従来、半導体製造工程において、ウェハに微細加工を施すためのエッチング工程や、薄膜を形成するための成膜工程、又はフォトレジスト膜を露光するための露光処理工程等において、ウェハを保持するために静電気的にウェハを吸着する静電チャックが使用されている。
図4(a)は、特許文献1に記載の双極型の静電チャック10の断面図を示す。円板状の絶縁性基板11の内部に一対の吸着電極12a、12bが埋設され、前記絶縁性基板11の上面を半導体ウェハ17を載せる載置面11bとし、吸着電極12と載置面11bとの間を絶縁膜11aとして、載置面11bに半導体ウェハ17を載せ、吸着電極12a、12bに電源15より電圧を印加し、半導体ウェハ17を吸着している。
このような静電チャック10の吸着力Fは、次式で示される。
F=(S/2)×ε0×εr×(V/2d)2
尚、Sは吸着電極の面積、ε0は真空中の誘電率、εrは絶縁膜11aの比誘電率、Vは印加電圧、dは絶縁膜11aの厚みである。
ここで、吸着力を発現する吸着電極12の形状は図4(b)のような円弧状電極12ae、12beに繋がった数本の帯状の櫛歯状電極12ak、12bkがそれぞれ交互に配置された櫛形形状の吸着電極12が提案されている。
物体を保持する保持力であり静電気力でもある吸着力Fは、絶縁膜11aの厚みdが小さい程大きく、また、電圧Vが大きければ大きい程大きくなる。電圧Vを大きくすればするほど吸着力Fが増大するが、あまり大きくすると絶縁膜11aの絶縁が破壊されてしまう。また、絶縁膜11aにピンホールなどの空隙があると絶縁が破壊される。そこで、物体を保持する絶縁膜11aの表面は、滑らかであること、ピンホールがないことが求められる。
上記静電チャック10で凸形状や凹形状に変形した半導体ウェハ17を吸着するとウェハ17の下面の一部が浮き上がったり、汚染が発生することがあった。そこで、特許文献2のように円形の吸着電極とその周りに環状の吸着電極を設け、吸着電極の作動時間を変えて上記浮き上がりを防止した静電チャックが提案されている。
ところで、通常の静電チャックは、特許文献3に見られるように、電極としてアルミ等の金属を用い、これを覆う絶縁膜としてガラスあるいはベークライト、アクリル、エポキシ等の有機膜を備えたものが使用されている。しかし、これらの絶縁膜は全て耐熱性、耐摩耗性、耐薬品性等の点で問題があるだけでなく、硬度が小さいことから使用時に摩耗粉が発生して半導体ウェハに付着しやすく、半導体ウェハに悪影響を及ぼしやすいなどクリーン度の点でも問題がある。
また、溶射成形したセラミック膜を絶縁膜とした静電チャックが特許文献4に記載されているが、冷却効率が悪いとの問題があった。
また、特許文献5にはセラミック基体の主面に吸着電極を形成し、セラミック基体の主面の全面に数μmの厚みの絶縁膜をスパッタ、イオンプレーティング、真空蒸着で形成する方法が記載されている。
また、エッチングプロセスで使用される静電チャックの要求特性として、プロセスガスやクリーニングガスのハロゲン腐食ガス中での耐プラズマ性が必要であり、エッチングする膜種によりプロセス温度が異なるため、−20〜200℃という温度範囲でも使用できるものが求められている。
更に、超LSIのメモリ容量の拡大に伴って、微細加工が益々進み、耐プラズマ性を必要とするプロセスが拡大している。特に、エッチング用ガスやクリーニング用ガスとして、塩素系ガス、及びフッ素系ガスなどのハロゲン系腐食性ガスが多用されている。クリーニング工程ではウェハの載置面にダミーウェハを載せないでクリーニングを行うウェハレスクリーニングが検討され、ウェハの載置面の耐プラズマ性が強く求められることもある。
また、エッチング加工するウェハ上の膜種により、静電チャックの使用温度範囲が広く、広い温度範囲で耐久性のあるものが必要である。そこで、前記の絶縁性基板の代わりに導電性基体としてアルミニウム合金を用いてその表面をアルミナ溶射膜で作製されたものや導電性基体としてアルミニウム合金を用いてその表面にアルミニウムの陽極酸化膜を形成して絶縁膜とすることで、耐プラズマ性を兼ねた静電チャックが開示されているが、これらは温度が上がるとアルミニウムベースと上記の絶縁膜の熱膨張の差により、クラックが入る問題があった。その対策として、特許文献4のようにセラミックと金属からなる導電性基体23の熱膨張係数を考慮してアルミナ溶射膜25を絶縁膜として、広い温度範囲で使用してもクラックが発生しないものがあった。
また、特許文献7には導電性基体としてアルミニウム合金基体の表面にアルミニウムの陽極酸化膜を形成し、その上に耐プラズマ性に優れた非晶質なAl酸化物を0.1〜10μm形成したものがあった。
また、特許文献8には、セラミックス内部に吸着電極を内蔵したものがあるが、冷却機能を備えた導電性基体とシリコーン接着剤等で接合されて一体化されていた。
特開平4−237148号公報
特開2003−158174号公報
特開昭59−92782号公報
特開昭58−123381号公報
特開平4−49879号公報
特開平11−265930号公報
特開平8−288376号公報
特開平4−287344号公報
以下、本発明の実施形態について説明する。
図1(a)は本発明の静電チャック1の一例である概略の構造を示す斜視図である。図1(b)はそのX−X線断面図を示す。金属等からなる導電性基体2の一方の主面に絶縁層3を備えた板状体8と、その上面に形成した一対の吸着電極4a、4bを覆うように絶縁膜5が形成されている。絶縁膜5の上面をウェハWを吸着させる載置面5aとする。
載置面5aにはブラスト加工法等により凹部を形成することもできる。その凹部と連通し板状体8の裏面から載置面5aに貫通するガス供給孔を設け、ウェハWと凹部で形成される空間にガス供給孔からガスを供給することができる。そして、ウェハWと載置面5aの間の熱伝導率を高めることもできる。
上記板状体8はセラミックス等の絶縁性基板でも良いが、熱伝導率の大きな導電性基体2を用いても良い。導電性基体2が金属のみからなる場合は絶縁層3や絶縁膜5の熱膨張に合わせて導電性基体2の金属を選定するのが好ましい。金属はセラミックに比べて熱膨張率が大きいものが多いことから、導電性基体2の材質としてW、Mo、Tiなどの低熱膨張金属を主成分とする金属が好ましい。
また、導電性基体2として金属とセラミックの複合部材を用いる場合は三次元編目構造の多孔質セラミック体を骨格とし、その気孔部に隙間なくアルミニウムやアルミニウム合金を充填した複合材料を使うことが好ましい。このような構造とすることで、絶縁層3や絶縁膜5と導電性基体2の熱膨張係数を近づけることができる。
更に、上記の導電性基体2の熱伝導率が約160W/(m・K)と大きな材料が得られ、プラズマ等の雰囲気からウェハWに伝わった熱を導電性基体2を通して取り除くことが容易となり好ましい。
そして、導電性基体2には冷却媒体を通す流路9が備えられ、冷却媒体を介して、ウェハWの熱を静電チャック1の外部に取り除くことができることからウェハWの温度を冷却媒体の温度でコントロールすることが容易となる。
絶縁層3はアルミナ等の酸化物セラミックスや窒化物、炭化物等のセラミックスからなることが好ましい。また、絶縁膜5は上記絶縁層3と同一組成物でも良い。
そして、貫通孔7を通して突き上げられたリフトピン(不図示)に支えられたウェハWは、リフトピンが降下して載置面5aの上にウェハWが載せられる。そして、吸着電極4の間に数百Vの吸着電圧を給電端子6a、6bから印加して、吸着電極4とウェハWの間に静電吸着力を発現させ、ウェハWを載置面5aに吸着することができる。また、導電性基体2と対向電極(不図示)との間にRF電圧を印加するとウェハWの上方にプラズマを効率的に発生することができる。
本発明の静電チャック1は、板状体8の上面に形成した一対の吸着電極4を覆うように絶縁膜5を形成し、該絶縁膜5上を載置面5aとして、前記吸着電極4は外周縁の円弧状電極4ae、4beと、これと繋がる櫛歯状電極4ak、4bkとからなり、かつ双方の櫛歯状電極4ak、4bkを互いに入り組ませて形成されている。
図2は本発明の吸着電極4の一例を示す。吸着電極4の櫛歯状電極4ak、4bkの幅Wkを前記円弧状電極4ae、4beの幅Weより大きくしたことを特徴とする。リフトピン穴7を貫通する不図示のリフトピンにより持ち上げられたウェハWが載置面5aに接近してウェハWの周辺部が載置面5aと接触する。そしてウェハWの中心部が持ちあがった状態で載置面5aに載せられる。特に、ウェハWの変形が大きいとこのような状態でウェハWは載置面5aに載せられる可能性が大きい。この状態で吸着電極4に直流電圧を印加すると、過渡的には載置面5aと接触しているウェハWの周辺から吸着し、周辺から中心部へと吸着されるが、帯状の櫛歯状電極4ak、4bkの幅Wkが外周縁の円弧状電極4ae、4beの幅Weより大きいと、円弧状電極4がウェハWの周辺部を吸着する力が小さくなり、帯状の櫛歯状電極4ak、4bkで吸着する力が優勢となる。従って、過渡的に見てウェハWの周辺部が強固に吸着されることなく、帯状の櫛歯状電極4ak、4bkでウェハWを吸着することになる。すると、周辺部が載置面5aと接触し中心部が浮き上がったウェハWは円弧状電極4ae、4beで弱い力で固定されることから、同時に帯状の櫛歯状電極4ak、4bkの外周寄りで吸着され、ウェハWの表面を変形させながらスムースに載置面5aの全面にウェハWを吸着させることができる。このように吸着させることでウェハWに部分的に大きな応力を加えることなく、載置面5aとの大きな摩擦力を発生させることなくウェハWを吸着することができると考えられる。従って、ウェハWと載置面5aの間で摩擦による粉塵等を発生させることが少なくパーティクルの発生を防止することができると考えられる。
尚、円弧状電極4ae、4beの幅Weは、櫛歯状電極4ak、4bkの櫛歯と櫛歯を連結する円弧状電極4ae、4beの各最大幅と最小幅を測定し、それらの平均値として求めることができる。また、櫛歯状電極4ak、4bkの幅Wkは、それぞれの櫛歯の幅の平均値である。また、櫛歯の幅が長手方向で異なる場合には、その平均値をWkとすれば良い。
更に、上記吸着方法によると前記櫛歯状電極4ak、4bkの幅Wkが円弧状電極4ae、4beの幅Weの1.5〜50倍であることが好ましい。幅WkがWeの1.5倍を下回ると、円弧状電極4ae、4beの幅が大きくなりすぎてウェハWの周辺部が強く吸着されることからウェハWと載置面2aの摩擦が大きくなりパーティクルの発生量が多くなる虞がある。また、50倍を超えると相対的に櫛歯状電極4ak、4bkの幅が小さくなりクーロン力による吸着力が小さくなる虞がある。また、円弧状電極の幅が0.5mm以下となり例えば印刷法で形成した円弧状電極4ae、4beが断線する可能性があるからである。
また、上記一対の吸着電極4に正負の印加電圧を加えるに当たり、正電極の面積Spが負電極の面積Smより大きいことが好ましい。ここで面積Spは吸着電極4を載置面5aに平行な投影面に対し、円弧状電極4aeと櫛歯状電極4akとの合計面積Spであり、円弧状電極4beと櫛歯状電極4bkの合計面積がSmである。このように面積SpがSmより大きいと、吸着電極4の極性による吸着力の微妙な差異を小さくすることができることから、ウェハWの全面を均一に吸着することができることから好ましい。面積SpとSmの比の値(Sp/Sm)は、1.01から1.10であると更に好ましい。Sp/Smは1.01を下回ると極性の差による吸着力の差異の効果が小さく、1.10を超えると正極の吸着力が大きくなり過ぎる虞がある。
絶縁膜5はアルミナや希土類酸化物、窒化物、炭化物質のセラミックスからなることが好ましい。
本発明の静電チャック1は絶縁膜5と絶縁層3の総厚みが20〜2000μmであることが特徴である。この厚みとすることにより載置面5aにウェハWから伝わった熱を導電性基体2に効率良く逃がすことができる。そして、ウェハWの温度上昇やウェハW面内の温度差が大きくなることを防止することができる。前記総厚みが20μm未満では吸着用電極4と導電性基体2との間で絶縁破壊する虞があり、総厚みが2000μmを越えるとウェハWの熱を十分導電性基体2に伝えることができない虞があるからである。好ましくは30μmから600μmであり、更に好ましくは50〜300μmである。
尚、上記絶縁膜5の厚みt1は吸着用電極4の上面から載置面5aの上面までの距離で、載置面5aを垂直に横切る断面において、5箇所の前記距離の平均値で表すことができる。また、上記絶縁層3の厚みt2は、同様に前記断面において5箇所の厚みを測定しその平均値とした。そして、上記絶縁膜5aの厚みt1と絶縁層3の厚みt2を合計した値を総厚みとした。
また、載置面5aにはブラスト加工法等により凹部を形成することもできる。その凹部と連通し導電性基体2の裏面から載置面5aに貫通するガス供給孔を設け、ウェハWと凹部で形成される空間にガス供給孔からガスを供給することができる。そして、ウェハWと載置面5aの間の熱伝導率を高めることもできる。
絶縁膜5はアルミナや窒化物、炭化物質のセラミックスからなることが好ましく、その熱伝導率は20W/(m・K)以上であることが好ましい。このような焼結セラミックスからなる絶縁膜5の厚みは10〜1500μmであればウェハWの熱を効率よく導電性基体2に逃がすことができる。好ましくは100〜1000μmであり、更に好ましくは200〜500μmである。そして、絶縁膜5の熱伝導率が50W/(m・K)以上と大きな絶縁膜5ではその厚みは200〜1500μmであると好ましい。上記絶縁膜5の下限は、載置面5aに垂直で直径近くを横切る断面から絶縁膜5の厚みの最小値で示すことができる。
また、焼結セラミックスからなる絶縁層3の厚みは10μm〜1990μmである。絶縁層3の厚みが10μm以下では吸着用電極4と導電性基体2の間の絶縁性を保持できない危険があるからである。1990μmを超えると、載置面5aからの熱を導電性基体2に十分伝えることができなくなる虞があるからである。このような絶縁層3はその熱伝導率が50W/(m・K)以上であると更に好ましい。
また、本発明の絶縁膜5は、均一な非晶質セラミックから成る絶縁膜5の1層のみから形成することが好ましい。この絶縁膜5は、吸着電極4から載置面5aの間の体積固有抵抗が一様であり、絶縁膜5の中を電界が一様に形成され吸着電圧を印加した時に吸着力が素早く発現し一定の吸着力になる。そして、印加する吸着電圧を切ると、すぐに吸着力が0になりウェハWを離脱できる。このように吸着/離脱特性の優れた静電チャック1とすることができる。
また、絶縁膜5を均一な非晶質セラミックからなる絶縁膜5とする理由は、以下のように考えられる。
結晶質セラミックからなる絶縁膜は結晶格子が強固に結合されていることから、格子間距離が応力で変化し難く、結晶質セラミックからなる絶縁膜を静電チャックの絶縁膜とすると、導電性基体2から上記の絶縁膜に発生する内部応力や熱膨張差などの熱応力を緩和する機能に乏しいが、非晶質セラミックからなる絶縁膜5は結晶質セラミックからなる絶縁膜と異なり低温で形成可能であり比較的低い温度で応力に対して格子間距離が変化する機能があり、内部応力を結晶質セラミックからなる絶縁膜より小さくすることができる。また、非晶質セラミックからなる絶縁膜5は非晶質であるため原子配列が周期的でなく、原子レベルの空間ができやすく不純物を取り込みやすい構造になっている。そのため、非晶質セラミックからなる絶縁膜5と導電性基体2との熱膨張差や成膜時の応力などによる内部応力が発生しても、原子配列が不規則であるのと原子レベルの欠陥が多いことから、絶縁膜5の低い成膜温度で変位することができ、絶縁膜5にかかる応力を低減することができる。そして、その非晶質セラミックからなる絶縁膜5は同等組成の対応する結晶の化学量論組成からずれていることから、原子レベルの欠陥ができやすく絶縁膜5と導電性基体2との間の応力を緩和することが容易となる。
そして、上記非晶質セラミックからなる絶縁膜5の厚みは10〜100μmが好ましい。非晶質セラミックからなる絶縁膜5の厚みが10μm未満では、導電性基体2の表面のボイドやパーティクルの影響を受けて、非晶質セラミックからなる絶縁膜5にピンホールや膜厚が極端に薄いところが発生し、プラズマ中で使用するとその部分が欠陥となり、絶縁膜5を貫通して吸着電極4を浸食することがあり、絶縁膜5の絶縁破壊による異常放電やパーティクルを発生することがある。そのため、絶縁膜5は少なくとも10μm以上の厚みが必要である。
また、絶縁膜5の厚みが100μmを越えると非晶質セラミックからなる絶縁膜5を成膜する時間が数十時間以上となり量産性に乏しく、また内部応力も大きくなり過ぎるため絶縁膜5が吸着電極4や絶縁層3、導電性基体2から剥離する虞がある。好ましくは絶縁膜5の厚みは30〜70μmであり、更に好ましくは40〜60μmである。
尚、本発明において絶縁膜5の厚みが10μm以上とは、導電性基体2の上の絶縁膜5の最小厚みが10μm以上のことであり、厚み100μm以下とは導電性基体2の上の絶縁膜5の平均厚みが100μm以下のことである。尚、平均厚みは絶縁膜5を5等分した面積の中の膜厚を一箇所測定し、それぞれ5箇所の膜厚を平均した値である。
非晶質セラミックからなる絶縁膜5の中には他の元素と反応していない希ガス類元素としてアルゴンが存在しており、希ガス類元素を膜中に多く入れることにより、非晶質セラミックからなる絶縁膜5の変形が容易となり内部応力を緩和する効果が大きくなる。そのため、本発明のような10μm以上の厚みの非晶質セラミックからなる絶縁膜5を吸着電極4を覆うように絶縁層3を介して導電性基体2に成膜しても絶縁膜5を剥離するような大きな応力の発生を防ぐことができる。
絶縁膜5の中の前記アルゴン量のコントロールは成膜時のアルゴンのガス圧力を大きくして、成膜する導電性基体2に印加するマイナスバイアス電圧を大きくすることにより、プラズマ中で電離したアルゴンイオンを絶縁膜5中に多く取り込むことができる。
絶縁膜5中のアルゴン量は1〜10原子%が好ましい。更に好ましくは3〜8原子%である。希ガス類元素の含有量が1原子%以下であると、非晶質セラミックからなる絶縁膜5が充分変位できなくなるため応力を緩和する効果が小さくなり、10μm程度の厚みでもクラックが発生しやすくなる。また、逆に希ガス類元素を10原子%以上とするのは製作上困難である。
また、前記希ガス類元素としてアルゴンの代わりに他の希ガス類元素を使ってスパッタを行っても同じ効果が得られるが、スパッタ効率とガスのコストを考えると、アルゴンガスはスパッタ効率が高く安価で好ましい。
上記絶縁膜5中のアルゴンの定量分析方法としては酸化アルミニウム焼結体に非晶質セラミック膜2を20μmの厚みで成膜したものを比較試料として作製し、該試料をラザフォード後方散乱法により分析し、検出した全原子量とアルゴンの原子量を計測して、アルゴンの原子量を全原子量で割った値を原子%として算出した。
また、非晶質セラミックからなる絶縁膜5は上記のように希ガス類元素を含むことから、類似組成のセラミック焼結体に比べて硬度が小さくなっている。希ガス類元素を多く入れることにより、硬度を小さくすることができ、膜中の内部応力を低下することができる。
また、非晶質セラミックからなる絶縁膜5はスパッタ等の成膜工程で形成され絶縁膜5の表面には凹部が存在するが、絶縁膜5の内部にはボイドがほとんど存在しない。そこで、表面の凹部は表面を研磨加工して除去することにより、プラズマに曝される表面積をいつでも最小にすることができ、更に多結晶体のような粒界が存在しないことからエッチングが一様で脱粒も発生し難い。その結果、従来から使われているセラミック多焼結体からなる絶縁膜より各段に耐プラズマ性に優れたものとなる。また、結晶粒界を含むセラミックス多結晶焼結体では面粗さがRa0.02程度までであるが、非晶質セラミック絶縁膜5はRa0.0003程度まで小さくすることが可能であり耐プラズマ性の観点から好ましい。
更に、上記の希ガス類元素を含む非晶質セラミックからなる絶縁膜5のビッカース硬度は500〜1000HV0.1が好ましく、1000HV0.1を超えると内部応力が大きくなり絶縁膜5が剥がれる虞がある。絶縁膜5のビッカース硬度が500HV0.1未満では絶縁膜5の内部応力は小さくなり絶縁膜5の剥離の問題は生じ難いが、硬度が小さ過ぎることから絶縁膜5に大きな傷が入りやすく、この結果として耐電圧低下を発生する。これはウェハWと静電チャック1の載置面5aの間に入り込んだ硬質のゴミにより絶縁膜5に傷が入り、この傷の部分の耐電圧が低下したりすることがある。従って、絶縁膜5のビッカース硬度は500〜1000HV0.1が好ましく、更に好ましくは600〜900HV0.1である。
また、上記非晶質セラミックからなる絶縁膜5は耐プラズマ性の優れた酸化アルミニウムや、酸化イットリウム、酸化イットリウムアルミニウム等の希土類酸化物、窒化物で構成されることが好ましい。特に、酸化イットリウムが優れている。
また、本発明の金属とセラミックからなる導電性基体2は、導電性基体2の熱膨張係数が骨格をなす多孔質セラミック体の熱膨張係数に依存するところが大きく、上記セラミックとして炭化珪素や窒化アルミニウムが好ましい。また、導電性基体2の熱伝導率は気孔部に充填した金属の熱伝導率に依存するところが大きいため、両者の配合比をそれぞれ変えることにより、導電性基体2の熱膨張係数と熱伝導率を適宜に調整することができる。特に、上記金属としてはウェハWに影響の少ないアルミニウムやアルミニウム合金が好ましい。
従って、導電性基体2は、アルミニウムまたはアルミニウム合金の何れか一つの金属成分と、炭化珪素または窒化アルミニウムの何れか一つのセラミック成分からなり、該セラミック成分の含有量が50〜90質量%であることが好ましい。
導電性基体2のセラミック成分の含有量が50質量%より少なくなると導電性基体2の強度が大きく低下するとともに、導電性基体2の熱膨張係数が多孔質セラミック体よりもアルミニウム合金の熱膨張係数による依存度が大きく導電性基体2の熱膨張係数が大きくなり、非晶質セラミックからなる絶縁膜5との熱膨張差が大きくなり過ぎることから絶縁膜5が剥離する虞がある。
逆に、導電性基体2のセラミック成分の含有量が90質量%より多くなると、セラミックの開気孔率が小さくなりアルミニウム合金を充分に充填できなくなり、熱伝導や電気伝導が極端に低下してしまい、導電性基体として機能を果たさなくなる。上記セラミックとして窒化珪素や炭化珪素や窒化アルミニウム、アルミナなど低熱膨張で高剛性の多孔質セラミックを用いる。気孔部に隙間なくアルミニウム合金を充填するためには、気孔径が10〜100μmの多孔質セラミック体を用いることが望ましい。
なお、多孔質セラミック体の気孔部に金属を充填する方法としては、予め多孔質セラミック体を入れて加熱しておいたプレス機に溶融金属を注入し、加圧プレスすれば良い。
SiCの質量比率を50〜90%にすることにより、導電性基体2の熱膨張率を11×10−6〜5×10−6/℃程度に変えることができるため、絶縁膜5の熱膨張率や成膜応力に合わせることが可能となる。
また、本発明の静電チャック1が用いられるエッチング工程の腐食性のガスは不記載のカバーリング等で保護された静電チャック1の側面や裏面の雰囲気露出面にも若干侵入するため、プラズマに対する耐食性を高める上で保護膜があることが好ましい。
ウェハ載置面5aに比べて浸食が少ない導電性基体2の側面及び裏面にアルミナ溶射膜やアルミニウムの陽極酸化膜を形成し保護膜とすることが好ましい。上記のアルミナ溶射膜の厚みは50〜500μm形成することが好ましい。また、上記のアルミニウムの陽極酸化膜の厚みは20〜200μm形成することが好ましい。
保護膜としてアルミナの溶射膜を形成する場合は導電性基体2の表面の材質は問わないが、保護膜としてアルミニウムの陽極酸化膜を形成する場合は導電性基体2の表面がアルミニウム合金である必要がある。前述の多孔質セラミック体にアルミニウム合金を含浸させた導電性基体2に陽極酸化膜を施しても表面のアルミニウム部分のみに陽極酸化膜が成長するだけで部分的にセラミック部分が露出した構造になり、耐プラズマ性が低下し、プラズマ雰囲気と導電性基体2との間の絶縁性が悪くなるため、アルミニウム合金を含浸させる際に、アルミニウム合金を導電性基体2の表面に形成した導電性基体2を作製することが好ましい。そして、アルミニウムの陽極酸化膜を形成することにより、耐プラズマ性を高め、更に表面のアルミニウムを酸化することで表面の絶縁性を備えることができる。
尚、保護膜は導電性基体2の表面を覆うものを説明したが、絶縁層3の露出部を同時に覆ってもよいことは言うまでもない。
また、絶縁層3は導電性基体2や絶縁膜5の熱膨張係数に近く絶縁性の優れた絶縁膜5と同じ組成の膜や、ホウ珪酸ガラスやホウ酸ガラスを使用できる。
また、絶縁層3は非晶質セラミックスから構成することもできる。ここで、非晶質セラミックスとはアルミナ質、アルミナイットリア酸化物質、窒化物質等のセラミックス結晶組成を基本組成とするものを指す。
絶縁層3が絶縁膜5と同様の非晶質セラミックス組成物からなる場合は、その厚みは10〜100μmが好ましい。10μm以下では絶縁破壊する虞があり、100μmを越えると量産性に劣るからである。
また、非晶質セラミックス以外の一般的なガラス組成物を絶縁層3とする場合、絶縁層3の厚みは載置面5aに載せられたウェハWの熱を伝えやすいように1990μm以下が好ましく、且つ導電性基体2と吸着電極4の間の絶縁性を確保するには、10μm以上が好ましい。更に好ましくは20〜1000μmでより好ましくは50〜300μmである。
また、ガラス組成物からなる絶縁層3はプラズマ雰囲気における耐食性に劣ることから、絶縁膜5の外周部が絶縁層3を覆うように形成されていることが好ましい。このように形成することで、静電チャック1の耐食性を増すことができるとともに静電チャック1の信頼性をも高めることができ、静電チャック1の寿命も長くなる。
次に本発明の静電チャック1の製法について述べる。
まず、アルミナまたは窒化アルミニウムからなるセラミックスグリーンシートを複数枚重ね積層体を作製し、一方の主面にモリブデンペースト又はタングステンペーストからなる吸着電極4を印刷する。一方、別途セラミックスグリーンシートを複数枚重ね積層体を作製する。そして、加圧して圧着した後、一体に焼結させる。焼結体の外径を研削加工して、その後厚みを2mm以下に研削加工することにより吸着電極4を埋設させた板状セラミックス体を得る。
上記板状セラミックス体の所定の位置に吸着電極4を貫通する穴を開け、給電端子6a、6bをロウ付け接合する。そして、アルミニウムからなる導電性基体2とシリコン接着剤やエポキシ接着剤を使い接合し本発明の静電チャック1を得ることができる。
次に、導電性基体2として炭化珪素の多孔質体にアルミニウム合金を含浸させると同時に表面層をアルミニウム合金とした導電性基体2に陽極酸化膜を形成して耐プラズマの保護膜とし、酸化アルミニウムからなる非晶質セラミック絶縁膜5をスパッタ法により形成した静電チャック1について説明する。
平均粒径60μm程度の炭化珪素粉末に対し、酸化珪素(SiO2)粉末とバインダー及び溶媒を添加混練したあとスプレードライヤーにて顆粒を製作した。そして、この顆粒をラバープレス成形法にて円盤状の成形体を形成したあと、真空雰囲気下にて通常の焼成温度より低い1000℃程度の温度で焼成することにより、気孔率20%を有する、窒化珪素製の多孔質セラミック体を作製し、所望する形状に加工する。
そして、この多孔質セラミック体をプレス機のダイに装填し、このダイを680℃まで加熱したあと、溶融させた純度99%以上のアルミニウム合金をダイに充填し、パンチを降下させて98MPaにて加圧した。そして、この加圧状態のまま冷却することにより、気孔部に金属としてアルミニウム合金が充填された多孔質セラミック体を形成し、ダイのサイズは多孔質セラミック体のサイズより大きめのものを使用すると導電性基体2の表面の全面にアルミニウム合金層が形成され、所定の形状にすることにより導電性基体2を得ることができる。
そして上記導電性基体2の表面のアルミニウム合金層の表面を陽極酸化被膜処理を行いアルミニウムの陽極酸化膜を得ることができる。陽極酸化被膜処理は蓚酸または硫酸等の酸に導電性基体2を陽極として、炭素等を陰極として浸し電気分解すると、アルミニウム合金の表面にγ−Al203が被膜して生成する。この被膜は多孔質状であるため、該被膜を沸騰水に浸す、あるいは加熱蒸気と反応させることにより緻密なベーマイト(AlOOH)被膜からなる保護膜が得られる。
上記の保護膜を形成した導電性基体2に絶縁膜5を形成するには、絶縁膜5を形成する面の上記保護膜を切削加工で除去した後、導電性基体2表面の鏡面加工を行い、成膜面として仕上げる。
また、上記導電性基体2に保護膜としてアルミナ溶射膜を形成する場合は、導電性基体2の表面をブラスト処理等で粗面化したのちにアルミナの溶射を施す方が密着性を大きくできる。更にアルミナの溶射をする前の下地処理としてNi系の金属膜を溶射すると保護膜との密着性が大きく好ましい。アルミナの溶射膜は、40〜50μm程度のアルミナ粉末を大気プラズマや減圧プラズマで溶融・照射することで形成する。気密性を高めるために減圧プラズマで行うことが好ましい。
溶射膜のみでは開気孔が存在するため、有機珪素化合物や無機珪素化合物を含浸させて加熱することで封孔処理を行い保護膜とする。
上記導電性基体2の上記仕上げ面に形成する非晶質セラミックからなる絶縁膜5はスパッタによって作製する。平行平板型のスパッタ装置に絶縁膜5として成膜したい組成のターゲットをセットする。ここでは酸化アルミニウム焼結体をターゲットとし、該ターゲットと対向するように導電性基体2を銅製のホルダーの中にセットする。導電性基体2の裏面とホルダー表面はInとGaからなる液状合金を塗り貼り合わせることにより導電性基体2とホルダーとの間の熱伝達が大きくなり、導電性基体2の冷却効率を上げることができることから良質な非晶質セラミックからなる絶縁膜5を形成することができる。
このように導電性基体2をスパッタのチャンバー内にセットし、真空度を0.001Paとした後、アルゴンガスを25〜75sccm流す。
そして、ターゲットとホルダーの間にRF電圧をかけることによりプラズマが発生する。そして、ターゲットのプレスパッタ及びセラミック基体2側のエッチングを数分間行いターゲットと導電性基体2のクリーニングを行う。
酸化アルミニウム製の非晶質セラミックからなる絶縁膜5の成膜は上記のRF電力を3〜9W/cm2にしてスパッタを行う。また、導電性基体2側には−100〜−200V程度のバイアスをかけてターゲットから電離した分子及び電離したアルゴンイオンを引きつける。しかし、導電性基体2が絶縁されていると電離したアルゴンイオンにより導電性基体2の表面が帯電してしまい、次のアルゴンイオンが入りにくい状態になる。膜中に入ったアルゴンイオンは電荷を放出してアルゴンの状態に戻り、膜中に残留する。アルゴンを膜中に多く取り込むには成膜時に導電性基体2の給電口からInGa層、ホルダーの経路で電荷を逃がし、常にアルゴンを非晶質セラミックからなる絶縁膜5に取り込みやすい状態にしておくことが必要である。
また、導電性基体2の冷却が悪いと部分的に非晶質セラミックからなる絶縁膜5が非晶質から結晶化してしまい、部分的に耐電圧が悪くなったり、耐プラズマ性が悪くなってしまう。導電性基体2の冷却は装置の冷却板に冷却水を流すことで基板ホルダー内を充分冷却して導電性基体2の温度を数十度に保つことが良い。
絶縁膜5の成膜レートは3μm/時間にて17時間成膜し、約50μmの膜厚の非晶質セラミックからなる絶縁膜5を作製した。
その後、非晶質セラミック絶縁膜5の表面をポリッシング等で整えることにより載置面5aを形成し静電チャック1を完成する。載置面5aにはブラスト加工やエッチング加工により凹部を設けることができる。凹部とウェハWの間にはガスが充填されウェハWと載置面5aの間の熱伝導率を高めることができるとともに、非晶質セラミックスからなる載置面5aは表面粗さが小さくすることができることから、ウェハW表面と面接触により吸着することがあり、載置面5aの面積に対し50%以上の凹部を設けると面吸着によるウェハWの離脱特性の悪化を防止することができる。
直径298mmで、厚み28mmのSiC多孔質体にアルミニウム合金を含浸させ、側面と上下面に厚み1mmのアルミニウム合金層を設けたSiCが80質量%とアルミ合金が20質量%とからなる直径300mm、厚み30mmの導電性基体を得た。そして、その上面に非晶質セラミックからなる絶縁層を5〜50μmの厚みで成膜した。その後、その上に金メッキにより厚み1μmの吸着電極を形成し、導電性基体を貫通する孔を穿孔し絶縁チューブを介して給電端子を取り付けた後、更にその上に非晶質セラミックとしてアルミナ膜を5〜50μm成膜した。その後、成膜面を研磨加工し載置面として静電チャック試料No.31〜35を作製した。
また、試料No.31で使ったものと同じ導電性基体の上面にガラスコートした後、金メッキで吸着電極を形成したのち、全面にアルミナ溶射膜を設けた試料No.36と、陽極酸化膜を生成し、その上に10μmの非晶質酸化アルミニウム膜を形成した試料No.37を作製した。
また、アルミナ粉末に重量換算で0.5質量%の酸化カルシウムと酸化マグネシウムを添加し、ボールミルにより48時間混合した。得られたアルミナのスラリーを325メッシュを通し、ボールやボールミル壁の屑を取り除いた後、乾燥機にて120℃で24時間乾燥した。得られたアルミナ粉末にアクリル系のバインダーと溶媒を混合してアルミナのスラリーを作成した。このアルミナスラリーからドクターブレード法にてグリーンテープを作製した。
そして、上記グリーンテープを複数枚重ね積層体を作製し、一方の主面に炭化タングステンペーストからなる吸着電極を印刷した。一方、別途セラミックスグリーンシートを複数枚重ね積層体を作製し、加圧して圧着し積層体を作製した。
更に、窒素雰囲気で、Wヒータ及びW断熱材からなる焼成炉の中にて1600℃で2時間の焼成を行い、外径φ305mmで厚み2mmのアルミナ質の板状セラミックス体を得た。そして、外形φ300mmで厚みを0.8mmに研削加工し、吸着電極を貫通する穴を加工し給電端子をロウ付けした。
一方、直径300mmで厚みが30mmのアルミニウム合金からなる導電性基体に上記板状セラミックス体をシリコン接着剤で接合し静電チャック試料No.38を得た。
また、純度99%、平均粒径1.2μmのAlN粉末に、焼結助剤としてCeO2を15重量%添加した。更に有機バインダーと溶媒を加えて泥奬を作製し、ドクターブレード法にて厚さ約0.5mmの窒化アルミニウムグリーンシートを複数枚製作した。このうち一枚の窒化アルミニウムグリーンシートには、導体ペーストを吸着電極の形状にスクリーン印刷した。
上記静電吸着電極となる導体ペーストには、WC粉末とAlN粉末とを混合して粘度調整した導体ペーストを用いた。
そして、窒化アルミニウムグリーンシートを所定の順序で積み重ね、50℃で、4.9kPaの圧力で熱圧着することにより窒化アルミニウムグリーンシート積層体を形成し、切削加工を施して円盤状に形成した。
次いで、窒化アルミニウムグリーンシート積層体を真空脱脂した後、窒素雰囲気下で1850℃の温度で焼成することにより、静電吸着電極が埋設された窒化アルミニウム質焼結体からなる板状セラミックス体を製作した。
しかる後、得られた板状セラミックス体に研削加工を施して、外形300mm、板厚が1000μmから4000μmで、載置面から吸着電極までの距離と板状セラミックス体の裏面から吸着電極の距離が等しくなるように研削加工した後、上記載置面3にラップ加工を施し、その表面粗さを算術平均粗さ(Ra)で0.2μmに仕上げて載置面を形成するとともに、載置面と反対側の表面に、静電吸着電極と連通する穴を穿孔し、各穴に給電端子を挿入してロウ付けすることにより吸着電極を埋設した板状セラミックス体を得た。
そして、上記板状セラミックス体を試料No.31と同じアルミニウムとSiCからなる導電性基体にシリコン接着剤で接合し静電チャック試料No.39、40、41とした。
そして、載置面の温度変化や絶縁膜の絶縁破壊、クラック、剥離や耐プラズマ性やを評価した。
何れの試料にも中央部の載置面の中央部直下に熱電対を挿入する穴を設け、熱電対により載置面の温度変化を測定した。また、導電性基体には水冷用の流路を設け、温調した冷却水を定量供給した。
絶縁膜の絶縁破壊の評価は、吸着電極に3kV電圧を印加して絶縁破壊の有無を評価した。
また、耐プラズマ性の評価は、静電チャックの側面にカバーリングを設けて側面をカバーして、ウェハ載置面にウェハWを載せない状態で、ハロゲンガスとしてCl2を60sccm流しながら4Paの真空度として、載置面の上方に配置した対抗電極と導電性基体の間に2kWの高周波電力を供給しながらプラズマを対抗電極と載置面の間に発生させ100時間載置面にプラズマを曝した。その後、絶縁膜の状態を観察し、絶縁膜が腐食し導電性基体が露出していないものや、載置面の表面に凹凸が発生していないもの、板状セラミックス体と導電性基体との接着状態を観察した。また、プラズマ発生前の温度と発生後1時間後の載置面の温度の差を載置面の温度変化として評価した。
静電吸着力の測定は常温、真空中で行い、1インチ角のSiウェハを載置面に配置して、ウェハWと導電性基体2に500Vを印加し1分間経過後にSiウェハを引き上げ、その引き上げに要した力をロードセルで測定して、その値をSiウェハの面積で除して単位面積当たりの静電吸着力とした。また、残留吸着力の測定は真空中で行い、1インチ角のSiウェハを載置面に配置して、500Vを2分間印加した後、電圧を切り3秒後にSiウェハを引き上げ、その引き上げに要した力をロードセルで測定して、その値を載置面の1インチ角の面積で除して単位面積当たりの残留吸着力とした。
本発明の絶縁層と絶縁膜の総厚みが20〜2000μmである試料No.32〜40は載置面の温度変化が2℃以下と小さく、絶縁膜の絶縁破壊、クラックや剥離は見られず優れた特性を示すことが分かった。
一方、非晶質セラミックからなる絶縁膜の厚みが小さい試料No.31はクラックや剥離は見られなかったが、プラズマにより腐食し導電性基体が露出し短時間で使用できなかった。また、試料No.41は絶縁膜と絶縁層の総厚みが4000μmと大きく、載置面がプラズマで加熱され、載置面の温度が3.1℃も上昇し、ウェハWを所定の温度で加工処理することが難しかった。
また、試料No.32〜35は絶縁膜が非晶質セラミックからなることから載置面の温度変化が小さく、絶縁膜の絶縁破壊、クラックもなく、対プラズマ性が良好でありより優れた特性を示すことがわかった。
更に、試料No.32〜34は絶縁膜の厚みが10〜100μmで吸着力が2500N/m2以上と大きく残留吸着力は10Pa以下と更に優れた特性を示すことが分かった。
また、アルミニウムの陽極酸化膜の上に非晶質アルミナからなる絶縁膜を備えた試料No.37は、吸着力が3500N/m2と大きく好ましいが、残留吸着力が600N/m2とやや大きかった。この残留吸着力がやや大きいのは陽極酸化膜と非晶質アルミニウム酸化膜の体積固有抵抗が異なることが原因と考えられる。