JP2005195170A - クラッチ状態検出装置 - Google Patents

クラッチ状態検出装置 Download PDF

Info

Publication number
JP2005195170A
JP2005195170A JP2004294455A JP2004294455A JP2005195170A JP 2005195170 A JP2005195170 A JP 2005195170A JP 2004294455 A JP2004294455 A JP 2004294455A JP 2004294455 A JP2004294455 A JP 2004294455A JP 2005195170 A JP2005195170 A JP 2005195170A
Authority
JP
Japan
Prior art keywords
clutch
engine
rotational speed
state
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004294455A
Other languages
English (en)
Other versions
JP4639743B2 (ja
Inventor
Masahiro Asano
正裕 浅野
Hidetsugu Takemoto
英嗣 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004294455A priority Critical patent/JP4639743B2/ja
Priority to US11/008,738 priority patent/US7179197B2/en
Priority to DE102004059658.1A priority patent/DE102004059658B4/de
Publication of JP2005195170A publication Critical patent/JP2005195170A/ja
Application granted granted Critical
Publication of JP4639743B2 publication Critical patent/JP4639743B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • B60W2510/0652Speed change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1062Diesel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • F16D2500/3068Speed change of rate of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • F16D2500/3127Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/31426Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70424Outputting a clutch engaged-disengaged signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/71Actions
    • F16D2500/7105Inhibit control automatically

Abstract

【課題】 エンジンの各気筒毎のエンジン回転数の挙動を用いて、車両走行中のギヤシフト操作におけるクラッチの切断状態を精度良く判定できるようにする。
【解決手段】 エンジン側または動力伝達装置側からエンジン回転数を変動させる入力がないと判定した時に、ユーザが車両走行中にギヤシフト操作を行うためにクラッチペダルを踏み込むと、エンジンと共に回転するフライホイールに繋がっていたクラッチディスクが半クラッチ状態となってフライホイールの端面上を滑ることで摩擦が生じ、エンジン回転数ωの低下速度が急峻になる現象(B)が生じ、クラッチディスクがフライホイールから完全に切れて摩擦がなくなったため、エンジン回転数ωの低下速度が元の状態に復帰しようとする現象(C)が生じる。上記の現象(B)を検出したのに引き続いて現象(C)を検出した際に、クラッチディスクが切断状態であると判断する。
【選択図】 図6

Description

本発明は、クラッチスイッチやニュートラルスイッチ等のシフト操作スイッチを用いることなく、回転速度センサより出力されるエンジン回転信号を用いてクラッチの断続状態を判定するクラッチ状態検出装置に関するものである。
[従来の技術]
従来より、手動歯車変速機(マニュアル・トランスミッション)を備えた車両においては、車両走行中にギヤシフト操作を行うために、先ずそれまで踏み込んでいたアクセルペダルを開放し、クラッチペダルを踏み込み、必要なギヤシフトを行うように構成されている。そして、クラッチペダルの近傍には、クラッチペダルが所定の位置(例えばクラッチペダルが軽く踏み込まれた位置)に踏み込まれたか否かを検出するクラッチスイッチが設置されている。そして、ECU(例えばエンジン制御ユニット)は、クラッチスイッチからのオン(ON)信号またはオフ(OFF)信号が入力されると、クラッチが切断状態または接続状態であると判断し、エンジンに対して所定の制御を実行するように制御信号を出力するように構成されている(例えば、特許文献1及び2参照)。
[従来の技術の不具合]
ところが、特許文献1及び2に記載のように、クラッチスイッチを用いてクラッチの断続状態を判断する場合には、スイッチ装備にコストがかかる。また、クラッチスイッチの取り付け後に微調整が必要となり、工数がかかる。また、クラッチの経時変化により検出精度が低いという問題が生じている。また、少しだけクラッチペダルを踏み込んだ状態(例えば半クラッチになる程度、あるいは遊び分だけ踏み込んだ状態)でもクラッチが切断状態であると判断するように設定されており、クラッチの断続状態の判定精度が低いという問題が生じている。
特開2002−188658号公報(第1−12頁、図1−図7) 特開2002−266895号公報(第1−8頁、図1−図3)
本発明の目的は、上記のような問題点を持つクラッチスイッチを使用することなく、クラッチの断続時に特徴的なエンジン回転速度変動が生じる点に着目し、回転速度検出手段によって検出されたエンジンの各気筒毎の瞬時回転速度を用いて車両走行中のギヤシフト操作におけるクラッチの切断状態を精度良く判定することのできるクラッチ状態検出装置を提供することにある。
請求項1に記載の発明によれば、クラッチ断続判定禁止手段が、駆動側の回転速度を駆動側または従動側から変動させる入力がないと判定した際に、回転速度検出手段で検出された駆動側の回転速度の変動から、クラッチの断続状態が切断状態であるか否かを判断するクラッチ断続判定手段を設けている。これにより、例えばクラッチの断続状態が接続状態であるにも拘らず、誤判定(例えばクラッチの切断状態であると誤判定する等)を防止することができる。あるいは誤判定を減らすことができる。
そして、駆動側として車両に搭載された多気筒ディーゼルエンジン等の内燃機関(エンジン)を用い、また、従動側としてエンジンの回転動力を車輪に伝達する変速機、推進軸、終減速機構、車軸や駆動輪(車輪)等を含む動力伝達装置(但し、クラッチ機構を除く)を用い、また、回転速度検出手段としてエンジンの各気筒毎の瞬時回転速度を検出する回転速度センサを用いている。
そして、クラッチ断続判定禁止手段が、駆動側の回転速度を駆動側または従動側から変動させる入力がないと判定した際、すなわち、エンジン回転速度をエンジン側または動力伝達装置側から変動させる入力がないと判定した際に、クラッチ断続判定手段が起動する。そして、エンジンの全気筒のうちの少なくとも1つの第1特定気筒の瞬時回転速度の低下速度が第1判定値よりも大きくなる現象を検出したのに引き続いて、エンジンの全気筒のうちの少なくとも1つの第2特定気筒の瞬時回転速度の低下速度が第2判定値よりも小さくなる現象を検出した際に、エンジンから動力伝達装置への回転動力の伝達を断続するクラッチの断続状態が切断状態であると判断するようにしている。これによって、クラッチスイッチを使用することなく、回転速度センサによって検出されたエンジンの各気筒毎の瞬時回転速度を用いて車両走行中のギヤシフト操作におけるクラッチの切断状態をより精度良く判定することが可能となる。ここで、上記の第1特定気筒と第2特定気筒とが同じ気筒であっても、異なっていても構わない。
請求項2に記載の発明によれば、クラッチ断続判定禁止手段が、駆動側の回転速度を駆動側または従動側から変動させる入力がないと判定した際、すなわち、エンジン回転速度をエンジン側または動力伝達装置側から変動させる入力がないと判定した際に、クラッチ断続判定手段が起動する。そして、エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が判定値よりも大きくなる現象を検出した際に、エンジンから動力伝達装置への回転動力の伝達を断続するクラッチの断続状態が接続状態から切断状態に移行中であると判断するようにしている。これによって、クラッチスイッチを使用することなく、クラッチの断続状態が接続状態から切断状態に移行中であることを精度良く判定することが可能となる。
請求項3に記載の発明によれば、クラッチ断続判定禁止手段が、駆動側の回転速度を駆動側または従動側から変動させる入力がないと判定した際、すなわち、エンジン回転速度をエンジン側または動力伝達装置側から変動させる入力がないと判定した際に、クラッチ断続判定手段が起動する。そして、エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が判定値よりも小さくなる現象を検出した際に、エンジンから動力伝達装置への回転動力の伝達を断続するクラッチの断続状態が切断状態であると判断するようにしている。これによって、クラッチスイッチを使用することなく、回転速度センサによって検出されたエンジンの各気筒毎の瞬時回転速度を用いて車両走行中のギヤシフト操作におけるクラッチの切断状態を精度良く判定することが可能となる。
請求項4に記載の発明によれば、クラッチ断続判定禁止手段によるクラッチの断続状態の判定中止事項または判定禁止事項としての、駆動側の回転速度(エンジン回転速度)を従動側から変動させる入力としては、車両が坂道(例えば車両が走行中の路面状態が上り勾配)を走行する時に生じる勾配抵抗が挙げられる。このため、クラッチ断続判定禁止手段は、車両が走行中の路面状態が上り勾配で、且つ車速が減速中である場合に、クラッチの断続状態の判定を中止または禁止するようにしている。これにより、クラッチが接続状態から切断状態に移行する際の、瞬時回転速度の低下速度が大きくなる現象を検出していると誤判定することを防止できる。これによって、坂道に関する誤判定防止手段が機能する条件がより明確になる。
請求項5に記載の発明によれば、クラッチ断続判定禁止手段によるクラッチの断続状態の判定中止事項または判定禁止事項としての、駆動側の回転速度(エンジン回転速度)を従動側から変動させる入力としては、車両が坂道(例えば車両が走行中の路面状態が下り勾配)を走行する時に生じる勾配抵抗が挙げられる。このため、クラッチ断続判定禁止手段は、車両が走行中の路面状態が下り勾配で、且つ車速が増速中である場合に、クラッチの断続状態の判定を中止または禁止するようにしている。これにより、クラッチ切断後の瞬時回転速度の低下速度が小さくなる現象を検出していると誤判定することを防止できる。つまり、クラッチが接続状態でありながらクラッチが切断状態であると誤判定することを防止できる。これによって、坂道に関する誤判定防止手段が機能する条件がより明確になる。
請求項6に記載の発明によれば、クラッチ断続判定禁止手段によるクラッチの断続状態の判定中止事項または判定禁止事項としての、駆動側の回転速度(エンジン回転速度)を駆動側から変動させる入力としては、エンジンの気筒に噴射供給されてエンジン出力軸トルクの発生に寄与する燃料噴射量が挙げられる。このため、クラッチ断続判定禁止手段は、エンジンの運転状態に応じて設定される指令噴射量または指令噴射期間が所定値以上増加した場合に、クラッチの断続状態の判定を中止または禁止するようにしている。これにより、クラッチが接続状態でありながらクラッチが切断状態であると誤判定することを防止できる。
請求項7に記載の発明によれば、クラッチ断続判定禁止手段によるクラッチの断続状態の判定中止事項または判定禁止事項としての、駆動側の回転速度(エンジン回転速度)を駆動側から変動させる入力としては、エンジンの出力軸により駆動されるエンジン補機類の外部負荷が挙げられる。このため、クラッチ断続判定禁止手段は、エンジン補機類の外部負荷が所定値以上変動した場合に、クラッチの断続状態の判定を中止または禁止するようにしている。これにより、クラッチが接続状態でありながらクラッチが切断状態であると誤判定することを防止できる。
請求項8に記載の発明によれば、クラッチ断続判定禁止手段によるクラッチの断続状態の判定中止事項または判定禁止事項としての、駆動側の回転速度(エンジン回転速度)を従動側から変動させる入力としては、車両走行中に制動した時に生じる制動力が挙げられる。このため、クラッチ断続判定禁止手段は、車両乗員がブレーキペダルを操作した場合、あるいはブレーキランプが点灯した場合に、クラッチの断続状態の判定を中止または禁止するようにしている。これにより、クラッチが接続状態でありながらクラッチが切断状態であると誤判定することを防止できる。
請求項9に記載の発明によれば、回転速度センサとして、エンジンのクランク軸が1回転する間に複数の回転信号パルスを出力するクランク角度センサを用いても良い。また、回転速度検出手段に、クランク角度センサだけでなく、そのクランク角度センサより取り込んだ回転信号パルスの間隔時間を計測することで、エンジンの各気筒毎の瞬時回転速度を算出する回転速度算出手段を含んで構成しても良い。
請求項10に記載の発明によれば、所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の最大値を、当該気筒の瞬時回転速度の最低回転速度として取り込むか、あるいは所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の最小値を、当該気筒の瞬時回転速度の最高回転速度として取り込むか、あるいは所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の平均値を、当該気筒の瞬時回転速度の(検出期間)平均回転速度として取り込むようにしても良い。そして、最低回転速度、最高回転速度または(検出期間)平均回転速度のいずれか1つ以上を、エンジンの各気筒毎の瞬時回転速度として取り込むようにしても良い。
請求項11に記載の発明によれば、回転速度検出手段によって検出したエンジンの各気筒毎の瞬時回転速度を燃料噴射の順序に従って時系列順に並べて、燃料噴射の順序が隣合う2つの噴射気筒間の瞬時回転速度の変化勾配量に基づいて、エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度を求めるようにしても良い。例えば燃料噴射が実施される当該噴射気筒の瞬時回転速度と、その当該噴射気筒の直前に燃料噴射が実施された直前噴射気筒の瞬時回転速度との変化勾配量に基づいて、当該噴射気筒の瞬時回転速度の低下速度を求めるようにしても良い。また、請求項12に記載の発明によれば、回転速度検出手段によって検出したエンジンの各気筒毎の瞬時回転速度を燃料噴射の順序に従って時系列順に並べた際に、ねじり振動が生じている場合には、クラッチの断続状態が接続状態であると判断するようにしても良い。
請求項13に記載の発明によれば、回転速度検出手段によって検出したエンジンの各気筒毎の瞬時回転速度の偏差に基づいて、所定のクランク角度間のエンジン回転速度変動量を求める回転速度変動量算出手段を備えている。そして、回転速度変動量算出手段によって求めたエンジン回転速度変動量を燃料噴射の順序に従って時系列順に並べて、燃料噴射の順序が隣合う2つの噴射気筒間のエンジン回転速度変動量の偏差に基づいて、エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度を求めるようにしても良い。例えば燃料噴射が実施される当該噴射気筒のエンジン回転速度変動量と、その当該噴射気筒の直前に燃料噴射が実施された直前噴射気筒のエンジン回転速度変動量との偏差に基づいて、当該噴射気筒の瞬時回転速度の低下速度を求めるようにしても良い。また、請求項14に記載の発明によれば、回転速度変動量算出手段によって求めたエンジン回転速度変動量を燃料噴射の順序に従って時系列順に並べた際に、ねじり振動が生じている場合、クラッチの断続状態が接続状態であると判断するようにしても良い。
本発明を実施するための最良の形態は、クラッチスイッチやニュートラルスイッチ等のシフト操作スイッチを使用することなく、クラッチの切断状態を精度良く判定するという目的を、エンジンの全気筒のうちの少なくとも1つの第1特定気筒の瞬時回転速度の低下速度が第1判定値よりも大きくなる現象を検出したのに引き続いて、エンジンの全気筒のうちの少なくとも1つの第2特定気筒の瞬時回転速度の低下速度が第2判定値よりも小さくなる現象を検出することで実現した。
[実施例1の構成]
図1ないし図7は本発明の実施例1を示したもので、図1はコモンレール式燃料噴射システムの全体構成を示した図で、図2はコモンレール式燃料噴射システムの制御系の概略構成を示した図である。
本実施例の内燃機関用燃料噴射装置は、大型車両(例えばディーゼルエンジン搭載車)1に搭載されるものであり、主として、多気筒ディーゼルエンジン等の内燃機関(以下エンジン2と言う)用の燃料噴射システムとして知られるコモンレール式燃料噴射システム(蓄圧式燃料噴射装置)であり、コモンレール3内に蓄圧された高圧燃料を、エンジン2の各気筒毎に対応して搭載された複数の燃料噴射弁(インジェクタ)4を介してエンジン2の各気筒の燃焼室内に噴射供給するように構成されている。このコモンレール式燃料噴射システムは、燃料の噴射圧力に相当する高圧燃料を蓄圧するコモンレール3と、エンジン2の各気筒の燃焼室内に燃料を所定の噴射タイミングで噴射供給する複数個(本例では4個)のインジェクタ4と、吸入調量弁(SCV)6を経て加圧室内に吸入される燃料を加圧して高圧化する吸入燃料調量方式の燃料供給ポンプ(サプライポンプ)5と、複数個のインジェクタ4の電磁弁(図示せず)およびサプライポンプ5の吸入調量弁6を電子制御するエンジン制御ユニット(本発明のクラッチ状態検出装置に相当する:以下ECUと呼ぶ)10とを備えている。
エンジン2の出力軸(例えばクランク軸:以下クランクシャフトと言う)7は、図示しないクラッチ機構を介してエンジン2のクランクシャフト7の回転動力を各車輪(駆動輪)に伝達するための動力伝達装置としての多段歯車変速機の入力軸に連結されている。そして、本実施例では、多段歯車変速機として、前進側の変速段が多段化されて、エンジン2の回転速度を所定の変速比に変速する手動歯車変速機(マニュアル・トランスミッション:以下トランスミッションと略す)8が搭載されている。なお、多段歯車変速機として、前進5段後退1段歯車変速機を採用すると、動力性能、燃費、静粛性の向上等の効果が得られる。ここで、エンジン2と駆動車輪との間で動力の伝達と遮断とを行うクラッチ機構は、エンジン2の直後に設置されており、クラッチペダルを踏み込むとエンジン2の回転動力を遮断し、クラッチペダルから足を離すと動力伝達を行う。
そして、本発明のクラッチに相当するクラッチディスクは、フライホイールに取り付けられたクラッチカバー内に収容されており、入力軸を介してトランスミッション8と連結している。そして、エンジン2のクランクシャフト7と同期して回転するフライホイールに、クラッチディスクをプレッシャプレートでスプリングによって押し付け、その摩擦力で、エンジン2の回転動力をトランスミッション8に伝達する。なお、一般的に、クラッチディスクとフライホイールとの摩擦を利用し、クラッチペダルの踏み加減によってはクラッチディスクをフライホイールの端面上で滑らせてエンジン2の回転動力を少しずつ伝達することもできる。また、クラッチディスクの断続状態(クラッチ状態)としては、クラッチペダルを踏み込むことでクラッチディスクがフライホイールから完全に切れる切断状態、クラッチペダルに足をのせ、半分の踏み力でクラッチディスクがフライホイールに繋がりかけたままの半クラッチ状態、およびクラッチペダルから足を離すことでクラッチディスクがフライホイールに繋がる接続状態がある。
コモンレール3は、サプライポンプ5より圧送供給された高圧燃料を蓄圧室内に蓄圧すると共に、その蓄圧室内に蓄圧された高圧燃料を、複数の分岐流路を介して複数のインジェクタ4に分配供給するものである。また、コモンレール3には、連続的に燃料の噴射圧力に相当する高圧燃料が蓄圧される必要があり、そのために燃料供給配管12を介して高圧燃料を吐出するサプライポンプ5の吐出口と接続されている。また、コモンレール3から燃料タンク18へのリリーフ配管(燃料還流路)14には、プレッシャリミッタ15が取り付けられている。そのプレッシャリミッタ15は、コモンレール3内の燃料圧力が限界設定圧力を超えた際に開弁してコモンレール3内の燃料圧力を限界設定圧力以下に抑えるための圧力安全弁である。
エンジン2の各気筒毎に対応して搭載されたインジェクタ4は、コモンレール3より分岐する複数の燃料供給配管(分岐管)13の下流端に接続されて、エンジン2の各気筒の燃焼室内への燃料噴射を行う燃料噴射ノズル、この燃料噴射ノズル内に収容されたノズルニードルを開弁方向に駆動する電磁弁、およびノズルニードルを閉弁方向に付勢するスプリング等のニードル付勢手段(図示せず)等から構成された電磁式燃料噴射弁である。そして、インジェクタ4からエンジン2の各気筒の燃焼室内への燃料噴射は、ノズルニードルと連動するコマンドピストンの動作制御を行う背圧制御室内の燃料圧力を増減制御する電磁弁への通電および通電停止(ON/OFF)により電子制御される。つまり、インジェクタ4の電磁弁が通電されてノズルニードルが噴射孔を開弁している間、コモンレール3内に蓄圧された高圧燃料がエンジン2の各気筒の燃焼室内に噴射供給される。これにより、エンジン2が運転される。また、インジェクタ4には、余剰燃料や背圧制御室から排出された燃料を燃料系の低圧側に溢流させるためのリークポートが設けられており、インジェクタ4からのリーク燃料は、燃料還流配管16を介して燃料タンク18に戻される。
サプライポンプ5は、吸入した低圧燃料を加圧して高圧化しコモンレール3内に圧送供給する圧送系統(ポンプエレメント)を2つ備え、1つの吸入調量弁6で、全ての圧送系統の燃料吐出量を、吸入燃料量を調量することで制御するタイプの高圧供給ポンプである。このサプライポンプ5は、エンジン2のクランクシャフト7の回転に伴ってポンプ駆動軸(ドライブシャフトまたはカムシャフト)9が回転することで、燃料タンク18から低圧燃料を汲み上げる周知のフィードポンプ(低圧供給ポンプ:図示せず)と、ポンプ駆動軸9により回転駆動されるカム(図示せず)と、このカムに駆動されて上死点と下死点との間を往復運動する複数個(本例では2個)のプランジャ#1、#2とを有している。また、加圧室からコモンレール3に向けて高圧燃料を吐出する燃料吐出経路には、加圧室内の燃料圧力が所定値以上に上昇すると開弁する複数個(本例では2個)の吐出弁(図示せず)が設置されている。
そして、サプライポンプ5は、プランジャ#1、#2がポンプシリンダ内を往復摺動することで、燃料タンク18から燃料供給配管11を経て複数個(本例では2個)の加圧室(プランジャ室:図示せず)内に吸入された低圧燃料を加圧して高圧化する。なお、燃料供給配管11の途中には、燃料フィルタ(図示せず)が設置されている。そして、サプライポンプ5は、図3のタイミングチャートに示したように、プランジャ#1、#2が上死点(TDC)位置から下死点位置を過ぎるまでの期間が加圧室内に低圧燃料を吸入するポンプ吸入期間とされ、その後に、吐出弁が開弁している間、つまりプランジャ#1、#2が上死点(TDC)位置に戻るまでの期間が加圧室内で加圧された高圧燃料をコモンレール3側に圧送するポンプ圧送期間とされている。また、サプライポンプ5には、内部の燃料温度が高温にならないように、リークポートが設けられており、サプライポンプ5からのリーク燃料は、燃料還流配管17を介して燃料タンク18に戻される。なお、図3のタイミングチャートは、1回圧送する間に燃料噴射が2回(2気筒分)行われる1圧送2噴射のタイプを示す。
ここで、サプライポンプ5内に形成される、フィードポンプから加圧室に至る燃料吸入経路(図示せず)の途中には、その燃料吸入経路の開口度合(弁体のリフト量または弁孔の開口面積)を調整する吸入調量弁6が取り付けられている。この吸入調量弁6は、図示しないポンプ駆動回路を介してECU10から印加されるポンプ駆動電流(ポンプ駆動信号)によって電子制御されることにより、サプライポンプ5の加圧室内に吸入される燃料の吸入量(ポンプ吸入量)を調整することで、サプライポンプ5の加圧室からコモンレール3内に吐出される燃料吐出量(ポンプ吐出量またはポンプ圧送量)を制御する。この吸入調量弁6は、リフト量に応じて燃料吸入経路の開口度合を変更する弁体(図示せず)、この弁体を閉弁方向(または開弁方向)に駆動するソレノイドコイル(図示せず)、および弁体を開弁方向(または閉弁方向)に付勢するスプリング等の弁体付勢手段(図示せず)を有している。そして、吸入調量弁6は、ソレノイドコイルに印加されるポンプ駆動電流の大きさに比例して、サプライポンプ5の加圧室からコモンレール3内に吐出される燃料吐出量を調整することで、インジェクタ4からエンジン2の各気筒の燃焼室内に噴射供給する燃料の噴射圧力に相当するコモンレール3内の燃料圧力、所謂コモンレール圧力を変更する。
本実施例のECU10は、制御処理、演算処理を行うCPU、各種プログラムや制御データを保存する記憶装置(ROMまたはEEPROMおよびRAMまたはスタンバイRAM等のメモリ)、入力回路、出力回路、電源回路等の機能を含んで構成される周知の構造のマイクロコンピュータ、インジェクタ駆動回路(EDU)、および吸入調量弁6のソレノイドコイルにポンプ駆動電流を印加するポンプ駆動回路が設けられている。なお、インジェクタ駆動回路(EDU)は、各気筒のインジェクタ4の電磁弁に個別にパルス状のインジェクタ駆動電流を印加するインジェクタ駆動手段である。そして、ECU10は、イグニッションスイッチがオン(IG・ON)すると、ECU電源の供給が成され、メモリ内に格納された制御プログラムに基づいて、例えば燃料噴射量または燃料噴射圧力(コモンレール圧力)が制御値となるように電子制御するように構成されている。また、ECU10は、イグニッションスイッチがオフ(IG・OFF)されてECU電源の供給が断たれると、メモリ内に格納された制御プログラムに基づく上記の制御が強制的に終了されるように構成されている。
そして、ECU10は、コモンレール3に設置された燃料圧力センサ25より出力された出力値(コモンレール圧力信号)、その他の各種センサからのセンサ信号、および車両に設置された一部のスイッチからのスイッチ信号が、A/D変換器でA/D変換された後に、ECU10に内蔵されたマイクロコンピュータに入力されるように構成されている。また、マイクロコンピュータの入力回路には、エンジン2の運転状態や運転条件を検出する運転条件検出手段としての、エンジン2のクランクシャフト7の回転角度を検出するためのクランク角度センサ21、アクセルペダルの踏み込み量であるアクセル操作量(以下アクセル開度と呼ぶ:ACCP)を検出するためのアクセル開度センサ22、エンジン冷却水温(THW)を検出するための冷却水温センサ23、およびサプライポンプ5内に吸入されるポンプ吸入側の燃料温度(THF)を検出するための燃料温度センサ(図示せず)等が接続されている。
上記のセンサのうちクランク角度センサ21は、エンジン2のクランクシャフト7、あるいはサプライポンプ5のポンプ駆動軸(ドライブシャフトまたはカムシャフト)9に取り付けられたNEタイミングロータ(図示せず)の外周に対向するように設けられた電磁ピックアップコイルよりなる回転速度センサである。そのNEタイミングロータの外周面には、所定回転角度毎に凸状歯が複数個配置されている。ここで、本実施例では、図3のタイミングチャートに示したように、基準とする各気筒の基準位置(上死点位置:気筒#1のTDC位置、気筒#3のTDC位置、気筒#4のTDC位置、気筒#2のTDC位置)を判別するための4個の凸状歯が所定回転角度(180°CA)毎に設けられている。
また、サプライポンプ5の吸入開始時期(上死点位置:プランジャ#1のTDC位置、プランジャ#2のTDC位置)を判別するための2個の凸状歯が所定回転角度(360°CA)毎に設けられている。そして、クランク角度センサ21は、NEタイミングロータの各凸状歯がクランク角度センサ21に対して接近離反を繰り返すことにより、電磁誘導によってパルス状の回転位置信号(NE信号パルス)、特にサプライポンプ5の回転速度(ポンプ回転速度)と同期したNE信号パルスが出力される。なお、ECU10は、クランク角度センサ21より出力されたNE信号パルスの間隔時間を計測することによってエンジン回転速度(以下エンジン回転数と呼ぶ:NEまたはω)を検出するためのエンジン回転数検出手段(回転速度検出手段)として機能する。また、アクセル開度センサ22は、アクセル開度(ACCP)に対応したアクセル開度信号を出力する。
また、マイクロコンピュータの入力回路には、図1および図2に示したように、車両情報も入力可能とされており、例えば車両の走行速度を検出するための車速センサ24、ブレーキペダル(図示せず)の操作状態を検出するためのブレーキスイッチ26、および車両の車室内を空調するエアコンの運転状態(エンジン補機類の外部負荷、エアコン負荷)を検出するためのエアコンスイッチ等が接続されている。そして、車速センサ24は、例えばリードスイッチ式車速センサまたは磁気抵抗素子式車速センサであって、トランスミッション8の出力軸の回転速度を計測して車両の走行速度に対応した車速信号を出力する。なお、車速検出手段として車両の車輪速度を検出する車輪速度センサを用いても良い。また、ブレーキスイッチ26は、運転者(ドライバー:以下ユーザと言う)がブレーキペダルを踏み込んだ際にブレーキ信号(ON信号)を出力してブレーキランプを点灯すると共に、ユーザがブレーキペダルを離した際にブレーキ信号(OFF信号)を出力してブレーキランプ(図示せず)を消灯するためのスイッチである。また、エアコンスイッチは、エンジン2のクランクシャフト7からエアコン用コンプレッサへの動力伝達を断続する電磁クラッチ(図示せず)をONまたはOFFすることで、エアコンの運転および運転停止を指令するためのスイッチである。
そして、ECU10は、エンジン2の運転状態に応じた最適なコモンレール圧力を演算し、ポンプ駆動回路を介して吸入調量弁6のソレノイドコイルを駆動する燃料圧力制御手段(コモンレール圧力制御手段)を有している。これは、エンジン回転数(NE)と基本噴射量(Q)または指令噴射量(QFIN)とによって目標コモンレール圧力(目標燃料圧力:PFIN)を演算する燃料圧力決定手段を有し、この目標燃料圧力(PFIN)を達成するために、吸入調量弁6のソレノイドコイルにポンプ駆動電流を調整して、サプライポンプ5の燃料吐出量をフィードバック制御するように構成されている。すなわち、燃料圧力センサ25によって検出されたコモンレール圧力(PC)が目標燃料圧力(PFIN)と略一致するように、PI(比例積分)制御またはPID(比例積分微分)制御によって、サプライポンプ5の燃料吐出量をフィードバック制御している。具体的には、燃料圧力センサ25によって検出されたコモンレール圧力(PC)と目標燃料圧力(PFIN)との圧力偏差(ΔP)に応じて、サプライポンプ5の燃料吐出量と相関関係を有する(吸入調量弁6のソレノイドコイルに印加する)ポンプ駆動電流をフィードバック制御している。
[実施例1の制御方法]
次に、本実施例のクラッチディスクの断続状態の判定方法を図1ないし図6に基づいて簡単に説明する。ここで、クラッチディスクの切断状態を、クラッチスイッチやニュートラルポジションスイッチ等のシフト操作スイッチを用いることなく判定する方法を、図4の制御ロジックに示す。
ECU10は、図4の制御ロジックに示したように、クランク角度センサ21より取り込んだNE信号パルスの間隔時間を計測することで、エンジン2の各気筒毎の瞬時回転速度(以下エンジン回転数と言う:NEまたはω)を算出するエンジン回転数検出手段(回転速度検出手段)31を有している。このエンジン回転数検出手段31では、クランク角度センサ21より取り込んだNE信号パルスの間隔時間を計測することで、所定のクランク角度期間中(BTDC90°CA〜ATDC90°CA間)のNE信号パルスの間隔時間の平均値を、当該噴射気筒の瞬時回転速度の平均回転速度(以下検出期間平均回転数と言う)として取り込むようにしている。
また、ECU10は、エンジン回転数検出手段31によって算出されたエンジン回転数(NE)とアクセル開度センサ22によって検出されたアクセル開度(ACCP)とに対応して設定された基本噴射量(Q)に、エンジン冷却水温(THW)と燃料温度(THF)等を考慮した噴射量補正量を加味して指令噴射量(QFIN)を算出する噴射量決定手段32を有している。なお、指令噴射量(QFIN)は、エンジン2の各気筒毎に個別に設定される。また、ECU10は、指令噴射量(QFIN)とエンジン回転数(NE)とによって、エンジン2の各気筒毎の指令噴射時期(TFIN)を算出する噴射時期決定手段と、指令噴射量(QFIN)と燃料圧力センサ25等の燃料圧力検出手段によって検出されたコモンレール圧力(PC)とによって、インジェクタ4の電磁弁への通電時間(指令噴射期間:TQ)を算出する噴射期間決定手段とを有している。なお、エンジン2の各気筒毎の指令噴射時期(TFIN)は、エンジン2の各気筒の上死点(TDC)位置近傍に設定される(図3のタイミングチャート参照)。
また、ECU10は、エンジンの各気筒毎の720°CA前のエンジン回転数(前回値)と720°CA後のエンジン回転数(今回値)との偏差に基づいて、エンジン回転数変動量Δω(720°CA差)を算出する回転数変動量算出手段(回転速度変動量算出手段)33を有している。この回転数変動量算出手段33は、図5(a)のタイミングチャートに示したように、例えば気筒#1の所定のサンプリング間隔(本例では720°CA期間)前後のエンジン回転数(NE)を、気筒#1の前回値ωi(#1)および気筒#1の今回値ωi+4(#1)として取り込み、気筒#1の前回値ωi(#1)と気筒#1の今回値ωi+4(#1)との偏差に基づいて、気筒#1のエンジン回転数変動量(Δωi+4)を算出する。また、例えば気筒#3の所定のサンプリング間隔(本例では720°CA期間)前後のエンジン回転数(NE)を、気筒#3の前回値ωi+1(#3)および気筒#3の今回値ωi+5(#3)として取り込み、気筒#3の前回値ωi+1(#3)と気筒#3の今回値ωi+5(#3)との偏差に基づいて、気筒#3のエンジン回転数変動量(Δωi+5)を算出する。
また、例えば気筒#4の所定のサンプリング間隔(本例では720°CA期間)前後のエンジン回転数(NE)を、気筒#4の前回値ωi+2(#4)および気筒#4の今回値ωi+6(#4)として取り込み、気筒#4の前回値ωi+2(#4)と気筒#4の今回値ωi+6(#4)との偏差に基づいて、気筒#4のエンジン回転数変動量(Δωi+6)を算出する。また、例えば気筒#2の所定のサンプリング間隔(本例では720°CA期間)前後のエンジン回転数(NE)を、気筒#2の前回値ωi+3(#2)および気筒#2の今回値ωi+7(#2)として取り込み、気筒#2の前回値ωi+3(#2)と気筒#2の今回値ωi+7(#2)との偏差に基づいて、気筒#2のエンジン回転数変動量(Δωi+7)を算出する。
ここで、図5(a)のタイミングチャートは、エンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)の算出方法を示した図で、これは4気筒エンジンを想定している。すなわち、4気筒エンジンでは、噴射順序が気筒#1→気筒#3→気筒#4→気筒#2である。また、噴射気筒が切り替わる毎に1回、エンジン回転数を検出している。すなわち、4気筒エンジンでは、エンジン2のクランクシャフト7が1/2回転で1回エンジン回転数(NE)を検出することになる。そして、検出されたエンジン回転数(NE)を時系列順に、ωi,ωi+1,ωi+2,ωi+3,ωi+4,ωi+5,ωi+6,ωi+7……とする。図5(a)のタイミングチャートでは、ωiから順に、気筒#1、気筒#3、気筒#4、気筒#2が噴射気筒の時に検出されたエンジン回転数(NE)となっている。そして、当該噴射気筒のエンジン回転数変動量Δωは、下記の数1の式によって算出される。そして、検出されたエンジン回転数変動量Δωを時系列順に、Δωi,Δωi+1,Δωi+2,Δωi+3,Δωi+4,Δωi+5,Δωi+6,Δωi+7……とする。
〔数1〕
Δω=(当該噴射気筒の今回値)−(当該噴射気筒の前回値)
また、ECU10は、エンジン2のクランクシャフト7により回転駆動されるオルタネータ(車両用交流発電機)、サプライポンプ5等のエンジン補機類の外部負荷(オルタネータ負荷、ポンプ負荷とも言う)の変動やエアコン等の外部負荷(エアコン負荷とも言う)の変動を検出するエンジン補機類等の負荷変動検出手段34を有している。また、ECU10は、駆動側の回転速度に相当するエンジン回転数を、駆動(エンジン2)側または従動(トランスミッション8、推進軸、終減速機構、車軸や駆動輪(車輪)等を含む動力伝達装置:但し、クラッチ機構を除く)側から変動させる入力が加わった際に、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチディスクの切断状態の誤判定を防止するクラッチ断続判定禁止手段(誤判定防止手段)36を有している。このクラッチ断続判定禁止手段36によるクラッチディスクの断続状態の判定中止事項または判定禁止事項としての、エンジン回転数を動力伝達装置側から変動させる入力としては、車両が坂道(例えば車両が走行中の路面状態が上り勾配)を走行する時に生じる勾配抵抗が挙げられる。このため、クラッチ断続判定禁止手段36は、車両が走行中の路面状態が上り勾配で、且つ車速が減速中である場合に、クラッチディスクの断続状態の判定を中止または禁止するようにクラッチ断続判定手段35に判定中止信号または判定禁止信号を出力する。
また、クラッチ断続判定禁止手段36によるクラッチディスクの断続状態の判定中止事項または判定禁止事項としての、エンジン回転数を動力伝達装置側から変動させる入力としては、車両が坂道(例えば車両が走行中の路面状態が下り勾配)を走行する時に生じる勾配抵抗が挙げられる。このため、クラッチ断続判定禁止手段36は、車両が走行中の路面状態が下り勾配で、且つ車速が増速中である場合に、クラッチディスクの断続状態の判定を中止または禁止するようにクラッチ断続判定手段35に判定中止信号または判定禁止信号を出力する。また、クラッチ断続判定禁止手段36によるクラッチディスクの断続状態の判定中止事項または判定禁止事項としての、エンジン回転数をエンジン2側から変動させる入力としては、エンジン2の各気筒の燃焼室内に噴射供給されてエンジン出力軸トルクの発生に寄与する燃料噴射量が挙げられる。このため、クラッチ断続判定禁止手段36は、指令噴射量(QFIN)または指令噴射期間(TQ)が所定値以上増加した場合に、クラッチディスクの断続状態の判定を中止または禁止するようにクラッチ断続判定手段35に判定中止信号または判定禁止信号を出力する。
また、クラッチ断続判定禁止手段36によるクラッチディスクの断続状態の判定中止事項または判定禁止事項としての、エンジン回転数をエンジン2側から変動させる入力としては、エンジン2のクランクシャフト7により駆動されるエンジン補機類の外部負荷(負荷変動)が挙げられる。このため、クラッチ断続判定禁止手段36は、エンジン補機類の外部負荷が所定値以上変動した場合、つまりエンジン補機類等の負荷変動検出手段34によって検出された負荷変動が所定値以上の場合に、クラッチディスクの断続状態の判定を中止または禁止するようにクラッチ断続判定手段35に判定中止信号または判定禁止信号を出力する。また、クラッチ断続判定禁止手段36によるクラッチディスクの断続状態の判定中止事項または判定禁止事項としての、エンジン回転数を動力伝達装置側から変動させる入力としては、車両走行中に制動した時に生じる制動力が挙げられる。このため、クラッチ断続判定禁止手段36は、ブレーキペダルの踏み込み状態を検出するブレーキスイッチ26より出力されるブレーキ信号(ON信号)を入力した場合、あるいはブレーキランプが点灯した場合に、クラッチディスクの断続状態の判定を中止または禁止するようにクラッチ断続判定手段35に判定中止信号または判定禁止信号を出力する。
また、ECU10は、クラッチ断続判定禁止手段36がエンジン2側または動力伝達装置側からエンジン回転数を変動させる入力がないと判定した際、つまりクラッチ断続判定禁止手段36から判定中止信号または判定禁止信号を入力していない場合に、車速センサ24によって検出された車速信号、アクセル開度センサ22によって検出されたアクセル開度(ACCP)信号、噴射量決定手段32にて算出された指令噴射量(QFIN)、回転数変動量算出手段33にて算出されたエンジン回転数変動量Δω、エンジン補機類等の負荷変動検出手段34によって検出されたエンジン補機類等の負荷変動、およびブレーキペダルの踏み込み状態を検出するブレーキスイッチ26より出力されるブレーキ信号(ON/OFF信号)に基づいて、クラッチディスクの切断状態を、クラッチスイッチやニュートラルポジションスイッチ等のシフト操作スイッチを用いることなく判定するクラッチ断続判定手段35を有している。
このクラッチ断続判定手段35は、回転数変動量算出手段33によって求めたエンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)を燃料噴射の順序に従って時系列順に並べる(図6のタイミングチャート参照)。そして、燃料噴射が実施される当該噴射気筒(今回の噴射気筒)のエンジン回転数変動量(Δωi)と当該噴射気筒の直前に燃料噴射が実施された直前噴射気筒(前回の噴射気筒)のエンジン回転数変動量(Δωi−1)との偏差{(Δωi)−(Δωi−1)}に基づいて、エンジン2の全気筒のうちの1つの当該噴射気筒の瞬時回転速度(エンジン回転数)の低下速度を求めるようにしている。
そして、エンジン2の全気筒のうちの1つの当該噴射気筒(第1特定気筒)のエンジン回転数の低下速度が第1判定値(例えば当該噴射気筒の直前に燃料噴射を実施した直前噴射気筒のエンジン回転数の低下速度)よりも大きくなる現象を検出した時点から所定の成立条件を満足した後に、エンジン2の全気筒のうちの1つの当該噴射気筒(第2特定気筒)のエンジン回転数の低下速度が第2判定値(例えば当該噴射気筒の直前に燃料噴射を実施した直前噴射気筒のエンジン回転数の低下速度)よりも小さくなる現象を検出した時点で、ユーザがクラッチペダルを踏み込んでクラッチディスクがフライホイールから完全に切れる(切断状態)となったと判断する。ここで、本実施例では、4気筒エンジンを採用しているので、図3のタイミングチャートに示したように、当該噴射気筒が気筒#1の場合には、直前噴射気筒は気筒#2となる。また、当該噴射気筒が気筒#3の場合には、直前噴射気筒は気筒#1となる。また、当該噴射気筒が気筒#4の場合には、直前噴射気筒は気筒#3となる。また、当該噴射気筒が気筒#2の場合には、直前噴射気筒は気筒#4となる。
[実施例1の特徴]
次に、本実施例のクラッチディスクの断続状態の判定方法を図1ないし図6に基づいて簡単に説明する。ここで、図6(a)〜図6(d)はクラッチディスクの断続状態が接続状態から切断状態へ移行する時のアクセル開度、指令噴射量、エンジン回転数およびエンジン回転数変動量の挙動を示したタイミングチャートである。
なお、図6(d)では、クラッチディスクの切断時のエンジン回転数の挙動が分り易いように、Δω(720°CA前のエンジン回転数(前回値)と720°CA後のエンジン回転数(今回値)との偏差)を用いており、回転数変動量算出手段33によって求めたエンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)を燃料噴射の順序に従って時系列順に並べて記載している。そして、Δωは、エンジン2の各気筒毎の所定のサンプリング間隔(所定のクランク角度間:本例では720°CA間)のエンジン回転数変動量なので、Δω>0ならば、720°CA間にエンジン回転数ωが上昇したことになる。例えば当該噴射気筒が気筒#1の場合、720°CA前のエンジン回転数(前回値:ωn−1(#1))よりも、現在のエンジン回転数(今回値:ωn(#1))の方が上昇したことになる。また、Δω<0ならば、720°CA間にエンジン回転数ωが下降したことになる。例えば当該噴射気筒が気筒#1の場合、720°CA前のエンジン回転数(前回値:ωn−1(#1))よりも、現在のエンジン回転数(今回値:ωn(#1))の方が下降したことになる。
ここで、本実施例のクラッチディスクの切断状態(断続状態)の判定は、車両走行中で、且つユーザが加速しようとしていない状態(アクセル開度の変動量≦0)で、更に燃料噴射毎に行うものとする。始めに、車両走行中に、シフトレバーの操作位置がニュートラル(N)位置以外に入った状態で、クラッチディスクがフライホイールに繋がっている(クラッチの接続状態)場合には、図6(c)のAに示したように、エンジン回転数検出手段31によって算出されたエンジン2の各気筒毎の瞬時回転速度(エンジン回転数:ω)を燃料噴射の順序に従って時系列順に並べると、エンジン回転数ωが所定の振幅で脈動するねじり振動が検出される。また、クラッチの接続状態の場合、図6(d)のAに示したように、回転数変動量算出手段33によって求めたエンジン2の各気筒毎のエンジン回転数変動量Δωを燃料噴射の順序に従って時系列順に並べると、エンジン回転数変動量Δωが所定の振幅で脈動するねじり振動が検出される。
そして、ユーザが車両走行中にギヤシフト操作(シフトチェンジ:シフトアップまたはシフトダウン)を行う目的で、クラッチペダルを踏み込んでクラッチディスクを切ろうとすると、図6(d)のBに示したように、燃料噴射の順序が隣合う2つの気筒間で、エンジン回転数変動量Δωが急激に低下する現象が生じる。その後に、図6(d)のCに示したように、燃料噴射の順序が隣合う2つの気筒間で、エンジン回転数変動量Δωが急激に上昇する現象が生じる。これらは、エンジン2と共に回転するフライホイールに繋がっていたクラッチディスクが半クラッチとなってフライホイールの端面上を滑ることで摩擦が生じ、エンジン回転数ωの低下度合(低下速度)が急激に大きくなる現象(B)と、クラッチディスクがフライホイールから完全に切れて摩擦がなくなったため、エンジン回転数ωの低下度合が元の状態(クラッチディスクの切断前)に復帰しようとして、エンジン回転数ωの低下度合(低下速度)が急激に小さくなる現象(C)とが現れる。
したがって、クラッチ断続判定手段35によって、上記の現象(B)を検出し、その後に上記の現象(C)を検出することで、クラッチスイッチやニュートラルポジションスイッチ等のシフト操作スイッチを用いることなく、ユーザがクラッチぺダルを踏み込んでクラッチディスクがフライホイールから完全に切れた(クラッチの切断状態)となったことを精度良く検出することができる。これによって、クラッチスイッチやニュートラルポジションスイッチ等のシフト操作スイッチのスイッチ装備を必要とせず、シフト操作スイッチの取り付け後に調整を必要とせず、コストや作業工数を削減することができる。
ここで、クラッチディスクの切断状態以外で現象(C)のようなエンジン回転数ωの挙動を示すものは、次の(イ)〜(ホ)のようなエンジン2の運転条件または車両の走行条件がある。(イ)燃料噴射によってエンジントルクが発生した場合、(ロ)オルタネータ負荷、ポンプ負荷、エアコン負荷が変動(特に低減)した場合、(ハ)車両の走行路面の状態が下り坂(下り勾配)で車速(SPD)を増速した場合、(ニ)ユーザがブレーキペダルを踏んだ後に離した場合、(ホ)クラッチディスクの切断状態が半クラッチ状態から接続状態に移行した場合である。
上記の(イ)の場合は、エンジン2の運転状態に応じて設定される噴射量指令値をモニターすることで、例えばエンジン回転数とアクセル開度とに応じて設定される指令噴射量(QFIN)が増量傾向にあるか、あるいは指令噴射量とコモンレール圧力とに応じて設定される指令噴射期間(TQ)が長くなる傾向にあるかを判断することで、上記の(イ)を要因とする、現象(C)であるか否かを判定することができる。また、上記の(ロ)の場合は、オルタネータのデューティ比、サプライポンプ5の燃料吐出量(特にポンプ圧送期間)、エアコンスイッチより出力されるエアコン信号の挙動(OFF信号→ON信号またはON信号→OFF信号)をモニターすることで、上記の(ロ)を要因とする、現象(C)であるか否かを判定することができる。上記の(ハ)の場合は、車速センサ24より出力される車速信号から車速(SPD)の変化をモニターすることで、上記の(ハ)を要因とする、現象(C)であるか否かを判定することができる。すなわち、クラッチディスクの断続状態が切断状態であるなら車速(SPD)が増速しても、エンジン回転数変動量Δωは低下する。しかし、クラッチディスクの断続状態が接続状態であれば、車速(SPD)およびエンジン回転数変動量Δωは共に増加する。
また、上記の(ニ)の場合は、ブレーキスイッチ26より出力されるブレーキ信号の挙動(OFF信号→ON信号→OFF信号)をモニターするか、あるいはブレーキランプが点灯した後に消灯する現象をモニターすることで、上記の(ニ)を要因とする、現象(C)であるか否かを判定することができる。また、上記の(ホ)の場合は、基本的にエンジン回転数変動量Δωの上昇量から判断する。但し、エンジン回転数変動量Δωが上昇した時点での判別が困難な場合も有り得るので、一度クラッチディスクの断続状態が切断状態であると判断しても、エンジン2の各気筒間のエンジン回転数ωの挙動およびエンジン回転数変動量Δωの挙動のモニターを続け、エンジン2の各気筒毎のエンジン回転数ωおよびエンジン2の各気筒毎のエンジン回転数変動量Δωを燃料噴射の順序に従って時系列順に並べた際に、図6(c)、(d)のAに示すようなねじり振動が検出されるか否かで再度確認を行うことが望ましい。これらの(イ)〜(ホ)を要因とする現象(C)が、現象(B)の後に生じた場合には、クラッチディスクの断続状態が接続状態であると判断することで、クラッチディスクの接続状態の誤判定を防止することができる。
次に、本実施例のクラッチディスクの断続状態の判定方法を図4および図6に基づいて説明する。車両走行中、図6の時刻t1にてユーザが車両走行中にギヤシフト操作(シフトチェンジ:シフトアップまたはシフトダウン)を行う目的で、アクセルペダルを離し始めると、それにつれてインジェクタ4に指令される噴射量指令値(以下指令噴射量と表記する)が減少し始め、エンジン回転数の上昇が緩やかになる。さらに、指令噴射量の減少が続くと、それにつれてエンジン回転数は上昇から下降に転じる。ここで、車速が規定値以上で、指令噴射量が減量側に設定されつつあり、且つアクセル開度が閉じ側に動きつつあることから、車両走行中で、且つユーザが加速しようとしていない状態であると判断して、以下のクラッチディスクの断続状態の判定を実施する。
ユーザがクラッチディスクを切ろうとすると、半クラッチでの摩擦負荷によりエンジン回転数の低下速度が大きくなる現象(B:エンジン回転数変動量Δωは負の値となる)、クラッチディスクが切れる(時刻t2)と加わっていた摩擦負荷がなくなった分、エンジン回転数の低下速度が小さくなる現象(C)が検出される。このとき、現象(C)が上記の(イ)〜(ホ)を要因として生じたものでないかを、(イ)は噴射量決定手段32によって算出された指令噴射量(QFIN)の変化から、(ロ)はエンジン補機類の負荷変動検出手段34から、(ハ)は車速センサ24と回転数変動量算出手段33とから、(ニ)はブレーキ入力検出手段から、(ホ)は回転数変動量算出手段33から、クラッチ断続判定手段35で判定する。これにより、現象(C)が上記の(イ)〜(ホ)を要因として生じたものでないと判定されれば、クラッチディスクが切られたと判定する。しかし、上記の(ホ)等で誤判定となる恐れもあるため、時刻t3以降も回転数変動量算出手段33でエンジン回転数変動量Δωをモニターし、現象(A)で見られるようなねじり振動が発生していないかを判定する。ここで、ねじり振動が発生していると判定されれば、すぐさまクラッチディスクの切断状態(断続状態)の判定を修正する。
一方、クラッチディスクを繋いだ時も、上記のクラッチディスクの切断状態の判定方法と同様に、エンジン回転数変動量を検出して判定する。ここで、例えばシフトチェンジを行う場合であって、アクセルペダルを踏み込んでエンジン回転数を合わせることなくクラッチディスクを繋いだ場合、エンジン回転数が車速に適したエンジン回転数以下になっているため、エンジン回転数が大きく上昇する(Δω>0まで過上昇する)点に着目し、クラッチディスクの切断時との差別化を図るものとする。
ここで、本実施例では、エンジン補機類の外部負荷が所定値以上変動した場合、つまりエンジン補機類等の負荷変動検出手段34によって検出された負荷変動が所定値以上の場合に、クラッチ断続判定手段35による、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチディスクが接続状態でありながらクラッチディスクが切断状態であると誤判定することを防止できる。また、ユーザがブレーキペダルを操作してブレーキスイッチ26より出力されるブレーキ信号(ON信号)を入力した場合、あるいはブレーキランプが点灯した場合に、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチディスクが接続状態でありながらクラッチディスクが切断状態であると誤判定することを防止できる。
また、車両が走行中の路面状態が上り勾配で、且つ車速が減速中である場合に、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチディスクが接続状態から切断状態に移行する際の、瞬時回転速度の低下速度が大きくなる現象を検出していると誤判定することを防止できる。これによって、坂道に関する誤判定防止手段が機能する条件がより明確になる。また、車両が走行中の路面状態が下り勾配で、且つ車速が増速中である場合に、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチ切断後の瞬時回転速度の低下速度が小さくなる現象を検出していると誤判定することを防止できる。つまり、クラッチディスクが接続状態でありながらクラッチディスクが切断状態であると誤判定することを防止できる。これによって、坂道に関する誤判定防止手段が機能する条件がより明確になる。また、指令噴射量(QFIN)または指令噴射期間(TQ)が所定値以上増加した場合に、クラッチディスクの断続状態の判定を中止または禁止することで、クラッチディスクが接続状態でありながらクラッチディスクが切断状態であると誤判定することを防止できる。以上のクラッチディスクの切断状態の誤判定を防止する各手段のうちいずれか1つ以上を選択的に用いるようにしても、あるいは2つ以上を選択的に組み合わせて用いるようにしても構わない。
なお、本実施例では、上記の現象(B)を検出したのに引き続いて、上記の現象(C)を検出した場合に、クラッチの切断状態となったと判断しているが、上記の現象(C)のみを検出した際に、クラッチの断続状態が切断状態であると判断しても良い。また、上記の現象(B)のみを検出した際に、クラッチディスクの断続状態が接続状態から切断状態に移行中であると判断しても良い。また、本実施例では、エンジン補機類等の負荷変動検出手段34で検出している負荷変動として、オルタネータ負荷、サプライポンプ5等のポンプ負荷、エアコン負荷を挙げているが、これはクラッチディスクの切断状態の誤判定を防止するための誤判定防止手段であるため、必ずしも用いなければならないものではない。逆に、よりクラッチディスクの切断状態の誤判定を減らすために、エンジン補機類等の負荷変動検出手段(例えばパワーステアリング用のポンプ負荷や、パワーウインドウ用のアクチュエータ、ヘッドライト等の電気部品の負荷等)を更に追加しても良い。
図7および図8は本発明の実施例2を示したもので、図7はクラッチディスクの切断状態の判定方法を示したフローチャートである。この図7のルーチンは、イグニッションスイッチがオン(IG・ON)された後に、所定のタイミング毎(例えばエンジン2の各気筒の燃料噴射が実施される毎:180°CA毎)に実施される。
先ず、エンジン回転数(NE)、アクセル開度(ACCP)、エンジン冷却水温(THW)、燃料温度(THF)およびコモンレール圧力(PC)等のエンジンパラメータを取り込む(ステップS1)。ここで、アクセル開度センサ22によって検出したアクセル開度(ACCP)を燃料噴射の順序に従って時系列順に並べると、図8(a)に示したように挙動する。なお、この挙動はユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、アクセルペダルおよびクラッチペダルを操作して、クラッチの断続状態が接続状態から切断状態に移行する際の挙動である。
次に、クランク角度センサ21等のエンジン回転数検出手段によって検出されたエンジン回転数(NE)とアクセル開度センサ22等のアクセル開度検出手段によって検出されたアクセル開度(ACCP)とに対応して設定された基本噴射量(Q)に、エンジン冷却水温(THW)と燃料温度(THF)等を考慮した噴射量補正量を加味して指令噴射量(QFIN)を算出する(噴射量決定手段:ステップS2)。ここで、噴射量決定手段によって算出した指令噴射量を燃料噴射の順序に従って時系列順に並べると、図8(c)に示したように挙動する。なお、この挙動はユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、アクセルペダルおよびクラッチペダルを操作して、クラッチの断続状態が接続状態から切断状態に移行する際の挙動である。
次に、エンジン回転数を、エンジン2側または動力伝達装置側から変動させる入力が加わっているか否かを判定する(ステップS16)。この判定結果がYESの場合には、クラッチディスクの断続状態の判定を中止または禁止して、図7のルーチンを終了する。
また、ステップS16の判定結果がNOの場合には、車速センサ24等の車速検出手段によって検出された車速(SPD)が規定値以上であるか否かを判定する(ステップS3)。この判定結果がNOの場合には、制御フラグがONされている場合、制御フラグをOFFする(ステップS15)。その後に、図7のルーチンを終了する。
また、ステップS3の判定結果がYESの場合には、指令噴射量(QFIN)が減量傾向にある(ΔQFIN≦β)か否かを判定する(ステップS4)。この判定結果がNOの場合には、ステップS15の処理を実施した後に、図7のルーチンを終了する。
また、ステップS4の判定結果がYESの場合には、アクセル開度(ACCP)が閉じ側に動きつつある(ΔACCP≦γ)か否かを判定する(ステップS5)。この判定結果がNOの場合には、ステップS15の処理を実施した後に、図7のルーチンを終了する。 また、ステップS5の判定結果がYESの場合には、車両走行中で、且つユーザが加速しようとしていない状態であると判断して、以下のクラッチディスクの断続状態の判定を実施する。
次に、エンジン2の各気筒毎のエンジン回転数ωを検出する(エンジン回転数検出手段:ステップS6)。このエンジン回転数検出手段では、クランク角度センサ21より取り込んだNE信号パルスの間隔時間を計測することで、所定のクランク角度期間中(BTDC90°CA〜ATDC90°CA間)のNE信号パルスの間隔時間の平均値を、当該噴射気筒の瞬時回転速度の平均回転速度(以下検出期間平均回転数と言う)として取り込むようにしている。ここで、エンジン回転数検出手段によって検出したエンジン2の各気筒毎の瞬時回転速度(例えば検出期間平均エンジン回転数:以下エンジン回転数ωと言う)を燃料噴射の順序に従って時系列順に並べると、図8(b)に示したように挙動する。なお、この挙動はユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、アクセルペダルおよびクラッチペダルを操作して、クラッチの断続状態が接続状態から切断状態に移行する際の挙動である。また、エンジン回転数検出手段によって検出したエンジン2の各気筒毎のエンジン回転数ωを、所定の蓄積量となるまで、RAM等のメモリやEEPROMまたはスタンバイRAM等の不揮発性メモリに格納された特性図(MAP:例えば図5(b)参照)に、燃料噴射の順序に従って時系列順に書き込んでおく(回転速度記憶手段)。
次に、所定のサンプリング間隔(本例では720°CA期間)前後の、エンジン回転数検出手段より取り込んだエンジン回転数(NE)の偏差に基づいて、エンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)を算出する(回転数変動量算出手段:ステップS7)。ここで、回転数変動量算出手段によって算出したエンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)を燃料噴射の順序に従って時系列順に並べると、図8(d)に示したように挙動する。なお、この挙動はユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、アクセルペダルおよびクラッチペダルを操作して、クラッチの断続状態が接続状態から切断状態に移行する際の挙動である。また、回転数変動量算出手段によって算出したエンジン2の各気筒毎のエンジン回転数変動量Δω(720°CA差)を、所定の蓄積量となるまで、RAM等のメモリやEEPROMまたはスタンバイRAM等の不揮発性メモリに格納された特性図(MAP:例えば図5(b)参照)に、燃料噴射の順序に従って時系列順に書き込んでおく(回転速度変動量記憶手段)。
次に、制御フラグがONされているか否かを判定する(ステップS8)。この判定結果がYESの場合には、ステップS11の判定処理に進む。
また、ステップS8の判定結果がNOの場合には、当該噴射気筒(#n)の直前に燃料噴射が実施される直前噴射気筒(#n−1)のエンジン回転数変動量(Δωi−1)を、当該噴射気筒(#n)のエンジン回転数変動量(Δωi)から減算した値が、第1判定値よりも小さいか否かを判定する(ステップS9)。ここで、第1判定値としては、当該噴射気筒(#n)より2つ前に燃料噴射を実施する噴射気筒(#n−2)のエンジン回転数変動量(Δωi−2)を、直前噴射気筒(#n−1)のエンジン回転数変動量(Δωi−1)から減算した値{(Δωi−1)−(Δωi−2)}×補正係数を用いることが望ましい。但し、補正係数は、1以上の値(例えば1.5)である。これは、演算結果{(Δωi)−(Δωi−1)}に基づいて、当該噴射気筒のエンジン回転数の低下速度を求め、その当該噴射気筒のエンジン回転数の低下速度が急激に大きくなる現象を検出しているか否かを判定するのと同じ意味となる。
このステップS9の判定結果がNOの場合には、ステップS15の処理を実施した後に、図7のルーチンを終了する。
また、ステップS9の判定結果がYESの場合には、制御フラグをONする(ステップS10)。次に、当該噴射気筒(#n)の直前に燃料噴射が実施される直前噴射気筒(#n−1)のエンジン回転数変動量(Δωi−1)を、当該噴射気筒(#n)のエンジン回転数変動量(Δωi)から減算した値が、第2判定値よりも大きいか否かを判定する(ステップS11)。ここで、第2判定値としては、当該噴射気筒(#n)より2つ前に燃料噴射を実施する噴射気筒(#n−2)のエンジン回転数変動量(Δωi−2)を、直前噴射気筒(#n−1)のエンジン回転数変動量(Δωi−1)から減算した値{(Δωi−1)−(Δωi−2)}×補正係数を用いることが望ましい。但し、補正係数は、1以上の値(例えば1.5)である。これは、演算結果{(Δωi)−(Δωi−1)}に基づいて、当該噴射気筒のエンジン回転数の低下速度を求め、その当該噴射気筒のエンジン回転数の低下速度が急激に小さくなる現象を検出しているか否かを判定するのと同じ意味となる。
このステップS11の判定結果がNOの場合には、図7のルーチンを終了する。
また、ステップS11の判定結果がYESの場合には、クラッチディスクの断続状態が切断状態であると判断する(ステップS12)。次に、制御フラグをOFFする(ステップS13)。次に、クラッチペダルが踏み込まれてクラッチディスクが完全に切れて車両走行中のギヤシフト操作途中であると判断して、例えば燃料噴射量の学習制御を実施する(ステップS14)。その後に、図7のルーチンを抜ける。
本実施例では、車両走行中、シフトレバーの操作位置がニュートラル(N)位置以外に入った状態で、クラッチディスクがフライホイールに繋がっている(クラッチの接続状態)場合、図8(d)に示すようなねじり振動が検出される。そして、ユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、クラッチペダルを踏み込んでクラッチディスクを切ると、図8(d)に示したように、エンジン2の各気筒間でエンジン回転数変動量Δωが急激に低下する現象が生じる。その後に、図8(d)に示したように、エンジン2の各気筒間でエンジン回転数変動量Δωが急激に上昇する現象が生じる。これらの2つの現象を検出することで、クラッチの断続状態が切断状態であると判断する。
そして、ECU10は、アクセル開度(ACCP)が全閉状態、クラッチの切断状態、燃料の噴射圧力が所定の範囲内に有り、且つ指令噴射量(QFIN)が無噴射に相当する噴射量(0mm3 /st以下)であることを検出すると、学習実行条件が成立したと判断して、燃料噴射量の学習制御を実施する。これは、学習制御期間中に、噴射開始時期から学習用噴射量に対応した学習噴射期間が経過するまでの間に、インジェクタ4の電磁弁にパルス状のインジェクタ駆動電流を印加して、エンジン2の特定気筒の燃焼室内に燃料を噴射供給して、学習用噴射量に対して実際の噴射量のばらつきを測定することで、特定気筒のインジェクタ4の個体差および経時劣化量または経年変化量を学習する学習制御である。ECU10は、学習用噴射量に対して実際の噴射量のばらつきに対応した学習値(特性値)を検出すると、以降の噴射量制御に反映させるように、EEPROM等の不揮発性メモリに学習値(特性値)を記憶する。
したがって、本実施例では、ユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、クラッチペダルを踏み込んだ際のエンジン回転数の挙動からクラッチの切断状態を、クラッチスイッチやニュートラルポジションスイッチ等のシフト操作スイッチを用いることなく素早く判定することができるので、車両走行中にユーザのギヤシフト操作の途中で噴射量学習する場合の学習可能な時間を無駄にすることはなくなる。
本実施例では、図7のルーチンを、所定のタイミング毎(例えばエンジン2の各気筒の燃料噴射が実施される毎:180°CA毎)に実行するようにしているが、図7のルーチンを、エンジン2のクランク角度が特定気筒に搭載されたインジェクタ4の噴射量制御処理を開始する制御基準位置を検出した際に実行するようにしても良い。例えば当該噴射気筒の720°CA前の燃料噴射が終了した時点、あるいは当該噴射気筒の直前に燃料噴射を実施する直前噴射気筒の燃料噴射が終了した時点から、図7のルーチンを実行するようにしても良い。
本実施例では、本発明を、燃料噴射量の学習制御を行うコモンレール式燃料噴射システムに使用される、クラッチディスクの切断状態の判定に適用しているが、本発明を、アイドリング回転速度またはエンジン始動時噴射量制御または不均量補償制御または定車速制御、あるいはサプライポンプ5の個体差または経時劣化量または経年変化量を学習するポンプ学習制御、あるいは車両の走行速度(車速)が予め定められた目標制限速度以上であることを検出すると、エンジン回転速度や燃料噴射量を低く抑えることにより車速制限を行う車速制限手段を備えた車速制御システムに使用される、クラッチディスクの切断状態の判定に適用しても良い。
図9は本発明の実施例3を示したもので、クラッチディスクの切断時のエンジン回転数の挙動を示したタイミングチャートである。
本実施例では、エンジン2の全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が第1判定値より急激に大きくなる現象を検出する方法として、クラッチディスクを切る際に、エンジン2側とトランスミッション8側とを接続するクラッチディスクで滑りが生じ、それによって生じた摩擦により、エンジン回転数が急激に低下する現象、つまり図9のエンジン回転数の変化勾配量(減少勾配量:α)が急激に大きくなる現象(図9のA→B(αi−1)よりも図9のB→C(αi)の方がαが大きい)を検出するようにしている。これによって、ユーザが車両走行中にギヤシフト操作(シフトアップまたはシフトダウン)を行う目的で、クラッチペダルを踏み込んでクラッチディスクが半クラッチ状態となってエンジン回転数ωの低下度合が急峻になった現象を検出できる。
また、本実施例では、エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が判定値よりも急激に小さくなる現象を検出する方法として、クラッチディスクが完全に切れて摩擦がなくなり、図9のエンジン回転数の減少勾配(α)が急激に小さくなる現象(図9のB→C(αi)よりも図9のC→D(αi+1)の方がαが小さい)を検出するようにしている。これによって、クラッチディスクがフライホイールから完全に切れて摩擦がなくなったため、エンジン回転数ωの低下度合が元の状態(クラッチディスクの切断前)に復帰しようとしている現象を検出できる。
[変形例]
本実施例では、本発明を、コモンレール式燃料噴射システムに適用したが、本発明を、コモンレール3等を持たず、燃料供給ポンプから高圧供給配管を経て直接燃料噴射弁または燃料噴射ノズルに高圧燃料を圧送供給するタイプの内燃機関用燃料噴射装置に適用しても良い。また、エンジンの圧縮行程および膨張行程中に、インジェクタ4の電磁弁を2回以上駆動して、エンジン2の各気筒の燃焼室内への高圧燃料の噴射を2回以上に分割して実施するマルチ噴射を行う噴射率制御手段を備えた内燃機関用燃料噴射装置に適用しても良い。例えば1回以上のパイロット噴射またはプレ噴射の後にメイン噴射を実施するマルチ噴射、あるいはメイン噴射の後に1回以上のアフター噴射を実施するマルチ噴射を行うようにしても良い。特に上記の燃料噴射量の学習制御として、パイロット噴射量またはプレ噴射量またはアフター噴射量等の微小噴射量の学習制御を行うようにしても良い。
本実施例では、所定のクランク角度期間中(BTDC90°CA〜ATDC90°CA間)のNE信号パルスの間隔時間の平均値を、当該噴射気筒の瞬時回転速度の平均回転速度(以下検出期間平均回転数と言う)として取り込むようにしているが、クランク角度センサ21より取り込んだNE信号パルスの間隔時間を計測することで、エンジン2の各気筒毎の瞬時回転速度を算出し、所定のクランク角度期間中(BTDC90°CA〜ATDC90°CA間)のNE信号パルスの間隔時間の最大値を、当該噴射気筒の瞬時回転速度の最低回転速度(以下最低回転数と言う)として取り込むか、あるいは所定のクランク角度期間中(BTDC90°CA〜ATDC90°CA間)のNE信号パルスの間隔時間の最小値を、当該噴射気筒の瞬時回転速度の最高回転速度(以下最高回転数と言う)として取り込むようにしても良い。
本実施例では、本発明を、4気筒エンジンとトランスミッションとを断続するクラッチの切断状態の判定方法に適用した例を説明したが、本発明を、6気筒以上の多気筒エンジンとトランスミッションとを断続するクラッチの切断状態の判定方法に適用しても良い。また、本発明を、ガソリンエンジンとトランスミッションとを断続するクラッチの切断状態の判定方法に適用しても良い。また、本発明を、大型車両1に搭載されるエンジン2だけでなく、小型車両(乗用車や営業車)に搭載されるエンジンとトランスミッションとを断続するクラッチの切断状態の判定方法に適用しても良い。
コモンレール式燃料噴射システムの全体構成を示した概略図である(実施例1)。 コモンレール式燃料噴射システムの制御系の概略構成を示したブロック図である(実施例1)。 NE信号パルス、サプライポンプのプランジャ#1位置、サプライポンプのプランジャ#2位置の推移を示したタイミングチャートである(実施例1)。 ECUの制御ロジックを示した図である(実施例1)。 (a)はエンジン回転数変動量の算出方法を示した図で、(b)はエンジンの各気筒毎のエンジン回転数、エンジン回転数変動量を燃料噴射の順序に従って時系列順に並べた図である(実施例1)。 (a)はクラッチディスクの断続状態が接続状態から切断状態へ移行する時のアクセル開度の挙動を示したタイミングチャートで、(b)はクラッチディスクの断続状態が接続状態から切断状態へ移行する時の指令噴射量の挙動を示したタイミングチャートで、(c)はクラッチディスクの断続状態が接続状態から切断状態へ移行する時のエンジン回転数の挙動を示したタイミングチャートで、(d)はクラッチディスクの断続状態が接続状態から切断状態へ移行する時のエンジン回転数変動量の挙動を示したタイミングチャートである(実施例1)。 クラッチディスクの切断状態の判定方法を示したフローチャートである(実施例2)。 (a)はギヤシフト操作時のアクセル開度の挙動を示したタイミングチャートで、(b)はギヤシフト操作時のエンジン回転数の挙動を示したタイミングチャートで、(c)はギヤシフト操作時の指令噴射量の挙動を示したタイミングチャートで、(d)はギヤシフト操作時のエンジン回転数変動量の挙動を示したタイミングチャートである(実施例2)。 (a)はクラッチディスクの切断時のエンジン回転数の挙動を示したタイミングチャートで、(b)は(a)の拡大図である(実施例3)。
符号の説明
1 大型車両(車両)
2 エンジン(内燃機関)
3 コモンレール
4 インジェクタ(燃料噴射弁)
5 サプライポンプ(燃料供給ポンプ)
6 吸入調量弁
7 クランクシャフト(エンジンの出力軸、クランク軸)
8 トランスミッション(手動歯車変速機、動力伝達装置)
9 ポンプ駆動軸(ドライブシャフト、カムシャフト)
10 ECU(クラッチ状態検出装置、回転速度検出手段、回転速度算出手段、クラッチ断続判定禁止手段、クラッチ断続判定手段、回転速度変動量算出手段、エンジン制御ユニット)
21 クランク角度センサ(回転速度検出手段、回転速度センサ)
22 アクセル開度センサ(アクセル開度検出手段)
23 冷却水温センサ
24 車速センサ(車速検出手段)
25 燃料圧力センサ(燃料圧力検出手段)
31 エンジン回転数検出手段(回転速度検出手段)
32 噴射量決定手段
33 回転数変動量算出手段(回転速度変動量算出手段)
34 エンジン補機類等の負荷変動検出手段
35 クラッチ断続判定手段
36 クラッチ断続判定禁止手段(誤判定防止手段)

Claims (14)

  1. 駆動側から従動側への回転動力の伝達を断続するクラッチの断続状態を検出するクラッチ状態検出装置において、
    (a)前記駆動側の回転速度を検出する回転速度検出手段と、
    (b)前記駆動側の回転速度を、前記駆動側または前記従動側から変動させる入力が加わった場合に、前記クラッチの断続状態の判定を中止または禁止するクラッチ断続判定禁止手段と、
    (c)このクラッチ断続判定禁止手段が、前記駆動側の回転速度を前記駆動側または前記従動側から変動させる入力がないと判定した時に、前記回転速度検出手段で検出された前記駆動側の回転速度の変動から、前記クラッチの断続状態が切断状態であるか否かを判断するクラッチ断続判定手段とを備え、
    前記駆動側とは、車両に搭載されたエンジンであって、
    前記従動側とは、前記エンジンの回転動力を車輪に伝達する動力伝達装置であって、
    前記回転速度検出手段は、前記エンジンの各気筒毎の瞬時回転速度を検出する回転速度センサを有し、
    前記クラッチ断続判定手段は、前記エンジンの全気筒のうちの少なくとも1つの第1特定気筒の瞬時回転速度の低下速度が第1判定値よりも大きくなる現象を検出したのに引き続いて、前記エンジンの全気筒のうちの少なくとも1つの第2特定気筒の瞬時回転速度の低下速度が第2判定値よりも小さくなる現象を検出した際に、前記クラッチの断続状態が切断状態であると判断することを特徴とするクラッチ状態検出装置。
  2. 駆動側から従動側への回転動力の伝達を断続するクラッチの断続状態を検出するクラッチ状態検出装置において、
    (a)前記駆動側の回転速度を検出する回転速度検出手段と、
    (b)前記駆動側の回転速度を、前記駆動側または前記従動側から変動させる入力が加わった場合に、前記クラッチの断続状態の判定を中止または禁止するクラッチ断続判定禁止手段と、
    (c)このクラッチ断続判定禁止手段が、前記駆動側の回転速度を前記駆動側または前記従動側から変動させる入力がないと判定した時に、前記回転速度検出手段で検出された前記駆動側の回転速度の変動から、前記クラッチの断続状態が切断状態であるか否かを判断するクラッチ断続判定手段とを備え、
    前記駆動側とは、車両に搭載されたエンジンであって、
    前記従動側とは、前記エンジンの回転動力を車輪に伝達する動力伝達装置であって、
    前記回転速度検出手段は、前記エンジンの各気筒毎の瞬時回転速度を検出する回転速度センサを有し、
    前記クラッチ断続判定手段は、前記エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が判定値よりも大きくなる現象を検出した際に、前記クラッチの断続状態が接続状態から切断状態に移行中であると判断することを特徴とするクラッチ状態検出装置。
  3. 駆動側から従動側への回転動力の伝達を断続するクラッチの断続状態を検出するクラッチ状態検出装置において、
    (a)前記駆動側の回転速度を検出する回転速度検出手段と、
    (b)前記駆動側の回転速度を、前記駆動側または前記従動側から変動させる入力が加わった場合に、前記クラッチの断続状態の判定を中止または禁止するクラッチ断続判定禁止手段と、
    (c)このクラッチ断続判定禁止手段が、前記駆動側の回転速度を前記駆動側または前記従動側から変動させる入力がないと判定した時に、前記回転速度検出手段で検出された前記駆動側の回転速度の変動から、前記クラッチの断続状態が切断状態であるか否かを判断するクラッチ断続判定手段とを備え、
    前記駆動側とは、車両に搭載されたエンジンであって、
    前記従動側とは、前記エンジンの回転動力を車輪に伝達する動力伝達装置であって、
    前記回転速度検出手段は、前記エンジンの各気筒毎の瞬時回転速度を検出する回転速度センサを有し、
    前記クラッチ断続判定手段は、前記エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度が判定値よりも小さくなる現象を検出した際に、前記クラッチの断続状態が切断状態であると判断することを特徴とするクラッチ状態検出装置。
  4. 請求項1または請求項2に記載のクラッチ状態検出装置において、
    前記駆動側の回転速度を前記従動側から変動させる入力としては、車両が坂道を走行する時に生じる勾配抵抗が挙げられ、
    前記クラッチ断続判定禁止手段は、前記車両が走行中の路面状態が上り勾配で、且つ車速が減速中である場合、前記クラッチの断続状態の判定を中止または禁止することを特徴とするクラッチ状態検出装置。
  5. 請求項1または請求項3に記載のクラッチ状態検出装置において、
    前記駆動側の回転速度を前記従動側から変動させる入力としては、車両が坂道を走行する時に生じる勾配抵抗が挙げられ、
    前記クラッチ断続判定禁止手段は、前記車両が走行中の路面状態が下り勾配で、且つ車速が増速中である場合、前記クラッチの断続状態の判定を中止または禁止することを特徴とするクラッチ状態検出装置。
  6. 請求項1ないし請求項5のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記駆動側の回転速度を前記駆動側から変動させる入力としては、前記エンジンの気筒に噴射供給されてエンジン出力軸トルクの発生に寄与する燃料噴射量が挙げられ、
    前記クラッチ断続判定禁止手段は、前記エンジンの運転状態に応じて設定される指令噴射量または指令噴射期間が所定値以上増加した場合、前記クラッチの断続状態の判定を中止または禁止することを特徴とするクラッチ状態検出装置。
  7. 請求項1ないし請求項6のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記駆動側の回転速度を前記駆動側から変動させる入力としては、前記エンジンの出力軸により駆動されるエンジン補機類の外部負荷が挙げられ、
    前記クラッチ断続判定禁止手段は、前記エンジン補機類の外部負荷が所定値以上変動した場合、前記クラッチの断続状態の判定を中止または禁止することを特徴とするクラッチ状態検出装置。
  8. 請求項1ないし請求項7のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記駆動側の回転速度を前記従動側から変動させる入力としては、車両走行中に制動した時に生じる制動力が挙げられ、
    前記クラッチ断続判定禁止手段は、車両乗員がブレーキペダルを操作した場合、あるいはブレーキランプが点灯した場合、前記クラッチの断続状態の判定を中止または禁止することを特徴とするクラッチ状態検出装置。
  9. 請求項1ないし請求項8のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記回転速度センサは、前記エンジンのクランク軸が1回転する間に複数の回転信号パルスを出力するクランク角度センサであって、
    前記回転速度検出手段は、前記クランク角度センサより取り込んだ回転信号パルスの間隔時間を計測することで、前記エンジンの各気筒毎の瞬時回転速度を算出する回転速度算出手段を含んで構成されていることを特徴とするクラッチ状態検出装置。
  10. 請求項9に記載のクラッチ状態検出装置において、
    前記回転速度検出手段は、所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の最大値を、当該気筒の瞬時回転速度の最低回転速度として取り込み、
    あるいは所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の最小値を、当該気筒の瞬時回転速度の最高回転速度として取り込み、
    あるいは所定のクランク角度期間中のパルス状の回転位置信号の間隔時間の平均値を、当該気筒の瞬時回転速度の平均回転速度として取り込み、
    前記最低回転速度、前記最高回転速度または前記平均回転速度のいずれか1つ以上を、前記エンジンの各気筒毎の瞬時回転速度として取り込むことを特徴とするクラッチ状態検出装置。
  11. 請求項1ないし請求項10のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記クラッチ断続判定手段は、
    前記回転速度検出手段によって検出した前記エンジンの各気筒毎の瞬時回転速度を燃料噴射の順序に従って時系列順に並べて、
    燃料噴射の順序が隣合う2つの噴射気筒間の瞬時回転速度の変化勾配量に基づいて、前記エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度を求めることを特徴とするクラッチ状態検出装置。
  12. 請求項1ないし請求項11のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記クラッチ断続判定手段は、
    前記回転速度検出手段によって検出した前記エンジンの各気筒毎の瞬時回転速度を燃料噴射の順序に従って時系列順に並べた際に、ねじり振動が生じている場合、前記クラッチの断続状態が接続状態であると判断することを特徴とするクラッチ状態検出装置。
  13. 請求項1ないし請求項10のうちのいずれか1つに記載のクラッチ状態検出装置において、
    前記回転速度検出手段によって検出した前記エンジンの各気筒毎の瞬時回転速度の偏差に基づいて、所定のクランク角度間のエンジン回転速度変動量を求める回転速度変動量算出手段を備え、
    前記クラッチ断続判定手段は、
    前記回転速度変動量算出手段によって求めた前記エンジン回転速度変動量を燃料噴射の順序に従って時系列順に並べて、
    燃料噴射の順序が隣合う2つの噴射気筒間のエンジン回転速度変動量の偏差に基づいて、前記エンジンの全気筒のうちの少なくとも1つの特定気筒の瞬時回転速度の低下速度を求めることを特徴とするクラッチ状態検出装置。
  14. 請求項13に記載のクラッチ状態検出装置において、
    前記クラッチ断続判定手段は、
    前記回転速度変動量算出手段によって求めた前記エンジン回転速度変動量を燃料噴射の順序に従って時系列順に並べた際に、ねじり振動が生じている場合、前記クラッチの断続状態が接続状態であると判断することを特徴とするクラッチ状態検出装置。
JP2004294455A 2003-12-12 2004-10-07 クラッチ状態検出装置 Expired - Fee Related JP4639743B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004294455A JP4639743B2 (ja) 2003-12-12 2004-10-07 クラッチ状態検出装置
US11/008,738 US7179197B2 (en) 2003-12-12 2004-12-10 Clutch state determining device
DE102004059658.1A DE102004059658B4 (de) 2003-12-12 2004-12-10 Kupplungszustandsbestimmungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003415633 2003-12-12
JP2004294455A JP4639743B2 (ja) 2003-12-12 2004-10-07 クラッチ状態検出装置

Publications (2)

Publication Number Publication Date
JP2005195170A true JP2005195170A (ja) 2005-07-21
JP4639743B2 JP4639743B2 (ja) 2011-02-23

Family

ID=34656260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294455A Expired - Fee Related JP4639743B2 (ja) 2003-12-12 2004-10-07 クラッチ状態検出装置

Country Status (3)

Country Link
US (1) US7179197B2 (ja)
JP (1) JP4639743B2 (ja)
DE (1) DE102004059658B4 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1950461A2 (en) 2007-01-29 2008-07-30 Toyota Jidosha Kabushiki Kaisha Clutch engaged state determination apparatus and method thereof, gear determination apparatus and shift indication apparatus
JP2009030711A (ja) * 2007-07-26 2009-02-12 Nissan Motor Co Ltd 車両用クラッチ状態検出装置
JP2009036301A (ja) * 2007-08-01 2009-02-19 Denso Corp クラッチ検出装置
KR100974753B1 (ko) 2008-07-25 2010-08-06 현대자동차주식회사 하이브리드 차량의 클러치 상태 판정 방법
US8609292B2 (en) 2006-06-07 2013-12-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20160102621A1 (en) * 2014-10-14 2016-04-14 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2885275A1 (fr) * 2005-05-02 2006-11-03 France Telecom Procede d'ordonnancement de paquets appartenant a des flots et equipement associe
JP5211578B2 (ja) * 2007-08-06 2013-06-12 国産電機株式会社 船舶用エンジンの制御装置
DE102007055722A1 (de) * 2007-12-06 2009-06-10 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Kraftfahrzeugs mit automatisierter Kupplung
JP4876107B2 (ja) * 2008-07-18 2012-02-15 日立オートモティブシステムズ株式会社 内燃機関の診断制御装置
CA2754137C (en) 2011-09-30 2012-11-20 Westport Power Inc. Apparatus and method for in situ fuel injector calibration in an internal combustion engine
GB2506674B (en) * 2012-10-08 2018-08-08 Ford Global Tech Llc A method for producing an adaptive inferred clutch engagement state
FR3087492B1 (fr) * 2018-10-22 2022-02-18 Continental Automotive France Procede et systeme de regulation du regime d'un moteur a combustion interne entrainant un dispositif debrayable
JP7261189B2 (ja) * 2020-01-31 2023-04-19 日立Astemo株式会社 内燃機関制御装置及び内燃機関制御方法
CN113417951A (zh) * 2021-06-17 2021-09-21 潍柴动力股份有限公司 一种离合器分离的控制方法、控制设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202932A (ja) * 1985-03-05 1986-09-08 Jidosha Kiki Co Ltd 自動クラツチ制御装置
JPS6291328A (ja) * 1985-10-18 1987-04-25 Akebono Brake Ind Co Ltd クラツチの接続検出法
JPH0885369A (ja) * 1994-09-19 1996-04-02 Suzuki Motor Corp エンジンの制御装置
JP2003343331A (ja) * 2002-05-24 2003-12-03 Denso Corp 内燃機関用噴射率制御装置
JP2004052823A (ja) * 2002-07-17 2004-02-19 Honda Motor Co Ltd 単気筒エンジンのクラッチ断続検出装置
JP2004270812A (ja) * 2003-03-10 2004-09-30 Mitsubishi Fuso Truck & Bus Corp クラッチ制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771470B1 (fr) * 1997-11-25 2000-01-14 Renault Procede de reconnaissance de l'etat d'embrayage d'un moteur de vehicule
DE19806497C2 (de) * 1998-02-17 2000-03-16 Mannesmann Sachs Ag Antriebsanordnung für ein von einem Verbrennungsmotor angetriebenes Kraftfahrzeug
DE19810033A1 (de) * 1998-03-09 1999-09-16 Mannesmann Sachs Ag Anordnung zur Überwachung des Verschleißzustandes einer Reibungskupplung
US6347275B1 (en) * 1999-05-31 2002-02-12 Isuzu Motors Limited Method and apparatus for attenuating torsional vibration in drive train in vehicle
DE19956384C1 (de) * 1999-11-24 2000-11-16 Bosch Gmbh Robert Impulsstartverfahren und Impulsstartvorrichtung für eine Brennkraftmaschine
JP4081960B2 (ja) * 2000-04-24 2008-04-30 いすゞ自動車株式会社 車両のクラッチ制御装置
JP4108265B2 (ja) 2000-11-22 2008-06-25 本田技研工業株式会社 車両用クラッチの接続状態判定装置およびこれを用いた変速制御装置
JP2002188658A (ja) 2000-12-20 2002-07-05 Toyota Motor Corp 車両用クラッチの係合状態判定装置
JP2002266895A (ja) 2001-03-05 2002-09-18 Toyota Motor Corp クラッチ状態検出装置
JP3899943B2 (ja) * 2002-01-24 2007-03-28 日産自動車株式会社 定速走行制御装置
US6859710B2 (en) * 2002-11-25 2005-02-22 Eaton Corporation Automated centrifugal clutch system with open-loop throttle control
DE10354654B4 (de) * 2003-11-22 2014-09-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202932A (ja) * 1985-03-05 1986-09-08 Jidosha Kiki Co Ltd 自動クラツチ制御装置
JPS6291328A (ja) * 1985-10-18 1987-04-25 Akebono Brake Ind Co Ltd クラツチの接続検出法
JPH0885369A (ja) * 1994-09-19 1996-04-02 Suzuki Motor Corp エンジンの制御装置
JP2003343331A (ja) * 2002-05-24 2003-12-03 Denso Corp 内燃機関用噴射率制御装置
JP2004052823A (ja) * 2002-07-17 2004-02-19 Honda Motor Co Ltd 単気筒エンジンのクラッチ断続検出装置
JP2004270812A (ja) * 2003-03-10 2004-09-30 Mitsubishi Fuso Truck & Bus Corp クラッチ制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609292B2 (en) 2006-06-07 2013-12-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system
EP1950461A2 (en) 2007-01-29 2008-07-30 Toyota Jidosha Kabushiki Kaisha Clutch engaged state determination apparatus and method thereof, gear determination apparatus and shift indication apparatus
JP2009030711A (ja) * 2007-07-26 2009-02-12 Nissan Motor Co Ltd 車両用クラッチ状態検出装置
JP2009036301A (ja) * 2007-08-01 2009-02-19 Denso Corp クラッチ検出装置
KR100974753B1 (ko) 2008-07-25 2010-08-06 현대자동차주식회사 하이브리드 차량의 클러치 상태 판정 방법
US20160102621A1 (en) * 2014-10-14 2016-04-14 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power
US9500149B2 (en) * 2014-10-14 2016-11-22 Hyundai Autron Co., Ltd. Apparatus and method for estimating engine power

Also Published As

Publication number Publication date
JP4639743B2 (ja) 2011-02-23
US7179197B2 (en) 2007-02-20
US20050130799A1 (en) 2005-06-16
DE102004059658A1 (de) 2005-07-28
DE102004059658B4 (de) 2020-10-29

Similar Documents

Publication Publication Date Title
JP4639743B2 (ja) クラッチ状態検出装置
US7285071B2 (en) Downshift control for automotive automatic transmission
JP4605264B2 (ja) 内燃機関の噴射量制御装置およびパワーユニットの制御システム
US6676565B2 (en) Apparatus and method for controlling automatic stop of internal combustion engine
US6935989B2 (en) Catalyst activation controlling apparatus for emission control catalyst in internal combustion engine
JP4144529B2 (ja) エンジン制御装置
JP4349258B2 (ja) 車両用トルク制御装置
US7635316B2 (en) Control device and method for automatic transmission
KR20060051890A (ko) 토크 컨버터의 로크업 용량 제어 장치
JP2009030491A (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP2004308464A (ja) 内燃機関用燃料噴射装置の故障診断装置
US9522597B2 (en) Methods and system for providing vehicle performance feedback
EP1441119A2 (en) Fuel injection system for internal combustion engine
JP4315047B2 (ja) ディーゼルエンジン制御システム
JP2005256703A (ja) 蓄圧式燃料噴射装置
JP4692522B2 (ja) 燃料噴射制御装置及び燃料噴射制御システム
EP1441118A2 (en) Operating condition learning control device for internal combustion engine
JP2005140084A (ja) 車両の制御装置
EP1447546B1 (en) Engine control unit including phase advance compensator
JP3932924B2 (ja) 車速制御装置
JP2004308685A (ja) エンジン制御システム
JP2005214060A (ja) 車両用速度制御装置
JP3692763B2 (ja) ディーゼルエンジンの電子制御燃料噴射装置
JP4752928B2 (ja) 内燃機関の燃料噴射制御装置
WO2013027266A1 (ja) 手動変速機を備えた車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees