JP2004308464A - 内燃機関用燃料噴射装置の故障診断装置 - Google Patents

内燃機関用燃料噴射装置の故障診断装置 Download PDF

Info

Publication number
JP2004308464A
JP2004308464A JP2003100060A JP2003100060A JP2004308464A JP 2004308464 A JP2004308464 A JP 2004308464A JP 2003100060 A JP2003100060 A JP 2003100060A JP 2003100060 A JP2003100060 A JP 2003100060A JP 2004308464 A JP2004308464 A JP 2004308464A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003100060A
Other languages
English (en)
Inventor
Hideyuki Furukawa
英之 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003100060A priority Critical patent/JP2004308464A/ja
Publication of JP2004308464A publication Critical patent/JP2004308464A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】複数のインジェクタの燃料噴射に伴って生起するコモンレール圧力の変動のみに基づいて、精度良く無噴射気筒の判定を実施することのできるコモンレール式燃料噴射システムを提供する。
【解決手段】エンジンキーをOFFした際の多気筒エンジンの出力軸の惰性回転中におけるサプライポンプによる燃料圧送の停止時に、多気筒エンジンの各気筒毎に対応して搭載される複数個のインジェクタの電磁弁をノズルニードルの開弁方向に順次駆動することで、サプライポンプの燃料圧送に伴って生起する圧力変動を排除することができる。これにより、サプライポンプの燃料圧送に伴って生起する圧力変動の影響を受けることなく、複数個のインジェクタの燃料噴射に伴って生起するコモンレール圧力の変動のみを検出できるので、精度良く無噴射気筒の判定を実施することができる。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、燃料供給ポンプより圧送された高圧燃料を複数の燃料噴射弁を介して内燃機関の各気筒内に噴射供給する内燃機関用燃料噴射装置の故障診断装置に関するもので、特にコモンレール内に蓄圧された高圧燃料を複数の燃料噴射弁を介して内燃機関の各気筒内に所定の噴射タイミングで噴射供給する蓄圧式燃料噴射装置の故障診断装置に係わる。
【0002】
【従来の技術】
従来より、ディーゼルエンジン等の内燃機関用燃料噴射装置として、燃料供給ポンプより圧送された高圧燃料をコモンレール内に蓄圧すると共に、コモンレール内に蓄圧された高圧燃料を複数の燃料噴射弁を介して内燃機関の各気筒内に所定の噴射タイミングで噴射供給する蓄圧式燃料噴射装置が知られている。この蓄圧式燃料噴射装置の場合には、エンジン回転速度とアクセル開度とによって指令噴射量を算出し、エンジン回転速度と指令噴射量とによって指令噴射時期を算出し、燃料圧力センサによって検出されたコモンレール内の燃料圧力(コモンレール圧力)と指令噴射量とによって指令噴射期間を算出して、指令噴射時期から指令噴射期間が終了するまで、燃料噴射弁の電磁弁を駆動して、燃料噴射弁より内燃機関の各気筒に噴射供給されるように構成されている。
【0003】
一方、内燃機関の全気筒のうち、任意の気筒の燃料噴射弁が異常故障した場合の故障診断は、内燃機関の運転期間中における瞬時回転速度や回転速度変動から検出して行っていた。例えば内燃機関の各気筒毎の回転速度変動の検出値と内燃機関の全気筒の回転速度変動の平均値とを比較し、その比較結果に応じて気筒間の回転速度変動が平滑化するように、内燃機関の各気筒への燃料噴射量を補正して、噴射量補正量が所定値以上に大きい時に異常故障と判断するものであるが、大型かつ多気筒エンジンにおいては、フライホイールマスが大きく、正常に燃料噴射弁から燃料噴射が実施される正常気筒と燃料噴射弁から燃料噴射が実施されない無噴射気筒(異常気筒、故障気筒)との間の瞬時回転速度や回転速度変動の差が少なくなって検出精度が悪くなる。あるいは、もともと存在する不均一な回転挙動から、無噴射気筒(異常気筒、故障気筒)を誤検出または誤判定する問題がある。
【0004】
そこで、燃料圧力センサによって検出されたコモンレール内の燃料圧力(コモンレール圧力)に関連するパラメータと基準値とを比較し、その圧力偏差に基づいて、特定の気筒に搭載された燃料噴射弁の異常故障(無噴射気筒)を判断するようにした内燃機関用燃料噴射装置の故障診断装置が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平5−141301号公報(第1−17頁、図1−図16)
【0006】
【発明が解決しようとする課題】
ところが、上記の特許文献1に記載の内燃機関用燃料噴射装置の故障診断装置において、コモンレール圧力の変動には、燃料供給ポンプの燃料圧送による圧力変動と、内燃機関の各気筒毎に搭載された燃料噴射弁の燃料噴射による圧力変動とが存在する。そして、燃料供給ポンプの圧送期間と燃料噴射弁の噴射期間とが複雑に重なっており、コモンレール圧力の変動から内燃機関の全気筒のうちでいずれか1つ以上の特定の気筒に対応して搭載された燃料噴射弁が異常故障(無噴射故障等)中であるかを直接確定または検出することは困難であるという問題が生じている。
【0007】
【発明の目的】
本発明の目的は、複数の燃料噴射弁のうちの少なくとも1つ以上の燃料噴射弁の燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動のみに基づいて、精度良く特定の気筒の燃料噴射弁の異常故障の判定を実施することのできる内燃機関用燃料噴射装置の故障診断装置を提供することにある。また、複数の燃料噴射弁の燃料噴射に伴って生起する、内燃機関の気筒間の回転速度変動の差のみに基づいて、精度良く特定の気筒の燃料噴射弁の異常故障の判定を実施することのできる内燃機関用燃料噴射装置の故障診断装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に記載の発明によれば、内燃機関の出力軸の惰性回転中における燃料供給ポンプの燃料圧送の停止時に、内燃機関の各気筒毎に対応して搭載される複数の燃料噴射弁のうちの少なくとも1つ以上の燃料噴射弁を開弁方向に駆動することで、燃料供給ポンプの燃料圧送に伴う圧力変動を排除することができ、複数の燃料噴射弁のうちの少なくとも1つ以上の燃料噴射弁の燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動のみを検出することができる。したがって、第1燃料圧力検出手段によって検出される燃料噴射直前のコモンレール内の燃料圧力と第2燃料圧力検出手段によって検出される燃料噴射直後のコモンレール内の燃料圧力との圧力偏差が所定値以下の場合には、内燃機関の全気筒のうちで少なくとも1つ以上の当該噴射気筒が異常故障中であると精度良く判断することができる。
【0009】
請求項2に記載の発明によれば、内燃機関の出力軸の惰性回転中における燃料供給ポンプの燃料圧送の停止時に、内燃機関の各気筒毎に対応して搭載される複数の燃料噴射弁を開弁方向に順次駆動することで、燃料供給ポンプの燃料圧送の影響を受けることなく、複数の燃料噴射弁の燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動のみを検出することができる。
ここで、例えば内燃機関の全気筒のうちで特定の気筒に対応して搭載される燃料噴射弁が異常故障(例えば無噴射故障等)中であれば、内燃機関の特定の気筒内への燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動は、内燃機関の正常な気筒内への燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動に対して所定値以下の変動となることが知られている。これにより、内燃機関の全気筒のうちで特定の気筒に対応して搭載された燃料噴射弁が異常故障(例えば無噴射故障等)中であるか否かの判定を精度良く実施することができる。
【0010】
請求項3に記載の発明によれば、内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒に対応して搭載された燃料噴射弁のみを開弁方向に駆動することで、燃料供給ポンプの燃料圧送の影響を受けることなく、複数の燃料噴射弁の燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動のみを検出することができる。また、仮異常気筒に対応して搭載された燃料噴射弁が正常である場合には、複数の燃料噴射弁のうちの少なくとも1つの燃料噴射弁の燃料噴射を実施しても、内燃機関の出力軸の惰性回転を長く維持することができないので、内燃機関の出力軸の回転が完全に停止するまでの停止時間が延びることはない。
ここで、仮異常気筒に対応して搭載された燃料噴射弁が異常故障(例えば無噴射故障等)中であれば、その仮異常気筒内への燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動は、正常な気筒内への燃料噴射に伴って生起する、コモンレール内の燃料圧力の変動に対して所定値以下の変動となることが知られている。これにより、仮異常気筒に対応して搭載された燃料噴射弁が異常故障(例えば無噴射故障等)中であるか否かの判定を精度良く実施することができる。
【0011】
請求項4に記載の発明によれば、内燃機関の各気筒毎の回転速度変動の検出値と内燃機関の全気筒の回転速度変動の平均値とを比較し、その比較結果に応じて気筒間の回転速度変動が平滑化するように、内燃機関の各気筒への噴射量補正量を算出し、この算出した噴射量補正量が所定値を超える当該噴射気筒を、内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒として推定するようにしても良い。
【0012】
請求項5に記載の発明によれば、内燃機関の出力軸から動力伝達装置の入力軸への回転動力の伝達が遮断されている時、あるいは内燃機関の無負荷運転時に、複数の燃料噴射弁を開弁方向に順次駆動することで、内燃機関の駆動負荷変動に伴う内燃機関の気筒間の回転速度変動を排除することができ、複数の燃料噴射弁の燃料噴射に伴って生起する、内燃機関の気筒間の回転速度変動の差を検出する。そして、内燃機関の気筒間の回転速度変動の差を検出し、内燃機関の気筒間の回転速度変動の差に基づいて、内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒を推定し、その仮異常気筒のみの噴射時期を変更する。そして、仮異常気筒の噴射時期を変更する以前の仮異常気筒と他の気筒との気筒間の回転速度変動の差と仮異常気筒の噴射時期を変更した以後の仮異常気筒と他の気筒との気筒間の回転速度変動の差との差分が、所定値よりも小さい場合には、仮異常気筒が異常故障中であると精度良く判断することができる。
【0013】
請求項6に記載の発明によれば、仮異常気筒の噴射時期を進角する前に、内燃機関の各気筒毎の回転速度変動の検出値と内燃機関の全気筒の回転速度変動の平均値とを比較し、その比較結果に応じて気筒間の回転速度変動が平滑化するように、内燃機関の各気筒への燃料噴射量を補償する不均量補償制御を実施する。これにより、内燃機関の正常気筒の回転速度変動と異常気筒の回転速度変動との差が見分け易くなる。
【0014】
【発明の実施の形態】
[第1実施形態の構成]
図1ないし図4は本発明の第1実施形態を示したもので、図1はコモンレール式燃料噴射システムの全体構成を示した図である。
【0015】
本実施形態のコモンレール式燃料噴射システムは、例えば自動車等の車両に搭載された4気筒のディーゼルエンジン等の内燃機関(以下多気筒エンジンと呼ぶ)の各気筒に噴射供給する燃料の噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、多気筒エンジンの各気筒の燃焼室内に燃料を噴射するための複数個(本例では4個)の電磁式燃料噴射弁(インジェクタ)2と、多気筒エンジンにより回転駆動される燃料供給ポンプ(サプライポンプ)3と、複数個のインジェクタ2およびサプライポンプ3を電子制御するエンジン制御ユニット(以下ECUと呼ぶ)10とを備えている。この図1では、多気筒(4気筒)エンジンの1つの気筒に対応するインジェクタ2のみを示し、他の気筒については図示を省略している。
【0016】
ここで、多気筒エンジンの出力軸(クランクシャフト)の一端部には、クランクシャフトに断続的に加わる燃焼圧力でクランクシャフトの回転がバラつくのを慣性により平均化してクランクシャフトの回転むらを抑制する働きをするフライホイールが取り付けられている。また、多気筒エンジンのクランクシャフトのフライホイールとは反対側の端部(他端部)には、多気筒エンジンのカムシャフトやサプライポンプ3のポンプ駆動軸等を回転させるためのクランクプーリが取り付けられている。
【0017】
コモンレール1には、連続的に燃料の噴射圧力に相当する高い圧力が蓄圧される必要があり、そのためにコモンレール1に蓄圧される高圧燃料は、高圧配管11を介してサプライポンプ3から供給されている。また、コモンレール1は、内部に蓄圧された高圧燃料を複数個のインジェクタ2に分配供給する働きをする。そして、コモンレール1には、燃料タンク5に連通する燃料排出路(燃料還流路)15、16への燃料排出路(燃料還流路)13の開口度合を調整することが可能な常閉型の減圧弁7が設置されている。
【0018】
減圧弁7は、減圧弁駆動回路を介してECU10から印加される減圧弁駆動電流によって電子制御されることにより、例えば減速時またはエンジン停止時に速やかにコモンレール1内の燃料圧力(コモンレール圧力)を高圧から低圧へ減圧させる降圧性能に優れる電磁弁である。この減圧弁7は、コモンレール1から燃料タンク5へ燃料を還流させるための燃料還流路13の開度を調整するバルブ(弁体:図示せず)、このバルブを開弁方向に駆動するソレノイドコイル(電磁コイル:図示せず)、およびバルブを閉弁方向に付勢するスプリング等のバルブ付勢手段(図示せず)を有している。
【0019】
そして、減圧弁7は、減圧弁駆動回路を介してソレノイドコイルに印加される減圧弁駆動電流の大きさに比例して、コモンレール1内から燃料還流路13、15、16を経て燃料タンク5に還流される燃料の還流量(減圧弁流量)を調整して、コモンレール1内の燃料圧力(コモンレール圧力)を変更する。なお、この減圧弁7の代わりに、コモンレール1と燃料還流路13との間に、コモンレール1内の燃料圧力(コモンレール圧力)が限界設定圧力を超えることがないように、コモンレール1内の燃料圧力を逃がすためのプレッシャリミッタを取り付けるようにしても良い。
【0020】
複数個のインジェクタ2は、多気筒エンジンの各気筒の燃焼室内に先端部に設けられた噴射孔が臨むように、多気筒エンジンの各気筒毎に対応してシリンダヘッドに取り付けられている。これらのインジェクタ2は、コモンレール1より分岐する複数の高圧配管12の下流端に接続されて、多気筒エンジンの各気筒の燃焼室内への燃料噴射を行う燃料噴射ノズル、この燃料噴射ノズル内に収容されたノズルニードルを開弁方向に駆動する電磁式アクチュエータ、およびノズルニードルを閉弁方向に付勢するスプリング等のニードル付勢手段等から構成された電磁式燃料噴射弁である。なお、燃料噴射ノズルは、先端部に噴射孔を設けた筒状のノズルボデーと、このノズルボデー内に摺動自在に収容されて、噴射孔を開閉するノズルニードルとから構成されている。
【0021】
複数個のインジェクタ2から多気筒エンジンの各気筒の燃焼室内への燃料噴射は、ノズルニードルに連結したコマンドピストンの背圧制御室内の燃料圧力を増減制御する電磁式アクチュエータとしての電磁弁4への通電および通電停止により電子制御される。なお、多気筒エンジンの各気筒のインジェクタ2の電磁弁4は、インジェクタ駆動回路(EDU)17を介してECU10から印加されるインジェクタ駆動電流によって電子制御されることにより、多気筒エンジンの各気筒の燃焼室内への燃料噴射量および燃料噴射時期が互いに独立して調整される。
【0022】
すなわち、多気筒エンジンの各気筒のインジェクタ2の電磁弁4が開弁している間、コモンレール1から背圧制御室内に供給される高圧燃料を燃料系の低圧側(燃料タンク5)へ溢流させてノズルニードルおよびコマンドピストンをニードル付勢手段の付勢力に抗して弁座よりリフトさせて噴射孔を開弁させることで、コモンレール1内に蓄圧された高圧燃料が多気筒エンジンの各気筒の燃焼室内に噴射供給される。これにより、多気筒エンジンが運転される。
【0023】
サプライポンプ3は、燃料タンク5から燃料フィルタ9を介して吸入される低圧燃料を加圧して高圧化すると共に、この高圧化した高圧燃料をコモンレール1内へ圧送し、例えば加速時またはエンジン始動時に速やかにコモンレール1内の燃料圧力(以下コモンレール圧力と呼ぶ)を低圧から高圧へ昇圧させる昇圧性能に優れる吸入調量型の高圧供給ポンプである。また、サプライポンプ3には、内部の燃料温度が高温にならないように、リークポートが設けられており、サプライポンプ3からのリーク燃料は、燃料還流路14から燃料還流路16を経て燃料タンク5にリターンされる。
【0024】
このサプライポンプ3は、多気筒エンジンのクランクシャフトの回転に伴ってポンプ駆動軸が回転することで、燃料タンク5から低圧燃料を汲み上げる周知のフィードポンプ(低圧供給ポンプ:図示せず)と、ポンプ駆動軸により回転駆動されるカム(図示せず)と、このカムに駆動されて上死点と下死点との間を往復運動する2個のプランジャ#1、#2と、これらのプランジャ#1、#2がポンプシリンダ内を往復摺動することにより吸入された燃料を加圧して高圧化する2個の加圧室(プランジャ室:図示せず)と、これらの加圧室内の燃料圧力が所定値以上に上昇すると開弁する2個の吐出弁(図示せず)とを有している。
【0025】
そして、サプライポンプ3は、図2に示したように、プランジャ#1、#2が上死点(TDC)位置から下死点位置を過ぎるまでの期間が加圧室内に低圧燃料を吸入する吸入期間とされ、その後に、吐出弁が開弁している間、つまりプランジャ#1、#2が上死点(TDC)位置に戻るまでの期間が加圧室内で加圧された高圧燃料を圧送する圧送期間とされている。なお、図2のサプライポンプ3のプランジャ#1位置およびプランジャ#2位置の推移は、サプライポンプ3のカムプロフィールまたはカム位相であっても同様な波形を形成する。
【0026】
このサプライポンプ3内に形成される燃料流路、つまりフィードポンプから加圧室に至る燃料供給路(図示せず)には、その燃料供給路の開口度合(弁体のリフト量または弁孔の開口面積)を調整することで、サプライポンプ3からコモンレール1への燃料吐出量(燃料圧送量)を変更して、コモンレール圧力を制御するための吸入調量弁(以下SCVと言う)6が取り付けられている。
【0027】
SCV6は、ポンプ駆動回路を介してECU10から印加されるSCV駆動電流によって電子制御されることにより、サプライポンプ3の加圧室内に吸入される燃料の吸入量を調整する。このSCV6は、フィードポンプから加圧室内へ燃料を送るための燃料供給路の開度を調整するバルブ(弁体:図示せず)、バルブを閉弁方向に駆動するソレノイドコイル(電磁コイル:図示せず)、およびバルブを開弁方向に付勢するスプリング等のバルブ付勢手段(図示せず)を有している。
【0028】
また、SCV6は、ポンプ駆動回路を介してソレノイドコイルに印加されるSCV駆動電流の大きさに比例して、サプライポンプ3の加圧室から、コモンレール1へ吐出される高圧燃料の圧送量(吐出量)を調整して、コモンレール圧力、つまり複数個のインジェクタ2から多気筒エンジンの各気筒の燃焼室内へ噴射供給する燃料の噴射圧力を変更する。なお、本実施形態では、SCV6として、そのソレノイドコイルへの通電停止時に全開、つまり弁孔の開口面積が最大、リフト量が最小となるノーマリオープンタイプ(常開型)の電磁弁を用いても良いし、あるいはソレノイドコイルへの通電停止時に全閉、つまり弁孔の開口面積が最小、リフト量が最小となるノーマリクローズタイプ(常閉型)の電磁弁を用いても良い。
【0029】
ECU10には、制御処理、演算処理を行うCPU、各種プログラムおよびデータを保存する記憶装置(EEPROMまたはROM、RAM等のメモリ)、入力回路、出力回路、電源回路、ポンプ駆動回路、減圧弁駆動回路等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。ここで、EEPROMまたはROM等のメモリ内には、図示しないイグニッションスイッチのオフ(IG・OFF)時に、正常に機能するインジェクタ2の燃料噴射に伴って生起するコモンレール圧力の変動の基準値が予め記憶されている。そして、ECU10は、図1に示したように、燃料圧力センサ(圧力変動検出手段)25からの電圧信号や、その他の各種センサからのセンサ信号が、A/D変換器でA/D変換された後に、ECU10に内蔵されたマイクロコンピュータに入力されるように構成されている。
【0030】
また、本実施形態のECU10は、イグニッションスイッチがオン(IG・ON)すると、EEPROMまたはROM等のメモリ内に格納された制御プログラムに基づいて、コモンレール式燃料噴射システムの各制御部品のアクチュエータ(例えば複数個のインジェクタ2の各電磁弁4やサプライポンプ3のSCV6等)を電子制御するように構成されている。また、ECU10は、イグニッションスイッチがオフ(IG・OFF)されると、上記の制御プログラムに基づく制御が強制的に終了される。なお、ECU10は、多気筒エンジンの運転を終了する目的で、エンジンキーをACC位置またはOFF位置に回してイグニッションスイッチをオフ(IG・OFF)しても、所定条件を満足するまで(所定時間が経過するまで)は、図3のインジェクタ2の無噴射故障診断方法に基づく噴射量制御等を継続できるように構成されている。
【0031】
ここで、マイクロコンピュータには、多気筒エンジンの運転状態または運転条件を検出する運転条件検出手段としての、多気筒エンジンのクランクシャフトの回転角度を検出するためのクランク角度センサ21、アクセル開度(ACCP)を検出するためのアクセル開度センサ(エンジン負荷検出手段)22、エンジン冷却水温(THW)を検出するための冷却水温センサ23およびサプライポンプ3内に吸入されるポンプ吸入側の燃料温度(THF)を検出するための燃料温度センサ24等が接続されている。
【0032】
上記のセンサのうちクランク角度センサ21は、多気筒エンジンのクランクシャフト、あるいはサプライポンプ3のポンプ駆動軸に取り付けられたNEタイミングロータ(図示せず)の外周に対向するように設けられている。そのNEタイミングロータの外周面には、所定角度毎に凸状歯が複数個配置されている。なお、本実施形態では、図2に示したように、多気筒エンジンの各気筒にそれぞれを対応させるように、基準とする各気筒の基準位置(上死点位置:気筒#1のTDC位置、気筒#3のTDC位置、気筒#4のTDC位置、気筒#2のTDC位置)を判別するための4個の凸状歯が所定角度(180°CA)毎に設けられている。また、サプライポンプ3の吸入開始時期(上死点位置:プランジャ#1のTDC位置、プランジャ#2のTDC位置)を判別するための2個の凸状歯が所定角度(360°CA)毎に設けられている。
【0033】
そして、クランク角度センサ21は、電磁ピックアップよりなり、NEタイミングロータの各凸状歯がクランク角度センサ21に対して接近離反することにより、電磁誘導によってパルス状の回転位置信号(NE信号パルス)、特にサプライポンプ3の回転速度(ポンプ回転速度)と同期したNE信号パルスが出力される。なお、ECU10は、クランク角度センサ21より出力されたNE信号パルスの間隔時間を計測することによってエンジン回転速度(NE)を検出する回転速度検出手段として働く。
【0034】
そして、ECU10は、多気筒エンジンの運転条件または運転状態に応じた最適な燃料の噴射圧力を演算し、ポンプ駆動回路を介してSCV6のソレノイドコイルを駆動する燃料圧力制御装置を有している。これは、指令噴射量(QFIN)とエンジン回転速度(NE)とによって目標燃料圧力(PFIN)を算出し、この目標燃料圧力(PFIN)を達成するために、SCV6のソレノイドコイルに印加するSCV駆動電流を調整して、サプライポンプ3よりコモンレール1内へ吐出される燃料の吐出量(ポンプ吐出量)またはコモンレール1から燃料タンク5へ還流させる減圧弁流量(燃料還流量)を制御するように構成されている。
【0035】
さらに、より好ましくは、燃料噴射量の制御精度を向上させる目的で、燃料圧力センサ25によって検出されるコモンレール圧力(PC)が目標燃料圧力(PFIN)と略一致するように、PID制御によって、SCV6のソレノイドコイルに印加するSCV駆動電流をフィードバック制御することが望ましい。なお、SCV駆動電流の制御は、デューティ(DUTY)制御により行うことが望ましい。すなわち、コモンレール圧力(PC)と目標燃料圧力(PFIN)との圧力偏差(ΔP)に応じて単位時間当たりの制御パルス信号(パルス状のポンプ駆動信号)のオン/オフの割合(通電時間割合・デューティ比)を調整して、SCV6のリフト量およびSCV6の開口面積を変化させるデューティ制御を用いることで、高精度なデジタル制御が可能になる。これにより、目標燃料圧力(PFIN)に対するコモンレール圧力(PC)の制御応答性および追従性を改善することができる。
【0036】
そして、ECU10は、エンジン回転速度(NE)とアクセル開度(ACCP)とに応じて設定される指令噴射量(QFIN)を算出する噴射量決定手段と、エンジン回転速度(NE)と指令噴射量(QFIN)とから指令噴射時期(TFIN)を算出する噴射時期決定手段と、指令噴射量(QFIN)とコモンレール圧力(PC)とから指令噴射パルス時間(TQ)を算出する噴射期間決定手段と、インジェクタ駆動回路(EDU)17を介して各気筒のインジェクタ2の電磁弁4にパルス状のインジェクタ駆動電流を印加するインジェクタ駆動手段とから構成されている。
【0037】
ここで、本実施形態のECU10は、インジェクタ個体差、経時変化等によるインジェクタ2の機能劣化(性能劣化)による気筒間噴射量ばらつきを防止する目的で、多気筒エンジンのアイドル運転(アイドル安定状態)時に、多気筒エンジンの各気筒の爆発行程毎の回転速度変動を検出し、多気筒エンジンの各気筒の爆発行程毎の回転速度変動の検出値と全気筒の回転速度変動の平均値とを比較し、多気筒エンジンの気筒間の回転速度変動を平滑化するように、多気筒エンジンの各気筒毎への最適な燃料噴射量を個々に調整する不均量補償制御(FCCB)を実行するように構成されている。
【0038】
具体的には、クランク角度センサ21より取り込んだNEパルス信号の間隔時間を計算することで、多気筒エンジンの各気筒の爆発行程毎の瞬時回転速度を算出し、BTDC90°CA〜ATDC90°CA間のNEパルス信号の間隔時間の最大値を当該気筒の瞬時回転速度の最低回転速度(Nl)として読み込む。また、BTDC90°CA〜ATDC90°CA間のNEパルス信号の間隔時間の最小値を当該気筒の瞬時回転速度の最高回転速度(Nh)として読み込む。但し、Nl、Nhは必ずしも最低回転速度、最高回転速度である必要はなく、当該気筒の回転速度変動を代表する低回転速度、高回転速度であっても良い。
【0039】
そして、これらの計算を各気筒毎に行った後に、各気筒毎の最高回転速度(Nh)と各気筒毎の最低回転速度(Nl)との気筒毎回転速度差分(ΔNk)を算出する。これにより、多気筒エンジンの各気筒毎の回転速度変動の検出値を算出する。そして、多気筒エンジンの全気筒の回転速度変動の平均値(ΣΔNk)を算出する。つまり、多気筒エンジンの全気筒の回転速度変動を平均化して、全気筒の回転速度変動の平均値(ΣΔNk)を算出した後に、各気筒毎の回転速度変動の検出値と全気筒の回転速度変動の平均値(ΣΔNk)から各気筒間の回転速度変動の偏差を算出する。そして、多気筒エンジンの各気筒間の回転速度変動が平滑化するように、多気筒エンジンの各気筒毎に算出される指令噴射量(QFIN)に、多気筒エンジンの各気筒間の回転速度変動を平滑化する方向への噴射量補正量(FCCB補正量とも言う)を多気筒エンジンの各気筒毎に加算または減算する。
【0040】
なお、エンジン回転速度(NE)とアクセル開度(ACCP)とによって基本噴射量(Q)を算出した後に、その基本噴射量(Q)に、エンジン冷却水温(THW)や燃料温度(THF)等を考慮した噴射量補正量(FCCBなし補正量)を加味して指令噴射量(QFIN)を算出する場合には、基本噴射量(Q)に噴射量補正量(FCCB補正量)を加算または減算した値に、噴射量補正量(FCCBなし補正量)を加味して指令噴射量(QFIN)を算出しても良い。なお、噴射量補正量(FCCB補正量)を、EEPROM等のメモリ内に格納して、多気筒エンジンのアイドル運転(アイドル安定状態)時だけでなく、多気筒エンジンの全ての運転領域の噴射量制御に反映させるようにしても良い。
【0041】
なお、ECU10は、仮異常気筒推定手段を有している。これは、上記の不均量補償制御(FCCB)を利用して、多気筒エンジンの各気筒毎の燃焼室内への燃料噴射量の噴射量補正量(FCCB補正量または噴射期間補正量)を算出する補正量演算手段を有し、この噴射量補正量(FCCB補正量または噴射期間補正量)が予め設定された所定値(閾値)よりも大きい気筒を、多気筒エンジンの全気筒のうちで無噴射故障の可能性のある仮異常気筒として推定し、EEPROM等のメモリ内に格納するようにしても良い。具体的には、噴射量補正量(FCCB補正量または噴射期間補正量)が予め設定された所定値(閾値)よりも大きい気筒に対応して搭載されたインジェクタ2を、複数個のインジェクタ2のうちで無噴射故障の可能性の有るインジェクタ2として推定し、EEPROM等のメモリ内に格納するようにしても良い。
【0042】
[第1実施形態の故障診断方法]
次に、本実施形態のコモンレール式燃料噴射システムの故障診断方法を図1ないし図3に基づいて簡単に説明する。ここで、図3はインジェクタ2の無噴射故障診断方法を示したフローチャートで、図4は複数個のインジェクタ2の燃料噴射に伴って生起する、コモンレール圧力の変動を示したタイミングチャートである。
【0043】
この図3の制御ルーチンは、イグニッションスイッチがONとなった後に、随時実行される。先ず、エンジンキーをオフ(KEY・OFF)したか否かを判定する。すなわち、イグニッションスイッチがON→OFFに変更されたか否かを判定する(ステップS1)。この判定結果がNOの場合には、リターンする。
【0044】
また、ステップS1の判定結果がYESの場合には、多気筒エンジンの噴射気筒カウンタ(FINJn)をインクリメント(FINJn=0)する(ステップS2)。具体的には、多気筒エンジンをアイドル運転している際に、エンジンキーをオフ(KEY・OFF)する直前に燃料噴射を実施した噴射気筒は、例えば図4に示したように、#3気筒であるため、最初の当該噴射気筒(#n)は次に燃料噴射を実施する#4気筒となる。
【0045】
同時に、多気筒エンジンの全気筒のインジェクタ2の電磁弁4を順次駆動する目的で、多気筒エンジンの各気筒毎に対応して搭載された各インジェクタ2の噴射時期および燃料噴射量(噴射期間)がセットされる。なお、各インジェクタ2の噴射時期および燃料噴射量(噴射期間)は、多気筒エンジンのアイドル運転時と同一の値をセットしても良いが、各インジェクタ2の燃料噴射量(噴射期間)は多い程、インジェクタ2の異常(無噴射故障)判定精度をより高めることができる。また、各インジェクタ2の噴射時期は、図2に示したように、各噴射気筒の上死点(TDC)近傍が望ましい。
【0046】
次に、SCV6として、ソレノイドコイルへの通電停止時に全開、つまり弁孔の開口面積が最大、リフト量が最小となるノーマリオープンタイプ(常開型)の電磁弁を用いている場合には、SCV6のソレノイドコイルに、弁孔の開口面積が最小となるようにポンプ駆動電流を印加する。あるいはSCV6として、ソレノイドコイルへの通電停止時に全閉、つまり弁孔の開口面積が最小、リフト量が最小となるノーマリクローズタイプ(常閉型)の電磁弁を用いている場合には、SCV6のソレノイドコイルへの通電を停止する(ステップS3)。これにより、サプライポンプ3よりコモンレール1内への燃料圧送が停止される。
【0047】
次に、多気筒エンジンの全気筒のうちのいずれかの気筒(#n気筒:nは気筒番号)に対応して搭載されたインジェクタ2の噴射時期(噴射タイミング)になっているか否かを判定する(ステップS4)。この判定結果がNOの場合には、ステップS4の判定処理を繰り返す。
また、ステップS4の判定結果がYESの場合には、多気筒エンジンの全気筒のうちのいずれかの当該噴射気筒(#n気筒)の燃焼室内への燃料噴射直前のコモンレール圧力PCn(I−1)を燃料圧力センサ25によって検出する(第1燃料圧力検出手段:ステップS5)。
【0048】
次に、多気筒エンジンの全気筒のうちのいずれかの当該噴射気筒(#n気筒)に対応して搭載されたインジェクタ2の電磁弁4に所定の噴射期間だけインジェクタ駆動電流を印加することで、当該気筒のインジェクタ2のノズルニードルを開弁方向に駆動して、多気筒エンジンの全気筒のうちのいずれかの当該噴射気筒(#n気筒)の燃焼室内への燃料噴射を実施する(ステップS6)。次に、多気筒エンジンの当該噴射気筒(#n気筒)の燃焼室内への燃料噴射直後のコモンレール圧力PCn(I)を燃料圧力センサ25によって検出する(第2燃料圧力検出手段:ステップS7)。
【0049】
次に、燃料噴射直前のコモンレール圧力PCn(I−1)から燃料噴射直後のコモンレール圧力PCn(I)を減算した圧力値が閾値(しきい値)よりも大きいか否かを判定する(異常気筒判定手段:ステップS8)。この判定結果がYESの場合には、多気筒エンジンの全気筒のうちで当該噴射気筒(#n気筒)に対応して搭載されたインジェクタ2が正常に機能していると判断して、当該噴射気筒(#n気筒)の正常判定を行う(ステップS9)。その後に、ステップS11の処理に進む。
【0050】
また、ステップS8の判定結果がNOの場合には、多気筒エンジンの全気筒のうちで当該噴射気筒(#n気筒)に対応して搭載されたインジェクタ2が異常故障(無噴射故障)中であると判断して、当該噴射気筒(#n気筒)の異常判定を行うと共に、当該噴射気筒のインジェクタ2が異常故障(無噴射故障)中であることをEEPROM等のメモリ内に格納する(異常故障記憶手段:ステップS10)。
【0051】
次に、多気筒エンジンの噴射気筒カウンタ(FINJn)をカウントアップ(FINJn+1)する。すなわち、最初の当該噴射気筒(#n気筒)が#4気筒のため、以降、当該噴射気筒(#n気筒)は#2気筒→#1気筒→#3気筒となる(ステップS11)。これにより、図4に示したように、エンジンキーをOFFした際の多気筒エンジンの出力軸の惰性回転中におけるサプライポンプ3による燃料圧送の停止時から、多気筒エンジンの各気筒毎に対応したインジェクタ2より、例えば気筒#4→気筒#2→気筒#1→気筒#3の順に、順次燃料噴射が実行されることになる。
【0052】
次に、多気筒エンジンの全気筒の故障診断が終了しているか否かを判定する。すなわち、エンジンキーをオフ(KEY・OFF)してから多気筒エンジンの全気筒のインジェクタ2の電磁弁4の駆動が終了しているか否かを判定する。具体的には、多気筒エンジンの噴射気筒カウンタ(FINJn)が閾値(しきい値)よりも大きいか否かを判定する(ステップS12)。この判定結果がNOの場合には、上記のステップS4の判定処理に進む。
【0053】
また、ステップS12の判定結果がYESの場合には、当該噴射気筒(#n)以降のインジェクタ2の電磁弁4の駆動を全て停止することで、多気筒エンジンの各気筒の燃焼室内への燃料噴射を終了する(ステップS13)。その後に、図3のインジェクタ2の無噴射故障診断を終了する。これにより、多気筒エンジンの出力軸の惰性回転が終了し、多気筒エンジンの出力軸の回転が止まる。
【0054】
[第1実施形態の効果]
以上のように、本実施形態のコモンレール式燃料噴射システムにおいては、エンジンキーをOFFした際の多気筒エンジンの出力軸の惰性回転中におけるサプライポンプ3による燃料圧送の停止時に、多気筒エンジンの各気筒毎に対応して搭載される複数個のインジェクタ2の電磁弁4をノズルニードルの開弁方向に順次駆動することで、サプライポンプ3の燃料圧送に伴って生起する圧力変動を排除することができる。
【0055】
これにより、図4に示したように、サプライポンプ3の燃料圧送に伴って生起する圧力変動の影響を受けることなく、複数個のインジェクタ2の燃料噴射に伴って生起するコモンレール圧力(PC)の変動のみを検出することができる。ここで、多気筒エンジンの全気筒のうちで特定の気筒(例えば#3気筒)に対応して搭載されるインジェクタ2が異常故障中であれば、多気筒エンジンの特定の気筒(例えば#3気筒)の燃焼室内への燃料噴射に伴って生起するコモンレール圧力(PC)の変動は、図4に実線と破線で示したように、多気筒エンジンの特定気筒(例えば#3気筒)を除く正常な気筒(例えば#4気筒、#2気筒、#1気筒)の燃焼室内への燃料噴射に伴って生起するコモンレール圧力の変動と異なるものである。
【0056】
したがって、サプライポンプ3の燃料圧送に伴って生起するコモンレール圧力変動を排除できるので、複数のインジェクタ2の燃料噴射に伴って生起するコモンレール圧力変動に基づいて、多気筒エンジンの全気筒のうちで特定の気筒に搭載されたインジェクタ2が異常故障(無噴射故障)中であるか否かの判定を精度良く実施することができる。なお、多気筒エンジンの全気筒のうちの特定の気筒に対応して搭載されたインジェクタ2の異常故障(無噴射故障)時には、異常警告ランプ(インジケータランプ)を点灯して運転者にインジェクタ2の交換を促すようにしても良い。
【0057】
ここで、図3のフローチャートに示した、インジェクタ2の無噴射故障診断方法では、エンジンキーをOFFしてから多気筒エンジンの出力軸の回転が完全に停止するまでのエンジン停止時間が延びることになるので、上記の不均量補償制御(FCCB)を利用して、多気筒エンジンの各気筒毎の燃焼室内への燃料噴射量(噴射期間)の噴射量補正量(FCCB補正量または噴射期間補正量)を算出し、この噴射量補正量(FCCB補正量または噴射期間補正量)が予め設定された所定値より大きい気筒を、多気筒エンジンの全気筒のうちで無噴射故障の可能性のある仮異常気筒として推定し、EEPROM等のメモリ内に格納しておく。具体的には、噴射量補正量(FCCB補正量または噴射期間補正量)が予め設定された所定値(閾値)よりも大きい気筒に対応して搭載されたインジェクタ2を、複数個のインジェクタ2のうちで無噴射故障の可能性の有るインジェクタ2として推定し、EEPROM等のメモリ内に格納しておく。
【0058】
そして、エンジンキーをOFFした際の多気筒エンジンの出力軸の惰性回転中におけるサプライポンプ3による燃料圧送の停止時に、EEPROM等のメモリ内に格納しておいた複数個のインジェクタ2のうちで無噴射故障の可能性の有るインジェクタ2の電磁弁4のみをノズルニードルの開弁方向に駆動し、多気筒エンジンの当該噴射気筒の燃焼室内への燃料噴射に伴って生起するコモンレール圧力の変動と、予めEEPROMまたはROM等のメモリ内に格納された正常時のコモンレール圧力の変動と比較することにより、当該噴射気筒に対応して搭載されたインジェクタ2が正常に機能しているか異常故障(無噴射故障)中であるかを確定するようにしても良い。この場合には、仮にその噴射気筒が正常な気筒であっても、1気筒のみの燃料噴射では多気筒エンジンの出力軸の回転を維持することができないので、エンジン停止時間が延びる問題はなくなる。
【0059】
また、多気筒エンジンの気筒間の回転速度変動の差等から、無噴射故障の可能性がある仮異常気筒が存在すると推定されている時のみ、図3のフローチャートに示した、インジェクタ2の無噴射故障診断方法を実行し、多気筒エンジンの各気筒毎に対応して搭載された各インジェクタ2が正常に機能しているか異常故障(無噴射故障)中であるかを精度良く確定するようにしても良い。すなわち、正常な気筒であるか無噴射気筒であるかを確定するようにしても良い。
【0060】
[第2実施形態]
図5および図6は本発明の第2実施形態を示したもので、図5はインジェクタ2の無噴射故障診断方法を示したフローチャートで、図6はFCCBなし時の気筒間の回転速度変動の差、FCCB実行時の気筒間の回転速度変動の差、#3気筒のインジェクタ2のみ噴射時期を進角した時の気筒間の回転速度変動の差を示したタイミングチャートである。
【0061】
本実施形態のコモンレール式燃料噴射システムを搭載した自動車等の車両のエンジンルームには、多気筒エンジンの出力軸(クランクシャフト)と動力伝達装置の入力軸との間には、多気筒エンジンから動力伝達装置への回転動力を断続するクラッチ手段(例えば単板式クラッチ等)が介在しており、しかも動力伝達装置は、多気筒エンジンの回転動力を車両の車輪に伝達すると共に、多気筒エンジンの出力軸の回転速度を所定の変速比(減速比または増速比)に変速(減速または増速)する多段変速機、無段変速機、手動変速機、自動変速機等の変速機(トランスミッション)が搭載されている。
【0062】
ここで、本実施形態のECU10に内蔵されたマイクロコンピュータには、上記のクランク角度センサ(回転速度検出手段)21、アクセル開度センサ22、冷却水温センサ23、燃料温度センサ24および燃料圧力センサ25だけでなく、車両の走行速度(SPD:以下車速と言う)を検出する車速センサ(図示せず)、トランスミッションのギヤポジションがN(ニュートラル)の時にニュートラル信号を送信するか、あるいは運転者がシフトレバーまたはセレクトレバーをN(ニュートラル)位置に操作した際にニュートラル信号を送信するニュートラルポジションスイッチが接続されている。なお、ニュートラルポジションスイッチは、多気筒エンジンの出力軸とトランスミッションの入力軸とが切り離されている状態を検出する無負荷検出手段である。
【0063】
なお、図5のフローチャートは、EEPROMまたはROM等のメモリ内に格納された制御プログラムに相当するもので、エンジンキーをIG位置に回しイグニッションスイッチがOFF→ONへと切り換わってECU10へ電力の供給が成された時点で起動されて所定時間毎に随時実行される。また、エンジンキーをOFF位置またはACC位置に回しイグニッションスイッチがON→OFFへと切り換わってECU10への電力の供給が断たれた時には、強制的に終了されるものである。
図5の制御ルーチンに進入するタイミングになると、多気筒エンジンの運転状態がアイドル安定状態であるか否かを判定する(ステップS21)。この判定結果がNOの場合には、リターンする。
【0064】
例えばエンジン回転速度(NE)が所定値(例えば1000rpm)以下、シフトレバーまたはセレクトレバーがN(ニュートラル)状態、あるいはギヤポジションがN(ニュートラル)に設定、エンジン冷却水温(THW)が所定値(例えば60℃)以上、車速(SPD)が所定値(例えば0km/h)以下、コモンレール圧力(PC)が所定値(例えば100MPa)以下、指令噴射量(QFIN)が所定範囲(例えば5〜30mm/st)内のFCCB実行条件を全て私立している時に、多気筒エンジンの運転状態がアイドル安定状態であると判断する。なお、セレクトレバーがP(パーキング)に設定されている時に、多気筒エンジンの運転状態がアイドル安定状態であると判断しても良い。
【0065】
また、ステップS21の判定結果がYESの場合には、上記の不均量補償制御(FCCB)を実行する(ステップS22)。次に、不均量補償制御(FCCB)を終了してから所定時間が経過しているか否かを判定する(ステップS23)。この判定結果がNOの場合には、ステップS23の判定処理を繰り返す。
【0066】
また、ステップS23の判定結果がYESの場合には、図6に示したように、多気筒エンジンの気筒間の回転速度変動の差(ΔNE)を検出し(第1回転速度変動差検出手段)、その気筒間の回転速度変動の差(ΔNE)が閾値(しきい値)よりも大きいか否かを判定する(異常気筒判定手段:ステップS24)。なお、気筒間の回転速度変動の差(ΔNE)は、不均量補償制御(FCCB)時に算出される。また、各インジェクタ2の噴射時期および燃料噴射量(噴射期間)は、多気筒エンジンの不均量補償制御(FCCB)時またはアイドル安定状態の時と同一の値にセットする。また、各インジェクタ2の噴射時期は、図2に示したように、各噴射気筒の上死点(TDC)近傍が望ましい。
【0067】
このステップS24の判定結果がNOの場合には、多気筒エンジンのいずれの気筒間の回転速度変動の差(ΔNE)も閾値(しきい値)以下と小さく、インジェクタ2が正常に機能していると判断して、多気筒エンジンの全気筒のインジェクタ2の正常判定を行う(ステップS25)。その後に、図5のインジェクタ2の無噴射故障診断を終了する。
【0068】
また、ステップS24の判定結果がYESの場合には、多気筒エンジンの気筒間の回転速度変動の差(ΔNE)が閾値(しきい値)よりも大きい気筒を、多気筒エンジンの全気筒のうちで無噴射故障の可能性のある仮異常気筒として推定し、EEPROM等のメモリ内に格納する。具体的には、その仮異常気筒に対応して搭載されたインジェクタ2を、複数個のインジェクタ2のうちで無噴射故障の可能性の有るインジェクタ2として推定し、EEPROM等のメモリ内に格納する(仮異常故障記憶手段)。
【0069】
次に、無噴射故障の可能性の有る仮異常気筒に対応して搭載されたインジェクタ2のみの噴射時期を進角する。例えば図6では#1気筒と#3気筒との気筒間の回転速度変動の差(ΔNE)が閾値(しきい値)よりも大きいため、無噴射故障の可能性の有る#3気筒に対応して搭載されたインジェクタ2のみの噴射時期を進角する(ステップS26)。次に、多気筒エンジンの気筒間の回転速度変動の差(ΔNE)が大きい仮異常気筒のみ噴射時期を進角してから所定時間が経過しているか否かを判定する(ステップS27)。この判定結果がNOの場合には、ステップS27の判定処理を繰り返す。
【0070】
また、ステップS27の判定結果がYESの場合には、無噴射故障の可能性の有る仮異常気筒の噴射時期を進角した以後の回転速度変動の差(ΔNE)(第2回転速度変動差検出手段)し、続いて、無噴射故障の可能性の有る仮異常気筒の噴射時期を進角する以前の回転速度変動の差(ΔNE)と仮異常気筒の噴射時期を進角した以後の回転速度変動との差(ΔNE)との差分を検出し、その差分が閾値(しきい値)よりも小さいか否かを判定する。
すなわち、噴射時期を進角する以前の気筒間(例えば#1気筒と#3気筒との気筒間)の回転速度変動の差よりも噴射時期を進角した以後の気筒間(例えば#1気筒と#3気筒との気筒間)の回転速度変動の差の方が減少しているか否かを判定する(ステップS28)。
【0071】
このステップS28の判定結果がNOの場合には、図6に実線で示したように、多気筒エンジンの気筒間(例えば#1気筒と#3気筒との気筒間)の回転速度変動の差(ΔNE)が大きく、無噴射故障の可能性の有る仮異常気筒(例えば#3気筒)の噴射時期を進角したことにより、エンジントルクが発生し、噴射時期の進角前後の仮異常気筒と他の気筒との気筒間(例えば#1気筒と#3気筒との気筒間)の回転速度変動の差(ΔNE)が減少しているため、仮異常気筒に対応して搭載されたインジェクタ2より正常に燃料噴射が有ると判断して、ステップS25の処理に進み、多気筒エンジンの全気筒のインジェクタ2の正常判定を行う。
【0072】
また、ステップS28の判定結果がYESの場合には、図6に破線で示したように、多気筒エンジンの気筒間の回転速度変動の差(ΔNE)が大きく、無噴射故障の可能性の有る仮異常気筒(例えば#3気筒)の噴射時期を進角しても、エンジントルクが発生せず、噴射時期の進角前後の仮異常気筒と他の気筒との気筒間(例えば#1気筒と#3気筒との気筒間)の回転速度変動の差(ΔNE)が同一であるため、仮異常気筒に対応して搭載されたインジェクタ2より燃料噴射が無いと判断する。
【0073】
すなわち、仮異常気筒に対応して搭載されたインジェクタ2が異常故障(無噴射故障)中であると判断して、多気筒エンジンの全気筒のうちで特定の気筒の異常故障を確定する異常気筒判定を行うと共に、仮異常気筒に対応して搭載されたインジェクタ2が異常故障(無噴射故障)中であることをEEPROM等のメモリ内に格納する(ステップS29)。その後に、図5のインジェクタ2の無噴射故障診断を終了する。なお、多気筒エンジンの全気筒のうちの特定の気筒に対応して搭載されたインジェクタ2の異常故障(無噴射故障)時には、異常警告ランプ(インジケータランプ)を点灯して運転者にインジェクタ2の交換を促すようにしても良い。
【0074】
したがって、多気筒エンジンの駆動負荷変動に伴う多気筒エンジンの気筒間の回転速度変動を排除することができるので、多気筒エンジンの気筒間の回転速度変動の差に基づいて、多気筒エンジンの全気筒のうちで特定の気筒に搭載されたインジェクタ2が異常故障(無噴射故障)中であるか否かの判定を精度良く実施することができる。また、噴射時期を進角する前に、不均量補償制御(FCCB)を実行することにより、多気筒エンジンの正常気筒の回転速度変動と異常気筒の回転速度変動との差が見分け易くなり、インジェクタ2が異常故障(無噴射故障)中であるか否かの判定精度を向上することができる。なお、本実施形態では、不均量補償制御(FCCB)を実施した後に、図5のステップS23に進入するように構成したが、エンジンの運転状態が通常のアイドル運転時に、図5のステップS23に進入するように構成しても良い。
【0075】
[他の実施形態]
本実施形態では、本発明の内燃機関用燃料噴射装置の一例として、コモンレール式燃料噴射システムに適用した例を説明したが、コモンレール等の蓄圧容器を持たず、燃料供給ポンプから高圧配管を経て直接インジェクタに高圧燃料を供給するタイプの内燃機関用燃料噴射装置に適用しても良い。なお、SCV(吸入調量弁)6として電動モータ駆動式の吸入調量弁を用いても良い。また、本実施形態では、燃料噴射弁として電磁式燃料噴射弁よりなるインジェクタ2を用いたが、燃料噴射弁として圧電方式の燃料噴射弁よりなるインジェクタを用いても良い。
【0076】
本実施形態では、燃料圧力センサ25をコモンレール1に直接取り付けて、コモンレール圧力(PC)を検出するようにしているが、燃料圧力検出手段をサプライポンプ3のプランジャ室(加圧室)からインジェクタ2内の燃料通路までの間の燃料配管等に取り付けて、サプライポンプ3の加圧室より吐出された燃料の吐出圧力、あるいはインジェクタ2内に供給されて多気筒エンジンの各気筒の燃焼室内に噴射される燃料の噴射圧力を検出するようにしても良い。
【0077】
本実施形態では、多気筒エンジンの全気筒のうちで無噴射故障の可能性の有る仮異常気筒(本例では#3気筒)を記憶する記憶手段としてEEPROM等のメモリを用いたが、スタンバイRAM、EPROM、フラッシュ・メモリ等の不揮発性メモリ、DVD−ROM、CD−ROM、あるいはフレキシブル・ディスクのような他の記憶媒体を用いて、多気筒エンジンの全気筒のうちで無噴射故障の可能性の有る仮異常気筒(本例では#3気筒)を記憶するようにしても良い。この場合にも、イグニッションスイッチをオフ(IG・OFF)した後、あるいはエンジンキーをキーシリンダより抜いた後も、記憶した内容は保存される。
【図面の簡単な説明】
【図1】コモンレール式燃料噴射システムの全体構成を示した概略図である(第1実施形態)。
【図2】NE信号パルス、サプライポンプのプランジャ#1位置、サプライポンプのプランジャ#2位置の推移を示したタイミングチャートである(第1実施形態)。
【図3】インジェクタの無噴射故障診断方法を示したフローチャートである(第1実施形態)。
【図4】複数個のインジェクタの燃料噴射に伴って生起する、コモンレール圧力の変動を示したタイミングチャートである(第1実施形態)。
【図5】インジェクタの無噴射故障診断方法を示したフローチャートである(第2実施形態)。
【図6】FCCBなし時の気筒間の回転速度変動の差、FCCB実行時の気筒間の回転速度変動の差、#3気筒のインジェクタのみ噴射時期を進角した時の気筒間の回転速度変動の差を示したタイミングチャートである(第2実施形態)。
【符号の説明】
1 コモンレール
2 インジェクタ(燃料噴射弁)
3 サプライポンプ(燃料供給ポンプ)
6 SCV(吸入調量弁)
10 ECU(噴射弁駆動手段、第1燃料圧力検出手段、第2燃料圧力検出手段、異常気筒判定手段、仮異常気筒推定手段、補正量演算手段、噴射時期変更手段、第1回転速度変動差検出手段、第2回転速度変動差検出手段)
21 クランク角度センサ(回転速度検出手段)
25 燃料圧力センサ(燃料圧力検出手段)

Claims (6)

  1. (a)内燃機関の各気筒毎に対応して搭載された複数の燃料噴射弁と、
    (b)燃料の噴射圧力に相当する高圧燃料を蓄圧すると共に、蓄圧された高圧燃料を前記複数の燃料噴射弁に分配供給するためのコモンレールと、
    (c)吸入した燃料を加圧して高圧化すると共に、この高圧化した燃料を前記コモンレール内に圧送する燃料供給ポンプと、
    (d)前記内燃機関の出力軸の惰性回転中における前記燃料供給ポンプの燃料圧送の停止時に、前記複数の燃料噴射弁のうちの少なくとも1つ以上の燃料噴射弁を開弁方向に駆動する噴射弁駆動手段、
    前記内燃機関の全気筒のうちで少なくとも1つ以上の噴射気筒内への燃料噴射直前の前記コモンレール内の燃料圧力を検出する第1燃料圧力検出手段、
    および前記当該噴射気筒内への燃料噴射直後の前記コモンレール内の燃料圧力を検出する第2燃料圧力検出手段を有し、
    前記第1燃料圧力検出手段によって検出される前記燃料噴射直前の前記コモンレール内の燃料圧力と前記第2燃料圧力検出手段によって検出される前記燃料噴射直後の前記コモンレール内の燃料圧力との圧力偏差が所定値以下の場合に、前記内燃機関の全気筒のうちで少なくとも1つ以上の当該噴射気筒が異常故障中であると判断する異常気筒判定手段と
    を備えた内燃機関用燃料噴射装置の故障診断装置。
  2. 請求項1に記載の内燃機関用燃料噴射装置の故障診断装置において、
    前記噴射弁駆動手段は、前記内燃機関の出力軸の惰性回転中における前記燃料供給ポンプの燃料圧送の停止時に、前記複数の燃料噴射弁を開弁方向に順次駆動することを特徴とする内燃機関用燃料噴射装置の故障診断装置。
  3. 請求項1に記載の内燃機関用燃料噴射装置の故障診断装置において、
    前記異常気筒判定手段は、前記内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒を推定する仮異常気筒推定手段を有し、
    前記噴射弁駆動手段は、前記内燃機関の出力軸の惰性回転中における前記燃料供給ポンプの燃料圧送の停止時に、前記仮異常気筒に対応して搭載された燃料噴射弁のみを開弁方向に駆動することを特徴とする内燃機関用燃料噴射装置の故障診断装置。
  4. 請求項3に記載の内燃機関用燃料噴射装置の故障診断装置において、
    前記仮異常気筒推定手段は、前記内燃機関の各気筒毎の回転速度変動を検出し、前記内燃機関の全気筒の回転速度変動の平均値と比較し、その比較結果に応じて気筒間の回転速度変動が平滑化するように、前記内燃機関の各気筒への噴射量補正量を算出する補正量演算手段を有し、
    この噴射量補正量が所定値を超える当該噴射気筒を、前記内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒として推定することを特徴とする内燃機関用燃料噴射装置の故障診断装置。
  5. (a)内燃機関の各気筒毎に対応して搭載された複数の燃料噴射弁と、
    (b)吸入した燃料を加圧して高圧化すると共に、この高圧化した燃料を前記複数の燃料噴射弁に向けて圧送する燃料供給ポンプと、
    (c)前記内燃機関の出力軸から動力伝達装置の入力軸への回転動力の伝達が遮断されている時、あるいは前記内燃機関の無負荷運転時に、前記複数の燃料噴射弁を開弁方向に順次駆動する噴射弁駆動手段、
    前記複数の燃料噴射弁の燃料噴射に伴って生起する、前記内燃機関の気筒間の回転速度変動の差を検出し、前記内燃機関の気筒間の回転速度変動の差に基づいて、前記内燃機関の全気筒のうちで無噴射故障の可能性の有る仮異常気筒を推定する仮異常気筒推定手段、
    この仮異常気筒推定手段によって推定された前記仮異常気筒のみの噴射時期を変更する噴射時期変更手段、
    前記仮異常気筒推定手段によって推定された前記仮異常気筒の噴射時期を変更する以前の前記仮異常気筒と他の気筒との気筒間の回転速度変動の差を検出する第1回転速度変動差検出手段、
    前記仮異常気筒推定手段によって推定された前記仮異常気筒の噴射時期を変更した以後の前記仮異常気筒と他の気筒との気筒間の回転速度変動の差を検出する第2回転速度変動差検出手段を有し、
    前記仮異常気筒の噴射時期を変更する以前の仮異常気筒と他の気筒との気筒間の回転速度変動の差と前記仮異常気筒の噴射時期を変更した以後の仮異常気筒と他の気筒との気筒間の回転速度変動の差との差分が所定値よりも小さい場合に、前記仮異常気筒が異常故障中であると判断する異常気筒判定手段とを備えた内燃機関用燃料噴射装置の故障診断装置。
  6. 請求項5に記載の内燃機関用燃料噴射装置の故障診断装置において、
    前記仮異常気筒の噴射時期を変更するとは、前記仮異常気筒の噴射時期を進角することであって、
    前記異常気筒判定手段は、前記仮異常気筒の噴射時期を進角する前に、
    前記内燃機関の各気筒毎の回転速度変動を検出し、前記内燃機関の全気筒の回転速度変動の平均値と比較し、その比較結果に応じて気筒間の回転速度変動が平滑化するように、前記内燃機関の各気筒への燃料噴射量を補償する不均量補償制御を実施することを特徴とする内燃機関用燃料噴射装置の故障診断装置。
JP2003100060A 2003-04-03 2003-04-03 内燃機関用燃料噴射装置の故障診断装置 Pending JP2004308464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100060A JP2004308464A (ja) 2003-04-03 2003-04-03 内燃機関用燃料噴射装置の故障診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100060A JP2004308464A (ja) 2003-04-03 2003-04-03 内燃機関用燃料噴射装置の故障診断装置

Publications (1)

Publication Number Publication Date
JP2004308464A true JP2004308464A (ja) 2004-11-04

Family

ID=33464302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100060A Pending JP2004308464A (ja) 2003-04-03 2003-04-03 内燃機関用燃料噴射装置の故障診断装置

Country Status (1)

Country Link
JP (1) JP2004308464A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703111A1 (en) * 2005-02-25 2006-09-20 Mitsubishi Heavy Industries, Ltd. Accumulator fuel injection system
JP2007170246A (ja) * 2005-12-21 2007-07-05 Denso Corp 多気筒エンジンの燃料噴射制御装置
JP2007239573A (ja) * 2006-03-08 2007-09-20 Honda Motor Co Ltd 燃料供給系の異常判定装置
JP2008069693A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 内燃機関の故障診断システム
WO2009014209A1 (ja) * 2007-07-26 2009-01-29 Yanmar Co., Ltd. エンジン
JP2009091975A (ja) * 2007-10-09 2009-04-30 Honda Motor Co Ltd 気筒休止機構を備えた内燃機関の制御装置
JP2009097501A (ja) * 2007-09-25 2009-05-07 Denso Corp 燃料噴射システム制御装置
JP2009127590A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 内燃機関の異常判定装置および異常判定方法
JP2010065645A (ja) * 2008-09-12 2010-03-25 Yanmar Co Ltd 作業車両
US7775034B2 (en) 2005-07-19 2010-08-17 Toyota Jidosha Kabushiki Kaisha Control device and control method to exhaust purification device
JP2011069285A (ja) * 2009-09-25 2011-04-07 Denso Corp 異常検出装置
JP2011132864A (ja) * 2009-12-24 2011-07-07 Toyota Motor Corp 燃料噴射弁の異常判定装置
WO2011155593A1 (ja) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 内燃機関の燃焼診断装置
JP2012515293A (ja) * 2009-01-16 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 複数回の噴射を実行する方法
KR101445165B1 (ko) 2007-06-22 2014-09-29 콘티넨탈 오토모티브 게엠베하 내연 기관의, 연료 레일에 연결된, 분사 밸브의 진단 방법 및 장치
CN107120164A (zh) * 2016-02-24 2017-09-01 罗伯特·博世有限公司 车辆scr系统的喷射器的故障诊断方法和装置
KR20190100188A (ko) * 2016-11-14 2019-08-28 르노 에스.아.에스. 하이브리드 모터 차량의 반자동 기어박스를 제어하는 방법 및 장치
CN113518856A (zh) * 2019-04-26 2021-10-19 日立建机株式会社 喷射器诊断装置及喷射器诊断方法
CN114233501A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种燃气喷射阀监测方法及相关设备

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703111A1 (en) * 2005-02-25 2006-09-20 Mitsubishi Heavy Industries, Ltd. Accumulator fuel injection system
US7296559B2 (en) 2005-02-25 2007-11-20 Mitsubishi Heavy Industries, Ltd. Accumulator fuel injection system
EP1950401A1 (en) * 2005-02-25 2008-07-30 Mitsubishi Heavy Industries, Ltd. Accumulator fuel injection system
US7775034B2 (en) 2005-07-19 2010-08-17 Toyota Jidosha Kabushiki Kaisha Control device and control method to exhaust purification device
JP2007170246A (ja) * 2005-12-21 2007-07-05 Denso Corp 多気筒エンジンの燃料噴射制御装置
JP4529892B2 (ja) * 2005-12-21 2010-08-25 株式会社デンソー 多気筒エンジンの燃料噴射制御装置
JP2007239573A (ja) * 2006-03-08 2007-09-20 Honda Motor Co Ltd 燃料供給系の異常判定装置
JP4659648B2 (ja) * 2006-03-08 2011-03-30 本田技研工業株式会社 燃料供給系の異常判定装置
JP2008069693A (ja) * 2006-09-13 2008-03-27 Toyota Motor Corp 内燃機関の故障診断システム
KR101445165B1 (ko) 2007-06-22 2014-09-29 콘티넨탈 오토모티브 게엠베하 내연 기관의, 연료 레일에 연결된, 분사 밸브의 진단 방법 및 장치
US8126638B2 (en) 2007-07-26 2012-02-28 Yanmar Co., Ltd. Engine
JP2009030523A (ja) * 2007-07-26 2009-02-12 Yanmar Co Ltd 燃料噴射不良発生気筒検知機能付エンジン
WO2009014209A1 (ja) * 2007-07-26 2009-01-29 Yanmar Co., Ltd. エンジン
KR101107387B1 (ko) 2007-07-26 2012-01-19 얀마 가부시키가이샤 엔진
JP2009097501A (ja) * 2007-09-25 2009-05-07 Denso Corp 燃料噴射システム制御装置
JP4513895B2 (ja) * 2007-09-25 2010-07-28 株式会社デンソー 燃料噴射システム制御装置
JP2009091975A (ja) * 2007-10-09 2009-04-30 Honda Motor Co Ltd 気筒休止機構を備えた内燃機関の制御装置
JP4703622B2 (ja) * 2007-10-09 2011-06-15 本田技研工業株式会社 気筒休止機構を備えた内燃機関の制御装置
JP2009127590A (ja) * 2007-11-27 2009-06-11 Toyota Motor Corp 内燃機関の異常判定装置および異常判定方法
JP4561816B2 (ja) * 2007-11-27 2010-10-13 トヨタ自動車株式会社 内燃機関の異常判定装置および異常判定方法
US8261604B2 (en) 2007-11-27 2012-09-11 Toyota Jidosha Kabushiki Kaisha Abnormality determination device and method for internal combustion engine
JP2010065645A (ja) * 2008-09-12 2010-03-25 Yanmar Co Ltd 作業車両
US9284908B2 (en) 2009-01-16 2016-03-15 Robert Bosch Gmbh Method for performing a number of injections
JP2012515293A (ja) * 2009-01-16 2012-07-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 複数回の噴射を実行する方法
JP2011069285A (ja) * 2009-09-25 2011-04-07 Denso Corp 異常検出装置
JP2011132864A (ja) * 2009-12-24 2011-07-07 Toyota Motor Corp 燃料噴射弁の異常判定装置
JP2011256853A (ja) * 2010-06-11 2011-12-22 Isuzu Motors Ltd 内燃機関の燃焼診断装置
WO2011155593A1 (ja) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 内燃機関の燃焼診断装置
US9442042B2 (en) 2010-06-11 2016-09-13 Isuzu Motors Limited Combustion diagnosis device for internal combustion engine
CN107120164A (zh) * 2016-02-24 2017-09-01 罗伯特·博世有限公司 车辆scr系统的喷射器的故障诊断方法和装置
KR20190100188A (ko) * 2016-11-14 2019-08-28 르노 에스.아.에스. 하이브리드 모터 차량의 반자동 기어박스를 제어하는 방법 및 장치
KR102216067B1 (ko) * 2016-11-14 2021-02-17 르노 에스.아.에스. 하이브리드 모터 차량의 반자동 기어박스를 제어하는 방법 및 장치
CN113518856A (zh) * 2019-04-26 2021-10-19 日立建机株式会社 喷射器诊断装置及喷射器诊断方法
CN113518856B (zh) * 2019-04-26 2023-08-08 日立建机株式会社 喷射器诊断装置及喷射器诊断方法
CN114233501A (zh) * 2021-11-12 2022-03-25 潍柴动力股份有限公司 一种燃气喷射阀监测方法及相关设备

Similar Documents

Publication Publication Date Title
JP4428405B2 (ja) 燃料噴射制御装置及びエンジン制御システム
JP2004308464A (ja) 内燃機関用燃料噴射装置の故障診断装置
US7933712B2 (en) Defective injection detection device and fuel injection system having the same
EP1318288A2 (en) Fuel injection system for internal combustion engine
JP2006125371A (ja) 蓄圧式燃料噴射装置
JP5774521B2 (ja) 燃料漏れ検出装置
JP5813531B2 (ja) 燃料噴き放し検出装置
JP2006125370A (ja) 噴射量学習制御装置
EP1441119A2 (en) Fuel injection system for internal combustion engine
JP2005171931A (ja) 燃料噴射制御装置
JP4269975B2 (ja) 噴射量学習制御装置
JP3572937B2 (ja) 蓄圧式燃料噴射機構の燃料圧制御装置
JP3941667B2 (ja) 蓄圧式燃料噴射装置
JP4207580B2 (ja) 内燃機関用運転状態学習制御装置
JP5287673B2 (ja) 異常部位診断装置
JP5825266B2 (ja) 燃料供給システム
JP3982516B2 (ja) 内燃機関用燃料噴射装置
JP2005344573A (ja) 内燃機関用燃料噴射装置
JP2003227393A (ja) 燃料噴射装置
JP2003201865A (ja) 蓄圧式燃料噴射装置
JP6303944B2 (ja) 燃料噴射制御装置
EP1447546B1 (en) Engine control unit including phase advance compensator
JP3722218B2 (ja) 内燃機関用燃料噴射装置
JP2004316460A (ja) 蓄圧式燃料噴射装置
JP4232426B2 (ja) 内燃機関用噴射量制御装置