JP2005288672A - 微小構造体の製造方法及び製造装置 - Google Patents

微小構造体の製造方法及び製造装置 Download PDF

Info

Publication number
JP2005288672A
JP2005288672A JP2004111768A JP2004111768A JP2005288672A JP 2005288672 A JP2005288672 A JP 2005288672A JP 2004111768 A JP2004111768 A JP 2004111768A JP 2004111768 A JP2004111768 A JP 2004111768A JP 2005288672 A JP2005288672 A JP 2005288672A
Authority
JP
Japan
Prior art keywords
pressure contact
manufacturing
microstructure
pressed
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004111768A
Other languages
English (en)
Inventor
Takeshi Tsuno
武志 津野
Takayuki Goto
崇之 後藤
Satoshi Tawara
諭 田原
Masahito Kinouchi
雅人 木ノ内
Noburo Goto
信朗 後藤
Shin Asano
伸 浅野
Osamu Hasegawa
修 長谷川
Takayuki Yamada
高幸 山田
Mutsuya Takahashi
睦也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004111768A priority Critical patent/JP2005288672A/ja
Priority to EP05101102A priority patent/EP1602626A3/en
Priority to US11/060,788 priority patent/US20050233064A1/en
Priority to TW094105249A priority patent/TWI286533B/zh
Priority to KR1020050015609A priority patent/KR100688393B1/ko
Priority to CNB2005100528047A priority patent/CN100333992C/zh
Publication of JP2005288672A publication Critical patent/JP2005288672A/ja
Priority to US11/779,805 priority patent/US20070256774A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • G07F19/205Housing aspects of ATMs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/008Aspects related to assembling from individually processed components, not covered by groups B81C3/001 - B81C3/002
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D2211/00Paper-money handling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】 高い形状精度を有する微小構造体の製造方法及び製造装置を提供する。
【解決手段】 所定の位置決め精度を有し、大ストローク長の粗動ステージ51上に、粗動ステージ51より高精度の位置決め精度を有し、小ストローク長の微動ステージ52を設置する。まず、粗動ステージ51を所望の位置へ移動する。レーザ測長器64と微動ステージ52上に配置されたミラー55とを用いて、微動ステージ52上の薄膜部材25の現在の位置を高精度に測定する。レーザ測長器64の測定値をステージ制御装置61にフィードバックし、誤差補正部63にて現在の位置と目標位置との差分を算出して、誤差補正指令値を生成し、誤差補正指令値により微動ステージ52を目標位置へ移動して、粗動ステージ51の誤差を補正する。
【選択図】 図3

Description

本発明は、薄膜部材を積層することで形成される微小構造体の製造方法及び製造装置に関する。
近年の微細加工技術の発展にともない、3次元形状の微小構造体を作製する製造方法が多く開発されており、中でも、常温接合法を用いて、基板上に転写、積層する積層造形方法が注目されている。これは、半導体の製造プロセスを用いて、微小構造体の積層方向の各断面形状を薄膜部材として基板上に一括形成し、各断面形状、即ち、各薄膜部材を基板上から剥離すると共に常温接合法を用いて接合し、この剥離、接合を繰り返すことで、薄膜部材を転写、積層して、3次元形状の微小構造体を製造する方法である(特許文献1参照)。
ここで、常温接合法とは、真空中でイオンビーム等の照射により、材料表面の酸化物や不純物等が除去されると、清浄な原子面同士の材料表面が室温においても化学結合する現象を利用した接合方法である。この常温接合法によれば、接着剤を用いることなく、材料のバルクと同等の結合の強さを得ることができる。
特許第3161362号公報(第7−9頁、第6−9図)
上記積層造形方法において、微小構造体の形状精度の向上を図ると共に、積層方向の各断面形状となる薄膜部材の積層数を増加させることは、今後の大きな課題であり、具体的な対応技術が求められている。具体的には、上記積層造形方法により作製された微小構造体においては、積層方向の各薄膜部材の位置精度は、積層時の各薄膜部材間の位置決め精度により決定され、これは、積層される薄膜部材の接合面に平行な平面内を移動し、薄膜部材の位置合わせを行なうステージの位置決め精度に大きく影響される。従って、薄膜部材の位置決めを行なうステージとしては、nmオーダーの高精度の位置決め精度が要求される。
一方、微小構造体の積層方向の各断面形状を構成する薄膜部材は、例えば基板等の上に平面配置されるものであり、多層積層あるいは多品種、大量生産を行なうためには、薄膜部材が配置される配置面積が大きくなることから、その配置面積の大きさに応じて、ステージの必要移動量も大きくなる、従って、位置決めを行なうステージとしては、大きいストロークの移動性能が要求される。
つまり、上記積層造形方法においては、薄膜部材の位置合わせを行なうステージが、薄膜部材の接合面に平行な平面において、高精度の位置決め精度を有すると共に、大ストロークの移動性能を備える必要がある。更に、上記積層造形方法は、高真空中で行われるため、ステージは高真空対応である必要が有り、加えて、各薄膜部材の接合時に所定の圧接力にて圧接するため、高い耐荷重性も求められる。例えば、具体的な要求仕様としては、位置決め精度としてnmレベルの高精度性、移動ストロークとして数10mm〜数100mmのストローク、真空度として10-6Pa程度の高真空性、耐荷重として数ton程度の高耐荷重性の全てを満たす性能が、ステージに要求される。
現在、高精度の位置精度を有するステージとしては、以下に示すものが存在するが、上記積層造形方法に適用するためには、各々以下に示す問題点を有している。
1)リニアモータ駆動方式
位置決め精度を得るためには、エアスライドガイドを用いる必要があり、接合雰囲気である真空中では利用不可能。
2)超音波モータ駆動方式
推力(許容搭載重量)が小さい。又、摩擦駆動部に摩耗を生じ、接合雰囲気の汚染源となる。
3)圧電素子/インチワーム駆動方式
ストロークが小さい。又、移動速度が低い。
つまり、現実的には、高精度、大ストロークであり、かつ、高真空対応、高耐荷重の仕様を満たし、簡便に適用可能な位置決めステージは存在しなかった。
本発明は上記課題に鑑みなされたもので、高い形状精度を有する微小構造体の製造方法及び製造装置を提供することを目的とする。
上記課題を解決する本発明の請求項1に係る微小構造体の製造方法は、
任意の2次元パターン乃至3次元パターンを備えた複数の薄膜部材を有する被圧接部材と前記被圧接部材に対向して配置された圧接対象部材の互いの接合部分を正対させる位置決め工程と、
前記圧接対象部材へ前記薄膜部材を圧接離間手段により圧接する圧接工程と、
前記圧接離間手段により前記圧接対象部材側へ前記薄膜部材を離間させる離間工程とを有し、
前記位置決め工程、前記圧接工程及び前記離間工程を繰り返すことで、前記薄膜部材を前記圧接対象部材側に順次積層する微小構造体の製造方法であって、
前記位置決め工程は、
前記被圧接部材と前記圧接対象部材とが互いの対向面全面に渡って移動可能なストロークを有する第1ステージを用いて、前記被圧接部材又は前記圧接対象部材を目標位置へ移動する移動工程と、
前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を、高精度で測定可能な測定手段により測定し、測定された位置と目標位置との差分から誤差補正値を算出する計測工程と、
前記第1ステージの位置決め精度の範囲と同等以上のストロークを有する第2ステージを、算出された前記誤差補正値を用いて目標位置へ移動させ、前記第1ステージの位置決め誤差を補正する誤差補正工程とを有することを特徴とする。
上記課題を解決する本発明の請求項2に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記誤差補正工程は、
前記被圧接部材又は前記圧接対象部材の少なくとも一方を移動可能に配設された前記第2ステージを用いて、前記第1ステージの位置決め誤差を補正することを特徴とする。
上記課題を解決する本発明の請求項3に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記誤差補正工程は、
前記第2ステージの可動部分を駆動するアクチュエータとなる圧電素子と、前記可動部分を案内する弾性案内とを用いて、前記第2ステージを移動させることを特徴とする。
上記課題を解決する本発明の請求項4に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記誤差補正工程は、
前記第2ステージをインチワーム駆動により駆動することを特徴とし、その駆動方法により精密な位置決めが行われる。
上記課題を解決する本発明の請求項5に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記計測工程は、
レーザ光により測長を行なうレーザ測長器と、前記被圧接部材又は前記圧接対象部材に追従して移動するミラーとを用い、前記ミラーまでの測長を行なうことで、前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を計測することを特徴とする。
上記課題を解決する本発明の請求項6に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記計測工程は、
前記被圧接部材の積層前又は積層時に、前記ミラーの平面の平坦度の測定を行ない、前記ミラーの理想平面に対する前記ミラーの平坦度から平坦度補正値を求め、前記平坦度補正値を用いて前記誤差補正値を補正することを特徴し、その補正により、前記ミラーの形状精度に起因する層間位置ずれを防止する。
上記課題を解決する本発明の請求項7に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記位置決め工程は、
前記被圧接部材又は前記圧接対象部材を保持する前記圧接手段の位置を測定し、
積層時に、前回の積層時の前記圧接手段の位置とのずれ量から積層補正値を算出し、前記積層補正値を用いて前記誤差補正値を補正することを特徴とし、圧接手段の繰り返し位置精度に起因する層間位置ずれを防止する。
上記課題を解決する本発明の請求項8に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記位置決め工程は、
前記第1ステージ及び前記第2ステージの位置決めの基準位置に対する前記被圧接部材又は前記圧接対象部材の設置位置を測定し、前記設置位置を前記基準位置に補正する基準位置補正値を算出するアライメント工程を有することを特徴とする。
上記課題を解決する本発明の請求項9に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記アライメント工程は、
前記被圧接部材又は前記圧接対象部材に形成されたアライメントマークを検出し、前記アライメントマークの検出位置から前記設置位置を求めることを特徴とする。
上記課題を解決する本発明の請求項10に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記アライメント工程は、
フォトリソグラフィ技術により形成された微細な成膜パターンを前記アライメントマークとして用いると共に、
前記アライメントマークを任意のサイズに拡大投影可能な光学系と、前記光学系を介して前記アライメントマークを撮影する撮影手段と、前記撮影手段により撮影された画像から前記アライメントマークの検出位置を認識する画像処理手段とを用いることを特徴とする。
上記課題を解決する本発明の請求項11に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記圧接対象部材として、任意の2次元パターン乃至3次元パターンが複数形成された基板を用いることを特徴とする。
上記課題を解決する本発明の請求項12に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記被圧接部材として、任意の2次元パターン乃至3次元パターンが複数形成された基板を用いることを特徴とする。
上記課題を解決する本発明の請求項13に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記被圧接部材及び前記圧接対象部材、又は、前記被圧接部材若しくは前記圧接対象部材を交換可能することを特徴とする。
上記課題を解決する本発明の請求項14に係る微小構造体の製造方法は、
上記微小構造体の製造方法において、
前記圧接工程は、
前記被圧接部材又は前記圧接対象部材のいずれか一方を保持する圧接軸と、前記圧接軸の圧接方向に垂直な方向の動きを抑制するように、前記圧接軸の圧接方向に並列に配置された単数又は複数の直動ガイド機構からなる案内手段とを用いて、圧接軸の動作精度を確保することを特徴とする。
上記課題を解決する本発明の請求項15に係る微小構造体の製造装置は、
任意の2次元パターン乃至3次元パターンを備えた複数の薄膜部材を有する被圧接部材と、前記被圧接部材に対向して配置された圧接対象部材とを圧接すると共に、前記圧接対象部材側へ前記薄膜部材を離間させる圧接離間手段と、
前記被圧接部材と前記圧接対象部材との位置決めを行なう位置決め手段とを有し、
前記位置決め手段により前記圧接対象部材と前記薄膜部材の互いの接合部分を正対させ、前記圧接離間手段により前記圧接対象部材へ前記薄膜部材を圧接すると共に離間して、前記薄膜部材を前記圧接対象部材側へ積層する微小構造体の製造装置であって、
前記位置決め手段は、
前記被圧接部材と前記圧接対象部材とが互いの対向面全面に渡って移動可能なストロークを有する第1ステージと、
前記第1ステージの位置決め精度の範囲と同等以上のストロークを有する第2ステージと、
前記被圧接部材及び前記圧接対象部材、又は、前記被圧接部材若しくは前記圧接対象部材の位置を高精度で測定可能な測定手段と、
前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を前記測定手段により測定し、測定された位置と目標位置との差分から誤差補正値を算出し、算出された前記誤差補正値を用いて前記第2ステージを目標位置へ移動させ、前記第1ステージの位置決め誤差を補正する位置決め制御手段とを備えたことを特徴とする。
上記課題を解決する本発明の請求項16に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記第2ステージは、前記被圧接部材側又は前記圧接対象部材側の少なくとも一方を移動可能に配設されたことを特徴とする。
上記課題を解決する本発明の請求項17に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記第2ステージは、前記第2ステージの可動部分を駆動する圧電素子と、前記可動部分を案内する弾性案内とを備えたことを特徴とする。
上記課題を解決する本発明の請求項18に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記第2ステージは、インチワーム駆動により駆動されるものであることを特徴とする。
上記課題を解決する本発明の請求項19に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記測定手段は、レーザ光により測長を行なうレーザ測長器と、前記被圧接部材又は前記圧接対象部材に追従して移動するミラーとを備え、前記ミラーまでの測長を行なうことで、前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を測定するものであることを特徴とする。
上記課題を解決する本発明の請求項20に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記測定手段は、
前記被圧接部材の積層前又は積層時に、前記ミラーの平面の平坦度の測定を行なうと共に、前記ミラーの理想平面に対する前記ミラーの平坦度から平坦度補正値を求め、前記平坦度補正値を用いて前記誤差補正値を補正することを特徴とする。
上記課題を解決する本発明の請求項21に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記位置決め手段は、
前記被圧接部材又は前記圧接対象部材を保持する前記圧接離間手段の位置を、前記測定手段により測定すると共に、積層時に、前回の積層時の前記圧接手段の位置とのずれ量から積層補正値を算出し、前記積層補正値を用いて前記誤差補正値を補正する積層補正手段を有することを特徴とする。
上記課題を解決する本発明の請求項22に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記第1ステージ及び前記第2ステージの位置決めの基準位置に対する前記被圧接部材又は前記圧接対象部材の設置位置を測定すると共に、前記設置位置を前記基準位置に補正する基準位置補正値を算出するアライメント手段を有することを特徴とする。
上記課題を解決する本発明の請求項23に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記アライメント手段は、
前記被圧接部材又は前記圧接対象部材に形成されたアライメントマークを検出すると共に、前記アライメントマークの検出位置から前記設置位置を求めるものであることを特徴とする。
上記課題を解決する本発明の請求項24に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記アライメントマークがフォトリソグラフィ技術により微細な成膜パターンとして形成されると共に、
前記アライメント手段は、
前記アライメントマークを任意のサイズに拡大投影可能な光学系と、前記光学系を介して前記アライメントマークを撮影する撮影手段と、前記撮影手段により撮影された画像から前記アライメントマークの検出位置を認識する画像処理手段とを有することを特徴とする。
上記課題を解決する本発明の請求項25に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記被圧接部材を、任意の2次元パターン乃至3次元パターンが複数形成された基板としたことを特徴とする。
上記課題を解決する本発明の請求項26に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記圧接対象部材を、任意の2次元パターン乃至3次元パターンが複数形成された基板としたことを特徴とする。
上記課題を解決する本発明の請求項27に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記被圧接部材及び前記圧接対象部材、又は、前記被圧接部材若しくは前記圧接対象部材を交換可能としたことを特徴とする。
上記課題を解決する本発明の請求項28に係る微小構造体の製造装置は、
上記微小構造体の製造装置において、
前記圧接離間手段は、
前記被圧接部材又は前記圧接対象部材のいずれか一方を保持する圧接軸と、
前記圧接軸の圧接方向に垂直な方向の動きを抑制するように、前記圧接軸の圧接方向に並列に配置された単数又は複数の直動ガイド機構からなる案内手段とを備えたことを特徴とする。
本発明によれば、微小構造体を構成する複数の薄膜部材(被圧接部材)を搭載したステージ装置(位置決め手段)が、高耐荷重、高真空対応、高精度、大ストロークの全てを満たす性能を有し、簡便に適用可能であるので、大きな移動ストロークを維持したまま、高い位置決め精度で制御可能であり、薄膜部材の積層接合によって形成される微小構造体を、nmオーダーの高い形状精度で、任意の3次元形状に形成できると共に、多層化、多品種生産、大量生産が可能となる。
本発明に係る微小構造体の製造装置は、任意の2次元パターン乃至3次元パターンを有する複数の薄膜部材や任意の2次元パターン乃至3次元パターンが複数形成された基板等(被圧接部材)を、これに対向配置される圧接対象部材に対して位置決めを行ない、そして、圧接、離間を行ない、これらの工程を繰り返すことで、複数の薄膜部材等を接合、積層して微小構造体を製造するものである。
本発明に係る微小構造体の製造装置では、大ストローク、且つ、高精度の位置決め精度を得るために、所定の位置決め精度を有する大ストロークの粗動ステージ(第1ステージ)上に、粗動ステージより高精度の位置決め精度を有する小ストロークの微動ステージ(第2ステージ)が設置されたステージ装置を用いる。
微小構造体の積層方向の各断面形状となる薄膜部材を接合する際には、まず、粗動ステージを目標位置へ移動する。しかし、粗動ステージは、所定の移動速度、大きなストロークを確保するため、その駆動制御系の位置決め精度には限界があり、作製しようとする微小構造体に要求されるnmオーダーの位置決め精度を満足させることができなかった。そこで、本発明では、高精度の位置決め精度を有する微動ステージを組み合わせ、目標位置に対する粗動ステージの位置決め誤差を補正するように、微動ステージを目標位置へ移動させることで、大ストローク、且つ、高精度の位置決め精度を得るようにした。この場合、微動ステージは、少なくとも、粗動ステージの位置決め誤差を補正するだけのストローク、即ち、粗動ステージの位置決め精度の範囲と同等若しくはそれ以上のストロークを備えていればよい。上記特徴を有するステージ装置を用いた微小構造体の製造装置を、図1〜図5を用いて、その詳細を説明する。
図1は、本発明に係る微小構造体の製造装置の実施形態の一例を示す概略の構成図である。
本発明に係る微小構造体の製造装置は、図1に示すように、主な構成として、製造装置の基部である支持台部1と、支持台部1の上部に支持されたチャンバ部2と、チャンバ部2へ圧接対象部材24、被圧接部材25の搬送を行なう搬送部3と、チャンバ部2へ搬送された圧接対象部材24、被圧接部材25の接合を行なうための圧接機構部4(圧接離間手段)と、チャンバ部2へ搬送された被圧接部材25を保持するステージ装置5と、ステージ装置5の位置を制御するステージ制御部6(位置決め手段)とを有する。
本実施例においては、一例として、圧接機構部4側に圧接対象部材24を保持し、ステージ装置5側に被圧接部材25を保持して、互いに対向する配置の構成としたが、圧接対象部材24、被圧接部材25を逆に保持する配置としてもよい。又、本実施例の場合、被圧接部材25としては、任意の2次元パターン乃至3次元パターンの薄膜部材が複数平面配置されたものや任意の2次元パターン乃至3次元パターンが複数形成された基板等が最適である。加えて、圧接対象部材24は、1つの部材でもよいが、複数の部材が平面配置されたもの等でもよい。
支持台部1は、外部からの振動の影響を排除するための複数の除振機構11と、複数の除振機構11に支持され、チャンバ部2の設置位置の基準となる剛性の高い定盤12と、チャンバ部2を構成する真空容器21の底部を、定盤12の裏面から細かいピッチで定盤12に締結する複数のボルト13とを有する。細かいピッチで真空容器21の底面を定盤12に締結することで、真空排気時の真空容器21の底面の変形を抑制して、真空容器21の底面に支持される積層造形法に必要な機器、例えばステージ装置5等の変位も抑制し、高精度な位置決めに影響を与えないようにしている。
チャンバ部2は、図示しない真空ポンプにより高真空度(10-6Pa程度)まで到達可能な真空容器21を有し、その内部に、積層造形法に必要な機器、例えば、圧接機構部4の一部、被圧接部材25を保持するステージ装置5、圧接対象部材24及び薄膜部材25の接合表面を清浄にし、活性化するためのFAB(Fast Atom Bombardment:高速原子衝撃)装置22a、22b等を備える。
ステージ装置5は、真空容器21内部の下部側に設けられる。詳細には、真空容器21内の底面に設けられ、大きいストロークを有し、XY平面方向に移動可能な粗動ステージ51と、粗動ステージ51上に設けられ、nmオーダーの高精度の位置精度を有し、XY平面方向に移動可能な微動ステージ52と、微動ステージ52上に設けられ、θ方向(XY平面内の回転方向)に移動可能なθステージ53と、θステージ上に設けられ被圧接部材25を保持するための静電チャック54とを有する。微動ステージ52上には、表面の平坦度が高いミラー55がXY方向に延設されており、被圧接部材25の位置を測定する際に用いる。
粗動ステージ51は、真空容器21の外部に配置され、駆動力を発生させるモータと、モータ56の駆動力を粗動ステージ51へ伝達するボールネジと、粗動ステージ51を駆動方向に案内するクロスローラガイド等を有し、複数の薄膜部材が平面配置された被圧接部材25の表面全面に渡って、圧接対象部材24と対向させることが可能な大きなストロークを持ち、モータ56により、所定値以上の速度でXY方向に駆動される。これらの粗動ステージ51、微動ステージ52、θステージ53等は、共に、高真空対応であり、且つ、高剛性(高耐荷重性)であり、高い圧接力に抗しうるものである。なお、本実施例では、微動ステージ52を粗動ステージ51上に設けると共に、微動ステージ52側に被圧接部材25を設置する構成としたが、本発明はこのような構成に限定されること無く、例えば、圧接対象部材24側にいずれか一方のステージを設けるようにしてもよいし、両ステージを設けるようにしてもよい。
静電チャック54が被圧接部材25を保持する保持面は、高い平面度に形成されており、静電チャック54を用いて保持することで、その保持面に倣うように被圧接部材25が吸着され、被圧接部材25の表面も高い平面度を保つことができる。なお、被圧接部材25を、磁力に吸着される金属材料等に高い平面度を保って取付けることで、静電チャックに替わってマグネットチャックを使用することも可能である。
被圧接部材25は、ステージ装置5(粗動ステージ51、微動ステージ52、θステージ53)側の駆動座標の基準位置(例えば、駆動座標の原点やミラー55の位置等)を基準として静電チャック54上に設置される。しかし、実際の被圧接部材25の設置位置は、定められた所定の設置位置に対してずれが生じるおそれがある上、本発明に係る微小構造体の製造装置では、nmオーダーの高精度の位置決め精度が要求されるため、被圧接部材25の設置位置を補正する手段が必要となる。
そこで、本発明に係る微小構造体の製造装置には、アライメント機構23(アライメント手段)が設けられる。アライメント機構23は、ステージ装置5上を拡大して投影可能に設けられた光学系23aと、光学系を介してステージ装置5上を撮影するCCDカメラ23b(撮影手段)と、CCDカメラ23bにより撮影された画像を認識して演算処理を行なう画像処理装置(画像処理手段)から構成される。アライメント機構23は、被圧接部材25の表面に設けられたアライメントマークをCCDカメラ23bにより撮影し、その撮影画像からアライメントマークを認識し、アライメントマークの位置を検出することで、被圧接部材25の設置位置を算出する。そして、ステージ装置5側の駆動座標の基準位置に対して、被圧接部材25の設置位置のX、Y、θ方向のずれ量を測定し、ずれ量に応じて基準位置補正値を算出して補正を行い、被圧接部材25の設置位置をステージ装置5側の駆動座標に適合させることで、被圧接部材25のアライメントを行なうことになる。又、上記基準位置補正値に応じて、被圧接部材25自体を正しい設置位置に設置しなおしてもよい。従って、被圧接部材25の設置位置がずれた場合でも、上記アライメント機構23により、被圧接部材25を目標位置に高精度に位置決めすることが可能となる。
なお、アライメントマークは、フォトリソグラフィ技術を用いて形成された微細な成膜パターンからなるものであり、その形状精度及び位置精度が、薄膜部材の配置位置に対して高精度に形成することが可能である。又、ステージ装置5上にも同様なアライメントマークを設け、これをステージ装置5の駆動座標の基準位置としてもよい。
搬送部3は、図示しない真空ポンプにより真空容器21と同程度の真空度まで到達可能なロードロック室31と、ロードロック室31内部に設置した被圧接部材を、真空容器21内のステージ装置5上に搬送する搬送機構32と、ロードロック室31と大気との間の開閉ドアであり、閉時にはロードロック室31を封止して、真空度を維持するロードロックドア33と、真空容器21とロードロック室31との間に配置され、被圧接部材の搬送時にはドアを開け、ロードロック室31を真空容器21に連通すると共に被圧接部材の搬送を許容し、ロードロック室31を大気に開放する際には、ドアを閉じて真空容器21の真空度を維持するゲートドア34とを有する。
搬送機構32は、複数の関節部により伸縮可能なアーム35を備えており、アーム35を伸縮することで、被圧接部材を保持する先端部をXYZ−θ方向に移動可能である。例えば、待機状態、つまり、搬送機構32が動作していないときは、図1のアーム35に示すように、アーム部分を折り畳んだ状態で待機している。又、被圧接部材を真空容器21内のステージ装置5上に設置するときは、図1のアーム35a(点線)に示すように、アーム35をステージ装置5側へ伸ばすように動作する。又、例えば、複数の薄膜部材を形成した基板を、ロードロック室31に複数枚設置することで、各基板を真空容器21内へ順次搬送し、各基板を交換しながら各基板の薄膜部材を順次積層することで、ロードロック室31の真空度を大気に戻すことなく、複数枚の基板の薄膜部材の積層を連続して行なうことが可能であり、微小構造体の多層化、多品種生産、大量生産が可能となる。又、被圧接部材だけではなく、圧接対象部材も搬送機構32により搬送可能に構成し、複数の圧接対象部材を交換可能なようにしてもよい。
圧接機構部4は、チャンバ部2の上方及び真空容器21内部の上部に配置される。具体的には、チャンバ部2の上方には、真空容器21の天板部分に支持され、圧接力を発生させる圧接駆動機構41と、圧接駆動機構41に接続方向自在に接続され、圧接力を鉛直方向下方側へ伝達するユニバーサルジョイント42と、ユニバーサルジョイント42に接続されると共に、真空容器21の天板を貫通して、その内部から外部側へ延設され、上下動可能な押付ロッド44(圧接軸)とを備える。圧接時には、図1の矢印A方向に圧接力を発生させて、圧接対象部材24、被圧接部材25の接合を行なう。又、押付ロッド44が貫通する真空容器21の天板の貫通孔部分と押付ロッド44との間にはベローズ43が設けられ、真空容器21内の真空を維持できる構造である。
又、真空容器21内部の上部側には、複数の支柱により真空容器21の底部に固定され、押付ロッド44を案内する案内機構45(案内手段)と、押付ロッド44のステージ装置5側への圧接力を測定する圧電式の動力計46と、押付ロッド44の先端部に接続され、圧接対象部材24の接合面を、ステージ装置5側に保持される被圧接部材25の接合面に平行にさせるための角度調整機構47と、角度調整機構47の先端部に設けられ、圧接対象部材24を保持するホルダ49を取付けるマグネットチャック48とを備える。案内機構45は、押付ロッド44に並列に配置された単数又は複数の直動ガイド機構により構成され、押付ロッド44の動作を案内機構45により案内することで、圧接方向Aに対し垂直な面方向の動きを抑制し、押付ロッド44の動作精度を確保する。直動ガイド機構としては、例えば、真空仕様のガイドポスト型精密リニアガイドを用い、高剛性、かつ、高精度を実現できるものである。なお、圧接機構部4の各構成要素の配置は、同等の機能を有するものであれば、上記配置に限定する必要はない。
なお、圧接駆動機構41は、ユニバーサルジョイント42により押付ロッド44に接続されるロッド取付治具41aと、圧接、離間させる駆動力を与えるアクチュエータである圧接離間モータと、圧接離間モータの駆動力をロッド取付治具41aへ伝達するボールネジと、ロッド取付治具41aの駆動方向の案内をするクロスローラガイド41bとを有するものである(一部を省略して図示)。例えば、真空容器21は、真空排気により真空容器21自体が変形するおそれがあり、その変形に起因して、真空容器21側の押付ロッド44の位置が変位するおそれがある。又、圧接機構部4の組立て誤差、具体的には、案内機構45に案内される押付ロッド44と、クロスローラガイド41bに案内されるロッド取付治具41aとの間で生じる機械的な組立誤差によっても、真空容器21側の押付ロッド44の位置が変位するおそれがある。そこで、本発明では、ユニバーサルジョイント42によって、ロッド取付治具41aと押付ロッド44との間のずれ量を吸収し、ずれ発生時に押し付けロッド44に伝達される水平方向力をキャンセルすることにより、高精度の位置決め精度を保つ構成とした。
ステージ制御部6は、ステージ装置5の位置決め制御を行なうステージ制御装置61を有し、ステージ制御装置61は、主に、ステージ装置5の粗動ステージ51、θステージ53、静電チャック54等を制御する主制御部62と、微動ステージ52を制御する誤差補正部63から構成される。粗動ステージ51を移動させる場合、主制御部62から移動位置指令がモータ56へ与えられて粗動ステージ51が移動される。この際、モータ56のロータリエンコーダにて移動位置が監視されて、移動位置まで粗動ステージ51が移動される。これに対して、微動ステージ52は異なる経路を用いて、その移動位置が制御される。
具体的には、真空容器21の側面のXY方向に2つのレーザ測長器64(測定手段)が設けられ、レーザ測長器64から照射されるレーザ光を、微動ステージ52上に設けたミラー55に照射することで、ミラー55の現在の位置を高精度に測定できる。なお、高精度の測長を行うには、例えば、レーザ光の干渉を利用して測長する干渉式のレーザ測長器等を用いることが望ましい。測定されたミラー55の位置は誤差補正部63へフィードバックされ、そのフィードバックに基づいて、移動位置指令が微動ステージ51側へ与えられて微動ステージ51が目標位置へ移動する。ここで、ミラー55の位置は微動ステージ52に対して常に一定であり、ステージ装置5の駆動座標に対する被圧接部材25の設置位置は、アライメント装置23を用いて算出できるため、ミラー55の現在の位置を測定することで、被圧接部材25の位置が算出できる。従って、被圧接部材25の現在の位置と目標位置との差分(つまり、第1ステージ51の位置決め誤差である。)を算出し、この差分に基づいて目標位置へ移動するための誤差補正値を算出することができ、この誤差補正値を微動ステージ51に与えることで、被圧接部材25が目標位置へ移動することとなる。
又、真空容器21の側面のXY方向には、押付ロッド44の先端部分の水平方向の変位量を測定する2つのレーザ測長器65が設けられている。これは、被圧接部材25の1層目の薄膜部材を圧接する際、押付ロッド44の水平方向の位置を測定しておき、被圧接部材25の2層目以降の薄膜部材を圧接する際には、前回圧接したときの押付ロッド44の位置と現在の押付ロッド44の位置とを比較し、そのずれ量から積層される薄膜部材間のずれを補正する積層補正値を算出し、微動ステージ51に対する誤差補正値に加味して、微動ステージ52の移動位置を補正するようにする。この場合、ホルダユニット49等のXY方向の面、つまり、2つのレーザ測長器65に対向する面に、微動ステージ52と同様なミラーを設け、ミラーの位置を測定することで、押付ロッド44の先端部分の位置を測定する。押付ロッド44の先端部分の位置を測定することは、換言すれば、押付ロッド44の先端部の所定位置に取付けられる圧接対象部材24の位置を測定することであり、圧接時に圧接対象部材24側の位置を常に監視することで、押付ロッド44自体の繰り返しの位置精度に起因する層間位置ずれを排除することができる。
次に、図2を参照して、微動ステージ52の構成を更に詳細に説明する。
なお、図2は、微動ステージ52を上方から見た図であり、理解し易いように、θステージ53、静電チャック54等は省略して図示した。
微動ステージ52は、粗動ステージ51に固定されたフレーム52a(固定部)と、周囲をフレーム52aに囲まれ、可動に配置されたテーブル52b(可動部)と、テーブル52bの4角に配置され、テーブル52bを可動に支持する複数のヒンジ部52cと、X方向に延設され、一方の端部がフレーム52aへ他方の端部がテーブル52bへ接続された2つの圧電素子52d、52eと、Y方向に延設され、一方の端部がフレーム52aへ他方の端部がテーブル52bへ接続された圧電素子52fとを有し、又、互いに直角に配置された2つの平面からなるミラー55をテーブル52b上に備える。圧電素子52d、52e、52fは、フレーム52aに設けられた縦長の溝部に配置され、この溝部が圧電素子52d、52e、52fの案内として機能する。
例えば、X方向にテーブル52bを移動する場合には、圧電素子52d、52eに同期して電圧を与え、又、Y方向にテーブル52bを移動する場合には、圧電素子52fに電圧を与え、アクチュエータとして動作する圧電素子52d、53e、52fを伸縮させることでテーブル52bを移動させる。これらの圧電素子52d、52e、52fは、所謂、インチワーム駆動するように構成してもよく、伸縮後の位置を精度よく保持できる構成とすることができる。なお、テーブル52bが移動する際には、XY方向に沿って配置された2つのレーザ測長器64a、64bによって、その位置が精度よく監視される。
ヒンジ部52cは、拡大図Bに示すように、弾性案内である切り欠きばね(図2(b)参照)を複数組み合わせた独特な形状をしており、円弧状の切り欠き部を複数設けることで、異なる方向に独立して変形可能、つまり、テーブル52bのX方向移動、Y方向移動が互いに影響を与えることなく変形可能な構成である。又、圧電素子52d、52eに独立して各々異なる電圧を与えることで、θ方向に微小に傾けることも可能である。ヒンジ部52cは低熱膨張性合金で形成することで、熱膨張の影響を抑え、高精度の位置精度を有する微動ステージ52とすることができる。
又、ヒンジ部52cは、切り欠きばねの剛性により、圧接機構部4による圧接力に対向する方向に、テーブル52bを支持する。テーブル52bに所定値以上の圧接力が作用した場合、テーブル52bの底面側である粗動ステージ51の上面と接触させることで、ヒンジ部52cの切り欠きばねの剛性分の変形を拘束するように構成してあり、上記構成により、圧接対象部材24と被圧接部材25の薄膜部材の接合面間の傾きを抑えることができる。
ミラー55は、微動ステージ52のテーブル52b上に、被圧接部材25が設置される領域の大きさより大きい2つの平面を、各々X方向、Y方向に有する。従って、ミラー55の表面におけるレーザ測長器64a、64bの測定位置は、粗動ステージ51や微動ステージ52の移動位置に応じて変化する。ここで、ミラー55自体の移動位置を高精度に測定するためには、ミラー55の2つの平面の平面度を考慮しなければならない。そこで、本発明では、積層前(オフプロセス)又は積層時(インプロセス)に、ミラー55の2つの平面の平坦度を測定し、ミラー55の2つの平面の理想平面に対するミラー55の2つの平面の平坦度から平坦度補正値を算出し、微動ステージ51に対する誤差補正値に加味して、微動ステージ52の移動位置を補正するようにする。従って、上記補正により、ミラー55自体の形状精度に起因する層間位置ずれを補正することが可能となる。
次に、上記製造装置を用いた微小構造体の製造方法を、図3、図4に示した粗動ステージ51及び微動ステージ52の制御方法(位置決め工程)を含めて説明する。
(1)被圧接部材、圧接対象部材の作製工程
上記製造装置において微小構造体を製造する前に、事前に、圧接対象部材24、被圧接部材25が作製される。具体的には、所望の3次元構造の微小構造体を、3次元CAD(Computer-Aided Design)等を用いて、積層方向の複数の断面形状に分解し、これらの各断面形状を平面配置してパターニングされたマスクを作製する。そして、所望の材料を用いて基板上に成膜し、フォトリソグラフィ技術を用いて、マスクにパターニングされた形状に成膜を加工することで、平面配置された複数の薄膜部材が基板上に一括形成される。ここで、薄膜部材の下部には、薄膜部材が剥離し易いように、ポリイミド等からなる離型層を形成しておく。又、圧接対象部材は、所望の材料を用いて、凸状のメサ形状部が形成されたものである。圧接対象部材のメサ形状部に薄膜部材が複数積層されることで、微小構造体が形成される。
なお、圧接による接合強度は、圧接対象部材24、被圧接部材25の接合面の表面粗さに影響されるため、CMP(Chemical-Mechanical Polish)等により、表面を表面粗さRa=1nm程度まで平坦化することで、接合境界にボイドが存在せず、より強い接合強度を得ることができる。又、薄膜部材の厚さをより薄くすることで、XY軸方向だけで無く、Z軸方向の解像度、つまり、3次元形状の微小構造体の高さ(積層)方向の形状の解像度もより高精度にすることができる。この場合、薄膜部材の下層側には、ポリイミド等の柔らかい離型層が存在するため、薄い薄膜部材を圧接する際に、薄い薄膜部材が離型層に埋没してしまい、転写性が低下するおそれがある。そこで、このような場合には、上部に薄膜部材が存在しない離型層を反応性ガス等でエッチングして、薄膜部材の下部の離型層に下駄を履かせるような形状とすることで、薄膜部材が離型層に埋没することを防止するようにする。このように、微小構造体においてnmオーダーの微細な形状精度を得るためには、被圧接部材、圧接対象部材の作製方法として、微細加工が容易な半導体製造技術を用いることが望ましいが、形状精度によっては、他の製造方法を用いてもよい。
(2)被圧接部材、圧接対象部材の搬送工程
複数の薄膜部材を有する被圧接部材25は、上記製造装置の搬送部3を用いて、ステージ装置5上に設置される。又、圧接対象部材24は、上記製造装置の搬送部3を用いて、押付ロッド44の先端部のホルダ49に取付けるようにしてもよいし、予め、ホルダ49に取付けておいてもよい。
(3)被圧接部材が有する薄膜部材の位置決め工程
(a)アライメント工程
ステージ装置5上に設置された被圧接部材25は、アライメント機構23を用いて、被圧接部材25の設置位置をステージ装置5側の駆動座標に適合させることで、被圧接部材25のアライメントを行なう。
アライメント後、圧接対象部材24と被圧接部材25が有する薄膜部材の接合を高精度の位置精度で行なうため、ステージ装置5及びステージ制御部6は、図3に示すような制御方法、図4に示すような制御ブロックにより制御される。具体的には、粗動ステージ51は、ステージ制御部6主制御部62を構成するモータ制御ボード71、モータドライバ72により、モータ56に内蔵されたロータリエンコーダ73からのフィードバック信号を用いて、セミクローズドで制御される。又、微動ステージ52は、ステージ制御部6の誤差補正部63を構成するホスト微動制御ブロック74、DAコンバータボード75、PZTアンプ76により、レーザ測長器64により測定され、カウンタボード77により算出された計測値を用いて、フィードバック制御される。
(b)移動工程
ステージ制御装置6からステージ位置指令(目標位置)が送られると、モータ制御ボード71、モータドライバ72を介してモータ56が駆動され、粗動ステージ51が移動される。このとき、粗動ステージ51はロータリエンコーダ73にて、その移動位置が測定されると共に、レーザ測長器64においても、その移動位置が測定される。粗動ステージ51が移動しているときは、微動ステージ52を制御する誤差補正部63には0Vの信号、つまり、何の信号も送られず、現状の位置を維持する。そして、粗動ステージ51が目標位置の範囲内(in-position状態)、つまり、被圧接部材25が目標座標に対して粗動ステージ51の位置決め精度の範囲内に移動されたと判断されれば、粗動ステージ51の位置決めが完了したことになり、ブレーキがON状態にされて、粗動ステージ51の駆動軸が固定される。
(c)計測工程、誤差補正工程
そして、ステージ制御装置6からのステージ位置指令(目標位置)が誤差補正部63側へスイッチされることで、微動ステージ52の制御モードへ移行する。誤差補正部63では、粗動ステージ51により移動された被圧接部材25の位置がレーザ測長器64により測定され、レーザ測長器64からフィードバックされた測定値とステージ位置指令(目標位置)との比較により差分を求め、この差分に基づく誤差補正値を算出し、この誤差補正値を、ホスト微動制御ブロック74、D/Aコンバータボード75、PZTアンプ76を経て微動ステージ52の圧電素子へ与えることで、微動ステージ52を目標座標へ移動させて、粗動ステージ51で生じた位置決め誤差を補正して、高精度の位置決めを行なうこととなる。
つまり、粗動ステージ51で生じた位置決め誤差分だけ微動ステージ52を移動することで、粗動ステージ51の位置決め誤差を補正して、被圧接部材25の目標位置への位置決めが完了することとなる。又、上記誤差補正値に、ミラー55の平坦度補正値、押付ロッド44側の積層補正値、被圧接部材25の設置位置の基準位置補正値等を考慮して補正することで、より高精度の位置決めを行うことができる。上記位置決め方法により、粗動ステージ51による大きなストローク、早い移動速度を得ることができ、かつ、微動ステージ52等による高精度の位置決め精度を得ることができるので、微小構造体の製造時において、広範囲の移動範囲にわたり被圧接部材25の薄膜部材の位置決め精度を向上させて、薄膜部材を多層積層することで構成される微小構造体の形状の高精度化を図ると共に、作製効率の向上を図ることが可能である。
(4)被圧接部材、圧接対象部材の表面清浄化工程
圧接対象部材24、被圧接部材25の位置決めが完了すると、次に、圧接対象部材24、被圧接部材25の接合面の清浄化が行われる。通常、接合面の表面には、大気中の酸素等との反応による酸化膜やフォトリソグラフィ工程中のエッチング材料の残渣やその他の不純物が存在する。そこで、本発明に係る微小構造体の製造装置では、高真空中(1×10-6Pa以下)において、FAB装置22a、22bにより中性原子ビーム、イオンビーム等を接合面表面に照射し、これらの不純物を接合面表面から排除して、接合面表面を清浄にすると共に接合面表面にダングリングボンドが存在する状態、つまり、接合面表面が活性化された状態にして、圧接対象部材24、被圧接部材25の接合面同士を圧接して接合させる。これは常温接合法と呼ばれ、常温接合法により接合を行なうことで、接合面同士が互いのダングリングボンド同士で結合を行なうことになり、強い結合強度を得ることが可能となる。又、室温において接合可能であるため、熱による歪みがなく、高精度、かつ、高効率の生産性にも寄与する。
(5)被圧接部材、圧接対象部材の転写(圧接、離間)工程
圧接対象部材24、被圧接部材25の接合面の清浄化が完了すると、圧接対象部材24、被圧接部材25の接合面の圧接、離間が行われる。本実施例では、被圧接部材25のZ軸の位置を固定し、圧接機構部4を用いて、圧接対象部材24をZ軸方向下方に移動することで、圧接が行われる。圧接時には動力計46により圧接力が計測され、圧接対象部材24、被圧接部材25を構成する材料に最適な圧接力で圧接が行われ、圧接対象部材24、被圧接部材25接合面同士が接合される。そして、圧接対象部材24をZ軸方向上方に移動すると、被圧接部材25上の薄膜部材が被圧接部材25から剥離、離間され、圧接対象部材24側に転写されることとなる。
(6)繰り返し工程
被圧接部材25上の複数の薄膜部材各々に対して、上述した位置決め工程(3)、清浄化工程(4)、転写工程(5)を繰り返すことで、圧接対象部材24側に複数の薄膜部材が転写、積層されて、最終的には、所望の3次元形状の微小構造体が形成されることとなる。
なお、本発明に係る微小構造体の製造装置では、1つの微小構造体を構成する薄膜部材を1枚の基板上に複数個分形成したもの、異なる微小構造体を構成する薄膜部材を1枚の基板上に各々形成したもの等を被圧接部材として用い、これに応じて、メサ形状部(接合部分)が複数個形成された圧接対象部材を用い、圧接対象部材の複数の接合部分に、複数の薄膜部材を同時に転写するようにしてもよい(バッチプロセス)。
図5に、本発明に係る微小構造体の製造装置を用いた場合の位置決め精度のヒストグラムを図示する。
これは、粗動ステージ51で200mmのストロークを移動すると共に微動ステージ52で誤差補正を行なう動作を、100回繰り返した時の結果である。図5からわかるように、大きなストロークを移動しても、高精度な位置精度を有しており、本実験においては、平均偏差e=-4.28nm、標準偏差σ=26.2/3=8.73nmという高精度の結果が得られた。
本発明に係る微小構造体の製造方法及び製造装置においては、常温接合法を用いているため、微小構造体を形成するための積層材料の選択肢が広い。例えば、純金属や合金等の金属材料等に限らず、誘電体や絶縁体、そして、プラスチック等の樹脂材料等、様々な材料を用いることが可能である。又、微小構造体の3次元形状としても、オーバーハング構造や中空構造等、複雑な構造を形成することが可能である。そのため、微小構造体としても、微小ギア等の微小機械部品に留まらず、微細金型、マイクロ流路素子等の微小システムのような複雑な形状のもの、所謂、マイクロマシンと呼ばれるものや、3次元フォトニック結晶や回折光学素子等の微小光学デバイス等、多岐に渡って適用可能である。
本発明に係る微小構造体の製造装置の実施形態の一例を示す構成図である。 図1に示した微小構造体の製造装置における微動ステージの構成図である。 図1に示した微小構造体の製造装置における粗動ステージ、微動ステージの動作を説明する図である。 図1に示した微小構造体の製造装置における粗動ステージ、微動ステージの制御のブロック図である。 本発明に係る製造方法による微小構造体の位置決め誤差のヒストグラムである。
符号の説明
1 支持台部
2 チャンバ部
3 搬送部
4 圧接機構部
5 ステージ装置
6 ステージ制御部

Claims (28)

  1. 任意の2次元パターン乃至3次元パターンを備えた複数の薄膜部材を有する被圧接部材と前記被圧接部材に対向して配置された圧接対象部材の互いの接合部分を正対させる位置決め工程と、
    前記圧接対象部材へ前記薄膜部材を圧接離間手段により圧接する圧接工程と、
    前記圧接離間手段により前記圧接対象部材側へ前記薄膜部材を離間させる離間工程とを有し、
    前記位置決め工程、前記圧接工程及び前記離間工程を繰り返すことで、前記薄膜部材を前記圧接対象部材側に順次積層する微小構造体の製造方法であって、
    前記位置決め工程は、
    前記被圧接部材と前記圧接対象部材とが互いの対向面全面に渡って移動可能なストロークを有する第1ステージを用いて、前記被圧接部材又は前記圧接対象部材を目標位置へ移動する移動工程と、
    前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を、高精度で測定可能な測定手段により測定し、測定された位置と目標位置との差分から誤差補正値を算出する計測工程と、
    前記第1ステージの位置決め精度の範囲と同等以上のストロークを有する第2ステージを、算出された前記誤差補正値を用いて目標位置へ移動させ、前記第1ステージの位置決め誤差を補正する誤差補正工程とを有することを特徴とする微小構造体の製造方法。
  2. 請求項1記載の微小構造体の製造方法において、
    前記誤差補正工程は、
    前記被圧接部材又は前記圧接対象部材の少なくとも一方を移動可能に配設された前記第2ステージを用いて、前記第1ステージの位置決め誤差を補正することを特徴とする微小構造体の製造方法。
  3. 請求項1又は請求項2記載の微小構造体の製造方法において、
    前記誤差補正工程は、
    前記第2ステージの可動部を駆動する圧電素子と、前記可動部を案内する弾性案内とを用いて、前記第2ステージを移動させることを特徴とする微小構造体の製造方法。
  4. 請求項3記載の微小構造体の製造方法において、
    前記誤差補正工程は、
    前記第2ステージをインチワーム駆動により駆動することを特徴とする微小構造体の製造方法。
  5. 請求項1乃至請求項4のいずれかに記載の微小構造体の製造方法において、
    前記計測工程は、
    レーザ光により測長を行なうレーザ測長器と、前記被圧接部材又は前記圧接対象部材に追従して移動するミラーとを用い、前記ミラーまでの測長を行なうことで、前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を計測することを特徴とする微小構造体の製造方法。
  6. 請求項5記載の微小構造体の製造方法において、
    前記計測工程は、
    前記被圧接部材の積層前又は積層時に、前記ミラーの平面の平坦度の測定を行ない、前記ミラーの理想平面に対する前記ミラーの平坦度から平坦度補正値を求め、前記平坦度補正値を用いて前記誤差補正値を補正することを特徴とする微小構造体の製造方法。
  7. 請求項1乃至請求項6のいずれかに記載の微小構造体の製造方法において、
    前記位置決め工程は、
    前記被圧接部材又は前記圧接対象部材を保持する前記圧接離間手段の位置を測定し、
    積層時に、前回の積層時の前記圧接離間手段の位置とのずれ量から積層補正値を算出し、前記積層補正値を用いて前記誤差補正値を補正することを特徴とする微小構造体の製造方法。
  8. 請求項1乃至請求項7のいずれかに記載の微小構造体の製造方法において、
    前記位置決め工程は、
    前記第1ステージ及び前記第2ステージの位置決めの基準位置に対する前記被圧接部材又は前記圧接対象部材の設置位置を測定し、前記設置位置を前記基準位置に補正する基準位置補正値を算出するアライメント工程を有することを特徴とする微小構造体の製造方法。
  9. 請求項8記載の微小構造体の製造方法において、
    前記アライメント工程は、
    前記被圧接部材又は前記圧接対象部材に形成されたアライメントマークを検出し、前記アライメントマークの検出された位置から前記設置位置を求めることを特徴とする微小構造体の製造方法。
  10. 請求項9記載の微小構造体の製造方法において、
    前記アライメント工程は、
    フォトリソグラフィ技術により形成された微細な成膜パターンを前記アライメントマークとして用いると共に、
    前記アライメントマークを任意のサイズに拡大投影可能な光学系と、前記光学系を介して前記アライメントマークを撮影する撮影手段と、前記撮影手段により撮影された画像から前記アライメントマークの検出位置を算出する画像処理手段とを用いることを特徴とする微小構造体の製造方法。
  11. 請求項1乃至請求項10のいずれかに記載の微小構造体の製造方法において、
    前記圧接対象部材として、任意の2次元パターン乃至3次元パターンが複数形成された基板を用いることを特徴とする微小構造体の製造方法。
  12. 請求項1乃至請求項11のいずれかに記載の微小構造体の製造方法において、
    前記被圧接部材として、任意の2次元パターン乃至3次元パターンが複数形成された基板を用いることを特徴とする微小構造体の製造方法。
  13. 請求項1乃至請求項12のいずれかに記載の微小構造体の製造方法において、
    前記被圧接部材又は前記圧接対象部材の少なくとも一方を交換可能とすることを特徴とする微小構造体の製造方法。
  14. 請求項1乃至請求項13のいずれかに記載の微小構造体の製造方法において、
    前記圧接工程は、
    前記被圧接部材又は前記圧接対象部材のいずれか一方を保持する圧接軸と、前記圧接軸の圧接方向に垂直な方向の動きを抑制するように、前記圧接軸の圧接方向に並列に配置された単数又は複数の直動ガイド機構からなる案内手段とを用いて、圧接軸の動作精度を確保することを特徴とする微小構造体の製造方法。
  15. 任意の2次元パターン乃至3次元パターンを備えた複数の薄膜部材を有する被圧接部材と、前記被圧接部材に対向して配置された圧接対象部材とを圧接すると共に、前記圧接対象部材側へ前記薄膜部材を離間させる圧接離間手段と、
    前記被圧接部材と前記圧接対象部材との位置決めを行なう位置決め手段とを有し、
    前記位置決め手段により前記圧接対象部材と前記薄膜部材の互いの接合部分を正対させ、前記圧接離間手段により前記圧接対象部材へ前記薄膜部材を圧接すると共に離間して、前記薄膜部材を前記圧接対象部材側へ積層する微小構造体の製造装置であって、
    前記位置決め手段は、
    前記被圧接部材と前記圧接対象部材とが互いの対向面全面に渡って移動可能なストロークを有する第1ステージと、
    前記第1ステージの位置決め精度の範囲と同等以上のストロークを有する第2ステージと、
    前記被圧接部材及び前記圧接対象部材、又は、前記被圧接部材若しくは前記圧接対象部材の位置を高精度で測定可能な測定手段と、
    前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を前記測定手段により測定し、測定された位置と目標位置との差分から誤差補正値を算出し、算出された前記誤差補正値を用いて前記第2ステージを目標位置へ移動させ、前記第1ステージの位置決め誤差を補正する位置決め制御手段とを備えたことを特徴とする微小構造体の製造装置。
  16. 請求項15記載の微小構造体の製造装置において、
    前記第2ステージは、前記被圧接部材側又は前記圧接対象部材側の少なくとも一方を移動可能に配設されたことを特徴とする微小構造体の製造装置。
  17. 請求項15又は請求項16に記載の微小構造体の製造装置において、
    前記第2ステージは、前記第2ステージの可動部を駆動する圧電素子と、前記可動部を案内する弾性案内とを備えたことを特徴とする微小構造体の製造装置。
  18. 請求項17記載の微小構造体の製造装置において、
    前記第2ステージは、インチワーム駆動により駆動されるものであることを特徴とする微小構造体の製造装置。
  19. 請求項15乃至請求項18のいずれかに記載の微小構造体の製造装置において、
    前記測定手段は、レーザ光により測長を行なうレーザ測長器と、前記被圧接部材又は前記圧接対象部材に追従して移動するミラーとを備え、前記ミラーまでの測長を行なうことで、前記第1ステージにより移動された前記被圧接部材又は前記圧接対象部材の位置を測定するものであることを特徴とする微小構造体の製造装置。
  20. 請求項19記載の微小構造体の製造装置において、
    前記測定手段は、
    前記被圧接部材の積層前又は積層時に、前記ミラーの平面の平坦度の測定を行なうと共に、前記ミラーの理想平面に対する前記ミラーの平坦度から平坦度補正値を求め、前記平坦度補正値を用いて前記誤差補正値を補正するミラー補正手段を有することを特徴とする微小構造体の製造装置。
  21. 請求項15乃至請求項20のいずれかに記載の微小構造体の製造装置において、
    前記位置決め手段は、
    前記被圧接部材又は前記圧接対象部材を保持する前記圧接離間手段の位置を、前記測定手段により測定すると共に、積層時に、前回の積層時の前記圧接離間手段の位置とのずれ量から積層補正値を算出し、前記積層補正値を用いて前記誤差補正値を補正する積層補正手段を有することを特徴とする微小構造体の製造装置。
  22. 請求項15乃至請求項21のいずれかに記載の微小構造体の製造装置において、
    前記位置決め手段は、
    前記第1ステージ及び前記第2ステージの位置決めの基準位置に対する前記被圧接部材又は前記圧接対象部材の設置位置を測定すると共に、前記設置位置を前記基準位置に補正する基準位置補正値を算出するアライメント手段を有することを特徴とする微小構造体の製造装置。
  23. 請求項22記載の微小構造体の製造装置において、
    前記アライメント手段は、
    前記被圧接部材又は前記圧接対象部材に形成されたアライメントマークを検出すると共に、前記アライメントマークの検出位置から前記設置位置を求めるものであることを特徴とする微小構造体の製造装置。
  24. 請求項23記載の微小構造体の製造装置において、
    前記アライメントマークがフォトリソグラフィ技術により微細な成膜パターンとして形成されると共に、
    前記アライメント手段は、
    前記アライメントマークを任意のサイズに拡大投影可能な光学系と、前記光学系を介して前記アライメントマークを撮影する撮影手段と、前記撮影手段により撮影された画像から前記アライメントマークの検出位置を算出する画像処理手段とを有することを特徴とする微小構造体の製造装置。
  25. 請求項15乃至請求項24のいずれかに記載の微小構造体の製造装置において、
    前記被圧接部材を、任意の2次元パターン乃至3次元パターンが複数形成された基板としたことを特徴とする微小構造体の製造装置。
  26. 請求項15乃至請求項25のいずれかに記載の微小構造体の製造装置において、
    前記圧接対象部材を、任意の2次元パターン乃至3次元パターンが複数形成された基板としたことを特徴とする微小構造体の製造装置。
  27. 請求項15乃至請求項26のいずれかに記載の微小構造体の製造装置において、
    前記被圧接部材又は前記圧接対象部材の少なくとも一方を交換可能としたことを特徴とする微小構造体の製造装置。
  28. 請求項15乃至請求項27のいずれかに記載の微小構造体の製造装置において、
    前記圧接離間手段は、
    前記被圧接部材又は前記圧接対象部材のいずれか一方を保持する圧接軸と、
    前記圧接軸の圧接方向に垂直な方向の動きを抑制するように、前記圧接軸の圧接方向に並列に配置された単数又は複数の直動ガイド機構からなる案内手段とを備えたことを特徴とする微小構造体の製造装置。
JP2004111768A 2004-04-06 2004-04-06 微小構造体の製造方法及び製造装置 Pending JP2005288672A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004111768A JP2005288672A (ja) 2004-04-06 2004-04-06 微小構造体の製造方法及び製造装置
EP05101102A EP1602626A3 (en) 2004-04-06 2005-02-15 Method and system for manufacturing laminated microstructures
US11/060,788 US20050233064A1 (en) 2004-04-06 2005-02-18 Method of manufacturing microstructure and manufacturing system for the same
TW094105249A TWI286533B (en) 2004-04-06 2005-02-22 Method of manufacturing microstructure and manufacturing system for the same
KR1020050015609A KR100688393B1 (ko) 2004-04-06 2005-02-25 미세 구조물의 제조 방법 및 그를 위한 제조 시스템
CNB2005100528047A CN100333992C (zh) 2004-04-06 2005-02-28 微结构的制造方法及其制造系统
US11/779,805 US20070256774A1 (en) 2004-04-06 2007-07-18 Method of manufacturing microstructure and manufacturing system for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111768A JP2005288672A (ja) 2004-04-06 2004-04-06 微小構造体の製造方法及び製造装置

Publications (1)

Publication Number Publication Date
JP2005288672A true JP2005288672A (ja) 2005-10-20

Family

ID=35044868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111768A Pending JP2005288672A (ja) 2004-04-06 2004-04-06 微小構造体の製造方法及び製造装置

Country Status (6)

Country Link
US (2) US20050233064A1 (ja)
EP (1) EP1602626A3 (ja)
JP (1) JP2005288672A (ja)
KR (1) KR100688393B1 (ja)
CN (1) CN100333992C (ja)
TW (1) TWI286533B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500183B2 (ja) * 2005-02-25 2010-07-14 東芝機械株式会社 転写装置
US8988655B2 (en) * 2010-09-07 2015-03-24 Nikon Corporation Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
JP5757040B2 (ja) * 2010-12-13 2015-07-29 住友電工デバイス・イノベーション株式会社 光モジュールの調心方法
CN102707577B (zh) * 2012-05-23 2013-11-27 哈尔滨工业大学 宏微双机构伺服控制系统及其控制方法
KR101757777B1 (ko) * 2013-02-22 2017-07-14 에이에스엠엘 네델란즈 비.브이. 3­차원 패터닝 디바이스에 대한 리소그래피 모델
US9162509B1 (en) * 2014-03-31 2015-10-20 Xerox Corporation System for detecting inoperative inkjets in printheads ejecting clear ink using thermal substrates
US9225902B1 (en) * 2014-06-10 2015-12-29 Ryan J. Mohr Vibration attenuating camera mount
US10129447B2 (en) * 2015-02-20 2018-11-13 Brigham Young University Mass digitization system
CN107283828B (zh) * 2016-03-31 2023-04-28 上海微电子装备(集团)股份有限公司 3d打印装置、打印方法及其运动控制方法
CN107026582B (zh) * 2017-04-02 2018-07-10 金华职业技术学院 一种原子束流控制机构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151749A (en) * 1989-06-08 1992-09-29 Nikon Corporation Method of and apparatus for measuring coordinate position and positioning an object
JP2721757B2 (ja) * 1991-05-24 1998-03-04 工業技術院長 位置決め制御方法及び装置
JP2984441B2 (ja) * 1991-12-06 1999-11-29 光正 小柳 三次元lsi積層装置
US5787105A (en) * 1995-01-20 1998-07-28 Nikon Corporation Integrated semiconductor laser apparatus
JP3202646B2 (ja) * 1997-04-09 2001-08-27 セイコーインスツルメンツ株式会社 走査型プローブ顕微鏡
JP3161362B2 (ja) * 1997-05-01 2001-04-25 富士ゼロックス株式会社 微小構造体、その製造方法、その製造装置、基板および成形型
US6346710B1 (en) * 1998-08-31 2002-02-12 Olympus Optical Co., Ltd. Stage apparatus including displacement amplifying mechanism
US20040094086A1 (en) * 2001-03-29 2004-05-20 Keiichi Shimaoka Production device and production method for silicon-based structure
JP2002329965A (ja) * 2001-05-07 2002-11-15 New Create Kk 薄膜積層体の製造方法および製造装置
JP4377657B2 (ja) * 2003-11-07 2009-12-02 株式会社神戸製鋼所 有機塩素化合物除去剤及び有機塩素化合物除去方法

Also Published As

Publication number Publication date
TW200533593A (en) 2005-10-16
EP1602626A3 (en) 2006-04-12
TWI286533B (en) 2007-09-11
CN100333992C (zh) 2007-08-29
CN1680187A (zh) 2005-10-12
KR100688393B1 (ko) 2007-03-02
EP1602626A2 (en) 2005-12-07
KR20060042184A (ko) 2006-05-12
US20050233064A1 (en) 2005-10-20
US20070256774A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
TWI283231B (en) Manufacturing system for microstructure
KR100688393B1 (ko) 미세 구조물의 제조 방법 및 그를 위한 제조 시스템
JP5565792B2 (ja) アライメント装置
JP2006116602A (ja) 加圧装置の平行調整方法及び装置
JP4669766B2 (ja) 位置決め方法、この方法を用いた加圧方法および位置決め装置、この装置を備える加圧装置
JP6004738B2 (ja) インプリント装置、それを用いた物品の製造方法
US9682510B2 (en) Imprint apparatus and method of manufacturing article
JP5759303B2 (ja) インプリント装置、それを用いた物品の製造方法
JP6465577B2 (ja) インプリント装置及び物品の製造方法
JP2013102137A (ja) インプリント装置、それを用いた物品の製造方法
JPWO2010087082A1 (ja) ウエハレンズ製造装置及びウエハレンズの製造方法
JP4979918B2 (ja) 加圧方法及び加圧装置
JP4247296B1 (ja) 積層接合装置および積層接合方法
KR101394312B1 (ko) 웨이퍼 정렬장치
JP2019079893A (ja) アライメント方法、接合方法、樹脂成形方法、接合装置、樹脂成形装置および基板
JP4209456B1 (ja) 積層接合装置用治具
JP2019201184A (ja) インプリント装置、および物品製造方法
JP2008296396A (ja) シート材貼り合わせ装置およびシート材の製造方法
JP5380032B2 (ja) シート状部材保持具、シート状部材設置装置およびシート状部材設置方法
JP2009194264A (ja) 基板貼り合わせ装置
JP2005293570A (ja) 圧電素子を用いた駆動機構におけるクリープ補正方法及び装置
US20220219378A1 (en) Imprint apparatus, control method, storage medium, and method of manufacturing article
JPH098106A (ja) 矩型平板状物体の位置決め方法及び装置
KR101045366B1 (ko) 작업물 또는 툴을 얼라인하기 위한 구동장치 및 이를 구비한 얼라인 시스템, 및 얼라인 방법
JP2016021442A (ja) インプリント装置及び物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915