JP2005233557A - 冷凍システムおよびその運転方法 - Google Patents

冷凍システムおよびその運転方法 Download PDF

Info

Publication number
JP2005233557A
JP2005233557A JP2004045481A JP2004045481A JP2005233557A JP 2005233557 A JP2005233557 A JP 2005233557A JP 2004045481 A JP2004045481 A JP 2004045481A JP 2004045481 A JP2004045481 A JP 2004045481A JP 2005233557 A JP2005233557 A JP 2005233557A
Authority
JP
Japan
Prior art keywords
flow rate
refrigerator
rated
concentrated solution
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045481A
Other languages
English (en)
Other versions
JP4167190B2 (ja
Inventor
Yoshihiko Tanaka
良彦 田中
Toshihiro Hori
俊博 堀
Yuji Honda
裕二 本田
Yuta Kotajima
雄太 古田島
Kenji Ueda
憲治 上田
Akira Fukushima
亮 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Jisho Sekkei Inc
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Jisho Sekkei Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Jisho Sekkei Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004045481A priority Critical patent/JP4167190B2/ja
Publication of JP2005233557A publication Critical patent/JP2005233557A/ja
Application granted granted Critical
Publication of JP4167190B2 publication Critical patent/JP4167190B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

【課題】 冷凍機が出力しうる冷凍能力を最大限利用して適切な運転台数で運転を行う冷凍システムを提供する。
【解決手段】 定格冷却水入口温度Tinでの冷凍機の定格負荷に対する冷水流量Gを定格冷水流量として記憶するとともに、定格冷却水入口温度Tinと運転時における冷却水入口温度Tinとの相違に基づいて、定格冷水流量と異なる流量に冷水流量を制御する。
【選択図】 図6

Description

本発明は、ビルや工場設備に用いられて好適な冷凍システムに関するものである。
従来より、複数の冷凍機を並列に有し、これら冷凍機から冷熱を得て冷水を製造する冷凍システムがある。冷凍システムによって得られた冷水は、ビルや工場設備に設置された空調機やファンコイル等の外部負荷に供給される。
このような冷凍システムの高効率化を図るものとして、下記特許文献1に示すように、冷凍機の凝縮器を冷却する冷却水の温度差を一定に保つように制御するものがある。
また、下記特許文献2に示すように、空調制御を速やかに安定させるために、各冷凍機の増減段のタイミングを制御するものがある。
特開2002−31376号公報(段落[0070]〜[0078],及び図6〜図7) 特開2000−18683号公報(段落[0017],図4)
ところが、外気温の変動によって、冷却水の凝縮器入口温度が変動した場合、冷凍機が出力しうる冷凍能力が十分に利用されていない。例えば、外気温の低下により冷却水の凝縮器入口温度が設計仕様温度よりも低くなり、冷凍機としては定格負荷よりも冷凍能力を出力できる場合がある。しかし、通常では、冷凍機は定格冷凍能力を超えないように運転されているため、冷凍機の増段のタイミングは定格負荷を超えたことを条件として行われていた。これでは、冷凍機の増段のタイミングが早くなり、増段に伴う冷水ポンプ、冷却水ポンプ、冷却塔などの補機の動力の増大や、1台あたりの冷凍機の冷凍能力低下に伴う冷凍機の総消費エネルギーの増大を招いていた。
本発明は、このような事情に鑑みてなされたものであって、冷凍機が出力しうる冷凍能力を最大限利用して適切な運転台数で運転を行う冷凍システムおよびその運転方法を提供することを目的とする。
上記課題を解決するために、本発明の冷凍システムは、以下の手段を採用する。
すなわち、本発明にかかる冷凍システムは、冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮させる凝縮器、凝縮された冷媒を膨張させる膨張器、および膨張された冷媒を蒸発させて冷熱を得る蒸発器、を備えた冷凍機と、前記凝縮器に冷却水を供給し、前記凝縮器における排熱を除去する冷却手段と、前記冷凍機によって得られた前記冷熱により冷水を得て、該冷水を外部負荷に供給する冷水供給手段と、を備えた冷凍システムにおいて、定格排熱温度での前記冷凍機の定格負荷に対する前記冷水供給手段の冷水流量を定格冷水流量として記憶するとともに、前記定格排熱温度と運転時における運転時排熱温度との相違に基づいて、前記定格冷水流量と異なる流量に冷水流量を制御する制御手段を備えていることを特徴とする。
運転時排熱温度が定格排熱温度と異なる場合、冷凍機が出力しうる冷凍能力が変動する。たとえば、運転時排熱温度が定格排熱温度よりも低い場合、冷凍機は定格負荷よりも多くの冷凍能力を出力しうる。一方、運転時排熱温度が定格排熱温度よりも高い場合、冷凍機は定格負荷を下回る冷凍能力しか出力しない。
このような冷凍能力の変動に応じて冷水流量を変化させることにより、必要十分な冷熱を取り出すことができる。
「排熱温度」としては、外気温度、冷却手段によって供給される冷却水の凝縮器入口温度または凝縮器出口温度、凝縮器における凝縮冷媒温度、凝縮温度を代表する凝縮冷媒圧力等が用いられる。吸収冷凍機では前記排熱温度に加え、冷却水の吸収器入口温度または吸収器出口温度、吸収器圧力等が用いられる。
「定格排熱温度」は、冷凍システムの設計仕様となる温度を意味し、例えば、冷却水の凝縮器入口温度として32℃が設定される。
また、本発明による冷凍システムによれば、 前記冷凍機は、冷媒を圧縮する遠心式圧縮機を備えていることを特徴とする。
遠心式圧縮機を備えた冷凍機は、運転時排熱温度が定格排熱温度よりも低い場合(低ヘッドの場合)、遠心圧縮機の特性上、冷凍機の定格負荷を超えた冷凍能力で運転することが可能である。したがって、この定格負荷を超えた冷凍能力に応じた熱量分だけ冷水流量を増大させて、より多くの外部負荷の要求熱量に対応することができる。
一方、遠心式圧縮機を備えた冷凍機は、運転時排熱温度が定格排熱温度よりも高い場合(高ヘッドの場合)、遠心圧縮機の特性上、冷凍機の定格負荷を下回る冷凍能力しか出力することができない。したがって、この定格負荷を下回る熱量分だけ冷水流量を減少させて、冷水ポンプ等の補機動力の低減と、冷水出口温度制御の安定性の確保が可能となる。
「遠心式圧縮機」としては、ターボ圧縮機が好適である。
また、本発明による冷凍システムによれば、 前記冷凍機は、冷媒を圧縮する容積式圧縮機を備え、前記制御手段は、前記運転時排熱温度が定格排熱温度よりも低い場合、前記容積式圧縮機を駆動する駆動機の出力を増大させるとともに、増大した前記駆動機の出力に応じて、前記冷水流量を増大させることを特徴とする。
運転時排熱温度が定格排熱温度よりも低い場合、低ヘッドとなるので、駆動機の負荷が低下して駆動機に余力が生じる。この余力分を補うように駆動機の出力を増大させて、この増大出力に応じた冷凍能力に相当する冷水流量を増大させることにより、より多くの外部負荷の要求熱量に対応することができる。
駆動機の動力は、ヘッドと冷媒循環流量との積で決まる。本発明では、ヘッドが減少した分だけ出力を増大させて冷媒循環流量を増大させるだけなので、結果として冷凍システム全体の能力は増大するが駆動機の消費動力が増大することはない。
「容積式圧縮機」としては、レシプロ、スクリュー、スクロール、ロータリー等の圧縮機が挙げられる。
また、冷凍機として、吸収冷凍機を用いても良い。
また、本発明による冷凍システムによれば、吸収冷凍機を用いた場合、熱源によって加熱して溶液濃度が高い濃溶液を生成する高圧再生器と、該高圧再生器から供給された濃溶液の溶液濃度をさらに高める低圧再生器と、前記低圧再生器から供給された濃溶液に対して前記蒸発器で蒸発した冷媒を吸収させて溶液濃度が低い希溶液を生成する吸収器と、を備え、前記高圧再生器および前記低圧再生器と前記吸収器との間には、前記濃溶液と前記希溶液とを熱交換させる熱交換器が設けられ、前記低圧再生器をバイパスして、前記高圧再生器から前記熱交換器へと前記濃溶液を流す濃溶液バイバス経路に、前記濃溶液の流量を調整する濃溶液バイパス流量調整弁が設けられていることを特徴とする。
高圧再生器および低圧再生器との間に設けられた熱交換器では、濃溶液の濃度が高くかつ温度が低い状態となっている。したがって、この位置では、濃溶液が結晶してしまう溶液結晶が発生するおそれが高い。特に、冷却水の温度が低下した場合には、凝縮器圧力が低下することによって高圧再生器の圧力が低下し、高圧再生器と低圧再生器との圧力差が小さくなってしまう。高圧再生器と低圧再生器との圧力差が小さくなってしまうと、溶液循環量が低下するので、さらに溶液結晶が生じやすい状態となる。
そこで、本発明は、低圧再生器をバイパスして熱交換器へと高圧再生器からの濃溶液を流す濃溶液バイパス経路に、濃溶液の流量を調整する濃溶液バイパス流量調整弁を採用して、溶液結晶が生じるおそれのある状況では、濃溶液バイパス流量調整弁の開度を上げて高圧再生器からの濃溶液を多くパイパスさせることとする。これにより、熱交換器に流れる濃溶液の流量が増大し、しかも、低圧再生器からの濃溶液に比べて溶液濃度が低い高圧再生器からの濃溶液を熱交換器に多く流すことで溶液結晶を防ぐ。さらに、濃溶液バイパス流量調整弁を開くことで吸収冷凍機全体の溶液流量が増加するため濃溶液濃度が低下し溶液結晶を防止する。
また、本発明による冷凍システムによれば、溶液濃度が低い希溶液を高圧再生器と低圧再生器のそれぞれに流入させ濃溶液を生成する吸収冷凍機、および/または、低圧再生器で濃溶液を生成しさらに高圧再生器で溶液濃度を高める吸収冷凍機を備え、前記高圧再生器出口の濃溶液系統の熱交換器、立上り配管等の抵抗部をバイパスする経路に、前記濃溶液の流量を調整する濃溶液バイパス流量調整弁が設けられていることを特徴とする。
また、本発明による冷凍システムによれば、前記制御手段は、前記冷凍機から出力される運転状態データに基づいて、前記冷水流量を増大することを特徴とする。
「運転状態データ」としては、遠心圧縮機の冷媒吸入口に設けられたインレットガイドベーン(IGV)、冷凍機の圧縮機を駆動する駆動機の出力や入力(kW、A)等が挙げられる。
「運転状態データ」は、例えば、冷凍機の制御盤に記憶されている。
制御手段は、このような運転状態データを得て、さらに冷凍能力を増大させることができるかを判断する。冷凍能力を増大させることが可能と判断した場合には、増大させうる冷凍能力に対応した熱量分だけ冷水流量を増大させる。
また、本発明による冷凍システムによれば、前記冷凍機は、外部負荷に対して複数並列に設置され、これら冷凍機前記圧縮機は、遠心式圧縮機を備えた冷凍機、および/または容積式圧縮機を備えた冷凍機、吸収冷凍機のいずれか、またはこれらの組み合わせとされていることを特徴とする。
冷凍機が外部負荷に対して複数並列に設けられた冷凍システムでは、外部負荷の要求熱量に対して各冷凍機を個別に運転・停止することになる。本発明の冷凍システムによれば、排熱温度によっては冷水流量を増大させて定格負荷を超えたところで冷凍機を運転させることが可能となるので、外部負荷の要求熱量が増大しても冷凍機の増段のタイミングを遅らせることができる。
冷凍機圧縮機としては、すべて遠心式圧縮機を備えた冷凍機としてもよいし、すべて容積式圧縮機を備えた冷凍機としてもよいし、すべて吸収冷凍機としてもよい。また、これら冷凍機遠心圧縮機と容積式圧縮機との組合せとしても良い。
また、本発明による冷凍システムの運転方法によれば、冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮させる凝縮器、凝縮された冷媒を膨張させる膨張器、および膨張された冷媒を蒸発させて冷熱を得る蒸発器、を備えた冷凍機と、前記凝縮器に冷却水を供給し、前記凝縮器における排熱を除去する冷却手段と、前記冷凍機によって得られた前記冷熱により冷水を得て、該冷水を外部負荷に供給する冷水供給手段と、を備えた冷凍システムの運転方法において、定格排熱温度での前記冷凍機の定格負荷に対する前記冷水供給手段の冷水流量を定格冷水流量として記憶するとともに、前記定格排熱温度と運転時における運転時排熱温度との相違に基づいて、前記定格冷水流量と異なる流量に冷水流量を制御することを特徴とする。
本発明によれば、凝縮器の排熱温度を基準として冷水流量を制御することとしたので、冷凍機が出力しうる最大限の冷凍能力を利用することができる。
したがって、冷凍機を複数設置した場合、外部負荷の要求熱量が増大しても、冷凍機の増段のタイミングを遅らせることができ、最適な運転台数での運転が可能となる。これにより、冷凍システム運用時の省エネルギー化が実現される。
以下に、本発明にかかる冷凍システムの実施形態について、図面を参照して説明する。
[第一実施形態]
図1には、第一実施形態にかかる冷凍システムの全体構成が示されている。
冷凍システム1は、ビルや工場設備に設置される。この冷凍システム1は、空調機やファンコイル等の外部負荷3に供給する冷水に対して冷熱を与える第1乃至第3のターボ冷凍機11,12,13を3台備えている。
冷水流れからみた各ターボ冷凍機11,12,13の下流側には、それぞれ、冷水を圧送する第1乃至第3の冷水ポンプ(冷水供給手段)21,22,23が設置されている。これら冷水ポンプ21,22,23によって、各ターボ冷凍機11,12,13において冷やされた冷水は、サプライヘッダ31に送られる。
各冷水ポンプ21,22,23は、第1乃至第3の冷水ポンプ用インバータモータ21a,22a,23aによって駆動されるようになっており、これにより、回転数を可変とすることで可変流量制御される。
また、各冷水ポンプ21,22,23は、各インバータモータ21a,22a,23aによって、過流量での運転が可能となっている。
ここで、「過流量」とは、次のような意味である。冷凍システム1は、外部負荷3の規模に応じて設計時に最大負荷が決定される。この最大負荷のときに各冷水ポンプ21,22,23が負担する冷水流量を定格冷水流量とする。この定格冷水流量を超える流量を過流量という。
サプライヘッダ31には、各ターボ冷凍機11,12,13において得られた冷水が集められるようになっている。
サプライヘッダ31に集められた冷水は、外部負荷3に供給される。
外部負荷3にて空調等に供されて昇温した冷水は、リターンヘッダ32に送られる。冷水は、リターンヘッダ32において分岐され、各ターボ冷凍機11,12,13に送られる。
第1乃至第3ターボ冷凍機11,12,13は、外部負荷3に対して並列に設置されている。
各ターボ冷凍機11,12,13には、それぞれ、第1乃至第3の冷却塔(冷却手段)14,15,16が設けられている。この冷却塔14,15,16によって、冷凍機の凝縮器から排出される排熱が除去される。各冷却塔14,15,16を流れる冷却水は、第1乃至第3の冷却水ポンプ17,18,19によって圧送される。各冷却水ポンプ17,18,19は、第1乃至第3の冷却水ポンプ用インバータモータ17a,18a,19aによって駆動される。これにより、回転数を可変とすることにより、各冷却水ポンプ17,18,19の吐出流量を可変に制御できるようになっている。
サプライヘッダ31とリターンヘッダ32との間には、バイパス回路33が設けられている。このバイパス回路33には、開閉バルブ34が設けられている。この開閉バルブ34を調整することにより、サプライヘッダ31からリターンヘッダ32へと流れる冷水流量を調整して、サプライヘッダ31から外部負荷3へ流れる冷水の供給圧力を調整するようになっている。
サプライヘッダ31と外部負荷3とを接続する冷水配管には、冷水流量を検知するための冷水流量センサ46が設けられている。冷水流量センサ46の出力は、制御部(制御手段)47へ送られる。
なお、冷水流量センサ46の設置位置は、外部負荷3を流れる冷水流量を検出できる位置であればよく、例えばリターンヘッダ32側に設ける構成としても良い。
外部負荷3とリターンヘッダ32とを接続する冷水配管には、冷水温度を検知するための流入冷水温度センサ42が設けられている。流入冷水温度センサ42の出力は、制御部47へ送られる。
この流入冷水温度センサ42によって、運転時における、外部負荷3からターボ冷凍機11,12,13側に流入する冷水の還温度が得られる。
リターンヘッダ32と各ターボ冷凍機11,12,13とを接続する冷水配管には、それぞれ、冷水温度を検知するための第1乃至第3の流入冷水温度センサ43,44,45が設けられている。各流入冷水温度センサ43,44,45の出力は、制御部47へ送られる。
制御部(制御手段)47は、冷水流量センサ46、流入冷水温度センサ42、および第1乃至第3の冷水温度センサ43,44,45の出力を得て、所定の演算結果に基づいて、各ターボ冷凍機11,12,13、冷却水ポンプ用インバータモータ17a,18a,19a、冷水ポンプ用インバータモータ21a,22a,23a、開閉バルブ34等を制御する。
制御部47では、流入冷水温度センサ42から得られる運転時還温度Tiと、サプライヘッダ31から外部負荷3へ流出する冷水の往温度Toとから、往還温度差(Ti−To)が演算されるようになっている。この往還温度差(Ti−To)と冷水流量センサ46によって得られる運転時冷水流量G(m/s)とに基づいて、外部負荷3の要求冷凍能力Qreqが演算される。
具体的には、次式に基づいて算出される。
Qreq=(Ti−To)×G×γ×λ ・・・・・(1)
ここで、γは、往温度Toと還温度Tiとの平均温度における冷水の比重、λは、往温度Toと還温度Tiとの平均温度における冷水の比熱を意味する。
なお、本実施形態においては、定格温度(例えば7℃)で冷水が供給されるようにターボ冷凍機11,12,13が制御されているので、制御部47はこの定格温度を往温度Toとして記憶している。ただし、往温度Toを検出するように、サプライヘッダ31に温度センサを設ける構成としても良い。
図2には、ターボ冷凍機11,12,13と、冷却塔14,15,16の詳細が示されている。同図では、理解の容易のため、3台並列に設けられたターボ冷凍機と冷却塔のうちの一つの第1ターボ冷凍機11及び第1冷却塔14のみが示されている。
ターボ冷凍機11は、冷媒を圧縮するターボ圧縮機60と、ターボ圧縮機60によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器62と、凝縮器62によって凝縮された高温高圧の液冷媒を膨張させる膨張弁(膨張器)64と、膨張弁64によって膨張させられた液冷媒を蒸発させる蒸発器66と、を備えている。
ターボ圧縮機60は、遠心式の圧縮機であり、インバータ駆動モータ68によって回転数制御の下で駆動されている。ターボ圧縮機60の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)60aが設けられている。
凝縮器62には、凝縮冷媒圧力を計測するための凝縮冷媒圧力センサ80と、凝縮冷媒温度を計測するための凝縮冷媒温度センサ82とが設けられている。なお、凝縮冷媒温度は、凝縮冷媒圧力から飽和温度として制御部47にて演算から求めた値としてもよい。
これらセンサ80,82の出力は、制御部47(図1参照)に送信される。
蒸発器66において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。すなわち、蒸発器66内に挿通された冷水配管70内を流れる冷水は、冷媒に熱が奪われることにより、冷やされる。この冷水流量は、上述の第1冷水ポンプ21(図1参照)によって制御される。
冷却塔14によって、凝縮器62において冷媒が凝縮する際に放出する排熱が除去される。
冷却塔14は、凝縮器62に接続された冷却水配管72を備えている。この冷却水配管72を介して、冷却塔14と凝縮器62との間を冷却水が循環する。循環する冷却水は、凝縮器62において冷媒から凝縮熱(排熱)を吸熱し、冷却塔14において放熱する。冷却塔14における放熱は、外気との熱交換によって行われる。
冷凍システムは、定格の冷却水入口温度Tinに基づいて設計されている。本実施形態では、定格冷却水入口温度(定格排熱温度)Tinは、32℃とされている。この定格冷却水入口温度Tinは、制御部47のメモリに格納されている。
運転時における冷却水入口温度Tinは、冷却水配管72の凝縮器62入口近傍に設けた冷却水入口温度センサ74によって検知される。冷却水入口温度センサ74(図1参照)の出力は、上述の制御部47へと送信される。
運転時における冷却水出口温度Toutは、冷却水配管72の凝縮器62入口近傍に設けた冷却水出口温度センサ76によって検知される。冷却水出口温度センサ76の出力は、制御部47(図1参照)へと送信される。
冷却水流量は、冷却水配管72に設置された第1冷却水ポンプ17及び第1冷却水ポンプ用インバータモータ17aによって制御される。
制御部47では、冷却水入口温度Tinを得て、以下に示すような制御が行われる。
つまり、制御部47は、冷却水入口温度Tinと、メモリに格納されている定格冷却水入口温度Tinとを比較して、ターボ冷凍機がさらに出力可能な増大冷凍能力Q(Tin)を演算する。そして、この増大冷凍能力Q(Tin)に対応する冷水の過流量を演算し、これを冷水流量の上限値に再設定する。
このような制御を行いうる理由は次の通りである。
遠心式の空力機械であるターボ圧縮機を備えたターボ冷凍機は、図3に示すような特性を有している。
図において、横軸は冷凍能力、縦軸は冷却水温度である。
縦軸の冷却水温度は、ヘッドを意味し、高温ほど高ヘッドとなる。
曲線L1はターボ圧縮機の同一回転数における特性曲線を示し、曲線L2は圧縮機の安定限界を示す旋回失速線を示す。
ターボ冷凍機は、設計仕様の定格冷却水温度(32℃)において定格冷凍能力(定格負荷)の100%を出力するように設計されている。
ところが、冷却水温度が定格よりも低い場合(低ヘッドの場合;例えば24℃の場合)には、ターボ冷凍機としては定格冷凍能力を超えた冷凍能力(例えば115%)を出力することができる。
このように、ターボ冷凍機の特性上、定格冷凍能力を超えた領域で運転できるので、この特性を有効に利用する制御を行い得るようになっている。
一方、冷却水温度が定格よりも高い場合(高ヘッドの場合;例えば34℃の場合)には、ターボ冷凍機としては定格冷凍能力を下回る冷凍能力(例えば80%)しか出力することができない。
このような場合、制御部47は、定格冷凍能力を下回る冷凍能力に応じた冷水流量を指示する。
本実施形態では、上記のような定格冷凍能力を超えた運転を可能としているので、ターボ圧縮機のインバータ駆動モータ68、冷却塔14、冷却水ポンプ17等についても、定格冷凍能力を超えた領域まで対応できるような仕様の機器が選定されている。
例えば、図4に示すように、設計点に応じたインバータ駆動モータを選定した場合、設計点を超えた領域で、駆動機の出力が冷凍機の空力的な最大能力に追いつかないことになる。そこで、定格冷凍能力を超えた領域で運転できる出力を有するインバータおよびインバータ駆動モータを選定する。
次に、上記構成の冷凍システム1の運転方法について図5を参照して説明する。
深夜、早朝、休日など、外部負荷3において冷熱の取出しが行われないスタート時(S1)では、第1乃至第3ターボ冷凍機11,12,13はすべて停止している。
そして、外部負荷3において冷熱の取出しが行われる(外部負荷3が起動する)時刻の直前に、ターボ冷凍機11,12,13を起動して、外部負荷3の要求熱量に対応するように準備する。
具体的には、制御部47は、図示しないスケジュールタイマ(外部負荷3の起動時刻にあわせてオン(ON)となるようにセットされている)からの出力を受けて(S2)、第1ターボ冷凍機11、第1冷却塔14、第1冷却水ポンプ用インバータモータ17a、第1冷却水ポンプ17、第1冷水ポンプ用インバータモータ21a及び第1冷水ポンプ21を起動させる(S3)。
冷凍システム1の立ち上げ直後は、外部負荷3による要求熱量Qreqは少ない。そのため、制御部47は、サプライヘッダ31の往圧力とリターンヘッダ32の還圧力の差(以下「圧力差△P」という。)が一定になるようにバイパス回路33の開閉バルブ34を開く制御をする(S4)。
そして、外部負荷3の運転が開始される時刻になると(S5)、外部負荷3による熱の取出しが増え、外部負荷3の要求熱量Qreqが増え始める。制御部47は、圧力差△Pが一定になるようにバイパス回路33の開閉バルブ34を閉じる制御を行う(S6)。
このとき、各冷水ポンプ21,22,23による冷水供給量は、冷凍システム1の設計仕様において決定された定格冷水流量となっている。したがって、各インバータモータ21a,22a,23aは、定格冷水流量に見合った一定の回転数(以下「定格回転数」という。)で回転している。
このような定格運転のときは、バイパス回路33の開閉バルブ34の開度によって冷水流量が制御される。
冷水の往還温度差(Ti−To)が、設計仕様値である定格往還温度差よりも小さい場合には、冷水流量が定格流量とされたままでは、開閉バルブ34による冷水流量制御では圧力差△Pを一定に保つことが困難になる(S7)。つまり、開閉バルブ34を全閉にしても、圧力差△Pを一定に保つことができなくなる。本実施形態では、ΔPを保つためにターボ冷凍機、冷水ポンプ、冷却水ポンプ、冷却塔の増段を測らずに、制御部47は、第1冷水ポンプ用インバータモータ21aの周波数を制御して過流量制御(S8)に入る。
過流量制御では、まず制御部47が、冷水の往還温度差(Ti−To)から、複数段用意された冷水の流量上限のうちの適切な上限流量を決定する。そして、決定された上限冷水流量を下回るように、かつ、定格流量を上回るように第1冷水ポンプ用インバータモータ21aの駆動周波数を制御する。
このように冷水の過流量制御を行い、往還温度差(Ti−To)が定格値よりも小さい場合であっても、ターボ冷凍機の増段のタイミングを遅らせ、外部負荷の要求熱量Qreqの増大に応じた適切な冷凍機の運転台数を選択する。
次に、図6を用いて、冷水の往還温度差(Ti−To)が定格値と同等であり、外部負荷3の要求熱量Qreqが増大した場合の制御について説明する。
この場合、図5で説明した冷水の過流量制御(S8)を行っていても、従来では、第1ターボ冷凍機11の冷凍能力を定格負荷まで増大させてしまえば、これ以上負荷を上げることができず、増大した外部負荷3の要求熱量に対応できなくなる。
しかし、冷却塔14における冷却水入口温度Tinが定格冷却水入口温度Tinよりも低い場合、ターボ圧縮機を備えたターボ冷凍機としては、同一回転数のまま、さらに多くの冷凍能力を出力することが可能となっている。
そこで、本実施形態による制御部47は、冷凍機の定格負荷を超えた場合(S9)であっても、冷却水入口温度Tinが定格冷却水入口温度Tinよりも低い場合(S10)には、冷却水入口温度Tinと定格冷却水入口温度Tinとを比較して、ターボ冷凍機がさらに出力可能な増大冷凍能力Q(Tin)を演算する(S11)。すなわち、図3を用いて説明したように、冷却水入口温度Tinが定格冷却水入口温度Tinよりも低いほど、冷凍能力を増大させる制御を行う。
そして、制御部47は、冷却水入口温度Tinに基づく増大冷凍能力Q(Tin)に対応する冷水の過流量を演算し、これを冷水流量の上限値に再設定する(S12)。
このように再設定された上限冷水流量に達するまで、冷水流量を過流量制御して、外部負荷3の要求熱量に対応する。
冷凍機の増段は、冷却水入口温度Tinに基づいて決定された増大冷凍能力Q(Tin)に対して、次式に基づいて行われる(S13)。
0.8Q(Tin)<ΣQri ・・・・(2)
ここで、Qri(i=1〜3)は、各ターボ冷凍機11,12,13の運転時における冷凍能力を意味する。また、0.8という係数は、個々の冷凍システムに適したしきい値であり、システムにより異なる。
このように、各ターボ冷凍機11,12,13の運転時における冷凍能力の和が冷却水入口温度(Tin)に基づいて決定される増大冷凍能力Q(Tin)の80%を超える場合に冷凍機を増段する(S15)。
一方、次式を満たす場合にも冷凍機の増段を行う。
Tsu<To+dTo ・・・・(3)
ここで、Tsuは、冷水の供給上限温度、dToは、冷水温度の安全定数である。
上式が成立するのは、冷凍機が故障して仕様温度の冷水が供給できなくなったときであり、これにより、冷凍機の故障の有無が判定される(S14)。
なお、冷却水入口温度Tinが定格冷却水入口温度Tinよりも高い場合には、ターボ冷凍機は定格冷凍能力を下回る冷凍能力しか出力できないので、この冷凍能力に応じた冷水流量となるように冷水ポンプ用インバータモータ21aを制御する。
さらに、次のような制御を行っても良い。
制御部47に対して、ターボ圧縮機60に設けたIGVの開度(運転状態データ)と、駆動モータ68の出力(運転状態データ)とを送信する。
制御部47は、これらの信号を受け取り、ターボ冷凍機11がさらに冷凍能力を出力することができるかを判断する。例えば、IGVの開度が40%、駆動モータ68の出力が70%という信号を受け取ると、制御部47は20%程度の能力増大が可能と判断する。そして、この20%の冷凍能力に見合った冷水流量の増大を指示する。
以上の通り、本実施形態によれば、以下の効果を奏する。
定格冷凍能力を超えた冷凍能力に応じた熱量分だけ冷水流量を増大させて、より多くの外部負荷3の要求熱量に対応することとしたので、冷凍機の増段のタイミングを遅らせることができ、この遅らせることができる領域において、余分な冷水ポンプ、冷却水ポンプ、冷却塔動力の発生がないため省エネルギー運転が実現される。特に、冷水の往還温度差が定格値の場合でも、冷却水温度が低い場合には、さらに冷凍機の増段タイミングの調整代が増えることになり、有効である。
一方、冷却水温度が高く高ヘッドの場合には、定格冷凍能力を下回る熱量分だけ冷水流量を減少させることにより、冷水ポンプ補機動力の低減と、冷水出口温度制御の安定性が確保できる。
また、ターボ冷凍機からの信号によって、冷凍能力の増大が可能か否かを判断し過流量制御を行うこととしたので、冷凍機の能力を最大限発揮させて冷凍機の増段のタイミングを適切に設定することができる。
[第二実施形態]
次に、本発明の第二実施形態について、図7を用いて説明する。
本実施形態は、第一実施形態において圧縮機がターボ冷凍機であったものが、レシプロ、スクリュー、スクロール、ロータリー等の容積式圧縮機100とされている点で異なる。その他の構成については、第一実施形態と同様である。したがって、冷凍システムの全体構成は図1と同様である。
ただし、容積式圧縮機100を駆動する駆動機としては、第一実施形態のようにインバータ駆動モータとしても良いし、ガスエンジンとしてもよい。
図8には、第一実施形態と同様に過流量制御を行った(図5参照)後の運転方法が示されている。
容積式圧縮機では、図3を用いて説明したような遠心式空力機械特有の特性はない。
しかし、冷却水入口温度が定格冷却水入口温度よりも低い場合には、低ヘッドとなるので、容積式圧縮機100の駆動機68の負荷が低下して駆動機68に余力が生じる。制御装置47は、この駆動機の余力分を演算する(S17)。
この余力分を補うように、制御部47は、駆動機68の回転数を増大させて、冷媒循環流量を増大させる。この増大した冷媒循環流量に対応する増大冷凍能力Q(Tin)に相当する分だけ冷水流量を増大させて、過流量制御する(S18)。これにより、より多くの外部負荷3の要求熱量に対応することができる。
なお、駆動機の動力は、ヘッドと冷媒循環流量との積で決まる。本実施形態では、冷却水入口温度が低下してヘッドが減少した分だけ回転数を増大させて冷媒循環流量を増大させるだけなので、結果として駆動機の出力最大値が増大することはない。
本実施形態における冷凍機の増段のタイミングについては、図5及び図6を用いて説明した第一実施形態と同様に、冷却水入口温度に応じて増大冷凍能力Q(Tin)を制御部47によって演算し、この増大冷凍能力Q(Tin)に応じて増段のタイミングを決定する。
[第三実施形態]
次に、本発明の第三実施形態について、図9及び図10を用いて説明する。
本実施形態は、第一実施形態において冷凍機がターボ冷凍機であったものが、吸収冷凍機200とされている点で異なる。その他の構成については、第一実施形態と同様である。したがって、冷凍システムの全体構成は、ターボ冷凍機と吸収冷凍機との違いを除けば、図1と同様である。
吸収冷凍機200には、冷媒とされる水に対してLiBrやアンモニア等を溶解させた吸湿性のある水溶液が用いられる。
吸収冷凍機200は、この水溶液の水分を蒸発させて濃度の濃い水溶液を生成する高圧再生器201および低圧再生器202と、これら再生器201,202で生成された濃溶液が供給され、蒸発器204からの水分を吸収して希溶液を生成する吸収器203とを備えている。
また、吸収冷凍機200は、高圧再生器201及び低圧再生器202から導かれる蒸気(冷媒)が供給され、この蒸気を凝縮させる凝縮器205と、凝縮器205から供給された凝縮水を蒸発させる蒸発器204とを備えている。
高圧再生器201には、高圧蒸気源やボイラ等の熱源から、調整弁206を介して蒸気が供給される。この蒸気によって水溶液が加熱され、水溶液中の水分を蒸発させることによって濃溶液が生成される。
調整弁206は、制御部47によってその開度が調整されるようになっている。
高圧再生器201から流出する蒸気(冷媒)は、低圧再生器202へと供給された後、凝縮器205へと供給される。低圧再生器202で生成された蒸気も、凝縮器205へと供給される。
高圧再生器201及び低圧再生器202と、吸収器203との間には、高温熱交換器207及び低温熱交換器208が設けられている。これらの熱交換器207,208によって、吸収器203から溶液ポンプ209を介して供給される希溶液と、高圧再生器201及び低圧再生器202から供給される濃溶液との間で熱交換が行われる。
高温熱交換器207から流出した濃溶液は、その大部分が低圧再生器202へと供給される。一方、それ以外の濃溶液は、低圧再生器202をバイパスする濃溶液バイパス経路210を通って、低温熱交換器208とへ供給される。濃溶液バイパス経路210には、濃溶液の流量を調整する濃溶液バイパス流量調整弁211が設けられている。濃溶液バイパス流量調整弁211は、図示しないが、制御部47によって弁開度が調整されるようになっている。
蒸発器204内には、冷水配管70が挿通されており、外部負荷3に対して冷水が供給されるようになっている。この冷水配管70内を流れる冷水は、蒸発器205中の冷媒に熱を奪われることにより冷やされる。冷水流量は、上述の第1冷水ポンプ21(図1参照)によって制御される。第1冷水ポンプ21は、制御部47によってインバータ制御される。
吸収器203及び凝縮器205には、冷却水配管213が設けられており、この冷却水配管213を通過する冷却水によって内部の希溶液ないし蒸気が冷却される。冷却水配管213には、図示しないが、冷却水ポンプおよび冷却塔が接続されている。
冷却水配管213の凝縮器205入口には、冷却水入口温度センサ74が設けられており、冷却水入口温度Tinが測定されるようになっている。冷却水入口温度センサ74の出力は、制御部47へと出力される。
次に、上記構成の吸収冷凍機200について、冷却水温度が低下した場合の動作について説明する。
外気温が低下して冷却水温度が低下すると、対数平均温度差が大きくなり、吸収器203における冷媒蒸気の吸収量が増加する。これにより吸収能力が増加するので、希溶液の濃度が低下し、これにより冷凍能力が増加する。
また、冷却水温度が低下すると、対数平均温度差が大きくなり、凝縮器205における冷媒凝縮量が増加するとともに、凝縮圧力が低下する。凝縮圧力が低下すると、凝縮器205に接続された低圧再生器202及び高圧再生器201の圧力・温度が低下する。高圧再生器201の圧力が低下すると、熱源蒸気の負荷が減り、運転状態に余裕ができることになる。
また、高圧再生器201の圧力が低下すると、高圧再生器201と低圧再生器202との圧力差も低下する。吸収冷凍機200内を循環する溶液循環量は、高圧再生器201と低圧再生器202との圧力差によって定まる。したがって、冷却水温度が低下すると、再生器201,202間の圧力差が小さくなり、溶液循環量が低下することになる。溶液循環量が低下すると、溶液加熱に費やされる熱量も低下し、冷凍能力に関与しない溶液加熱に熱量が無駄に消費されることがなく、投入熱量の大部分を冷媒の蒸発に用いることができる。
このように、吸収冷凍機においても、冷却水温度が低下すると、熱源蒸気の負荷が減るとともに、溶液循環量が減り、熱源蒸気に余裕が生じることになる。制御部47で調整弁206の開度を上げることによって、この余裕分の熱源蒸気をさらに用いることにより、冷凍システムが有する熱源を最大限有効に利用して、定格冷凍能力を超えた冷凍能力まで出力させることができる。
ゆえに、吸収冷凍機の増段を可及的に遅らせることができ、冷凍システムの消費エネルギーを抑えることができる。特に、吸収冷凍機は、ターボ冷凍機に比べてCOP(成績係数)が小さいゆえに排熱が大きいので、比較的容量の大きな冷却水ポンプや冷却塔が設置される。本実施形態によれば、比較的容量の大きな冷却水ポンプや冷却塔の増段による起動を遅らせることができるので、そのメリットは大きい。
冷却水温度が低下すると、以下に説明するように、濃溶液が結晶してしまう溶液結晶の問題が発生する。
つまり、低温熱交換器208の濃溶液出口では、濃溶液の濃度が高くかつ温度が低い状態となっているので、溶液結晶が発生するおそれが高い。特に、冷却水の温度が低下した場合には、高圧再生器201と低圧再生器202との圧力差が小さくなることにより、溶液循環量が低下し、さらに溶液結晶が生じやすい状態となる。
そこで、本実施形態では、低圧再生器202をバイパスする濃溶液バイパス経路210に濃溶液バイパス流量調整弁211が設けられている。溶液結晶が生じるおそれのある状況では、濃溶液バイパス流量調整弁211の開度を上げて高圧再生器201からの濃溶液を多くパイパスさせることとする。これにより、低温熱交換器208に流れる濃溶液の流量を増大させ、しかも、低圧再生器202からの濃溶液に比べて溶液濃度が低い高圧再生器201からの濃溶液を低温熱交換器208に多く流すことで溶液結晶を防ぐ。さらに、濃溶液バイパス流量調整弁211を開くことで吸収冷凍機全体の溶液流量が増加するため、濃溶液濃度が低下し溶液結晶を防止する。
このように、濃溶液バイパス流量調整弁211による制御を行うと、図10に示すように、冷凍能力の増大をさらに図ることができる。図10は、冷却水温度(横軸)に対して、冷凍能力を示したものである。100%が定格冷凍能力を示す。
本実施形態の吸収冷凍機は、同図に示すように、冷却水温度が32℃のときに定格冷凍能力を出力するようになっており、冷却水温度が低下するにしたがって、定格冷凍能力を超えた冷凍能力を出力するようになっている。
上述のように、冷却水温度の低下により冷凍能力が増加する場合であっても、濃溶液バイパス流量調整弁211による制御を行わないと、溶液結晶が発生することにより、冷凍能力が105%程度で頭打ちになってしまう。一方、濃溶液バイパス流量調整弁211による制御を行えば、溶液結晶が発生することがないので、低い冷却水温度に応じた冷凍能力を出力することが可能となる。
本実施形態における冷凍機の増段のタイミングについては、図5及び図6を用いて説明した第一実施形態と同様に、冷却水入口温度に応じて増大冷凍能力Q(Tin)を制御部47によって演算し、この増大冷凍能力Q(Tin)に応じて増段のタイミングを決定する。
なお、溶液濃度が低い希溶液を高圧再生器201と低圧再生器202のそれぞれに流入させ濃溶液を生成する吸収冷凍機、および/または、低圧再生器202で濃溶液を生成しさらに高圧再生器201で溶液濃度を高める吸収冷凍機として、高圧再生器201出口の濃溶液系統の熱交換器207や立上り配管等の抵抗部をバイパスする経路を設け、このバイパス経路に、濃溶液の流量を調整する濃溶液バイパス流量調整弁211を設けてもよい。
上記第一乃至第三実施形態において、増大冷凍能力Q(Tin)を算出する基準として冷却水入口温度Tinを用いたが、本発明はこれに限定されず、凝縮器の排熱温度を代表するデータであれば良く、外気温度、冷却水出口温度、冷媒凝縮温度、冷媒凝縮圧力を用いても良い。
また、第一実施形態ではターボ冷凍機を用いた冷凍システム、第二実施形態では容積式圧縮機を有する冷凍機を用いた冷凍システム、第三実施形態では吸収冷凍機を用いた冷凍システムについてそれぞれ説明したが、ターボ冷凍機、容積式圧縮機を有する冷凍機、および吸収冷凍機を適宜組み合わせた冷凍システムとしてもよい。
また、冷凍機の段数については、3段に限定されるものではなく、2段あるいは4段以上であっても良い。もちろん、本発明による冷凍システムを1段だけ有し、それ以外の冷凍機については従来のものを用いる形式であっても良い。
本発明の第一実施形態にかかる冷凍システムの全体構成を示したブロック図である。 図1の冷凍機の詳細を冷却塔とともに示した概略図である。 ターボ冷凍機の特性を示した図である。 ターボ圧縮機の駆動機の選定の条件を示した図である。 本発明の冷凍システムの運転方法を示したフローチャートである。 本発明の冷凍システムの運転方法を示したフローチャートである。 本発明の第二実施形態にかかる冷凍機を示したブロック図である。 第二実施形態にかかる冷凍システムの運転方法を示したフローチャートである。 本発明の第三実施形態にかかる吸収冷凍機を示したブロック図である。 第三実施形態にかかる吸収冷凍機の冷凍能力を冷却水温度に対して示したグラフである。
符号の説明
1 冷凍システム
3 外部負荷
11,12,13 ターボ冷凍機
14,15,16 冷却塔
21,22,23 冷水ポンプ
47 制御部

Claims (9)

  1. 冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮させる凝縮器、凝縮された冷媒を膨張させる膨張器、および膨張された冷媒を蒸発させて冷熱を得る蒸発器、を備えた冷凍機と、
    前記凝縮器に冷却水を供給し、前記凝縮器における排熱を除去する冷却手段と、
    前記冷凍機によって得られた前記冷熱により冷水を得て、該冷水を外部負荷に供給する冷水供給手段と、を備えた冷凍システムにおいて、
    定格排熱温度での前記冷凍機の定格負荷に対する前記冷水供給手段の冷水流量を定格冷水流量として記憶するとともに、
    前記定格排熱温度と運転時における運転時排熱温度との相違に基づいて、前記定格冷水流量と異なる流量に冷水流量を制御する制御手段を備えていることを特徴とする冷凍システム。
  2. 前記冷凍機は、冷媒を圧縮する遠心式圧縮機を備えていることを特徴とする請求項1記載の冷凍システム。
  3. 前記冷凍機は、冷媒を圧縮する容積式圧縮機を備え、
    前記制御手段は、前記運転時排熱温度が定格排熱温度よりも低い場合、前記容積式圧縮機を駆動する駆動機の出力を増大させるとともに、
    増大した前記駆動機の出力に応じて、前記冷水流量を増大させることを特徴とする請求項1記載の冷凍システム。
  4. 前記冷凍機は、吸収冷凍機とされていることを特徴とする請求項1記載の冷凍システム。
  5. 熱源によって加熱して溶液濃度が高い濃溶液を生成する高圧再生器と、該高圧再生器から供給された濃溶液の溶液濃度をさらに高める低圧再生器と、前記低圧再生器から供給された濃溶液に対して前記蒸発器で蒸発した冷媒を吸収させて溶液濃度が低い希溶液を生成する吸収器と、を備え、
    前記高圧再生器および前記低圧再生器と前記吸収器との間には、前記濃溶液と前記希溶液とを熱交換させる熱交換器が設けられ、
    前記低圧再生器をバイパスして、前記高圧再生器から前記熱交換器へと前記濃溶液を流す濃溶液バイバス経路に、前記濃溶液の流量を調整する濃溶液バイパス流量調整弁が設けられていることを特徴とする請求項4記載の冷凍システム。
  6. 溶液濃度が低い希溶液を高圧再生器と低圧再生器のそれぞれに流入させ濃溶液を生成する吸収冷凍機、および/または、低圧再生器で濃溶液を生成しさらに高圧再生器で溶液濃度を高める吸収冷凍機を備え、
    前記高圧再生器出口の濃溶液系統の熱交換器、立上り配管等の抵抗部をバイパスする経路に、前記濃溶液の流量を調整する濃溶液バイパス流量調整弁が設けられていることを特徴とする請求項4記載の冷凍システム。
  7. 前記制御手段は、前記冷凍機から出力される運転状態データに基づいて、前記冷水流量を増大することを特徴とする請求項1から6のいずれかに記載の冷凍システム。
  8. 前記冷凍機は、前記外部負荷に対して複数並列に設置され、
    これら冷凍機は、請求項2から6のいずれかに記載された冷凍機、または請求項2から6のいずれかに記載された冷凍機の組み合わせとされていることを特徴とする請求項1から7のいずれかに記載の冷凍システム。
  9. 冷媒を凝縮させる凝縮器冷媒を蒸発させて冷熱を得る蒸発器を備えた冷凍機と、
    前記凝縮器に冷却水を供給し、前記凝縮器における排熱を除去する冷却手段と、
    前記冷凍機によって得られた前記冷熱により冷水を得て、該冷水を外部負荷に供給する冷水供給手段と、を備えた冷凍システムの運転方法において、
    定格排熱温度での前記冷凍機の定格負荷に対する前記冷水供給手段の冷水流量を定格冷水流量として記憶するとともに、
    前記定格排熱温度と運転時における運転時排熱温度との相違に基づいて、前記定格冷水流量と異なる流量に冷水流量を制御することを特徴とする冷凍システムの運転方法。
JP2004045481A 2004-02-20 2004-02-20 冷凍システムおよびその運転方法 Expired - Lifetime JP4167190B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045481A JP4167190B2 (ja) 2004-02-20 2004-02-20 冷凍システムおよびその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045481A JP4167190B2 (ja) 2004-02-20 2004-02-20 冷凍システムおよびその運転方法

Publications (2)

Publication Number Publication Date
JP2005233557A true JP2005233557A (ja) 2005-09-02
JP4167190B2 JP4167190B2 (ja) 2008-10-15

Family

ID=35016702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045481A Expired - Lifetime JP4167190B2 (ja) 2004-02-20 2004-02-20 冷凍システムおよびその運転方法

Country Status (1)

Country Link
JP (1) JP4167190B2 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232460A (ja) * 2007-03-16 2008-10-02 Tokyo Gas Co Ltd 吸収式冷温水機及びその制御方法
JP2008309428A (ja) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd 熱源システムの流量制御装置および熱源システムの流量制御方法
JP2009079862A (ja) * 2007-09-27 2009-04-16 Sharp Corp 冷却方法および冷却装置
JP2009243718A (ja) * 2008-03-28 2009-10-22 Osaka Gas Co Ltd 熱媒体の搬送システム
JP2010196966A (ja) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd 冷熱源設備
WO2010113850A1 (ja) * 2009-03-30 2010-10-07 三菱重工業株式会社 熱源システムおよびその制御方法
JP2011141097A (ja) * 2010-01-08 2011-07-21 Mitsubishi Heavy Ind Ltd ヒートポンプ及びヒートポンプの熱媒流量演算方法
US8036779B2 (en) 2007-04-04 2011-10-11 Kabushiki Kaisha Toshiba Air-conditioning system controller
WO2012057263A1 (ja) * 2010-10-29 2012-05-03 三菱重工業株式会社 熱源装置
WO2013076805A1 (ja) * 2011-11-22 2013-05-30 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JP2015059733A (ja) * 2013-09-20 2015-03-30 荏原冷熱システム株式会社 吸収冷凍機
CN104930672A (zh) * 2015-07-16 2015-09-23 珠海格力电器股份有限公司 冷冻水的供水温度的控制方法及装置
EP2246650A4 (en) * 2008-02-27 2017-09-13 Mitsubishi Heavy Industries, Ltd. Turbo-refrigerator, refrigerating system, and their control method
CN109237988A (zh) * 2018-08-28 2019-01-18 南京从容信息科技有限公司 物联网平台技术的冷却水温实时自寻优变流量方法
CN113007872A (zh) * 2021-03-19 2021-06-22 青岛海信日立空调系统有限公司 一种多联机空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926216B2 (ja) * 1978-05-13 1984-06-25 トヨタ自動車株式会社 冷凍装置の冷水出口温度調節機構
JPH01208672A (ja) * 1988-02-12 1989-08-22 Sanyo Electric Co Ltd 二重効用吸収冷凍機
JPH0151756B2 (ja) * 1983-07-07 1989-11-06 Ebara Mfg
JPH0424623B2 (ja) * 1983-06-20 1992-04-27 Ebara Mfg
JPH06174316A (ja) * 1992-12-01 1994-06-24 Hitachi Ltd 冷水供給装置
JPH10238842A (ja) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd 空調制御装置及びその装置を用いた空調制御方法
JP2002031376A (ja) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd 空調システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926216B2 (ja) * 1978-05-13 1984-06-25 トヨタ自動車株式会社 冷凍装置の冷水出口温度調節機構
JPH0424623B2 (ja) * 1983-06-20 1992-04-27 Ebara Mfg
JPH0151756B2 (ja) * 1983-07-07 1989-11-06 Ebara Mfg
JPH01208672A (ja) * 1988-02-12 1989-08-22 Sanyo Electric Co Ltd 二重効用吸収冷凍機
JPH06174316A (ja) * 1992-12-01 1994-06-24 Hitachi Ltd 冷水供給装置
JPH10238842A (ja) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd 空調制御装置及びその装置を用いた空調制御方法
JP2002031376A (ja) * 2000-07-19 2002-01-31 Aisin Seiki Co Ltd 空調システム

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232460A (ja) * 2007-03-16 2008-10-02 Tokyo Gas Co Ltd 吸収式冷温水機及びその制御方法
US8036779B2 (en) 2007-04-04 2011-10-11 Kabushiki Kaisha Toshiba Air-conditioning system controller
JP2008309428A (ja) * 2007-06-15 2008-12-25 Mitsubishi Heavy Ind Ltd 熱源システムの流量制御装置および熱源システムの流量制御方法
JP2009079862A (ja) * 2007-09-27 2009-04-16 Sharp Corp 冷却方法および冷却装置
EP2246650A4 (en) * 2008-02-27 2017-09-13 Mitsubishi Heavy Industries, Ltd. Turbo-refrigerator, refrigerating system, and their control method
JP2009243718A (ja) * 2008-03-28 2009-10-22 Osaka Gas Co Ltd 熱媒体の搬送システム
JP2010196966A (ja) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd 冷熱源設備
US8646284B2 (en) 2009-03-30 2014-02-11 Mitsubishi Heavy Industries, Ltd. Heat-source system and method for controlling the same
WO2010113850A1 (ja) * 2009-03-30 2010-10-07 三菱重工業株式会社 熱源システムおよびその制御方法
JP2010236728A (ja) * 2009-03-30 2010-10-21 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御方法
JP2011141097A (ja) * 2010-01-08 2011-07-21 Mitsubishi Heavy Ind Ltd ヒートポンプ及びヒートポンプの熱媒流量演算方法
JP2012097923A (ja) * 2010-10-29 2012-05-24 Mitsubishi Heavy Ind Ltd 熱源装置
EP2634509A4 (en) * 2010-10-29 2016-10-12 Mitsubishi Heavy Ind Ltd HEAT SOURCE APPARATUS
US9605893B2 (en) 2010-10-29 2017-03-28 Mitsubishi Heavy Industries, Ltd. Heat source device
WO2012057263A1 (ja) * 2010-10-29 2012-05-03 三菱重工業株式会社 熱源装置
WO2013076805A1 (ja) * 2011-11-22 2013-05-30 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JPWO2013076805A1 (ja) * 2011-11-22 2015-04-27 富士通株式会社 吸着式ヒートポンプシステム及び吸着式ヒートポンプの駆動方法
JP2015059733A (ja) * 2013-09-20 2015-03-30 荏原冷熱システム株式会社 吸収冷凍機
CN104930672A (zh) * 2015-07-16 2015-09-23 珠海格力电器股份有限公司 冷冻水的供水温度的控制方法及装置
CN104930672B (zh) * 2015-07-16 2017-11-21 珠海格力电器股份有限公司 冷冻水的供水温度的控制方法及装置
CN109237988A (zh) * 2018-08-28 2019-01-18 南京从容信息科技有限公司 物联网平台技术的冷却水温实时自寻优变流量方法
CN113007872A (zh) * 2021-03-19 2021-06-22 青岛海信日立空调系统有限公司 一种多联机空调系统
CN113007872B (zh) * 2021-03-19 2022-07-01 青岛海信日立空调系统有限公司 一种多联机空调系统

Also Published As

Publication number Publication date
JP4167190B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
JP5984703B2 (ja) 熱源システム及び冷却水供給装置の制御装置並びに制御方法
JP4799347B2 (ja) 給湯、冷温水空気調和装置
JP5495526B2 (ja) 熱源システムおよびその制御方法
JP4167190B2 (ja) 冷凍システムおよびその運転方法
EP2313709B1 (en) Chiller with setpoint adjustment
JP5495499B2 (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP5517667B2 (ja) 熱源システムおよびその制御方法
JP2007212040A (ja) ターボ冷凍機およびその制御方法
JP4690935B2 (ja) 熱源システムおよびその制御方法
JP2012516987A (ja) 改良されたエネルギ効率のための冷却された液体冷却システムにおける可変速度のコンプレッサの配列
JP4859480B2 (ja) ターボ冷凍機およびその制御装置ならびにターボ冷凍機の制御方法
WO2012090579A1 (ja) 熱源システムおよびその制御方法
JP4767133B2 (ja) 冷凍サイクル装置
JP2006284034A (ja) 空気調和装置およびその膨張弁制御方法
JP5971964B2 (ja) ターボ冷凍機
JP2007183078A (ja) 冷凍機及び冷凍装置
US20200173693A1 (en) Control device of refrigerating cycle, heat source device, and control method therefor
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
RU2488750C2 (ru) Холодильник с регулированием задаваемых установок
JP3996321B2 (ja) 空調機とその制御方法
JP5713570B2 (ja) 冷凍機ユニットおよびその制御方法
JP6554903B2 (ja) 空気調和装置
JP2013167368A (ja) 空気調和装置
JP3871207B2 (ja) 吸収式と圧縮式とを組合せた冷凍装置
JP3874262B2 (ja) 吸収式と圧縮式とを組合せた冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Ref document number: 4167190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term