走行していて前記同じ一時停止するべき地点に接近していることが示されるとともに運転者による制動操作が行われる場合が複数回発生するとき、同制動操作に基づいて発生する前記制動力に応じた値の変化パターンを同制動操作毎に取得するとともに同取得された複数の変化パターンに基づいて得られる変化パターンを前記同じ経路に対応する変化パターンとして記憶するように構成された車両の自動制動制御装置。
  3. 請求項1又は請求項2に記載の車両の自動制動制御装置であって、
    前記制動力が付与された場合における前記車両の減速の程度に影響を与える因子の状態を取得する因子状態取得手段を更に備え、
    前記制動力対応値変化パターン記憶手段は、
    前記制動操作に基づいて発生する制動力に応じた値の変化パターンを前記取得された因子の状態に応じて補正することで得られる変化パターンを記憶するように構成された車両の自動制動制御装置。
  4. 請求項1又は請求項2に記載の車両の自動制動制御装置であって、
    前記制動力が付与された場合における前記車両の減速の程度に影響を与える因子の状態を取得する因子状態取得手段を更に備え、
    前記自動制動制御手段は、
    前記記憶されている前記車両が走行している経路に対応する変化パターンを前記取得された因子の状態に応じて補正することで得られる変化パターンをもって前記制動力に応じた値が発生するように、前記車両を一時停止させるための制動力を同車両に強制的に付与するように構成された車両の自動制動制御装置。
  5. 請求項3又は請求項4に記載の車両の自動制動制御装置において、
    前記因子状態取得手段は、
    前記因子の状態として、前記車両の総質量、又は同車両の総質量に影響を与える値を取得するように構成された車両の自動制動制御装置。
  6. 請求項3乃至請求項5の何れか一項に記載の車両の自動制動制御装置において、
    前記因子状態取得手段は、
    前記因子の状態として、前記車両が走行している地点の天候に関連する情報を取得するように構成された車両の自動制動制御装置。
  7. 請求項1乃至請求項6の何れか一項に記載の車両の自動制動制御装置において、
    前記自動制動制御手段は、
    運転者による制動操作に基づいて発生し得る前記制動力に応じた値が前記自動制動制御により発生する同制動力に応じた値よりも大きくなる場合、同自動制動制御により発生する同制動力に応じた値の代わりに同運転者による制動操作に基づいて発生し得る同制動力に応じた値を発生せしめるように構成された車両の自動制動制御装置。
JP2004112749A 2004-04-07 2004-04-07 車両の自動制動制御装置 Expired - Fee Related JP4517705B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112749A JP4517705B2 (ja) 2004-04-07 2004-04-07 車両の自動制動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112749A JP4517705B2 (ja) 2004-04-07 2004-04-07 車両の自動制動制御装置

Publications (2)

Publication Number Publication Date
JP2005297621A true JP2005297621A (ja) 2005-10-27
JP4517705B2 JP4517705B2 (ja) 2010-08-04

Family

ID=35329716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112749A Expired - Fee Related JP4517705B2 (ja) 2004-04-07 2004-04-07 車両の自動制動制御装置

Country Status (1)

Country Link
JP (1) JP4517705B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196487A (ja) * 2008-02-21 2009-09-03 Hitachi Ltd 車両の定点停止制御方法および装置
JP2010036627A (ja) * 2008-07-31 2010-02-18 Toyota Motor Corp ブレーキ制御装置
US8005602B2 (en) 2006-02-01 2011-08-23 Hitachi, Ltd. Vehicle speed control device, method of determining target speed by using the device, and program executing the method
WO2012105030A1 (ja) * 2011-02-03 2012-08-09 トヨタ自動車株式会社 車両制御装置
JP2013544697A (ja) * 2010-10-05 2013-12-19 グーグル・インク 自律走行車両の診断と修理
JP2015077863A (ja) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 運転支援装置
GB2539676A (en) * 2015-06-23 2016-12-28 Bentley Motors Ltd A method of controlling speed of a vehicle
US9836052B1 (en) 2014-08-29 2017-12-05 Waymo Llc Change detection using curve alignment
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
US9914452B1 (en) 2014-10-02 2018-03-13 Waymo Llc Predicting trajectories of objects based on contextual information
CN112298135A (zh) * 2020-10-30 2021-02-02 重庆长安汽车股份有限公司 一种车辆制动距离优化方法
US11318920B2 (en) 2020-02-28 2022-05-03 Bendix Commercial Vehicle Systems Llc Brake controller storing deceleration profiles and method using deceleration profiles stored in a brake controller
WO2022219681A1 (ja) 2021-04-12 2022-10-20 日産自動車株式会社 制動制御方法及び制動制御装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844126U (ja) * 1971-09-29 1973-06-08
JPH04351913A (ja) * 1991-05-30 1992-12-07 Mitsubishi Electric Corp 車載情報装置
JPH04368265A (ja) * 1991-06-14 1992-12-21 Akebono Brake Res & Dev Center Ltd 自動ブレーキ装置
JPH061221A (ja) * 1992-06-18 1994-01-11 Mazda Motor Corp 車両の自動制動装置
JPH0848224A (ja) * 1994-08-08 1996-02-20 Akebono Brake Ind Co Ltd 車両用停止維持装置
JPH1076922A (ja) * 1996-09-02 1998-03-24 Honda Motor Co Ltd 運転操作支援装置
JPH11157424A (ja) * 1997-11-28 1999-06-15 Toyota Motor Corp 制動制御装置
JPH11321597A (ja) * 1998-05-15 1999-11-24 Fujitsu Ten Ltd 車両走行制御装置および走行路
JP2000046574A (ja) * 1998-07-24 2000-02-18 Honda Motor Co Ltd 車両用ナビゲーション装置
JP2001001931A (ja) * 1999-06-22 2001-01-09 Honda Motor Co Ltd 車両の自動操舵装置
JP2001347936A (ja) * 2000-06-08 2001-12-18 Nissan Motor Co Ltd 制動制御装置
JP2002012134A (ja) * 2000-06-30 2002-01-15 Nissan Motor Co Ltd 車両用衝突防止装置
JP2002046586A (ja) * 2000-08-04 2002-02-12 Toyota Motor Corp 車輌用制動制御装置
JP2002059820A (ja) * 2000-08-18 2002-02-26 Nissan Motor Co Ltd 車両用衝突防止装置
JP2003040095A (ja) * 2001-07-31 2003-02-13 Hino Motors Ltd 連結車両の制動装置
JP2003532583A (ja) * 2000-05-02 2003-11-05 ボルボ アーティキュレイテッド ホーラーズ アーベー 車両の許容最高速度を決定するための装置及び方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844126U (ja) * 1971-09-29 1973-06-08
JPH04351913A (ja) * 1991-05-30 1992-12-07 Mitsubishi Electric Corp 車載情報装置
JPH04368265A (ja) * 1991-06-14 1992-12-21 Akebono Brake Res & Dev Center Ltd 自動ブレーキ装置
JPH061221A (ja) * 1992-06-18 1994-01-11 Mazda Motor Corp 車両の自動制動装置
JPH0848224A (ja) * 1994-08-08 1996-02-20 Akebono Brake Ind Co Ltd 車両用停止維持装置
JPH1076922A (ja) * 1996-09-02 1998-03-24 Honda Motor Co Ltd 運転操作支援装置
JPH11157424A (ja) * 1997-11-28 1999-06-15 Toyota Motor Corp 制動制御装置
JPH11321597A (ja) * 1998-05-15 1999-11-24 Fujitsu Ten Ltd 車両走行制御装置および走行路
JP2000046574A (ja) * 1998-07-24 2000-02-18 Honda Motor Co Ltd 車両用ナビゲーション装置
JP2001001931A (ja) * 1999-06-22 2001-01-09 Honda Motor Co Ltd 車両の自動操舵装置
JP2003532583A (ja) * 2000-05-02 2003-11-05 ボルボ アーティキュレイテッド ホーラーズ アーベー 車両の許容最高速度を決定するための装置及び方法
JP2001347936A (ja) * 2000-06-08 2001-12-18 Nissan Motor Co Ltd 制動制御装置
JP2002012134A (ja) * 2000-06-30 2002-01-15 Nissan Motor Co Ltd 車両用衝突防止装置
JP2002046586A (ja) * 2000-08-04 2002-02-12 Toyota Motor Corp 車輌用制動制御装置
JP2002059820A (ja) * 2000-08-18 2002-02-26 Nissan Motor Co Ltd 車両用衝突防止装置
JP2003040095A (ja) * 2001-07-31 2003-02-13 Hino Motors Ltd 連結車両の制動装置

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8005602B2 (en) 2006-02-01 2011-08-23 Hitachi, Ltd. Vehicle speed control device, method of determining target speed by using the device, and program executing the method
JP2009196487A (ja) * 2008-02-21 2009-09-03 Hitachi Ltd 車両の定点停止制御方法および装置
JP2010036627A (ja) * 2008-07-31 2010-02-18 Toyota Motor Corp ブレーキ制御装置
US11106893B1 (en) 2010-10-05 2021-08-31 Waymo Llc System and method for evaluating the perception system of an autonomous vehicle
US9911030B1 (en) 2010-10-05 2018-03-06 Waymo Llc System and method for evaluating the perception system of an autonomous vehicle
US11747809B1 (en) 2010-10-05 2023-09-05 Waymo Llc System and method for evaluating the perception system of an autonomous vehicle
US10572717B1 (en) 2010-10-05 2020-02-25 Waymo Llc System and method for evaluating the perception system of an autonomous vehicle
US11720101B1 (en) 2010-10-05 2023-08-08 Waymo Llc Systems and methods for vehicles with limited destination ability
US11287817B1 (en) 2010-10-05 2022-03-29 Waymo Llc System and method of providing recommendations to users of vehicles
US11010998B1 (en) 2010-10-05 2021-05-18 Waymo Llc Systems and methods for vehicles with limited destination ability
JP2013544697A (ja) * 2010-10-05 2013-12-19 グーグル・インク 自律走行車両の診断と修理
US9658620B1 (en) 2010-10-05 2017-05-23 Waymo Llc System and method of providing recommendations to users of vehicles
US10372129B1 (en) 2010-10-05 2019-08-06 Waymo Llc System and method of providing recommendations to users of vehicles
US10198619B1 (en) 2010-10-05 2019-02-05 Waymo Llc System and method for evaluating the perception system of an autonomous vehicle
JPWO2012105030A1 (ja) * 2011-02-03 2014-07-03 トヨタ自動車株式会社 車両制御装置
WO2012105030A1 (ja) * 2011-02-03 2012-08-09 トヨタ自動車株式会社 車両制御装置
EP2671768A4 (en) * 2011-02-03 2018-04-25 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
JP5569602B2 (ja) * 2011-02-03 2014-08-13 トヨタ自動車株式会社 車両制御装置
US8977435B2 (en) 2011-02-03 2015-03-10 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
CN103380033A (zh) * 2011-02-03 2013-10-30 丰田自动车株式会社 车辆控制装置
JP2015077863A (ja) * 2013-10-16 2015-04-23 トヨタ自動車株式会社 運転支援装置
US11829138B1 (en) 2014-08-29 2023-11-28 Waymo Llc Change detection using curve alignment
US11327493B1 (en) 2014-08-29 2022-05-10 Waymo Llc Change detection using curve alignment
US9836052B1 (en) 2014-08-29 2017-12-05 Waymo Llc Change detection using curve alignment
US10627816B1 (en) 2014-08-29 2020-04-21 Waymo Llc Change detection using curve alignment
US10899345B1 (en) 2014-10-02 2021-01-26 Waymo Llc Predicting trajectories of objects based on contextual information
US9914452B1 (en) 2014-10-02 2018-03-13 Waymo Llc Predicting trajectories of objects based on contextual information
US12090997B1 (en) 2014-10-02 2024-09-17 Waymo Llc Predicting trajectories of objects based on contextual information
US10421453B1 (en) 2014-10-02 2019-09-24 Waymo Llc Predicting trajectories of objects based on contextual information
GB2539676B (en) * 2015-06-23 2020-11-25 Bentley Motors Ltd A method of controlling speed of a vehicle
US10640112B2 (en) 2015-06-23 2020-05-05 Bentley Motors Limited Method of controlling speed of a vehicle
GB2539676A (en) * 2015-06-23 2016-12-28 Bentley Motors Ltd A method of controlling speed of a vehicle
JP2018016248A (ja) * 2016-07-29 2018-02-01 日産自動車株式会社 制動制御方法及び制動制御装置
US11318920B2 (en) 2020-02-28 2022-05-03 Bendix Commercial Vehicle Systems Llc Brake controller storing deceleration profiles and method using deceleration profiles stored in a brake controller
CN112298135B (zh) * 2020-10-30 2022-07-08 重庆长安汽车股份有限公司 一种车辆制动距离优化方法
CN112298135A (zh) * 2020-10-30 2021-02-02 重庆长安汽车股份有限公司 一种车辆制动距离优化方法
WO2022219681A1 (ja) 2021-04-12 2022-10-20 日産自動車株式会社 制動制御方法及び制動制御装置
EP4324712A4 (en) * 2021-04-12 2024-06-12 Nissan Motor Co., Ltd. BRAKE CONTROL METHOD AND BRAKE CONTROL DEVICE
US12084023B2 (en) 2021-04-12 2024-09-10 Nissan Motor Co., Ltd. Braking control method and braking control device

Also Published As

Publication number Publication date
JP4517705B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4517705B2 (ja) 車両の自動制動制御装置
US7587267B2 (en) Vehicle speed control apparatus
JP4547793B2 (ja) 車両の運動制御装置
US7252346B2 (en) Braking force control apparatus and method for automotive vehicle
JP4882302B2 (ja) 駐車支援制御装置および駐車支援制御システム
US8002364B2 (en) Control unit of brake apparatus for vehicle
JP4470592B2 (ja) 駐車補助制御装置
JP5047822B2 (ja) 車両の車体速度演算装置
JP4432465B2 (ja) 車両用旋回走行制御装置
JP4615899B2 (ja) 車両用旋回走行制御装置
US8544966B2 (en) Brake controller for vehicle and brake control method for vehicle
US20070024114A1 (en) Method of braking force distribution and braking force control system for vehicle
EP1504974B1 (en) Brake hydraulic pressure control apparatus for vehicle
JP2005145143A (ja) 車両用旋回走行制御装置
JP4474971B2 (ja) 車両の自動制動制御装置
JP2017065451A (ja) 車両の制動制御装置
JP2004352163A (ja) ポンプ駆動用モータの制御装置
JP4539198B2 (ja) 車両の運動状態推定装置、及び車両の運動制御装置
JP4254496B2 (ja) 車両用旋回走行制御装置
JP4449501B2 (ja) 車両のブレーキ液圧制御装置
JP5025339B2 (ja) アンダーステア状態での車両減速制御装置
JPH07125562A (ja) 車間距離制御装置
JP3275666B2 (ja) 車輌の挙動制御装置
JP4552313B2 (ja) 車両の運動制御装置
JP2001247024A (ja) ブレーキ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees