JP2009097501A - 燃料噴射システム制御装置 - Google Patents

燃料噴射システム制御装置 Download PDF

Info

Publication number
JP2009097501A
JP2009097501A JP2008133974A JP2008133974A JP2009097501A JP 2009097501 A JP2009097501 A JP 2009097501A JP 2008133974 A JP2008133974 A JP 2008133974A JP 2008133974 A JP2008133974 A JP 2008133974A JP 2009097501 A JP2009097501 A JP 2009097501A
Authority
JP
Japan
Prior art keywords
fuel
pressure
output
value
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133974A
Other languages
English (en)
Other versions
JP4513895B2 (ja
Inventor
Kenichiro Nakada
謙一郎 中田
Koji Ishizuka
康治 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008133974A priority Critical patent/JP4513895B2/ja
Priority to US12/210,440 priority patent/US7873460B2/en
Priority to DE102008042329.7A priority patent/DE102008042329B4/de
Publication of JP2009097501A publication Critical patent/JP2009097501A/ja
Application granted granted Critical
Publication of JP4513895B2 publication Critical patent/JP4513895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors

Abstract

【課題】燃圧センサの出力値に対するロバスト性を向上させることで、その出力値を用いた燃料噴射システムを精度良く制御できるようにした燃料噴射システム制御装置を提供する。
【解決手段】燃料噴射に伴い変動する燃料の圧力を検出する燃圧センサを、コモンレール(蓄圧容器)に対して噴射孔に近い側に配置するとともに、インジェクタの各々に対して設ける。そして、このようにして設けられた複数の燃圧センサの出力値を出力値取得手段S31により各々取得し、取得した各々の出力値(出力特性線)の平均値(基準線)を平均値算出手段S33により算出し、燃圧センサの出力値(出力特性線)が平均値(基準線)に一致するよう、出力値補正手段S36により出力値を補正する。
【選択図】 図5

Description

本発明は、コモンレールシステム等の燃料噴射システムの作動を制御する燃料噴射システム制御装置に関する。
燃料ポンプから圧送した燃料をコモンレールにて蓄圧して複数の燃料噴射弁に分配する燃料噴射システムにおいて、従来では、コモンレールに設けられた燃圧センサ(レール圧センサ)の出力値を用いて、燃料ポンプ等の燃料噴射システム構成機器の作動を制御している(特許文献1参照)。
特開平10−220272号公報
しかしながら、上記燃圧センサの出力値から換算される圧力が、実際の圧力の真値と一致しているという補償はない。つまり、製造過程における加工誤差や設計誤差等による燃圧センサの個体差に起因して、出力値から換算される圧力が真値からずれてしまっていたとしても、従来の燃料噴射システムではこのようなずれを補償することができず、出力値に対するロバスト性が十分ではない。よって、燃料噴射システムの作動を精度良く制御することが十分にできない。
本発明は、上記課題を解決するためになされたものであり、その目的は、燃圧センサの出力値に対するロバスト性を向上させることで、その出力値を用いた燃料噴射システムを精度良く制御できるようにした燃料噴射システム制御装置を提供することにある。
以下、上記課題を解決するための手段、及びその作用効果について記載する。
請求項1記載の発明では、燃料を蓄圧する蓄圧容器、及び前記蓄圧容器から分配される燃料を噴射する複数の燃料噴射弁を備えた燃料噴射システムに適用され、前記燃料噴射弁からの燃料噴射に伴い変動する燃料の圧力を検出する燃圧センサを備え、前記燃圧センサの出力値を用いて前記燃料噴射システムの作動を制御する燃料噴射システム制御装置であって、前記燃圧センサは、前記蓄圧容器から前記燃料噴射弁の噴射孔に至るまでの燃料通路のうち前記蓄圧容器に対して前記噴射孔に近い側に配置されるとともに、前記燃料噴射弁の各々に対して設けられ、複数の前記燃圧センサの出力値を各々取得する出力値取得手段と、取得した各々の前記出力値の平均値を算出する平均値算出手段と、前記燃圧センサの出力値が前記平均値に近づくよう前記出力値を補正する出力値補正手段と、を備えることを特徴とする。
従来の制御装置では燃圧センサを蓄圧容器に1つ設けていたのに対し、本発明では、燃圧センサを燃料噴射弁の各々に対して設け、これら複数の燃圧センサの出力値の平均値を算出する。そして、当該平均値が真値からどれだけずれているかを示すずれ量、つまり真値に対する平均値のずれ量(正確にはずれ量の期待値)は、真値に対する出力値のずれ量(正確にはずれ量の期待値)に比べて小さいと言える。よって、ずれ量が小さい平均値に近づくよう燃圧センサの出力値を補正する本発明によれば、出力値が真値に近づくよう補正されることとなる。したがって、燃圧センサの出力値に対するロバスト性を向上させることができ、ひいては燃料噴射システムを精度良く制御できる。
請求項2記載の発明では、特定の前記燃圧センサについて、異なる圧力条件毎に取得された前記出力値と前記圧力条件との関係を示す出力特性線(図7中の符号L1,L2,L3,L4にて例示される直線)を算出する特性線算出手段を備え、前記平均値算出手段は、複数の前記燃圧センサの各々について算出された前記出力特性線を平均化してなる基準線(図7中の符号Laveにて例示される直線)を前記平均値として算出することを特徴とする。
特に、上記出力特性線を直線とした場合、このような直線を、異なる圧力条件毎に取得された出力値が少なくとも2点あれば算出でき、先述のように、燃圧センサの出力値が、検出対象となる圧力に対して所定の線形の関係をもって変化するものである場合、前記2点以外の圧力について出力特性線(直線)から求められる出力値と圧力との関係を、精度良く算出することができる。そして、上記請求項2記載の発明では、複数の燃圧センサの各々について算出された出力特性線を平均化してなる基準線を平均値として算出する。したがって、圧力と出力値との関係を示すデータの点数を少なくしつつも精度良く平均値を算出することができるので、制御装置の記憶容量及び処理負担の軽減を図ることができる。
この場合の前記出力値補正手段の具体例として、請求項3記載の如く、前記出力特性線が前記基準線に近づくよう前記出力値を補正することが挙げられる。
請求項4記載の発明では、前記燃圧センサの出力値と前記平均値との偏差が予め設定された閾値よりも大きい場合に、該当する前記燃圧センサの出力値が異常であると判定する第1異常判定手段を備えることを特徴とする。このように本発明によれば、平均値を異常判定の基準値として用いることができるため、各々の燃圧センサについて平均値と比較することにより異常判定を行うことができる。
請求項5記載の発明では、特定の前記燃圧センサについて、異なる圧力条件毎に取得された前記出力値と前記圧力条件との関係を示す出力特性線を算出する特性線算出手段を備え、前記圧力条件毎に取得された前記出力値の前記出力特性線に対する分散値が、予め設定された閾値よりも大きい場合(つまり出力値のばらつきが大きい場合)に、該当する前記特定の燃圧センサの出力値が異常であると判定する第2異常判定手段を備えることを特徴とする。
燃圧センサの出力値は、検出対象となる圧力に対して所定の線形又は非線形の関係をもって変化するのが一般的である。つまり、出力値と圧力との関係をグラフに示すと所定の線形又は非線形になる。よって、請求項5記載の如く圧力条件毎に取得された出力値が出力特性線(つまり、上記所定の線形又は非線形の線)に対して大きくばらついている場合には、該当する燃圧センサの出力値が異常であると判定する第2異常判定手段を備えて好適である。
請求項6記載の発明では、前記燃圧センサの出力値の変動幅が設定幅以内となる燃圧安定状態であるか否かを判定する燃圧安定判定手段を備え、前記平均値算出手段は、前記燃圧安定状態であると判定された時に取得された前記出力値を用いて前記平均値を算出することを特徴とする。
これによれば、燃圧安定状態時の出力値を用いて平均値を算出するので、燃圧が大きく変動している時の出力値を用いて算出した場合に比べて平均値の真値からのずれ量を小さくできる。よって、出力値の補正をより一層真値に近づくようにできる。
前記燃圧安定判定手段の具体例として、請求項7記載の如く、特定の前記燃圧センサに対して所定周期で取得した出力値の変動幅が前記設定幅以内である場合に前記燃圧安定状態(例えば、図6(c)中の符号T1に示す状態)であると判定することが挙げられる。また、請求項8記載の如く、前記燃料噴射弁からの噴射を行わない噴射休止(所謂燃料カット)時又は内燃機関のアイドル運転時に前記燃圧安定状態であると判定することが挙げられる。
請求項9記載の発明では、前記燃料噴射システムの作動を制御する際に用いる目標燃料圧力を強制的に一定値に固定する目標燃圧固定手段を備え、前記平均値算出手段は、前記目標燃料圧力を固定した時に取得された前記出力値を用いて前記平均値を算出することを特徴とする。
例えば、内燃機関の出力軸回転速度(エンジン回転速度)及び目標燃料噴射量に基づき目標燃料圧力を算出する場合には、当該目標燃料圧力は刻々と変化することとなる。すると、燃圧センサの出力値が変動することとなる。これに対し上記請求項9記載の発明によれば、目標燃料圧力を強制的に一定値に固定するので先述の燃圧安定状態にすることができる。そして、このような燃圧安定状態時の出力値を用いて平均値が算出されることとなるので、燃圧が変動している時の出力値を用いて算出した場合に比べて平均値の真値からのずれ量を小さくできる。
請求項10記載の発明では、前記出力値取得手段は、特定の前記燃圧センサに対して略同一の圧力条件下で前記出力値を複数取得するとともに、取得した前記複数の出力値の平均値を、前記平均値算出手段による算出に用いる出力値とすることを特徴とする。そのため、1つの出力値に含まれるノイズ等による誤差が、複数の出力値の平均値をとることによりなまされることとなるので、前記誤差による平均値への影響を小さくでき、ひいては、平均値の真値からのずれ量を小さくできる。
なお、上記「略同一の圧力条件下」の具体例として、例えば図4中のS22にて設定される圧力指令値Ptrgが略同一である条件下で出力値を複数取得することが挙げられる。
請求項11記載の発明では、前記平均値算出手段により算出された前記平均値が、前記燃料噴射システムの作動を制御する際に用いる目標燃料圧力に近づくよう、前記燃料噴射システムをフィードバック制御することを特徴とする。なお、先述の第1及び第2異常判定手段等により異常判定された場合には、該当する燃圧センサの出力値を除く他の燃圧センサにかかる出力値について平均値を算出し、その平均値を上記フィードバック制御に用いるようにすることが望ましい。
請求項12記載の発明では、燃料を蓄圧する蓄圧容器、及び前記蓄圧容器から分配される燃料を噴射する複数の燃料噴射弁を備えた燃料噴射システムに適用され、前記燃料噴射弁からの燃料噴射に伴い変動する燃料の圧力を検出する燃圧センサを備え、前記燃圧センサの出力値を用いて前記燃料噴射システムの作動を制御する燃料噴射システム制御装置であって、前記燃圧センサは、前記蓄圧容器から前記燃料噴射弁の噴射孔に至るまでの燃料通路のうち前記蓄圧容器に対して前記噴射孔に近い側に配置されるとともに、前記燃料噴射弁の各々に対して設けられ、複数の前記燃圧センサの出力値を各々取得する出力値取得手段と、取得した各々の前記出力値の平均値を算出する平均値算出手段と、前記燃圧センサの出力値と前記平均値との偏差が予め設定された閾値よりも大きい場合に、該当する前記燃圧センサの出力値が異常であると判定する異常判定手段と、を備えることを特徴とする。
このように、上記請求項12記載の発明によれば平均値を異常判定の基準値として用いることができるため、各々の燃圧センサについて平均値と比較することにより異常判定を行うことができる。
以下、本発明に係る燃料噴射装置及び燃料噴射システムを具体化した一実施形態について図面を参照しつつ説明する。なお、本実施形態の装置は、例えば4輪自動車用エンジン(内燃機関)を対象にするコモンレール式燃料噴射システムに搭載されており、ディーゼルエンジンのエンジンシリンダ内の燃焼室に直接的に高圧燃料(例えば噴射圧力「1000気圧」以上の軽油)を噴射供給(直噴供給)する際に用いられる。
はじめに、図1を参照して、本実施形態に係るコモンレール式燃料噴射システム(車載エンジンシステム)の概略について説明する。なお、本実施形態では多気筒(例えば直列4気筒)エンジンを想定している。詳しくは、4ストロークのレシプロ式ディーゼルエンジン(内燃機関)である。このエンジンでは、吸排気弁のカム軸に設けられた気筒判別センサ(電磁ピックアップ)にてその時の対象シリンダが逐次判別され、4つのシリンダ#1〜#4について、それぞれ吸入・圧縮・燃焼・排気の4行程による1燃焼サイクルが「720°CA」周期で、詳しくは例えば各シリンダ間で「180°CA」ずらしてシリンダ#1,#3,#4,#2の順に逐次実行される。図中のインジェクタ20(燃料噴射弁)は、燃料タンク10側から、それぞれシリンダ#1,#2,#3,#4用のインジェクタである。
燃料供給系を構成する諸々の装置は、燃料上流側から、燃料タンク10、燃料ポンプ11、コモンレール12、及びインジェクタ20の順に配設されている。このうち、燃料タンク10と燃料ポンプ11とは、燃料フィルタ10bを介して配管10aにより接続されている。燃料タンク10は、対象エンジンの燃料(軽油)を溜めておくためのタンク(容器)である。
同図1に示されるように、このシステムは、大きくは、ECU(電子制御ユニット)30が、各種センサからのセンサ出力(検出結果)を取り込み、それら各センサ出力に基づいて燃料供給系を構成するインジェクタ20及び燃料ポンプ11等の各装置の駆動を制御するように構成されている。
燃料ポンプ11は、高圧ポンプ11a及び低圧ポンプ11bを有し、低圧ポンプ11bによって上記燃料タンク10から汲み上げられた燃料を、高圧ポンプ11aにて加圧して吐出するように構成されている。そして、高圧ポンプ11aに送られる燃料圧送量、ひいては燃料ポンプ11の燃料吐出量は、燃料ポンプ11の燃料吸入側に設けられた吸入調整弁(SCV:Suction Control Valve)11cによって調量されるようになっている。すなわち、この燃料ポンプ11では、吸入調整弁11c(例えば非通電時に開弁するノーマリオン型の調整弁)の駆動電流量(ひいては弁開度)を調整することで、同ポンプ11からの燃料吐出量を所望の値に制御することができるようになっている。
燃料ポンプ11を構成する2種のポンプのうち、低圧ポンプ11bは、例えばトロコイド式のフィードポンプとして構成されている。これに対し、高圧ポンプ11aは、例えばプランジャポンプからなり、図示しない偏心カムにて所定のプランジャ(例えば3本のプランジャ)をそれぞれ軸方向に往復動させることにより加圧室に送られた燃料を逐次所定のタイミングで圧送するように構成されている。いずれのポンプも、駆動軸11dによって駆動されるものである。ちなみにこの駆動軸11dは、対象エンジンの出力軸であるクランク軸41に連動し、例えばクランク軸41の1回転に対して「1/1」又は「1/2」等の比率で回転するようになっている。すなわち、上記低圧ポンプ11b及び高圧ポンプ11aは、対象エンジンの出力によって駆動される。
こうした燃料ポンプ11により燃料タンク10から燃料フィルタ10bを介して汲み上げられた燃料は、コモンレール12へ加圧供給(圧送)される。そして、コモンレール12は、その燃料ポンプ11から圧送された燃料を高圧状態で蓄えてこれを、シリンダ毎に設けられた高圧配管14を通じて、各シリンダ#1〜#4のインジェクタ20へそれぞれ分配供給する。これらインジェクタ20(#1)〜(#4)の燃料排出口21は、それぞれ余分な燃料を燃料タンク10へ戻すための配管18とつながっている。また、コモンレール12と高圧配管14との間には、コモンレール12から高圧配管14に流れる燃料の圧力脈動を減衰させるオリフィス12a(燃料脈動軽減手段)が備えられている。
コモンレール12には減圧弁12bが備えられており、ECU30により減圧弁12bが開弁するよう制御されると、コモンレール12にて蓄圧された燃料の一部が配管18を通じて燃料タンク10へ戻される。よって、コモンレール12内の燃圧が減圧されることとなる。
図2に、上記インジェクタ20の詳細構造を示す。なお、上記4つのインジェクタ20(#1)〜(#4)は基本的には同様の構造(例えば図2に示す構造)となっている。いずれのインジェクタ20も、燃焼用のエンジン燃料(燃料タンク10内の燃料)を利用した油圧駆動式の燃料噴射弁であり、燃料噴射に際しての駆動動力の伝達が油圧室Cd(制御室)を介して行われる。同図2に示されるように、このインジェクタ20は、非通電時に閉弁状態となるノーマリクローズ型の燃料噴射弁として構成されている。
インジェクタ20のハウジング20eに形成された燃料流入口22には、コモンレール12から送られてくる高圧燃料が流入し、流入した高圧燃料の一部は油圧室Cdに流入し、他は噴射孔20fに向けて流れる。油圧室Cdには制御弁23により開閉されるリーク孔24が形成されており、制御弁23によりリーク孔24が開放されると、油圧室Cdの燃料はリーク孔24から燃料排出口21を経て燃料タンク10に戻される。
このインジェクタ20の燃料噴射に際しては、二方電磁弁を構成するソレノイド20bに対する通電状態(通電/非通電)に応じて制御弁23を作動させることで、油圧室Cdの密閉度合、ひいては同油圧室Cdの圧力(ニードル弁20cの背圧に相当)が増減される。そして、その圧力の増減により、スプリング20d(コイルばね)の伸張力に従って又は抗して、ニードル弁20cがハウジング20e内を往復動(上下)することで、噴射孔20f(必要な数だけ穿設)までの燃料供給通路25が、その中途(詳しくは往復動に基づきニードル弁20cが着座又は離座するテーパ状のシート面)で開閉される。
ここで、ニードル弁20cの駆動制御は、オンオフ制御を通じて行われる。すなわち、ニードル弁20cの駆動部(上記二方電磁弁)には、ECU30からオンオフを指令するパルス信号(通電信号)が送られる。そして、パルスオン(又はオフ)によりニードル弁20cがリフトアップして噴射孔20fが開放され、パルスオフ(又はオン)によりリフトダウンして噴射孔20fが閉塞される。
ちなみに、上記油圧室Cdの増圧処理は、コモンレール12からの燃料供給によって行われる。他方、油圧室Cdの減圧処理は、ソレノイド20bへの通電により制御弁23を作動させてリーク孔24を開放させることによって行われる。これにより、当該インジェクタ20と燃料タンク10とを接続する配管18(図1)を通じてその油圧室Cd内の燃料が上記燃料タンク10へ戻される。つまり、油圧室Cd内の燃料圧力を制御弁23の開閉作動により調整することで、噴射孔20fを開閉するニードル弁20cの作動が制御される。
このように、上記インジェクタ20は、弁本体(ハウジング20e)内部での所定の往復動作に基づいて噴射孔20fまでの燃料供給通路25を開閉(開放・閉鎖)することにより当該インジェクタ20の開弁及び閉弁を行うニードル弁20cを備える。そして、非駆動状態では、定常的に付与される閉弁側への力(スプリング20dによる伸張力)でニードル弁20cが閉弁側へ変位するとともに、駆動状態では、駆動力が付与されることにより上記スプリング20dの伸張力に抗してニードル弁20cが開弁側へ変位する。そしてこの際、それら非駆動状態と駆動状態とでは、ニードル弁20cのリフト量が略対称に変化する。
インジェクタ20には、燃料圧力を検出する燃圧センサ20a(図1も併せ参照)が取り付けられている。具体的には、ハウジング20eに形成された燃料流入口22と高圧配管14とを治具20jで連結させ、この治具20jに燃圧センサ20aを取り付けている。なお、インジェクタ20を製造工場から出荷する段階では、治具20j、燃圧センサ20a及び後述のICメモリ26(図1及び図4参照)がインジェクタ20に取り付けられた状態で出荷される。
このようにインジェクタ20の燃料流入口22に燃圧センサ20aを取り付けることで、燃料流入口22における燃料圧力(インレット圧)の随時の検出が可能とされている。具体的には、この燃圧センサ20aの出力により、当該インジェクタ20の噴射動作に伴う燃料圧力の変動パターンや、燃料圧力レベル(安定圧力)、燃料噴射圧力等を検出(測定)することができる。
燃圧センサ20aは、複数のインジェクタ20(#1)〜(#4)の各々に対して設けられている。そして、これら燃圧センサ20aの出力に基づいて、所定の噴射について、インジェクタ20の噴射動作に伴う燃料圧力の変動パターンを高い精度で検出することができるようになっている。
また、図示しない車両(例えば4輪乗用車又はトラック等)には、上記各センサの他にもさらに、車両制御のための各種のセンサが設けられている。例えば対象エンジンの出力軸であるクランク軸41の外周側には、所定クランク角毎に(例えば30°CA周期で)クランク角信号を出力するクランク角センサ42(例えば電磁ピックアップ)が、同クランク軸41の回転角度位置や回転速度(エンジン回転速度)等を検出するために設けられている。また、アクセルペダルの状態(変位量)に応じた電気信号を出力するアクセルセンサ44が、運転者によるアクセルペダルの操作量(踏み込み量)を検出するために設けられている。
こうしたシステムの中で、本実施形態の燃料噴射装置として機能するとともに、電子制御ユニットとして主体的にエンジン制御を行う部分がECU30である。このECU30(エンジン制御用ECU)は、周知のマイクロコンピュータ(図示略)を備えて構成され、上記各種センサの検出信号に基づいて対象エンジンの運転状態やユーザの要求を把握し、それに応じて上記吸入調整弁11cやインジェクタ20等の各種アクチュエータを操作することにより、その時々の状況に応じた最適な態様で上記エンジンに係る各種の制御を行っている。
また、このECU30に搭載されるマイクロコンピュータは、各種の演算を行うCPU(基本処理装置)、その演算途中のデータや演算結果等を一時的に記憶するメインメモリとしてのRAM、プログラムメモリとしてのROM、データ保存用メモリとしてのEEPROM、バックアップRAM(ECU30の主電源停止後も車載バッテリ等のバックアップ電源により常時給電されているメモリ)等を備えて構成されている。そして、ROMには、当該燃料噴射制御に係るプログラムを含めたエンジン制御に係る各種のプログラムや制御マップ等が、またデータ保存用メモリ(例えばEEPROM)には、対象エンジンの設計データをはじめとする各種の制御データ等が、それぞれ予め格納されている。
本実施形態では、ECU30が、随時入力される各種のセンサ出力(検出信号)に基づいて、その時に出力軸(クランク軸41)に生成すべきトルク(要求トルク)、ひいてはその要求トルクを満足するための燃料噴射量を算出する。こうして、インジェクタ20の燃料噴射量を可変設定することで、各シリンダ内(燃焼室)での燃料燃焼を通じて生成されるトルク(生成トルク)、ひいては実際に出力軸(クランク軸41)へ出力される軸トルク(出力トルク)を制御する(要求トルクへ一致させる)ようになっている。
すなわち、このECU30は、例えば時々のエンジン運転状態や運転者によるアクセルペダルの操作量等に応じた燃料噴射量を算出し、所望の噴射時期に同期して、その燃料噴射量での燃料噴射を指示する噴射制御信号(駆動量)を上記インジェクタ20へ出力する。そしてこれにより、すなわち同インジェクタ20の駆動量(例えば開弁時間)に基づいて、対象エンジンの出力トルクが目標値へ制御されることになる。
なお周知のように、ディーゼルエンジンにおいては、定常運転時、新気量増大やポンピングロス低減等の目的で、同エンジンの吸気通路に設けられた吸気絞り弁(スロットル弁)が略全開状態に保持される。したがって、定常運転時の燃焼制御(特にトルク調整に係る燃焼制御)としては燃料噴射量のコントロールが主となっている。
以下、図3、図4及び図5を参照して、本実施形態に係る燃料噴射制御の基本的な処理手順について説明する。なお、これらの図3、図4及び図5の処理において用いられる各種パラメータの値は、例えばECU30に搭載されたRAMやEEPROM、あるいはバックアップRAM等の記憶装置に随時記憶され、必要に応じて随時更新される。そして、これら各図の一連の処理は、基本的には、ECU30でROMに記憶されたプログラムに基づき実行される。
図3の処理は、対象エンジンの各シリンダについてそれぞれ1燃焼サイクルにつき1回の頻度で実行される。この一連の処理においては、まずステップS11で、所定のパラメータ、例えばその時のエンジン回転速度(クランク角センサ42による実測値)及び燃料圧力(燃圧センサ20aによる実測値)、さらには運転者によるその時のアクセル操作量(アクセルセンサ44による実測値)等を読み込む。
続くステップS12では、上記ステップS11で読み込んだ各種パラメータに基づいて噴射パターンを設定する。例えば単段噴射の場合にはその噴射の目標噴射量(噴射時間)が、また多段噴射の噴射パターンの場合にはトルクに寄与する各噴射の目標総噴射量(目標総噴射時間)が、それぞれ上記出力軸(クランク軸41)に生成すべきトルク(要求トルク、いわばその時のエンジン負荷に相当)に応じて可変設定される。そして、その噴射パターンに基づいて、上記インジェクタ20に対する指令値(指令信号)が設定されることになる。これにより、車両の状況等に応じて、前述したパイロット噴射、プレ噴射、アフタ噴射、ポスト噴射等が適宜メイン噴射と共に実行されることになる。
なお、この噴射パターンは、例えば上記ROMに記憶保持された所定のマップ(噴射制御用マップ、数式でも可)及び補正係数に基づいて取得される。詳しくは、例えば予め上記所定パラメータ(ステップS11)の想定される範囲について試験により最適噴射パターン(適合値)を求め、その噴射制御用マップに書き込んでおく。ちなみに、この噴射パターンは、例えば噴射段数(1燃焼サイクル中の噴射回数)、並びにそれら各噴射の噴射時期(噴射タイミング)及び噴射時間(噴射量に相当)等のパラメータにより定められるものである。こうして、上記噴射制御用マップは、それらパラメータと最適噴射パターンとの関係を示すものとなっている。
そして、この噴射制御用マップで取得された噴射パターンを、別途更新されている補正係数(例えばECU30内のEEPROMに記憶)に基づいて補正する(例えば「設定値=マップ上の値/補正係数」なる演算を行う)ことで、その時に噴射すべき噴射パターン、ひいてはその噴射パターンに対応した上記インジェクタ20に対する指令信号を得る。補正係数(厳密には複数種の係数のうちの所定の係数)は、別途の処理により内燃機関の運転中に逐次更新されている。
なお、上記噴射パターンの設定(ステップS12)には、同噴射パターンの要素(上記噴射段数等)毎に別々に設けられた各マップを用いるようにしても、あるいはこれら噴射パターンの各要素を幾つか(例えば全て)まとめて作成したマップを用いるようにしてもよい。
こうして設定された噴射パターン、ひいてはその噴射パターンに対応する指令値(指令信号)は、続くステップS13で使用される。すなわち、同ステップS13では、その指令値(指令信号)に基づいて(詳しくは上記インジェクタ20へその指令信号を出力して)、同インジェクタ20の駆動を制御する。そして、このインジェクタ20の駆動制御をもって、図3の一連の処理を終了する。
図4に示す一連の処理は、所定周期(例えば先述のCPUが行う演算周期)又は所定のクランク角度毎に実行される。この処理においては、インジェクタ20へ供給される燃料圧力(インレット圧)が目標燃料圧力(圧力指令値)となるよう、燃料ポンプ11等の作動をフィードバック制御する。具体的には、まずステップS21で、所定のパラメータ、例えばその時のエンジン回転速度(クランク角センサ42による実測値)、及びステップS12にて算出した目標噴射量(又は目標総噴射量)等を読み込む。
続くステップS22では、上記ステップS21で読み込んだ各種パラメータに基づいて、目標燃料圧力としての圧力指令値Ptrgを設定する。例えば上記ROMに記憶保持された所定のマップ(燃圧制御用マップ、数式でも可)を用いて、エンジン回転速度及び目標噴射量に基づき設定される。詳しくは、例えば予め上記所定パラメータ(ステップS21)の想定される範囲について試験により最適燃料圧力を求め、その燃圧制御用マップに書き込んでおく。こうして、上記燃圧制御用マップは、それらパラメータと最適燃料圧力との関係を示すものとなっている。
続くステップS23では、複数の燃圧センサ20aの出力値の平均値Paveを取得する。この平均値Paveは、後述する図5の処理により算出された値である。続くステップS24では、ステップS22にて設定した圧力指令値Ptrgと、ステップS23にて取得した燃圧センサ20aの出力平均値Paveとを比較判定する。
ステップS24にて出力平均値Pave<圧力指令値Ptrgと判定された場合にはステップS25に進み、燃料ポンプ11による燃料吐出量を増大させるよう制御する。具体的には、出力平均値Paveと圧力指令値Ptrgとの偏差を算出し、当該偏差に応じて吸入調整弁11cの駆動電流量を調整することで、出力平均値Paveが圧力指令値Ptrgに近づくようフィードバック制御(例えばPID制御)する。
ステップS24にて出力平均値Pave>圧力指令値Ptrgと判定された場合にはステップS26に進み、減圧弁12bを作動させてコモンレール12内の圧力を低減させることにより、複数のインジェクタ20へのインレット圧を低減させる。或いは、インジェクタ20を空打ち作動させることによりインレット圧を低減させる。なお、前記空打ち作動とは、ソレノイド20bへ短時間通電させることにより、作動噴射孔20fからの燃料噴射を行うことなく燃料排出口21から燃料タンク10に燃料を戻す作動のことである。
具体的には、出力平均値Paveと圧力指令値Ptrgとの偏差を算出し、当該偏差に応じて減圧弁12bの作動時間、或いはインジェクタ20の空打ち作動時間を調整することで、出力平均値Paveが圧力指令値Ptrgに近づくようフィードバック制御(例えばPID制御)する。ステップS24にて出力平均値Pave=圧力指令値Ptrgと判定された場合、又はステップS25,S26の処理が実行されると、図4の一連の処理を一旦終了する。
図5に示す一連の処理は、所定周期(例えば先述のCPUが行う演算周期)又は所定のクランク角度毎に実行される。この処理においては、燃圧センサ20aについての出力値補正処理及び異常判定処理を実行する。具体的には、まずステップS31(出力値取得手段)で、複数の燃圧センサ20aの出力値(出力電圧)を取り込む。
ここで、ステップS31の取り込み処理について図6を用いて詳細に説明する。図6(a)は、図3のステップS13にてインジェクタ20に出力される指令信号に基づく、ソレノイド20bへの駆動電流の変化を示す。図6(b)は、ソレノイド20bの作動に伴い生じる噴射孔20fからの燃料噴射率の変化を示し、図6(c)は、噴射率の変化に伴い生じる燃圧センサ20aの検出値(出力値)の変化を示す。
そして、ECU30は、図5の処理とは別のサブルーチン処理により、燃圧センサ20aの出力値を検出しており、そのサブルーチン処理では燃圧センサ20aの出力値を、該センサ出力で圧力推移波形の軌跡(図6(c)にて例示される軌跡)が描かれる程度に短い間隔(図5の所定周期よりも短い間隔)にて逐次取得している。具体的には、50μsecよりも短い間隔(より望ましくは20μsec)でセンサ出力を逐次取得する。
なお、図6(c)に示すインレット圧の変動(圧力推移波形)から図6(b)に示す噴射率の変化を推定し、推定した噴射率変化は、図3のステップS11で用いる先述の噴射制御用マップの更新(学習)等に用いられる。ちなみに、燃圧センサ20aの検出圧力(出力値)の変動と噴射率の変化とは以下に説明する相関があるため、上述の如く噴射率の変化を推定することができる。
先ず、図6(a)に示すように駆動電流がレノイド20bに流れた後、噴射率がR3の時点で上昇を開始する前に、検出圧力は変化点P1にて下降する。これは、P1の時点で制御弁23がリーク孔24を開放し、油圧室Cdが減圧処理されることに起因する。その後、油圧室Cdが十分に減圧された時点で、変化点P2にてP1からの下降が一旦停止する。次に、R3の時点で噴射率が上昇を開始したことに伴い、検出圧力は変化点P3にて下降を開始する。その後、R4の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P4にて停止する。
次に、検出圧力は変化点P5にて上昇する。これは、P5の時点で制御弁23がリーク孔24を閉塞し、油圧室Cdが増圧処理されることに起因する。その後、油圧室Cdが十分に増圧された時点で、変化点P6にてP5からの上昇が一旦停止する。次に、R7の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P7にて上昇を開始する。その後、R8の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P8にて停止する。P8以降の検出圧力は、一定の周期で下降と上昇を繰り返しながら減衰し、その後、符号T1に示す期間(燃圧安定期間)、検出圧力の変動幅が設定幅以内となり、検出圧力の値は安定する。
以上により、燃圧センサ20aによる検出圧力の変動のうち変化点P3及びP8を検出することで、噴射率の上昇開始時点R3(噴射開始時点)及び下降終了時点R8(噴射終了時点)を推定することができる。また、以下に説明する検出圧力の変動と噴射率の変化との相関関係に基づき、検出圧力の変動から噴射率の変化を推定できる。
つまり、検出圧力の変化点P3からP4までの圧力下降率Pαと、噴射率の変化点R3からR4までの噴射率上昇率Rαとは相関がある。変化点P7からP8までの圧力上量率Pβと変化点R7からR8までの噴射率下降率Rβとは相関がある。変化点P3からP4までの圧力下降量Pγと変化点R3からR4までの噴射率上昇量Rγとは相関がある。よって、燃圧センサ20aによる検出圧力の変動から圧力下降率Pα、圧力上量率Pβ及び圧力下降量Pγを検出することで、噴射率の噴射率上昇率Rα、噴射率下降率Rβ及び噴射率上昇量Rγを推定することができる。以上の如く噴射率の各種状態R3,R8,Rα,Rβ,Rγを推定することができ、よって、図6(b)に示す燃料噴射率の変化を推定することができる。
図5の説明に戻り、先述のステップS31では、燃圧センサ20aの出力値を取り込むにあたり、図6(c)に示す燃圧安定期間T1での出力値を、その時にステップS22で設定されている圧力指令値Ptrg(目標燃料圧力)と関連付けて取り込む。なお、特定の燃圧センサ20aについて、同一の圧力指令値Ptrgに対して出力値を複数取得するとともに、取得した複数の出力値の平均値を当該燃圧センサ20aの出力値としてステップS32以降の処理で用いることが望ましい。これによれば、1つの出力値に含まれるノイズ等による誤差が、複数の出力値の平均値をとることによりなまされることとなるので、前記誤差による影響を低減できる。
続くステップS32(特性線算出手段)では、複数の燃圧センサ20aの各々について、ステップS31にて取り込んだ出力値と圧力指令値Ptrgとの関係を示す出力特性直線(図7中の符号L1,L2,L3,L4にて示す直線)を算出する。なお、本実施形態に係る燃圧センサ20aには、その出力値が検出対象となる圧力に比例して変化する特性センサが採用されている。したがって、ステップS31にて取り込む、出力値と圧力指令値Ptrgとの関係を示すデータの点数を2点以上にすれば、ステップS32にて出力特性直線を算出することができる。
図7中の符号D1,D2は、インジェクタ20(#4)に係る上記2点のデータを示している。データD1の圧力指令値Ptrgはアイドル運転時の圧力指令値であり、目標燃料圧力が取りうる範囲の最小値である。データD2の圧力指令値Ptrgは目標燃料圧力が取りうる範囲の最大値である。他のインジェクタ20(#1,#2,#3)についても同様にして出力特性直線を算出する。なお、3点以上のデータに基づき出力特性直線を算出する場合には、図7の座標における各データ点とのずれが最小となる直線(つまり回帰直線)を前記出力特性線として算出すればよい。
続くステップS33(平均値算出手段)では、ステップS32にて算出された各々の出力特性直線L1,L2,L3,L4を平均化してなる基準直線Lave(図7参照)を算出する。具体的には、各々の出力特性直線L1,L2,L3,L4に係る傾きの平均値及び切片の平均値を算出し、算出された傾き及び切片により特定される直線を基準直線Laveとして算出する。なお、先述のステップS23で用いる平均値Paveは、複数の燃圧センサ20aのいずれかの出力値を基準直線Laveに代入して得られる値である。
続くステップS34では、出力特性直線L1,L2,L3,L4の各々について、基準直線Laveとのずれ量を算出し、各々のずれ量が予め設定された閾値Δth(図8参照)以上であるか否かを判定する。前記ずれ量の算出に関し、出力特性直線L4のずれ量を例に説明すると、所定の圧力指令値(図7及び図8の例では最小指令値(データD1の値))について、出力特性直線L4による出力値と基準直線Laveによる出力値との差ΔVをずれ量として算出する。
なお、所定の圧力指令値には、最小指令値に替えて最大指令値(データD2の値)でもよく、最小指令値及び最大指令値の両方についてずれ量を算出し、両ずれ量について閾値Δthと比較して判定するようにしてもよい。或いは、全ての指令値についてずれ量を算出し、これらのずれ量のうち最も大きい値を閾値Δthとの比較に用いるずれ量ΔVとしてもよい。図8中のth1(th2)に示す直線は、基準直線Laveに対し切片の値をΔthだけ加算(減算)してなる閾値直線である。
ステップS34において、ずれ量ΔVが閾値Δth以上であると判定された場合(S34:YES)には、そのずれ量ΔVに該当する出力特性直線に対応する気筒の燃圧センサ20aの出力値が異常であると判定する(ステップS35:第1異常判定手段)。例えば、図8に示す出力特性直線L4の如くずれ量ΔVが閾値Δth以上である場合、出力特性直線L4に対応する気筒#4のインジェクタ20に設けられた燃圧センサ20aについて、その出力値が異常であると判定する。
なお、図8に示す出力特性直線L4の如く、出力特性直線L4の全体が2本の閾値直線th1,th2から外れていることを条件として、ステップS35にて異常であると判定してもよいし、図8に示す出力特性直線L1の如く、出力特性直線L1の少なくとも一部が、2本の閾値直線th1,th2から外れていることを条件として異常であると判定するようにしてもよい。
一方、ステップS34において、ずれ量ΔVが閾値Δthより小さいと判定された場合(S34:NO)には、各々の出力特性直線L1,L2,L3,L4を、基準直線Laveに一致させてずれ量ΔVをゼロにするよう補正する(ステップS36:出力値補正手段)。例えば、図7に示す出力特性直線L4に対応する気筒#4の燃圧センサ20aの出力値について、圧力指令値がPSである時の出力値V1をV2となるよう補正する。換言すれば、各燃圧センサ20aの出力値を圧力に変換するにあたり、出力特性直線L1〜L4に換えて基準直線Laveを用いて圧力に変換するということになる。
以上により、ステップS36にて補正された出力値に基づき、該当するインジェクタ20に対するインレット圧の変動(図6(c)に示す圧力推移波形)を取得することができる。図7に示す出力特性直線L4の例では、ステップS36にて圧力指令値がPSである時の出力値V1がV2となるよう補正され、気筒#4のインジェクタ20に対する圧力推移波形を、V2となるよう補正された値(換言すれば、基準直線Laveから算出された値)に基づき取得する。そして、先述したようにその圧力推移波形から図6(b)に示す噴射率の変化を推定し、推定した噴射率変化に基づき噴射制御用マップの更新(学習)等を行う。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
(1)複数のインジェクタ20の各々に対して燃圧センサ20aを設けており、各燃圧センサ20aの出力特性直線L1,L2,L3,L4を算出し、算出した複数の出力特性直線L1〜L4の平均値として基準直線Laveを算出する。そして、基準直線Laveの真値からのずれ量(正確にはずれ量の期待値)は、出力特性直線L1〜L4の真値からのずれ量(正確にはずれ量の期待値)に比べて小さいと言える。そして、このようにずれ量が小さい基準直線Laveに出力特性直線L1〜L4が一致するよう、各々の燃圧センサ20aについてその出力値を補正する。よって、その出力値は真値に近づくよう補正されることとなる。
したがって、燃圧センサ20aの出力値に対するロバスト性を向上させることができ、ひいてはインレット圧の変動(圧力推移波形)を精度良く取得することができるので、噴射率の変化を精度良く推定することができる。よって、推定した噴射率変化に基づく各種制御(例えば、噴射率変化に基づき更新された噴射制御用マップを用いた噴射制御)を精度良く実行できる。
(2)2点のデータD1,D2から出力特性直線L1〜L4を算出し、算出した出力特性直線L1〜L4に基づき、複数の燃圧センサ20aの出力値の平均値として用いられる基準直線Laveを算出する。そのため、少ないデータ点数で基準直線Laveを算出することができるので、ECU30に備えられたEEPROM等の記憶容量軽減、及びマイクロコンピュータが有するCPUの処理負担軽減を図ることができる。
(3)出力特性直線L1〜L4の各々について、基準直線Laveとのずれ量ΔVが閾値Δth以上であれば、該当する出力特性直線の燃圧センサ20aの出力値が異常であるとの異常判定を行う。このように本実施形態によれば、複数の出力特性直線L1〜L4を平均化して算出された基準直線Laveを異常判定の基準値として用いることができるため、各々の燃圧センサ20aについて基準直線Laveと比較することにより異常判定を行うことができる。
(4)図5のステップS31にて燃圧センサ20aの出力値を取り込むにあたり、図6(c)に示す燃圧安定期間T1での出力値を取り込んでいる。そのため、燃圧安定状態時の出力値を用いて出力特性直線L1〜L4を算出するので、燃圧が大きく変動している時の出力値を用いて算出した場合に比べて出力特性直線L1〜L4の真値からのずれ量を小さくでき、ひいてはこれらの出力特性直線L1〜L4から算出される基準直線Laveの真値からのずれ量を小さくできる。よって、出力値の補正をより一層真値に近づくようにできる。
(5)燃圧センサ20aをインジェクタ20に取り付けている。そのため、コモンレール12とインジェクタ20とを接続する高圧配管14に燃圧センサ20aを取り付ける場合に比べて、燃圧センサ20aの取り付け位置が噴射孔20fに近い位置となる。よって、噴射孔20fでの圧力変動が高圧配管14にて減衰してしまった後の圧力変動を検出する場合に比べて、噴射孔20fでの圧力変動をより的確に検出することができる。
(その他の実施形態)
本発明は上記実施形態の記載内容に限定されず、上記各実施形態の特徴的構造をそれぞれ任意に組み合わせるようにしてもよい。また、例えば次のように実施しても良い。
・上記実施形態では、出力特性直線L4を算出するにあたり、2点のデータD1,D2を取得して算出しているが、3点以上のデータD1〜D6(図8の例では6点)を取得して、圧力条件毎に取得されたデータD1〜D6の出力特性直線L4に対する分散値が、予め設定された閾値よりも大きい場合に、該当する燃圧センサ20aの出力値が異常であると判定するようにしてもよい(第2異常判定手段)。つまり、燃圧センサ20aが正常であれば出力値は検出対象となる圧力に比例して変化するためデータD1〜D6は1つの直線上に位置するはずである。これに対し、上述の如くデータD1〜D6が出力特性直線L4に対して大きくばらついていれば、異常であると判定できる。
・図5のステップS31において、燃圧安定期間T1での燃圧センサ20aの出力値を取り込む処理に関し、出力値の変動幅が設定幅以内となる燃圧安定状態であるか否かの判定(燃圧安定期間T1であるか否かの判定)を、図6(c)の如く検出した圧力推移波形を用いて判定すればよい。
例えば、ECU30を燃圧安定判定手段として機能させ、圧力推移波形中の検出値の変動幅が予め設定された設定幅以内となった場合、具体的には、所定周期(20μsec)で取得した出力値の変動幅が設定幅以内である場合に、燃圧安定状態であると判定すればよい。
また、インジェクタ20からの噴射を行わない無噴射時(例えばアクセル操作がされていない時又はエンジン停止時)や、エンジンのアイドル運転時に燃圧安定状態であると判定すればよい。なお、燃圧安定状態となる時期は、無噴射時及びアイドル運転時の他に、減圧弁12bを開弁作動させてから十分に時間が経過した時、燃料ポンプ11により燃料を吐出させてから十分に時間が経過した時、インジェクタ20から燃料を噴射させてから十分に時間が経過した時、等が挙げられる。
・次のように強制的に燃圧安定状態にして、その時の燃圧センサ20aの出力値を取り込むようにしてもよい。すなわち、上記実施形態では、エンジン回転速度及び目標噴射量に基づき目標燃料圧力(圧力指令値)を設定している。そのため、当該目標燃料圧力は刻々と変化することとなるため、その変化に伴い燃料ポンプ11等の運転状態が変化し、ひいては燃圧センサ20aの出力値も変動することとなる。
これに対し、ECU30を目標燃圧固定手段として機能させ、目標燃料圧力を強制的に一定値に固定し、その固定した時に取得された出力値を用いて出力特性直線L1〜L4を算出するようにしてもよい。これによれば、燃圧が変動している時の出力値を用いて算出した場合に比べて出力特性直線L1〜L4の真値からのずれ量を小さくでき、ひいてはこれらの出力特性直線L1〜L4から算出される基準直線Laveの真値からのずれ量を小さくできる。よって、出力値の補正をより一層真値に近づくようにできる。
・先述の第1異常判定手段及び第2異常判定手段の少なくとも一方により異常判定された場合には、該当する燃圧センサ20aの出力特性直線を除き、他の出力特性直線から基準直線Laveを算出するようにしてもよい。
・複数の出力特性直線L1〜L4から基準直線Laveを算出するにあたり、例えば燃料温度等のパラメータ毎に基準直線Laveを算出し、各燃圧センサ20aの出力値を補正するにあたり、前記パラメータ毎に異なる補正を行うようにしてもよい。
・上記実施形態では、インジェクタ20(#1,#2,#3,#4)の各々についての2点のデータD1,D2から出力特性直線L1〜L4を算出し、算出された各々の出力特性直線L1〜L4を平均化して基準直線Laveを算出している。これに対し、インジェクタ20(#1,#2,#3,#4)の各々についての第1データ(例えば最小値D1)についての平均値を算出し、第2データ(例えば最大値D2)についても同様に平均値を算出し、両データD1,D2の各々について算出された平均値2点に基づき基準直線Laveを算出するようにしてもよい。これによれば、出力特性直線L1〜L4を算出する処理を不要にできる。
・上記実施形態では、出力特性直線L1〜L4を算出するにあたり、2点のデータD1,D2から算出しているが、3点以上のデータD1〜D6(図8参照)に基づき回帰直線を算出し、当該回帰直線を出力特性直線としてもよい。
・また、各々のデータD1〜D6を補正し、補正後のデータから出力特性直線L1〜L4(平均値)を算出してもよい。
・上記実施形態では、図5に示す如く出力値補正処理(ステップS36)及び異常判定処理(ステップS35)の両処理を実行しているが、いずれか一方の処理を廃止して他方の処理のみとするようにしてもよい。
・図2に例示した電磁駆動式のインジェクタ20に替えて、ピエゾ駆動式のインジェクタを用いるようにしてもよい。また、リーク孔24等からの圧力リークを伴わない燃料噴射弁、例えば駆動動力の伝達に油圧室Cdを介さない直動式のインジェクタ(例えば近年開発されつつある直動式ピエゾインジェクタ)等を用いることもできる。そして、直動式のインジェクタを用いた場合には、噴射率の制御が容易となる。
・燃圧センサ20aをインジェクタ20に取り付けるにあたり、上記実施形態では、インジェクタ20の燃料流入口22に燃圧センサ20aを取り付けているが、図2中の一点鎖線200aに示すようにハウジング20eの内部に圧力センサ200aを組み付けて、燃料流入口22から噴射孔20fに至るまでの内部燃料通路25の燃料圧力を検出するように構成してもよい。
そして、上述の如く燃料流入口22に取り付ける場合には、ハウジング20eの内部に取り付ける場合に比べて燃圧センサ20aの取付構造を簡素にできる。一方、ハウジング20eの内部に取り付ける場合には、燃料流入口22に取り付ける場合に比べて燃圧センサ20aの取り付け位置が噴射孔20fに近い位置となるので、噴射孔20fでの圧力変動をより的確に検出することができる。
・高圧配管14に燃圧センサ20aを取り付けるようにしてもよい。この場合、コモンレール12から一定距離だけ離間した位置に燃圧センサ20aを取り付けることが望ましい。
・コモンレール12と高圧配管14との間に、コモンレール12から高圧配管14に流れる燃料の流量を制限する流量制限手段を備えてもよい。この流量制限手段は、高圧配管14やインジェクタ20等の損傷による燃料漏れにより過剰な燃料流出が発生した時に、流路を閉塞するよう機能するものであり、例えば過剰流量時に流路を閉塞するように作動するボール等の弁体により構成することが具体例として挙げられる。なお、オリフィス12aと流量制限手段とを一体に構成したフローダンパを採用してもよい。
・また、燃圧センサ20aをオリフィス及び流量制限手段の燃料流れ下流側に配置する構成の他に、オリフィス及び流量制限手段の少なくとも一方に対して下流側に配置するよう構成してもよい。
・図1に示す実施形態では、1つのシリンダの燃料流通経路に対して1つの燃圧センサ20aを設けているが、本発明の実施にあたり、1つのシリンダの燃料流通経路に対して2つ以上の燃圧センサ20aを設けるようにしてもよい。
また、図1に示す実施形態では全てのシリンダに対して燃圧センサ20aを設けるようにしているが、本発明の実施にあたり、特定のシリンダに対しては、燃圧センサ20aの設置を廃止して他のシリンダに対して設置された燃圧センサ20aの出力値を用いるようにしてもよい。但しこの場合であっても、複数の燃圧センサ20aの出力値の平均値を算出すべく、燃圧センサ20aを複数のシリンダに設置することを要する。
・上記実施形態で説明した燃圧センサ20aに加えて、さらにコモンレール12内の圧力を測定するレール圧センサを備える構成とすることも有効である。こうした構成であれば、上記燃圧センサ20aによる圧力測定値に加え、コモンレール12内の圧力(レール圧)も取得することができるようになり、より高い精度で燃料圧力を検出することができるようになる。
・制御対象とするエンジンの種類やシステム構成も、用途等に応じて適宜に変更可能である。例えば、上記実施形態ではディーゼルエンジンに本発明を適用した場合について言及したが、例えば火花点火式のガソリンエンジン(特に直噴エンジン)等についても、基本的には同様に本発明を適用することができる。直噴式ガソリンエンジンの燃料噴射システムでは、燃料(ガソリン)を高圧状態で蓄えるデリバリパイプを備えており、このデリバリパイプに対して燃料ポンプから燃料が圧送されるとともに、同デリバリパイプ内の高圧燃料が複数のインジェクタ20に分配され、エンジン燃焼室内に噴射供給される。なお、かかるシステムでは、デリバリパイプが蓄圧容器に相当する。また、本発明に係る装置及びシステムは、シリンダ内に燃料を直接的に噴射する燃料噴射弁に限らず、エンジンの吸気通路又は排気通路に燃料を噴射する燃料噴射弁についても適用できる。
本発明に係る燃料噴射システム制御装置の一実施形態について、該システムの概略を示す構成図。 同システムに用いられるインジェクタの内部構造を模式的に示す内部側面図。 本実施形態に係る燃料噴射制御処理の基本的な手順を示すフローチャート。 本実施形態に係る燃圧制御処理の手順を示すフローチャート。 本実施形態に係る燃圧センサについての出力値補正処理、及び異常判定処理の手順を示すフローチャート。 (a)はインジェクタのソレノイドへの駆動電流の変化、(b)はソレノイドの作動に伴い生じる噴射孔からの燃料噴射率の変化、(c)は噴射率の変化に伴い生じる燃圧センサの検出値(出力値)の変化を示すタイミングチャート。 燃圧センサの出力値と圧力指令値Ptrgとの関係を表した出力特性直線等を示すグラフ。 図5の処理にて異常判定される場合における、出力特性直線等を示すグラフ。
符号の説明
12…コモンレール(蓄圧容器)、20…インジェクタ(燃料噴射弁)、20a,200a…燃圧センサ、20f…噴射孔、30…ECU(第2異常判定手段、目標燃圧固定手段、燃圧安定判定手段)、S31…出力値取得手段、S32…特性線算出手段、S33…平均値算出手段、S35…第1異常判定手段、S36…出力値補正手段。

Claims (12)

  1. 燃料を蓄圧する蓄圧容器、及び前記蓄圧容器から分配される燃料を噴射する複数の燃料噴射弁を備えた燃料噴射システムに適用され、前記燃料噴射弁からの燃料噴射に伴い変動する燃料の圧力を検出する燃圧センサを備え、前記燃圧センサの出力値を用いて前記燃料噴射システムの作動を制御する燃料噴射システム制御装置であって、
    前記燃圧センサは、前記蓄圧容器から前記燃料噴射弁の噴射孔に至るまでの燃料通路のうち前記蓄圧容器に対して前記噴射孔に近い側に配置されるとともに、前記燃料噴射弁の各々に対して設けられ、
    複数の前記燃圧センサの出力値を各々取得する出力値取得手段と、
    取得した各々の前記出力値の平均値を算出する平均値算出手段と、
    前記燃圧センサの出力値が前記平均値に近づくよう前記出力値を補正する出力値補正手段と、
    を備えることを特徴とする燃料噴射システム制御装置。
  2. 特定の前記燃圧センサについて、異なる圧力条件毎に取得された前記出力値と前記圧力条件との関係を示す出力特性線を算出する特性線算出手段を備え、
    前記平均値算出手段は、複数の前記燃圧センサの各々について算出された前記出力特性線を平均化してなる基準線を前記平均値として算出することを特徴とする請求項1に記載の燃料噴射システム制御装置。
  3. 前記出力値補正手段は、前記出力特性線が前記基準線に近づくよう前記出力値を補正することを特徴とする請求項2に記載の燃料噴射システム制御装置。
  4. 前記燃圧センサの出力値と前記平均値との偏差が予め設定された閾値よりも大きい場合に、該当する前記燃圧センサの出力値が異常であると判定する第1異常判定手段を備えることを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射システム制御装置。
  5. 特定の前記燃圧センサについて、異なる圧力条件毎に取得された前記出力値と前記圧力条件との関係を示す出力特性線を算出する特性線算出手段を備え、
    前記圧力条件毎に取得された前記出力値の前記出力特性線に対する分散値が、予め設定された閾値よりも大きい場合に、該当する前記特定の燃圧センサの出力値が異常であると判定する第2異常判定手段を備えることを特徴とする請求項1〜4のいずれか1つに記載の燃料噴射システム制御装置。
  6. 前記燃圧センサの出力値の変動幅が設定幅以内となる燃圧安定状態であるか否かを判定する燃圧安定判定手段を備え、
    前記平均値算出手段は、前記燃圧安定状態であると判定された時に取得された前記出力値を用いて前記平均値を算出することを特徴とする請求項1〜5のいずれか1つに記載の燃料噴射システム制御装置。
  7. 前記燃圧安定判定手段は、特定の前記燃圧センサに対して所定周期で取得した出力値の変動幅が前記設定幅以内である場合に前記燃圧安定状態であると判定することを特徴とする請求項6に記載の燃料噴射システム制御装置。
  8. 前記燃圧安定判定手段は、前記燃料噴射弁からの噴射を行わない噴射休止時又は内燃機関のアイドル運転時に前記燃圧安定状態であると判定することを特徴とする請求項6に記載の燃料噴射システム制御装置。
  9. 前記燃料噴射システムの作動を制御する際に用いる目標燃料圧力を強制的に一定値に固定する目標燃圧固定手段を備え、
    前記平均値算出手段は、前記目標燃料圧力を固定した時に取得された前記出力値を用いて前記平均値を算出することを特徴とする請求項1〜8のいずれか1つに記載の燃料噴射システム制御装置。
  10. 前記出力値取得手段は、特定の前記燃圧センサに対して略同一の圧力条件下で前記出力値を複数取得するとともに、取得した前記複数の出力値の平均値を、前記平均値算出手段による算出に用いる出力値とすることを特徴とする請求項1〜9のいずれか1つに記載の燃料噴射システム制御装置。
  11. 前記平均値算出手段により算出された前記平均値が、前記燃料噴射システムの作動を制御する際に用いる目標燃料圧力に近づくよう、前記燃料噴射システムをフィードバック制御することを特徴とする請求項1〜10のいずれか1つに記載の燃料噴射システム制御装置。
  12. 燃料を蓄圧する蓄圧容器、及び前記蓄圧容器から分配される燃料を噴射する複数の燃料噴射弁を備えた燃料噴射システムに適用され、前記燃料噴射弁からの燃料噴射に伴い変動する燃料の圧力を検出する燃圧センサを備え、前記燃圧センサの出力値を用いて前記燃料噴射システムの作動を制御する燃料噴射システム制御装置であって、
    前記燃圧センサは、前記蓄圧容器から前記燃料噴射弁の噴射孔に至るまでの燃料通路のうち前記蓄圧容器に対して前記噴射孔に近い側に配置されるとともに、前記燃料噴射弁の各々に対して設けられ、
    複数の前記燃圧センサの出力値を各々取得する出力値取得手段と、
    取得した各々の前記出力値の平均値を算出する平均値算出手段と、
    前記燃圧センサの出力値と前記平均値との偏差が予め設定された閾値よりも大きい場合に、該当する前記燃圧センサの出力値が異常であると判定する異常判定手段と、
    を備えることを特徴とする燃料噴射システム制御装置。
JP2008133974A 2007-09-25 2008-05-22 燃料噴射システム制御装置 Active JP4513895B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008133974A JP4513895B2 (ja) 2007-09-25 2008-05-22 燃料噴射システム制御装置
US12/210,440 US7873460B2 (en) 2007-09-25 2008-09-15 Controller for fuel injection system
DE102008042329.7A DE102008042329B4 (de) 2007-09-25 2008-09-24 Steuereinrichtung für ein Kraftstoffeinspritzsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007246498 2007-09-25
JP2008133974A JP4513895B2 (ja) 2007-09-25 2008-05-22 燃料噴射システム制御装置

Publications (2)

Publication Number Publication Date
JP2009097501A true JP2009097501A (ja) 2009-05-07
JP4513895B2 JP4513895B2 (ja) 2010-07-28

Family

ID=40700718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133974A Active JP4513895B2 (ja) 2007-09-25 2008-05-22 燃料噴射システム制御装置

Country Status (1)

Country Link
JP (1) JP4513895B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067682A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 故障診断システム
JP2013189874A (ja) * 2012-03-12 2013-09-26 Toyota Motor Corp 内燃機関の制御装置
JP2014122595A (ja) * 2012-12-21 2014-07-03 Denso Corp 燃料噴射制御装置
JP2014141915A (ja) * 2013-01-23 2014-08-07 Denso Corp 燃圧センサの異常診断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861133A (ja) * 1994-08-19 1996-03-05 Isuzu Motors Ltd 蓄圧式燃料噴射装置及びその制御方法
JPH10318032A (ja) * 1997-05-21 1998-12-02 Toyota Motor Corp 内燃機関の故障診断装置
JP2000265892A (ja) * 1999-03-18 2000-09-26 Isuzu Motors Ltd エンジンの燃料噴射装置
JP2004308464A (ja) * 2003-04-03 2004-11-04 Denso Corp 内燃機関用燃料噴射装置の故障診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861133A (ja) * 1994-08-19 1996-03-05 Isuzu Motors Ltd 蓄圧式燃料噴射装置及びその制御方法
JPH10318032A (ja) * 1997-05-21 1998-12-02 Toyota Motor Corp 内燃機関の故障診断装置
JP2000265892A (ja) * 1999-03-18 2000-09-26 Isuzu Motors Ltd エンジンの燃料噴射装置
JP2004308464A (ja) * 2003-04-03 2004-11-04 Denso Corp 内燃機関用燃料噴射装置の故障診断装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067682A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 故障診断システム
US8490468B2 (en) 2010-09-24 2013-07-23 Mitsubishi Electric Corporation Failure diagnosis system
JP2013189874A (ja) * 2012-03-12 2013-09-26 Toyota Motor Corp 内燃機関の制御装置
JP2014122595A (ja) * 2012-12-21 2014-07-03 Denso Corp 燃料噴射制御装置
JP2014141915A (ja) * 2013-01-23 2014-08-07 Denso Corp 燃圧センサの異常診断装置

Also Published As

Publication number Publication date
JP4513895B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4492664B2 (ja) 燃料供給量推定装置及び燃料圧送噴射システム
JP4678397B2 (ja) 燃料噴射状態検出装置
JP4501975B2 (ja) 燃料噴射装置及び燃料噴射装置の製造方法
JP4424395B2 (ja) 内燃機関の燃料噴射制御装置
US7933712B2 (en) Defective injection detection device and fuel injection system having the same
JP4462315B2 (ja) 内燃機関制御装置
JP4428427B2 (ja) 燃料噴射特性検出装置及び燃料噴射指令補正装置
EP2031225B1 (en) Fuel injection device and fuel injection system
EP2031224B1 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
US7873460B2 (en) Controller for fuel injection system
US6907861B2 (en) Injection quantity control device of diesel engine
EP2031226B1 (en) Fuel injection device, fuel injection system, and method for determining malfunction of the same
JP5141723B2 (ja) 内燃機関の燃料噴射制御装置
JP5774521B2 (ja) 燃料漏れ検出装置
JP5813531B2 (ja) 燃料噴き放し検出装置
JP4893851B2 (ja) 燃料噴射状態検出装置
US20100211291A1 (en) Abnormality detection device
JP4513895B2 (ja) 燃料噴射システム制御装置
JP4375432B2 (ja) 燃料噴射特性検出装置及びエンジン制御システム
US6932059B2 (en) Fuel injection system of internal combustion engine
JP4689695B2 (ja) 燃料噴射システム
JP6011264B2 (ja) 吐出量学習制御装置
JP2014005793A (ja) 蓄圧式燃料噴射装置の制御装置及び制御方法並びに蓄圧式燃料噴射装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R151 Written notification of patent or utility model registration

Ref document number: 4513895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250