JP2005208459A - 光走査装置および画像形成装置 - Google Patents

光走査装置および画像形成装置 Download PDF

Info

Publication number
JP2005208459A
JP2005208459A JP2004016711A JP2004016711A JP2005208459A JP 2005208459 A JP2005208459 A JP 2005208459A JP 2004016711 A JP2004016711 A JP 2004016711A JP 2004016711 A JP2004016711 A JP 2004016711A JP 2005208459 A JP2005208459 A JP 2005208459A
Authority
JP
Japan
Prior art keywords
light beam
frequency
mirror surface
scanning
deflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004016711A
Other languages
English (en)
Other versions
JP4572540B2 (ja
Inventor
Yujiro Nomura
雄二郎 野村
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004016711A priority Critical patent/JP4572540B2/ja
Publication of JP2005208459A publication Critical patent/JP2005208459A/ja
Application granted granted Critical
Publication of JP4572540B2 publication Critical patent/JP4572540B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】 光ビームを被走査面上に安定して走査することができる光走査装置および該装置を用いた画像形成装置を提供する。
【解決手段】 ミラー駆動手段は、偏向ミラー面を、共振周波数より高く、かつ光走査有効帯域内の駆動周波数fdで駆動している。したがって、駆動周波数fdが高周波側へΔ変動した場合、偏向ミラー面の揺動振幅は減少するので、該偏向ミラー面によって偏向された光ビームは、時刻t11の時に光ビーム検出位置Aを通過し、時刻t12の時に光ビーム検出位置Bを通過する。すなわち、駆動周波数変動前の走査時間PTとほぼ等しくなる。このように、偏向ミラー面の駆動周波数が多少変動しても、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間を略一定に保つことができるので、光ビームを被走査面上に安定して走査することができる。
【選択図】 図2

Description

この発明は、被走査面上で光ビームを主走査方向に走査させる光走査装置、および該装置を用いて静電潜像を形成する画像形成装置に関するものである。
この種の光走査装置を用いる装置としては、例えばレーザプリンタ、複写機およびファクシミリ装置などの画像形成装置がある。例えば特許文献1では、画像データに応じて変調されたレーザビームがコリメータレンズ、シリンドリカルレンズおよび反射ミラーを介して偏向器に入射して偏向される。より具体的には、この従来装置に装備された光走査装置は次のように構成されている。
この光走査装置では、半導体レーザから射出されたレーザビームをコリメータレンズおよびシリンドリカルレンズを通過させることで、その断面形状が主走査方向に伸びる横長楕円形状となるレーザビームに整形している。そして、このレーザビームを主走査平面に沿って偏向器の反射ミラーに入射させる。
この装置では、特にポリゴンミラーやガルバノミラーを偏向器として用いた場合に発生する種々の問題を解消するため、マイクロマシニング技術を利用して製造した偏向器が用いられている。すなわち、水晶、シリコンなどの基板をフォトリゾグラフィー技術とエッチング技術などを利用して、フレームに駆動コイル、反射ミラーおよびリガメントを一体形成したミラー振動子が加工されている。そして、ミラー振動子の共振周波数とほぼ同一な周波数を有する駆動信号を駆動コイルに印加することで反射ミラーを主走査方向に対してほぼ直交する揺動軸回りに共振揺動させ、反射ミラーに入射するレーザビームを偏向させる。
そして、こうして偏向されたレーザビームは走査レンズおよびシリンドリカルレンズを介して感光体(本発明の「潜像担持体」に相当)に結像される。こうして、画像データに対応した静電潜像が形成される。
特開平1−302317号公報(第2頁、第2〜4図)
ところで、上記した従来装置では、ミラー振動子の駆動周波数と共振周波数とをほぼ一致させて、反射ミラーの揺動振幅が最大値をとるように構成している。そのため、次のような問題が発生することがある。すなわち、使用環境等の外的要因や制御装置の誤差等の内的要因によりミラー振動子の駆動周波数がわずかに変動するだけでも、共振周波数と駆動周波数との間に不一致が生じ、反射ミラーの揺動振幅値が減少してしまう。その結果、反射ミラーによって偏向される光ビームの偏向角の大きさに変動が生じるので、該光ビームが所定の走査幅を走査する走査時間にも変動が生じてしまい、該走査時間が不安定となってしまう。
また、上記従来装置では、ミラー振動子を製造する場合の加工の仕方によりミラー振動子の共振周波数にバラツキが生じることがある。そこで、この問題を解消するため、各ミラー振動子の共振周波数に応じて駆動コイルに印加する駆動信号の周波数を調整してミラー振動子の駆動周波数とミラー振動子の共振周波数とをほぼ一致させ、常に反射ミラーの揺動振幅が最大値となるように制御している。さらに、走査レンズとしてarc・sinレンズを用いるとともに、駆動コイルに与える駆動信号の振幅を制御することで所定の走査幅を等速で光ビームが走査するように構成している。
具体的には(特許文献1、第2図参照)、ミラー振動子の共振周波数が設計上の所定の値より下降している場合、該共振周波数に応じて駆動信号の周波数を減少させることでミラー振動子の駆動周波数を所定の値より下降させ該共振周波数の値とほぼ一致させる。このとき、駆動周波数の下降にともなって、光ビームが所定の走査幅を走査する走査時間が所定の値から変動してしまう。そこで、ミラー振動子に与える駆動信号についてその周波数を減少させるだけでなく、その振幅を増大させて該ミラー振動子の反射ミラーの揺動振幅を増大させることによって、所定の走査時間とほぼ等しくしている。逆に、ミラー振動子の共振周波数が所定の値より上昇している場合、ミラー振動子の駆動周波数を上昇させて該共振周波数とほぼ一致させるとともに、ミラー振動子の反射ミラーの揺動振幅を減少させることによって、光ビームが所定の走査幅を走査する走査時間を所定の値とほぼ等しくしている。
このように従来装置では各振動ミラーの共振周波数のバラツキに対応すべく、駆動信号の周波数の調整とともに該駆動信号の振幅の調整も行わなければならないため、制御方法が複雑になってしまうという問題があった。
さらに、従来装置では、ミラー振動子の製造方法に起因する共振周波数のバラツキを問題としているが、同一のミラー振動子を用いている場合であっても、使用環境の変動にともない共振周波数が変動してしまう場合がある。したがって、製造方法に起因する共振周波数のバラツキだけでなく、使用環境の変動にともなう共振周波数の変動に対しても安定して光ビームを走査することができる技術が望まれている。
この発明は上記課題に鑑みなされたものであり、光ビームを被走査面上に安定して走査することができる光走査装置および該装置を用いた画像形成装置を提供することを第1の目的とする。
また、この発明は、上記第1の目的を達成するとともに、さらに偏向ミラー面の共振周波数のバラツキや変動に対しても適切に、かつ簡易に対応することができる光走査装置および該装置を用いた画像形成装置を提供することを第2の目的とする。
この発明にかかる光走査装置は、上記目的を達成するため、被走査面上の有効走査領域内で光ビームを主走査方向に走査させる光走査装置において、光ビームを射出する光源と、前記主走査方向とほぼ直交する揺動軸回りに揺動自在に設けられるとともに前記光源から射出された光ビームを反射して前記主走査方向に偏向する、偏向ミラー面を有する偏向器と、前記偏向器に駆動信号を与えて前記偏向ミラー面を前記揺動軸回りに揺動させるミラー駆動手段とを備え、前記偏向ミラー面を共振揺動させて光ビームを少なくとも前記有効走査領域の全域で走査可能な、前記駆動信号の周波数帯域を光走査有効帯域としたとき、前記駆動信号の周波数が前記光走査有効帯域内で、しかも前記偏向ミラー面の共振周波数よりも高い値に設定されていることを特徴としている。
このように構成された発明では、偏向ミラー面を光走査有効帯域内であり、かつ、共振周波数よりも高い周波数の駆動信号で揺動駆動して光ビームを偏向して、被走査面上の有効走査領域を光走査している。したがって、例えば駆動信号の周波数が高周波側に変動した場合は偏向ミラー面の駆動周波数は増大するものの、該偏向ミラー面の揺動振幅は減少し、逆に駆動信号の周波数が低周波側に変動した場合は偏向ミラー面の駆動周波数は減少するものの該偏向ミラー面の揺動振幅は増大する。よって、駆動信号の周波数が多少変動したとしても、光ビームが被走査面上の有効走査領域を走査する走査時間がほぼ一定に保たれる。したがって、駆動信号の周波数が多少変動したとしても、光ビームを被走査面上に安定して走査することができる。なお、本発明では、駆動信号の周波数をあえて共振周波数と相違させて偏向ミラー面の揺動振幅を最大値よりも低く設定しているが、駆動信号の周波数を光走査有効帯域内に設定しているので、光ビームを有効走査領域の全域で走査可能となっている。
また、前記ミラー駆動手段は、前記駆動信号の周波数が前記光走査有効帯域内で、しかも前記共振周波数よりも高いという条件を満足させながら前記偏向ミラー面の共振周波数に応じて前記駆動信号の周波数を調整する構成としてもよい。
このような条件を満足させながら駆動信号の周波数を調整すると、該調整にともなって偏向ミラー面の駆動周波数と揺動振幅とが同時に変化する。より具体的には、駆動信号の周波数を増大させると、偏向ミラー面の駆動周波数が上昇するとともに偏向ミラー面の揺動振幅は減少する。逆に駆動信号の周波数を減少させると、偏向ミラー面の駆動周波数が減少するとともに偏向ミラー面の揺動振幅は増大する。そこで、この発明では偏向ミラー面の共振周波数のバラツキや変動などに応じて、偏向ミラー面を駆動する駆動信号の周波数の調整を行うだけで偏向ミラー面の駆動周波数と揺動振幅の調整を同時に行って、光ビームで被走査面上の有効走査領域を走査する走査時間を容易に一定に保ち、光ビームを被走査面上に安定して走査させている。したがって、偏向ミラー面の共振周波数のバラツキや変動が生じたとしても、駆動信号の周波数を調整するのみで適切に対応することができ、制御の簡易化を図ることができる。なお、偏向ミラー面の揺動振幅の値は駆動信号の周波数と共振周波数との差に密接に関連している。したがって、共振周波数のバラツキや変動に応じて上記差を変化させるのが望ましい。こうすることで、上記調整をより良好に行うことができる。
また、前記光ビームが前記有効走査領域を走査する走査時間を計測し、少なくとも1つの光ビーム検出素子を有する走査時間計測手段をさらに備え、前記ミラー駆動手段は前記走査時間計測手段からの出力によって前記駆動信号の周波数を調整して前記走査時間を略一定とする構成としてもよい。このように構成された発明では、偏向ミラー面を駆動する駆動信号の周波数を、走査時間計測手段からの出力を利用して自動的に最適な周波数に設定することができる。したがって、偏向器の製造誤差に起因する偏向ミラー面の共振周波数の個体差のみでなく、使用環境の変動による偏向ミラー面の共振周波数の変動に対しても、リアルタイムで対応することができる。よって、有効走査領域を光ビームが走査する走査時間をより高精度に一定にすることができる。
また、前記光ビーム検出素子は、前記光ビームが前記有効走査領域を走査する際に掃引して形成される掃引面の外に配設される構成としてもよい。このように構成された発明では、光ビームが有効走査領域を走査する際に光ビーム検出素子が障害とならないため、ビームスプリッタ等を追加する必要が無く、簡易な構成を実現できる。
また、前記走査時間計測手段は2個の前記光ビーム検出素子を有し、前記光ビーム検出素子のそれぞれは、前記光ビームが前記有効走査領域の略中心を走査する際の光軸に対して略対称に配設される構成としてもよい。このように構成された発明では、光ビームが光ビーム検出素子を通過する時間から、該光ビームが有効走査領域を走査する走査時間の計算を容易に行うことができる。
また、前記光ビーム検出素子の出力を、前記光ビームが前記有効走査領域を走査する際の水平同期信号として利用する構成としてもよい。このように構成された発明では、水平同期信号を取得するために光ビーム検出素子を追加する必要がなく、装置構成を簡略化できる。
また、この発明にかかる画像形成装置は、潜像担持体と、上記した光走査装置と同一構成を有し、前記潜像担持体の表面の所定の領域を前記有効走査領域として光ビームを走査して前記潜像担持体上に静電潜像を形成する露光手段と、前記静電潜像をトナーにより現像してトナー像を形成する現像手段とを備えたことを特徴としている。このように構成された発明では、上記した光走査装置によって潜像担持体に静電潜像を安定して形成して、該静電潜像をトナーによって現像している。したがって、画像を安定して得ることができる。
<本発明にかかる光走査装置の基本動作>
まず、第1の発明にかかる光走査装置の基本動作について図1および図2を用いて詳述する。図1(a)は偏向ミラー面の揺動振幅の共振曲線を示し、図1(b)は図1(a)の破線で囲まれる部分の拡大図を示し、図2は偏向ミラー面を駆動する駆動信号の周波数の変動にともなって、偏向ミラー面の駆動周波数および偏向ミラー面の揺動振幅が変動する様子を示す図である。なお、図1(b)は、共振周波数f0を有する偏向器の偏向ミラー面の駆動周波数fdが、駆動周波数(fd+Δ)へ微小変動した場合に、偏向ミラー面の揺動振幅がΘ(fd)からΘ(fd+Δ)に変動する様子を示す。
図1(a)では、縦軸を偏向器の偏向ミラー面の揺動振幅(Θ)、横軸を偏向ミラー面の駆動周波数として、偏向ミラー面の揺動振幅の共振曲線を示している。図1(a)に示すように、偏向ミラー面は、光走査有効帯域FB内の駆動周波数で揺動駆動された場合に、所定の揺動振幅Θ0以上の揺動振幅を有する。この揺動振幅Θ0は、偏向ミラー面によって偏向された光ビームを、少なくとも被走査面上の有効走査領域を走査させるために偏向器に要求される値である。なお、その値は光走査装置の各構成要素の配置関係によって決定される。
図2では、縦軸を偏向器の偏向ミラー面の揺動振幅(Θ)、横軸を時間(t)として、図1(a)にその共振曲線を示す偏向ミラー面が揺動駆動されたときの揺動振幅波形を示している。より具体的には、偏向ミラー面を駆動周波数fdで揺動駆動した場合の該偏向ミラー面の揺動振幅波形F(fd)、偏向ミラー面の駆動周波数が(fd+Δ)に変動した後の該偏向ミラー面の揺動振幅波形F(fd+Δ)が示されている。同図では説明理解を容易とするため、時刻t0で駆動周波数の変動前後の偏向ミラー面の揺動振幅が0の点が重なるように描画してある。
この発明にかかる光走査装置では、偏向ミラー面の共振周波数f0より高く、かつ光走査有効帯域FB内の駆動周波数fdで偏向ミラー面を揺動駆動している。したがって、駆動周波数fdが高周波側に変動すると偏向ミラー面の揺動振幅は減少し、駆動周波数fdが低周波側に変動すると偏向ミラー面の揺動振幅は増大する。すなわち、偏向ミラー面の駆動周波数の変動にともない、常に揺動振幅も変動する。
次に、上記したような偏向ミラー面を駆動する駆動信号の周波数の変動にともなう、偏向ミラー面の駆動周波数および偏向ミラー面の揺動振幅の変動により、被走査面上の有効走査領域を光ビームで走査する走査時間が略一定となる原理について詳述する。
偏向ミラー面を駆動周波数fdで揺動駆動すると、偏向ミラー面は揺動振幅波形F(fd)のように揺動駆動する。このとき、時刻t11の時に偏向ミラー面によって偏向された光ビームは光ビーム検出位置Aを通過して光ビーム検出センサ(光ビーム検出素子)によって検出される。また、時刻t12の時に偏向ミラー面によって偏向された光ビームは光ビーム検出位置Bを通過して光ビーム検出センサによって検出される。この場合、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間はPTとなる。
ここで、駆動周波数が高周波側にΔだけ変動した場合、偏向ミラー面の揺動振幅はΘ(fd)からΘ(fd+Δ)へと変動(減少)する(図1(b)参照)。このように、駆動周波数の高周波側への変動にともなって、偏向ミラー面の揺動振幅が減少するので、該偏向ミラー面によって偏向された光ビームは、時刻t11の時に光ビーム検出位置Aを通過し、時刻t12の時に光ビーム検出位置Bを通過する(図2参照)。すなわち、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間はPTとなり、駆動周波数変動前の走査時間PTとほぼ等しくなる。このように、偏向ミラー面の駆動周波数が多少変動しても、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間を略一定に保つことができる。したがって、駆動周波数が多少変動したとしても、光ビームを被走査面上に安定して走査することができる。
なお、図1および図2では、偏向ミラー面の駆動周波数が高周波側に変動して偏向ミラー面の揺動振幅が減少する様子を示しているが、逆に偏向ミラー面の駆動周波数が低周波側に変動して偏向ミラー面の揺動振幅が増大したとしても、上記と同様の考え方で走査時間を略一定に保つことができる。また、駆動信号の周波数を光走査有効帯域内に設定しているので、光ビームを有効走査領域の全域で走査可能となっている。
次に、第2の発明にかかる光走査装置の基本動作について図3および図4を用いて詳述する。図3は偏向ミラー面の揺動振幅の共振曲線を示し、図4は偏向ミラー面を駆動する駆動信号の周波数の調整にともなって、偏向ミラー面の駆動周波数および偏向ミラー面の揺動振幅が変動する様子を示す図である。なお、図3は、共振周波数f01を有する偏向器の偏向ミラー面の共振周波数が、使用環境の温度等の変動を原因として共振周波数f02に変動した場合を示し、共振周波数の変動にともない共振曲線にも変動が生じる様子を示す。
図3では、縦軸を偏向器の偏向ミラー面の揺動振幅(Θ)、横軸を偏向ミラー面の駆動周波数として、偏向ミラー面の共振周波数の変動前後の偏向ミラー面の揺動振幅の共振曲線R1,R2を示している。図3に示すように、共振周波数の変動前後で偏向ミラー面は共振周波数f01,f02を有し、光走査有効帯域FB1,FB2内の駆動周波数で揺動駆動された場合に、所定の揺動振幅Θ0以上の揺動振幅を有する。この揺動振幅Θ0は、上述したように光走査装置の各構成要素の配置関係によって決定される値である。
図4では、縦軸を偏向器の偏向ミラー面の揺動振幅(Θ)、横軸を時間(t)として、図3にその共振曲線を示す偏向ミラー面が揺動駆動されたときの揺動振幅波形を示している。より具体的には、共振周波数変動前に共振曲線R1の共振特性を有する偏向ミラー面を駆動周波数f1で揺動駆動した場合の該偏向ミラー面の揺動振幅波形F1、共振周波数変動後に共振曲線R2の共振特性を持つ偏向ミラー面を駆動周波数f2で揺動駆動した場合の該偏向ミラー面の揺動振幅波形F2が示されている。同図では説明理解を容易とするため、時刻t0で共振周波数の変動前後の偏向ミラー面の揺動振幅が0の点が重なるように描画してある。
この発明にかかる光走査装置では、偏向ミラー面の共振周波数f01より高く、かつ光走査有効帯域FB1内の駆動周波数f1で偏向ミラー面を揺動駆動している。したがって、偏向ミラー面を駆動する駆動信号の周波数を増大させると、偏向ミラー面の駆動周波数が上昇するとともに偏向ミラー面の揺動振幅は減少する。逆に偏向ミラー面を駆動する駆動信号の周波数を減少させると偏向ミラー面の駆動周波数が下降するとともに偏向ミラー面の揺動振幅は増大する。同様に、偏向ミラー面の共振周波数が共振周波数f02へ変動した場合も、偏向ミラー面の共振周波数f02より高く、かつ光走査有効帯域FB2内の駆動周波数f2で偏向ミラー面を揺動駆動している。したがって、偏向ミラー面を駆動する駆動信号の周波数を増大させると偏向ミラー面の駆動周波数が上昇するとともに偏向ミラー面の揺動振幅は減少する。逆に偏向ミラー面を駆動する駆動信号の周波数を減少させると偏向ミラー面の駆動周波数が下降するとともに偏向ミラー面の揺動振幅は増大する。すなわち、共振周波数に応じて、偏向ミラー面を駆動する駆動信号の周波数を調整することで、偏向ミラー面の駆動周波数と偏向ミラー面の揺動振幅を同時に調整することができる。
次に、上記したような偏向ミラー面を駆動する駆動信号の周波数を調整して、偏向ミラー面の駆動周波数と偏向ミラー面の揺動振幅を調整することによって、被走査面上の有効走査領域を光ビームで走査する走査時間を調整する原理について詳述する。
共振周波数変動前に共振曲線R1の共振特性を有する偏向ミラー面を駆動周波数f1で揺動駆動すると、偏向ミラー面は揺動振幅波形F1のように揺動駆動する。このとき、時刻t11の時に偏向ミラー面によって偏向された光ビームは光ビーム検出位置Aを通過して光ビーム検出センサ(光ビーム検出素子)によって検出される。また、時刻t12の時に偏向ミラー面によって偏向された光ビームは光ビーム検出位置Bを通過して光ビーム検出センサによって検出される。この場合、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間はPTとなる。
次に、偏向器の使用環境の温度等の変動を原因として、偏向ミラー面の共振周波数f01が、共振周波数f02(共振曲線R2)へ変動した場合、共振周波数変動前と同一の駆動周波数f1で該偏向ミラー面を揺動駆動すると偏向ミラー面の揺動振幅が変動(増大)するため、光ビームが被走査面上の有効走査領域を走査する走査時間が変動する。すなわち、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する走査時間が変動する。このとき、偏向ミラー面を駆動する駆動信号の周波数を調整して、偏向ミラー面の駆動周波数と偏向ミラー面の揺動振幅を調整することによって、該走査時間を調整することができる(波形F2参照)。
図4は、揺動振幅波形F2で示すように、偏向ミラー面を駆動する駆動信号の周波数を調整(増大)して、偏向ミラー面の駆動周波数を駆動周波数f1よりも高周波側の駆動周波数f2に調整するとともに(図3参照)、偏向ミラー面の揺動振幅が減少する様子を示す。このように、共振周波数の変動にともなって、駆動信号の周波数を調整して、偏向ミラー面の駆動周波数を上昇させるとともに、偏向ミラー面の揺動振幅を減少させることによって、該偏向ミラー面によって偏向された光ビームは、時刻t11の時に光ビーム検出位置Aを通過し、時刻t12の時に光ビーム検出位置Bを通過する。すなわち、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間はPTとなり、共振周波数変動前の走査時間PTとほぼ等しい。このように、偏向ミラー面の駆動信号の周波数の調整を行うだけで、偏向ミラー面の駆動周波数と偏向ミラー面の揺動振幅の調整を同時に行って、偏向ミラー面の共振周波数の変動前後で、光ビーム検出位置Aから光ビーム検出位置Bまで光ビームが走査する時間を略一定にすることができる。
なお、図3および図4では、偏向ミラー面の駆動周波数を上昇させて偏向ミラー面の揺動振幅を減少させる制御を示しているが、逆に駆動周波数を下降させて偏向ミラー面の揺動振幅を増大させる制御を行っても、上記と同様の考え方で光ビームが被走査面上の有効走査領域を走査する走査時間を略一定にすることができる。
また、上記したような駆動信号の周波数の調整を行う場合、共振周波数の変動に応じて駆動信号の周波数と偏向ミラー面の共振周波数との差を変化させるのが望ましい。こうすることで、より良好に光ビームが被走査面上の有効走査領域を走査する走査時間を略一定にすることができる。
また、使用環境の温度等の変動によって共振周波数に変動が生じる場合について述べたが、偏向器の製造方法に起因する偏向ミラー面の共振周波数のバラツキにも上記した方法を適用して、被走査面上の有効走査領域を光ビームが走査する走査時間を略一定に調整することができる。このように、共振周波数にバラツキや変動が生じたとしても、駆動信号の周波数を調整するのみで適切に対応することができ、制御の簡易化を図ることができる。
以下に述べる実施形態のすべては、上述したように偏向ミラー面の駆動信号の周波数を設定かつ調整している。
<第1実施形態>
図5は本発明にかかる光走査装置の第1実施形態たる露光ユニットを装備した画像形成装置を示す図である。また、図6は図5の画像形成装置の電気的構成を示すブロック図である。この画像形成装置は、いわゆる4サイクル方式のカラープリンタである。この画像形成装置では、ユーザからの画像形成要求に応じてホストコンピュータなどの外部装置から印字指令がメインコントローラ11に与えられると、このメインコントローラ11のCPU111からの印字指令に応じてエンジンコントローラ10がエンジン部EGの各部を制御して複写紙、転写紙、用紙およびOHP用透明シートなどのシートに印字指令に対応する画像を形成する。
このエンジン部EGでは、感光体2(本発明の「潜像担持体」に相当)が図5の矢印方向(副走査方向)に回転自在に設けられている。また、この感光体2の周りにその回転方向に沿って、帯電ユニット3、ロータリー現像ユニット4およびクリーニング部(図示省略)がそれぞれ配置されている。帯電ユニット3には帯電制御部103が電気的に接続されており、所定の帯電バイアスを印加している。このバイアス印加によって感光体2の外周面が所定の表面電位に均一に帯電される。また、これらの感光体2、帯電ユニット3およびクリーニング部は一体的に感光体カートリッジを構成しており、感光体カートリッジが一体として装置本体5に対し着脱自在となっている。
そして、この帯電ユニット3によって帯電された感光体2の外周面に向けて本発明の光走査装置(露光手段)に相当する露光ユニット6から光ビームLが照射される。この露光ユニット6は、外部装置から与えられた画像信号に応じて光ビームLを感光体2の表面(本発明の「被走査面」に相当)上に露光して画像信号に対応する静電潜像を形成する。なお、この露光ユニット6の構成および動作については後で詳述する。
こうして形成された静電潜像は現像ユニット4(本発明の「現像手段」に相当)によってトナー現像される。すなわち、この実施形態では、現像ユニット4は、軸中心に回転自在に設けられた支持フレーム40、支持フレーム40に対して着脱自在のカートリッジとして構成されてそれぞれの色のトナーを内蔵するイエロー用の現像器4Y、マゼンタ用の現像器4M、シアン用の現像器4C、およびブラック用の現像器4Kを備えている。そして、エンジンコントローラ10の現像器制御部104からの制御指令に基づいて、現像ユニット4が回転駆動されるとともにこれらの現像器4Y、4M、4C、4Kが選択的に感光体2と当接してまたは所定のギャップを隔てて対向する所定の現像位置に位置決めされると、当該現像器に設けられて選択された色のトナーを担持する現像ローラから感光体2の表面にトナーを付与する。これによって、感光体2上の静電潜像が選択トナー色で顕像化される。
上記のようにして現像ユニット4で現像されたトナー像は、一次転写領域TR1で転写ユニット7の中間転写ベルト71上に一次転写される。転写ユニット7は、複数のローラ72、73等に掛け渡された中間転写ベルト71と、ローラ73を回転駆動することで中間転写ベルト71を所定の回転方向に回転させる駆動部(図示省略)とを備えている。
また、ローラ72の近傍には、転写ベルトクリーナ(図示省略)、濃度センサ76(図6)および垂直同期センサ77(図6)が配置されている。これらのうち、濃度センサ76は、中間転写ベルト71の表面に対向して設けられており、中間転写ベルト71の外周面に形成されるパッチ画像の光学濃度を測定する。また、垂直同期センサ77は、中間転写ベルト71の基準位置を検出するためのセンサであり、中間転写ベルト71の副走査方向への回転駆動に関連して出力される同期信号、つまり垂直同期信号Vsyncを得るための垂直同期センサとして機能する。そして、この装置では、各部の動作タイミングを揃えるとともに各色のトナー像を正確に重ね合わせるために、装置各部の動作はこの垂直同期信号Vsyncに基づいて制御される。
そして、カラー画像をシートに転写する場合には、感光体2上に形成される各色のトナー像を中間転写ベルト71上に重ね合わせてカラー画像を形成するとともに、カセット8から1枚ずつ取り出され搬送経路Fに沿って二次転写領域TR2まで搬送されてくるシート上にカラー画像を二次転写する。
このとき、中間転写ベルト71上の画像をシート上の所定位置に正しく転写するため、二次転写領域TR2にシートを送り込むタイミングが管理されている。具体的には、搬送経路F上において二次転写領域TR2の手前側にゲートローラ81が設けられており、中間転写ベルト71の周回移動のタイミングに合わせてゲートローラ81が回転することにより、シートが所定のタイミングで二次転写領域TR2に送り込まれる。
また、こうしてカラー画像が形成されたシートは定着ユニット9および排出ローラ82を経由して装置本体5の上面部に設けられた排出トレイ部51に搬送される。また、シートの両面に画像を形成する場合には、上記のようにして片面に画像が形成されたシートを排出ローラ82によりスイッチバック移動させる。これによってシートは反転搬送経路FRに沿って搬送される。そして、ゲートローラ81の手前で再び搬送経路Fに乗せられるが、このとき、二次転写領域TR2において中間転写ベルト71と当接し画像を転写されるシートの面は、先に画像が転写された面とは反対の面である。このようにして、シートの両面に画像を形成することができる。
なお、図6において、符号113はホストコンピュータなどの外部装置よりインターフェース112を介して与えられた画像データを記憶するためにメインコントローラ11に設けられた画像メモリであり、符号106はCPU101が実行する演算プログラムやエンジン部EGを制御するための制御データなどを記憶するためのROM、また符号107はCPU101における演算結果やその他のデータを一時的に記憶するRAMである。
図7は図5の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す主走査断面図、図8は図5の画像形成装置の露光ユニットおよび露光制御部の構成を示す図、図9および図10は露光ユニットの一構成要素たる偏向器を示す図、図11は本実施形態において光ビームの走査時間を算出するための模式図、図12は本実施形態における駆動信号の周波数の制御手順を示すフローチャートである。以下、これらの図面を参照しつつ、露光ユニットの構成および動作について詳述する。
この露光ユニット6は露光筐体61を有している。そして、露光筐体61に単一のレーザー光源62が固着されており、レーザー光源62から光ビームを射出可能となっている。このレーザー光源62は、露光制御部102の光源駆動部102aと電気的に接続されている。このため、画像データに応じて光源駆動部102aがレーザー光源62をON/OFF制御してレーザー光源62から画像データに対応して変調された光ビームが射出される。
また、この露光筐体61の内部には、レーザー光源62からの光ビームを感光体2の表面(図示省略)に走査露光するために、コリメータレンズ631、シリンドリカルレンズ632、偏向器65、走査レンズ66が設けられている。すなわち、レーザー光源62からの光ビームは、コリメータレンズ631により適当な大きさのコリメート光にビーム整形された後、副走査方向Yにのみパワーを有するシリンドリカルレンズ632に入射される。そして、シリンドリカルレンズ632を調整することでコリメート光は副走査方向Yにおいて偏向器65の偏向ミラー面651付近で結像される。このように、この実施形態では、コリメータレンズ631およびシリンドリカルレンズ632がレーザー光源62からの光ビームを整形するビーム整形系63として機能している。
この偏向器65は半導体製造技術を応用して微小機械を半導体基板上に一体形成するマイクロマシニング技術を用いて形成されるものであり、偏向ミラー面651で反射した光ビームを主走査方向Xに偏向可能となっている。より具体的には、偏向器65は次のように構成されている。
この偏向器65は、図9に示すように、シリコン基板652が支持部材として機能し、さらに該シリコン基板652の一部を加工することで可動板656が設けられている。この可動板656は平板状に形成され、ねじりバネ657によってシリコン基板652に弾性支持されており、副走査方向Yとほぼ平行に伸びる揺動軸AX1回りに揺動自在となっている。また、可動板656の上面には、シリコン基板652の上面に形成した一対の外側電極端子(図示省略)にねじりバネ657を介して電気的に接続する平面コイル655が絶縁層で被膜されて設けられている。また、この可動板656の上面中央部には、アルミニューム膜などが偏向ミラー面651として成膜されている。
また、シリコン基板652の略中央部には、図10に示すように、可動板656が揺動軸AX1回りに揺動可能となるように、凹部652aが設けられている。そして、凹部652aの内底面には、可動板656の両端部の外方位置に永久磁石659a,659bが互いに異なる方位関係で固着されている。また、平面コイル655は、露光制御部102の駆動部102bと電気的に接続されており、コイル655への通電によって平面コイル655を流れる電流の方向と永久磁石659a,659bによる磁束の方向によりローレンツ力が作用し、可動板656を回転するモーメントが発生する。これにより、可動板656(偏向ミラー面651)がねじりバネ657を揺動軸AX1として揺動する。ここで、平面コイル655に流す電流を交流とし連続的に反復動作すれば、ねじりバネ657を揺動軸AX1として偏向ミラー面651を往復振動させることができる。
このように偏向器65では、露光制御部102の駆動部102bが本発明の「ミラー駆動手段」として機能し、該駆動部102bを制御することによって、「本発明にかかる光走査装置の基本動作」の項で説明したように、偏向器65の製造方法に起因する偏向ミラー面651(偏向器65)の共振周波数のバラツキや使用環境の温度等の変動による偏向ミラー面651(偏向器65)の共振周波数の変動に応じて偏向ミラー面651を駆動する駆動信号(平面コイル655に流す電流)の周波数を調整して、偏向ミラー面651の駆動周波数と揺動振幅を調整している。このように、偏向ミラー面651を揺動軸AX回りに揺動させることで光ビームを偏向して主走査方向Xに走査させている。
上記のように構成された偏向器65の偏向ミラー面651で偏向された光ビームは走査レンズ66に向けて偏向される。この実施形態では、走査レンズ66は、感光体2の表面上の有効走査領域PA(図11参照)の全域においてF値が略同一となるように構成されている。したがって、走査レンズ66に向けて偏向された光ビームは、走査レンズを介して感光体2の表面の有効走査領域PAに略同一のスポット径で結像される。これにより、光ビームが主走査方向Xと平行に走査して主走査方向Xに伸びるライン状の潜像が感光体2の表面上に形成される。
また、この実施形態では、図7に示すように、偏向器65からの走査光ビームの開始または終端を折り返しミラー69a,69bにより同期センサ60A,60B(本発明おける「ビーム検出素子」に相当)に導いている。これらの折り返しミラー69a,69bおよび同期センサ60A,60Bは、光ビームが有効走査領域PAを走査する際に掃引して形成される掃引面の外に配設されている。また、折り返しミラー69a,69bは、光ビームが有効走査領域PAの略中心を走査する際の光軸L0に対して略対称に配設されている。したがって、図11に模式的に示すように同期センサ60A,60Bは光軸L0に対して略対称に配設されているのと同等に考えることができる。
この同期センサ60A,60Bによる光ビームの検出信号は露光制御部102の計測部102cに伝達され、該計測部において有効走査領域PAを光ビームが走査する走査時間が算出される。そして、この計測部102cにおいて算出された走査時間が駆動部102b(ミラー駆動手段)に伝達され、該駆動部102bはこの伝達された走査時間に応じて偏向ミラー面651を駆動する駆動信号の周波数を決定する。すなわち、折り返しミラー69a,69b、同期センサ60A,60Bおよび計測部102cを本発明の走査時間計測手段として機能させている。さらに、この実施形態では、同期センサ60A,60Bを、光ビームが有効走査領域PAを主走査方向Xに走査する際の同期信号、つまり水平同期信号Hsyncを得るための水平同期用読取センサとして機能させている。
次に上記のように構成された露光ユニット6(光走査装置)の動作について図12を参照しつつ説明する。図12は、図7の露光ユニット6の動作を示すフローチャートである。この露光ユニット6では偏向ミラー面651を駆動する駆動信号の周波数を、偏向ミラー面651(偏向器65)の共振周波数に応じた周波数に調整する制御が行われる。
まずレーザー光源62を点灯(ステップS1)し、感光体2の表面(被走査面)の光走査を開始する。そして、同期センサ60A,60Bに光ビームが入射した時刻より、2個の同期センサ60A,60Bを光ビームが通過する時間Δtsが計測され(ステップS2)、続いてステップS2における計測値Δtsを用いて光ビームが感光体2の表面の有効走査領域PAを走査する走査時間Δtpを算出する(ステップS3)。
ステップ3では、まずステップ2における計測値Δtsを用いて偏向ミラー面651(偏向器65)の最大揺動振幅Θmが算出される(数1)。
Figure 2005208459
そして、数1によって算出された偏向ミラー面651(偏向器65)の最大揺動振幅Θmより、光ビームが感光体2の表面の有効走査領域PAを走査する走査時間Δtpを算出する(数2)。
Figure 2005208459
なお、数1、数2中における各記号は以下の通りである(図11参照)。
Θs:同期センサが光ビームを検出する時の偏向ミラー面の回転角(露光ユニットを構成する構成要素の配置関係から既知の値)
Θp:有効走査領域の端部を光ビームが走査する時の偏向ミラー面の回転角(露光ユニットを構成する構成要素の配置関係から既知の値)
f:偏向器の駆動周波数
Θm:偏向器(偏向ミラー面)の最大揺動振幅
Δts:2個の同期センサを光ビームが通過する時間
Δtp:有効走査領域PAを光ビームが走査する走査時間
ここで、Δtsは同期センサ60A,60Bにより計測される時間、Δtpは露光制御部102の計測部102cで算出される時間である。
ステップS3において算出された走査時間Δtpは露光制御部102の駆動部102bに伝達され、該駆動部102bにおいて予め設定されている有効走査領域PAの走査時間の設定値Δtp0との誤差eが算出される(ステップS4)。そして、この誤差eが予め設定されている誤差許容値e0よりも小さければそのままの駆動信号の周波数で感光体2の表面の光走査が続行される。
ところが、ステップS4において算出した誤差eが誤差許容値e0よりも大きい場合、新しい駆動信号の周波数値が算出される(ステップS6)。そして、ステップS6で算出した周波数値にしたがって、駆動部102b(ミラー駆動手段)は偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を調整する(ステップS7)。その後、誤差eが誤差許容値e0よりも小さくなるまで上記したステップS3からの動作を繰返し行う。
以上のように、この実施形態によれば、露光制御部102の駆動部102b(ミラー駆動手段)は、偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を、偏向ミラー面651の共振周波数よりも高い周波数であり、かつ光走査有効帯域内の周波数に設定している。したがって、「本発明にかかる光走査装置の基本動作」の項で詳述した作用効果により、駆動信号の周波数が多少変動したとしても、安定して光ビームを走査することができる。さらに、駆動信号の周波数を光走査有効帯域内に設定しているので、光ビームを有効走査領域の全域で走査可能となっている。
また、この実施形態では、露光制御部102の駆動部102b(ミラー駆動手段)は、偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を、偏向ミラー面651の共振周波数に応じて、共振周波数よりも高い周波数であり、かつ光走査有効帯域内の周波数に調整している。さらに、共振周波数の変動に応じて、駆動信号の周波数と偏向ミラー面の共振周波数との差が変化するように、駆動信号の周波数を調整している。このように、偏向器65の製造方法に起因する偏向ミラー面651の共振周波数のバラツキや使用環境の温度等の変動による共振周波数の変動によって変動する、光ビームが有効走査領域PAを走査する走査時間Δtpを、偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を調整して、偏向ミラー面651の駆動周波数と揺動振幅を調整することによって、予め設定されている走査時間Δtp0の所定の誤差範囲内e0に収まるように調整している。したがって、偏向器65の製造誤差による偏向ミラー面651の共振周波数のバラツキや、偏向器65の使用環境の温度等の変動にともなって偏向ミラー面651の共振周波数が変動したとしても、偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を調整するだけで、光ビームが有効走査領域PAを走査する走査時間を容易に略一定に保ち、光ビームを有効走査領域PAに安定して走査させている。このように、偏向ミラー面651の共振周波数のバラツキや変動が生じたとしても、駆動信号の周波数を調整するのみで適切に対応することができ、制御の簡易化を図ることができる。
また、この実施形態では、同期センサ60A,60Bの出力から光ビームが有効走査領域PAを走査する時間Δtpを算出して、Δtpが予め設定されたΔtp0の所定の誤差範囲内e0となるように偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を調整している。したがって、偏向器の製造誤差によって生じる共振周波数の個体差のみではなく、使用環境の変動による共振周波数の変動に対してもリアルタイムで対応することができる。よって、有効走査領域PAを光ビームが走査する走査時間をより高精度に略一定にすることができる。
また、この実施形態では、折り返しミラー69a,69bおよび同期センサ60A,60Bを、光ビームが有効走査領域PAを走査する際に掃引して形成される掃引面の外に配設している。したがって、光ビームが有効走査領域PAを走査する際に折り返しミラー69a,69bおよび同期センサ60A,60Bが障害とならないため、ビームスプリッタ等を追加する必要がなく、簡易な構成を実現できる。
また、この実施形態では、2個の同期センサ60A,60Bを、光ビームが有効走査領域PAの略中心を走査する際の光軸に対して略対称に配設している(図11参照)。したがって、2個の同期センサによって計測される、光ビームが2個の同期センサ60A,60Bを通過する時間Δtsを用いて、光ビームが有効走査領域PAを走査する走査時間Δtpの算出を容易に行うことができる。
また、この実施形態では、同期センサ60A,60Bを、光ビームが有効走査領域PAを主走査方向Xに走査する際の同期信号、つまり水平同期信号Hsyncを得るための水平同期用読取センサとして機能させている。したがって、Hsyncを得るために新たなセンサを追加する必要がなく、装置構成を簡略化できる。
また、この実施形態によれば、上記した露光ユニットによって安定して形成した静電潜像をトナーによって現像している。したがって、安定した画像を得ることができる。
<第2実施形態>
図13は本発明にかかる光走査装置の第2実施形態を示す図である。この第2実施形態が上記第1実施形態と大きく相違する点は、偏向ミラー面651を静電気力を利用して揺動駆動している点であり、その他の構成は第1実施形態と同様である。なお、第1実施形態と同一の構成には同じ符号を付している。
偏向器65では、図13に示すように、シリコン基板652の一部を加工することで可動板656が設けられている。この可動板656は平板状に形成され、ねじりバネ657によってシリコン基板652に弾性支持されており、副走査方向Yとほぼ平行に伸びる揺動軸AX1回りに揺動自在となっている。また、この可動板656の上面中央部には、アルミニューム膜などが偏向ミラー面651として成膜されている。
また、シリコン基板652の略中央部には、図13に示すように、可動板656が揺動軸AX1回りに揺動可能となるように、凹部652aが設けられている。この凹部652aの内底面のうち可動板656の両端部に対向する位置に電極658a,658bがそれぞれ固着されている。これら2つの電極658a,658bは可動板656を揺動軸AX1回りに揺動駆動するための電極として機能するものである。すなわち、これらの電極658a,658bは露光制御部102の駆動部(図示省略)と電気的に接続されており、電極への電圧印加によって該電極と偏向ミラー面651との間に静電吸着力が作用して偏向ミラー面651の一方端部を該電極側に引き寄せる。したがって、駆動部から所定の電圧を電極658a,658bに交互に印加すると、ねじりバネ657を揺動軸AX1として偏向ミラー面651(可動板656)を往復振動させることができる。なお、この実施形態では、「本発明にかかる光走査装置の基本動作」の項で説明したように偏向ミラー面651(可動板656)を揺動駆動している。したがって、上記第1実施形態と同様の作用効果を有する。
このように偏向ミラー面651を揺動させるために、電磁気力や静電気力などを用いているが、いずれを用いてもよいことは言うまでもない。ただし、駆動方式ごとに以下のような特徴を有しているため、それらを考慮した上で適宜採用するのが望ましい。すなわち、偏向ミラー面651を揺動駆動させるための駆動力として電磁気力を用いた場合、静電吸着力を発生させる場合に比べて低い駆動電圧で偏向ミラー面651を揺動駆動することができ、電圧制御が容易となり、走査光ビームの位置精度を高めることができる。これに対し、上記駆動力として静電吸着力を用いた場合、コイルパターンを形成する必要がなく、偏向器65のさらなる小型化が可能となり、偏向走査をより高速化することができる。
<第3実施形態>
図14は本発明にかかる光走査装置の第3実施形態を示す図である。この第3実施形態が上記第1および第2実施形態と大きく相違する点は、1個の同期センサ60Cと折り返しミラー69c〜69eで光ビームの走査時間を計測している点である。その他の構成は第1および第2実施形態と同様である。
この場合も、上記第1および第2実施形態と同様に、偏向器65を制御しているので、同様の作用効果を有する。
<その他>
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、共振周波数、駆動信号の周波数および走査時間Δtpとの関係を予めROM106等に記憶しておき、これらの記憶した値に基づいて、偏向ミラー面651(偏向器65)を駆動する駆動信号の周波数を略調整する構成としてもよい。このような構成としても上記実施形態と同様の作用効果を有する。
また、この場合、同期センサ60A〜60Cを配設しない構成とすることも可能である。このような構成としても、上記実施形態と同様の作用効果を有するとともに、同期センサを配設しない簡素な構成の光走査装置を実現することができる。
上記実施形態では、この発明にかかる光走査装置をカラー画像形成装置の露光ユニットとして用いているが、本発明の適用対象はこれに限定されるものではない。すなわち、感光体などの潜像担持体上に光ビームを走査して静電潜像を形成するとともに、該静電潜像をトナーにより現像してトナー像を形成する画像形成装置の露光手段として用いることができる。もちろん、光走査装置の適用対象は画像形成装置に装備される露光手段に限定されるものではなく、光ビームを被走査面上に走査させる光走査装置全般に適用することができる。
偏向ミラー面の揺動振幅の共振曲線を示す図である。 駆動信号の周波数の変動にともなって偏向ミラー面の駆動周波数と揺動振幅が変動する様子を示す図である。 偏向ミラー面の揺動振幅の共振曲線を示す図である。 駆動信号の周波数の調整にともなって偏向ミラー面の駆動周波数と揺動振幅が変動する様子を示す図である。 本発明にかかる光走査装置の第1実施形態たる露光ユニットを装備した画像形成装置を示す図である。 図5の画像形成装置の電気的構成を示すブロック図である。 図5の画像形成装置に装備された露光ユニット(光走査装置)の構成を示す主走査断面図である。 図5の露光ユニットおよび露光制御部の構成を示すブロック図である。 露光ユニットの一構成要素たる偏向器を示す図である。 露光ユニットの一構成要素たる偏向器を示す図である。 光ビームの走査時間を計算するための模式図である。 駆動信号の周波数の制御手順を示すフローチャートである。 本発明にかかる光走査装置の第2実施形態たる露光ユニットの一構成要素たる偏向器を示す図である。 本発明にかかる光走査装置の第3実施形態を示す主走査断面図である。
符号の説明
2…感光体(潜像担持体)、 4…現像ユニット(現像手段)、 6…露光ユニット(光走査装置)、 60A,60B,60C…同期センサ(走査時間計測手段)、 69a,69b,69c,69d,69e…折り返しミラー(走査時間計測手段)、 65…偏向器、 651…偏向ミラー面、102b…駆動部(ミラー駆動手段)、 102c…計測部(走査時間計測手段)、 AX1…揺動軸、 PA…有効走査領域、 FB,FB1,FB2…光走査有効帯域、f0,f01,f02…共振周波数、f1,f2,fd…駆動周波数、 X…主走査方向、 Y…副走査方向

Claims (8)

  1. 被走査面上の有効走査領域内で光ビームを主走査方向に走査させる光走査装置において、
    光ビームを射出する光源と、
    前記主走査方向とほぼ直交する揺動軸回りに揺動自在に設けられるとともに前記光源から射出された光ビームを反射して前記主走査方向に偏向する、偏向ミラー面を有する偏向器と、
    前記偏向器に駆動信号を与えて前記偏向ミラー面を前記揺動軸回りに揺動させるミラー駆動手段とを備え、
    前記偏向ミラー面を共振揺動させて光ビームを少なくとも前記有効走査領域の全域で走査可能な、前記駆動信号の周波数帯域を光走査有効帯域としたとき、
    前記駆動信号の周波数が前記光走査有効帯域内で、しかも前記偏向ミラー面の共振周波数よりも高い値に設定されていることを特徴とする光走査装置。
  2. 前記ミラー駆動手段は、前記駆動信号の周波数が前記光走査有効帯域内で、しかも前記共振周波数よりも高いという条件を満足させながら前記偏向ミラー面の共振周波数に応じて前記駆動信号の周波数を調整する請求項1記載の光走査装置。
  3. 前記ミラー駆動手段は、前記共振周波数の値に応じて前記駆動信号の周波数と前記共振周波数との差を変化させる請求項2記載の光走査装置。
  4. 前記光ビームが前記有効走査領域を走査する走査時間を計測し、少なくとも1つの光ビーム検出素子を有する走査時間計測手段をさらに備え、前記ミラー駆動手段は前記走査時間計測手段からの出力によって前記駆動信号の周波数を調整して前記走査時間を略一定とする請求項2または3記載の光走査装置。
  5. 前記光ビーム検出素子は、前記光ビームが前記有効走査領域を走査する際に掃引して形成される掃引面の外に配設される請求項4記載の光走査装置。
  6. 前記走査時間計測手段は2個の前記光ビーム検出素子を有し、前記光ビーム検出素子のそれぞれは、前記光ビームが前記有効走査領域の略中心を走査する際の光軸に対して略対称に配設される請求項4または5記載の光走査装置。
  7. 前記光ビーム検出素子の出力を、前記光ビームが前記有効走査領域を走査する際の水平同期信号として利用する請求項4ないし6のいずれかに記載の光走査装置。
  8. 潜像担持体と、
    請求項1ないし7のいずれかに記載の光走査装置と同一構成を有し、前記潜像担持体の表面の所定の領域を前記有効走査領域として光ビームを走査して前記潜像担持体上に静電潜像を形成する露光手段と、
    前記静電潜像をトナーにより現像してトナー像を形成する現像手段と
    を備えたことを特徴とする画像形成装置。
JP2004016711A 2004-01-26 2004-01-26 光走査装置および画像形成装置 Expired - Fee Related JP4572540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016711A JP4572540B2 (ja) 2004-01-26 2004-01-26 光走査装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016711A JP4572540B2 (ja) 2004-01-26 2004-01-26 光走査装置および画像形成装置

Publications (2)

Publication Number Publication Date
JP2005208459A true JP2005208459A (ja) 2005-08-04
JP4572540B2 JP4572540B2 (ja) 2010-11-04

Family

ID=34901775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016711A Expired - Fee Related JP4572540B2 (ja) 2004-01-26 2004-01-26 光走査装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP4572540B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057695A (ja) * 2005-08-23 2007-03-08 Seiko Epson Corp 光走査装置および該装置の制御方法
JP2007230103A (ja) * 2006-03-01 2007-09-13 Seiko Epson Corp 光走査装置およびこれを備えた画像形成装置
JP2010104107A (ja) * 2008-10-22 2010-05-06 Hoya Corp 静電型アクチュエータ制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302317A (ja) * 1988-05-31 1989-12-06 Konica Corp 画像形成装置
JPH05257075A (ja) * 1991-12-27 1993-10-08 Jeol Ltd 共振型光学スキャナ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302317A (ja) * 1988-05-31 1989-12-06 Konica Corp 画像形成装置
JPH05257075A (ja) * 1991-12-27 1993-10-08 Jeol Ltd 共振型光学スキャナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057695A (ja) * 2005-08-23 2007-03-08 Seiko Epson Corp 光走査装置および該装置の制御方法
JP4720368B2 (ja) * 2005-08-23 2011-07-13 セイコーエプソン株式会社 光走査装置および該装置の制御方法
JP2007230103A (ja) * 2006-03-01 2007-09-13 Seiko Epson Corp 光走査装置およびこれを備えた画像形成装置
JP2010104107A (ja) * 2008-10-22 2010-05-06 Hoya Corp 静電型アクチュエータ制御装置

Also Published As

Publication number Publication date
JP4572540B2 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4370905B2 (ja) 光走査装置および画像形成装置
JP4496789B2 (ja) 光走査装置および画像形成装置
JP4816026B2 (ja) 光走査装置および該装置を装備する画像形成装置
JP2005195869A (ja) 光走査装置および画像形成装置
JP2005221749A (ja) 光走査装置および画像形成装置
JP4572540B2 (ja) 光走査装置および画像形成装置
JP2010160491A (ja) 光走査装置の調整方法
JP2005227327A (ja) 光走査装置および画像形成装置
JP4496747B2 (ja) 光走査装置および画像形成装置
JP4701593B2 (ja) 光走査装置および画像形成装置
JP2004279655A (ja) 画像形成装置
JP4576816B2 (ja) 光走査装置および画像形成装置
JP4792960B2 (ja) 光走査装置
JP2005329707A (ja) 画像形成装置および画像形成方法
JP4501538B2 (ja) 画像形成装置および画像形成方法
JP4506087B2 (ja) 画像形成装置
JP2005115211A (ja) 光走査装置および画像形成装置
JP2004287214A (ja) 露光装置および画像形成装置
JP2005070708A (ja) 光走査装置および画像形成装置
JP2010000794A (ja) 画像形成装置および画像形成方法
JP4453317B2 (ja) 光走査装置および画像形成装置
JP4978028B2 (ja) 光走査装置およびこれを備えた画像形成装置
JP4465967B2 (ja) 画像形成装置
JP4483301B2 (ja) 光走査装置および画像形成装置
JP2006337417A (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees