JP2005029408A - 金属酸化物膜の形成方法 - Google Patents

金属酸化物膜の形成方法 Download PDF

Info

Publication number
JP2005029408A
JP2005029408A JP2003194656A JP2003194656A JP2005029408A JP 2005029408 A JP2005029408 A JP 2005029408A JP 2003194656 A JP2003194656 A JP 2003194656A JP 2003194656 A JP2003194656 A JP 2003194656A JP 2005029408 A JP2005029408 A JP 2005029408A
Authority
JP
Japan
Prior art keywords
metal
metal oxide
oxide
containing compound
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194656A
Other languages
English (en)
Inventor
Motohiro Arakawa
元博 荒川
Yumiko Mori
弓子 森
Mitsuo Takeda
光生 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003194656A priority Critical patent/JP2005029408A/ja
Publication of JP2005029408A publication Critical patent/JP2005029408A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】製膜後の各種物性、例えば電気的性質、特に表面抵抗値が、長期間にわたり安定性を保持し得る金属酸化物膜の形成方法を提供する。
【解決手段】本発明にかかる金属酸化物膜の形成方法は、金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として生成する金属酸化物を基材の表面に膜として定着させる、金属酸化物膜の形成方法において、前記生成途中および/または前記生成後の金属酸化物に紫外線照射することを特徴とする。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物膜の形成方法に関する。詳しくは、金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として生成する金属酸化物を基材の表面に膜として定着させる、金属酸化物膜の形成方法に関する。
【0002】
【従来の技術】
金属酸化物は、その金属原子の種類や、単一であるか複合であるかなどによって、さまざまな優れた機能を有することが知られており、従来から、その特性を活かして種々の用途に利用されている。さらに、これら金属酸化物を基材の表面に付着させて膜として形成し、各種機能性用途に利用することも提案されてきている。基材表面に金属酸化物の膜を形成させる方法としては、一般的には、▲1▼スパッタや真空蒸着等の気相法により形成する方法、▲2▼金属カルボン酸塩溶液を基材表面に塗布して熱分解する等の熱分解法により形成する方法、▲3▼一旦生成し物性的に安定した金属酸化物粒子を基材表面に塗布して乾燥することにより形成する方法などが知られている(例えば、特許文献1、特許文献2、特許文献3および特許文献4参照。)が、これらの方法においては、例えば、必要な装置等のコストが高く経済性に劣り生産性も低いという問題や、高温での処理行う必要があり基材の種類が制限され実用性に欠けるという問題や、結晶性に優れた良質な金属酸化物膜が得られにくいという問題などがあった。そこで、本出願人は、特願2002−319124号等に、これらの問題を解消し得る新たな方法として、簡便な方法により得ることができ生産性や経済的に優れるとともに、金属酸化物含有率が高いものを比較的低温で生成・形成することができ、広範囲な種類の基材に形成させることができ、造膜性や機械的強度および密着性に優れた膜を得ることができる、金属酸化物膜の形成方法を既に提案している。
【0003】
【特許文献1】
特公平3−72011号公報
【0004】
【特許文献2】
特開平5−339742号公報
【0005】
【特許文献3】
特公平7−115888号公報
【0006】
【特許文献4】
特開平9−161561号公報
【0007】
【発明が解決しようとする課題】
本発明者は、上記の方法で製造した金属酸化膜の物理的性質について種々検討している中で、金属酸化膜の各種物性、例えば電気的性質、特に表面抵抗値について非常に不安定な場合があることに気づいた。
そこで、本発明の解決しようとする課題は、製膜後の各種物性、例えば電気的性質、特に表面抵抗値が、長期間にわたり安定性を保持し得る金属酸化物膜の形成方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討を行い、以下の知見を得た。すなわち、製膜後の酸化亜鉛膜を遮光状態下等に置いておくと、例えばその表面抵抗値が製膜後から数日にわたり徐々に低下し続けた後(導電性が増し続けた後)安定するという現象が見られるが、製膜後に紫外線照射しておくと、この表面抵抗値は素早く低下し、かつ、その後は長期間安定状態を保っていることが分かった。工業的製造過程では、製膜後の製品をパッケージングしたりロール巻きしたりすることがあり、パッケージ内部やロール内部の膜は暗所に置かれているのと同じ遮光状態になるため、製膜後の製品は、例えば上述のように表面抵抗値がだらだらと低下し続け(導電性が増し続け)、特にその間は同種の製品内においても電気的性質の不均一が生じる。製膜後の製品をパッケージングしたりロール巻きしたりする前に膜全体に紫外線照射しておくと、このような電気的性質の不均一が生じない。
【0009】
以上の知見に基づき、本発明者は、以下に記載する、本発明を完成した。
すなわち、本発明にかかる金属酸化物膜の形成方法は、金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として生成する金属酸化物を基材の表面に膜として定着させる、金属酸化物膜の形成方法において、前記生成途中および/または前記生成後の金属酸化物に紫外線照射することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明にかかる金属酸化物膜の形成方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
本発明にかかる金属酸化物膜の形成方法(以下、本発明の方法と称することがある。)は、前述したように、金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として用い、これらにより生成する金属酸化物を膜として基材の表面に定着させる方法であり、前記生成途中か、および/または、前記生成後の金属酸化物に、紫外線(UV)を照射するようにしている。好ましくは、上記出発原料を混合すると同時かまたはその後に該混合系を高温状態にする方法であり、このような過程を経て生成する金属酸化物を膜として基材の表面に定着させるようにする。
【0011】
以下に、まず本発明の特徴である紫外線(UV)照射について説明し、引き続き、本発明を実施するための一般的な金属酸化物膜の形成方法の説明をする。
本発明の方法は、後述する特定の組み合わせの化合物を出発原料として基材の表面に膜として金属酸化物を生成させるが、この生成反応の途中か、および/または、この生成反応後の金属酸化物に、紫外線(UV)を照射することが重要である。ここに言う「照射」は、紫外線発光装置を用いての照射に限ることはなく、金属酸化膜の物性、例えば電気的性質、特に表面抵抗値が安定するまでの間、膜を、紫外光を含む明るいところに曝しておくことをも含むとする。
【0012】
紫外線(UV)照射のタイミングは、上述のごとく、金属酸化物の生成反応の途中か、および/または、生成反応後であるが、好ましくは、生成反応中である。金属酸化膜の物性変化は、金属酸化物の生成直後から起きるからである。
照射する紫外線(UV)の波長は、本発明の効果が得られるよう適宜設定することができ、特に限定はされないが、例えば、400nm以下とすることが好ましい。上記波長が400nmを超えると、本発明の効果が十分に得られないおそれがある。
紫外線(UV)の照射時間は、特に限定はされず、金属酸化物の種類や膜の厚み等により、本発明の効果が得られるよう適宜設定することができる。
【0013】
本発明の方法において、上記紫外線(UV)の照射に用いることのできる装置としては、特に限定はされないが、例えば、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ArFエキシマレーザー、KrFエキシマレーザーおよびエキシマランプなどが挙げられる。
本発明の金属酸化物の形成方法においては、出発原料となる特定の組み合わせとして、金属カルボン酸塩とアルコール(以下、組み合わせAと称することがある。)、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物(以下、組み合わせBと称することがある。)を用いるようにしている。
【0014】
組み合わせAにおける金属カルボン酸塩としては、具体的には、分子内にカルボキシル基の水素原子が金属原子で置換された結合を少なくとも1つ有する化合物であり、カルボキシル基としては、例えば、飽和モノカルボン酸、不飽和モノカルボン酸、飽和多価カルボン酸、不飽和多価カルボン酸などの鎖式カルボン酸;環式飽和カルボン酸;芳香族モノカルボン酸、芳香族不飽和多価カルボン酸などの芳香族カルボン酸;さらに分子内にヒドロキシル基、アミノ基、ニトロ基、アルコキシ基、スルホン基、シアノ基、ハロゲン原子等の官能基または原子団を有する化合物などの金属塩;などを好ましく用いることができるが、特にこれらに限定はされるわけではない。なかでも、下記一般式(I):
M(O)(m−x−y−z)/2(OCOR(OH)(OR (I)
(但し、Mはm価の金属原子;Rは、水素原子、置換基があってもよいアルキル基、シクロアルキル基、アリール基およびアラルキル基から選ばれた少なくとも1種;Rは、置換基があってもよいアルキル基、シクロアルキル基、アリール基およびアラルキル基から選ばれた少なくとも1種;m、x、yおよびzは、x+y+z≦m、0<x≦m、0≦y<m、0≦z<mを満たす。)
で表される化合物のように上記した金属カルボン酸塩またはカルボン酸残基の一部が水酸基やアルコキシ基で置換されたものや、後述のカルボキシル基含有化合物の金属塩や、塩基性酢酸塩などを好ましく挙げることができる。なかでも、後述のカルボキシル基含有化合物の金属塩の中の金属飽和カルボン酸塩や金属不飽和カルボン酸塩がより好ましく、さらに好ましくは上記一般式(I)で表される金属(M)カルボン酸塩であり、最も好ましくは金属酢酸塩や金属プロピオン酸塩であり、金属(M)がZnである場合は金属酢酸塩が特に好ましい。なお、上記金属カルボン酸塩は、結晶水を含む金属カルボン酸塩の水和物であってもよいが、無水物であることが好ましい。
【0015】
上記金属カルボン酸塩に含まれる金属(M)としては(一般式(I)中の金属元素(M)も含む)、特に限定はされないが、具体的には、例えば、1A族、2A族、3A族、4A族、5A族、6A族、7A族、8族、ランタノイド元素、アクチノイド元素、1B族、2B族、3B族、4B族、5B族、6B族に含まれる金属元素を挙げることができ、これらの中でも、例えば、Sr、Ce、Y、Ti、V、Nb、Ta、Cr、Mn、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Zn、Cd、Al、Ga、In、Ge、Sn、SbおよびLa等の金属元素が、本発明においては好適である。これらは1種のみでも2種以上併存していてもよい。金属カルボン酸塩としては、上記列挙した以外に、シュウ酸バリウムチタニル等の複合金属カルボン酸塩等も好適である。なお、本明細書においては、周期表は、改訂5版「化学便覧(日本化学会編)」(丸善株式会社より出版)に掲載されている「元素の周期表(1993年)」を用い、族番号は亜族方式により表記する。
【0016】
組み合わせAにおけるアルコールとしては、特に限定はないが、例えば、脂肪族1価アルコール(メタノール、エタノール、イソプロピルアルコール、n−ブタノール、t−ブチルアルコール、ステアリルアルコール等)、脂肪族不飽和1価アルコール(アリルアルコール、クロチルアルコール、プロパギルアルコール等)、脂環式1価アルコール(シクロペンタノール、シクロヘキサノール等)、芳香族1価アルコール(ベンジルアルコール、シンナミルアルコール、メチルフェニルカルビノール等)、フェノール類(エチルフェノール、オクチルフェノール、カテコール、キシレノール、グアヤコール、p−クミルフェノール、クレゾール、m−クレゾール、o−クレゾール、p−クレゾール、ドデシルフェノール、ナフトール、ノニルフェノール、フェノール、ベンジルフェノール、p−メトキシエチルフェノール等)、複素環式1価アルコール(フルフリルアルコール等)等の1価アルコール類;アルキレングリコール(エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、ピナコール、ジエチレングリコール、トリエチレングリコール等)、脂環式グリコール(シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール等)、および、ポリオキシアルキレングリコール(ポリエチレングリコール、ポリプロピレングリコール等)等のグリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、3−メチル−3−メトキシブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、エチレングリコールモノアセテート等の上記グリコール類のモノエーテルまたはモノエステル等の誘導体;グリセリンやトリメチロールエタン等の3価アルコール、エリスリトールやペンタエリスリトール等の4価アルコール、リピトールやキシリトール等の5価アルコール、ソルビトール等の6価アルコール等の3価以上の多価アルコール、ヒドロベンゾイン、ベンズピナコール、フタリルアルコール等の多価芳香族アルコール、カテコール、レゾルシン、ヒドロキノン等の2価フェノールや、ピロガロール、フロログルシン等の3価フェノール等の多価フェノール、および、これら多価アルコール類におけるOH基の一部(1〜(n−1)個(ただし、nは1分子当たりのOH基の数))がエステル結合またはエーテル結合となった誘導体;等を挙げることができる。
【0017】
上記アルコールとしては、なかでも、後述する金属錯体モノマーやその誘導体をより低い温度状態で得やすく且つ金属カルボン酸塩と反応して後述する予備反応物さらには金属酸化物を生成し易いアルコールが好ましく、アルコール性水酸基に関して3級、さらには2級、特に1級の水酸基を有するアルコールが、より低い温度状態で金属酸化物が得られるため、最も好ましい。同様の理由で、脂肪族アルコールも好ましい。
本発明の方法においては、上記出発原料となる金属カルボン酸塩とアルコールとの混合系とは、該金属カルボン酸塩およびアルコールをそれぞれ少なくとも一部ずつ混ぜ合わせた段階以降の系を意味する。この混合系の内部状態としては、金属カルボン酸塩およびアルコールのいずれもが原料状態の化学構造を変化させずに存在している状態であることに限らず、例えば、金属カルボン酸塩およびアルコールの少なくとも1つが溶解状態下で特有の化学構造に変化して存在している状態であってもよいし、金属カルボン酸塩とアルコールとがこれらの予備反応物となって存在している状態であってもよく、すなわち、出発原料そのままの状態から何れの状態に変化して存在していてもよい。
【0018】
ここでいう予備反応物(以下、予備反応物aと称することがある。)は、金属カルボン酸塩とアルコールとから得られるものであって、金属カルボン酸塩とアルコールとの反応による反応物として金属酸化物(以下、金属酸化物Aと称することがある。)が生成されるまでの任意の段階の状態の反応中間体であり、生成される金属酸化物Aに対する前駆体(金属酸化物前駆体)である。すなわち、予備反応物aは、出発原料としての金属カルボン酸塩でもアルコールでもなく、両者の反応物ではあるが、生成される金属酸化物Aでもない金属酸化物前駆体である。なお、上述の金属酸化物Aが生成されるまでの任意の段階の状態とは、用いた金属カルボン酸塩のうちの50重量%以上が粒径5nm以上の粒子状の金属酸化物Aの生成が認められる前の状態をいうとする。
【0019】
また、上記予備反応物aは、例えば、アルコールまたはアルコールを含む溶媒に金属カルボン酸塩を溶解させるだけで直ちに得られる場合もあるが、好ましくは金属カルボン酸塩とアルコールとの混合と、緩やかな昇温(金属酸化物Aが得られる高温状態にするよりも緩やかな条件下での昇温)と、好ましくは加圧下の加熱とにより得られる。予備反応物aは溶液状態であることが好ましい。
予備反応物aとしては、特に限定はされないが、例えば、1)金属カルボン酸塩の金属原子に、アルコールまたはアルコキシ基が配位(吸着による配位も含む。)してなる金属錯体モノマー(この場合、カルボキシル基の一部がアルコールのアルコキシ基で置換された錯体も含まれる。)、2)金属カルボン酸塩が酸素原子を介して「金属−酸素−金属」の結合が形成されてなる縮合物に原料のカルボン酸基(−COO基)以外にさらにアルコールまたはアルコキシ基が配位(吸着による配位も含む。)してなる化合物(金属錯体モノマー誘導体)、などが好ましく挙げられる。なかでも、1)でいう金属錯体モノマーがより好ましく挙げられる。また、上記金属錯体モノマーは、上述のような方法以外によっても得ることができる。上述の方法以外によって得られた金属錯体モノマーを上記混合系にさらに加えて高温状態にすることにより金属酸化物を得ることもできる。
【0020】
出発原料となる上記金属カルボン酸塩とアルコールとの使用量に関しては、特に限定はないが、金属カルボン酸塩の金属換算原子数に対するアルコール中の(アルコール由来の)水酸基の数の比が、0.8〜1000となるようにすることが好ましい。また、上記使用量に関しては、金属カルボン酸塩の有するカルボキシル基の総数に対するアルコール中の(アルコール由来の)水酸基の総数の比が、0.8〜100となるようにすることも好ましく、より好ましくは1〜50、さらに好ましくは1〜20である。
金属カルボン酸塩とアルコールとの混合系は、ペースト状、懸濁液状、溶液状などの流動性のある液状であることが好ましい。さらに、必要に応じて、後述する反応溶媒をも混合することによって、上記液状としてもよい。通常、金属カルボン酸塩は、特に限定はされないが、金属カルボン酸塩とアルコールとの混合系においては、粒子状で分散した状態、溶解した状態、または、一部が溶解した状態で残りが粒子状で分散している状態、などの状態で存在する。
【0021】
組み合わせBにおける金属アルコキシ基含有化合物としては、特に限定はないが、例えば、下記一般式(II)で示される化合物、または該化合物が(部分)加水分解・縮合してなる縮合物を挙げることができる。
M’(OR (II)
(但し、M’は、金属原子;Rは、水素原子、置換されていてもよいアルキル基、シクロアルキル基、アシル基、アラルキル基、アリール基から選ばれた少なくとも1種;nは金属原子Mの価数)
一般式(II)中、Rとしては、水素原子および/またはアルコキシアルキル基の如く置換されていてもよいアルキル基が好ましい。
【0022】
一般式(II)中、金属(M’)としては、上記金属カルボン酸塩に含まれる金属(M)を挙げることができ、好ましいものについても同様である。
金属アルコキシ基含有化合物は、上記で説明したもの以外であってもよく、例えば、ヘテロ金属アルコキシド(ヘテロ金属オキソアルコキシ基含有化合物も含む)であってもよい。なお、ヘテロ金属アルコキシドとは、2個以上の異なる金属原子を有し、アルコキシ基や酸素原子を介したり、金属−金属結合等によって結ばれた金属アルコキシドのことである。ヘテロ金属アルコキシ基含有化合物を用いた場合は、複合酸化物からなる金属酸化物膜を得ることができる。
【0023】
組み合わせBにおけるカルボキシル基含有化合物としては、分子内にカルボキシル基を少なくとも1つ有する化合物であれば、特に限定はなく、例えば、ギ酸、酢酸、プロピオン酸、イソ酪酸、カプロン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸(飽和モノカルボン酸)、アクリル酸、メタクリル酸、クロトン酸、オレイン酸、リノレン酸等の不飽和脂肪酸(不飽和モノカルボン酸)、シュウ酸、マロン酸、コハク酸、アジピン酸、スベリン酸、β,β−ジメチルグルタル酸等の飽和多価カルボン酸、マレイン酸、フマル酸等の不飽和多価カルボン酸等の鎖式カルボン酸類、シクロヘキサンカルボン酸等の環式飽和カルボン酸類、安息香酸、フェニル酢酸、トルイル酸等の芳香族モノカルボン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸、トリメリット酸等の不飽和多価カルボン酸等の芳香族カルボン酸類、無水酢酸、無水マレイン酸、ピロメリット酸無水物等のカルボン酸無水物、トリフルオロ酢酸、o−クロロ安息香酸、o−ニトロ安息香酸、 アントラニル酸、p−アミノ安息香酸、アニス酸(p−メトキシ安息香酸)、トルイル酸、乳酸、サリチル酸(o−ヒドロキシ安息香酸)等の分子内にカルボキシル基以外のヒドロキシル基、アミノ基、ニトロ基、アルコキシ基、スルホン酸基、シアノ基、ハロゲン原子等の官能基または原子団を有する化合物、アクリル酸ホモポリマー、アクリル酸−メタクリル酸メチル共重合体等、重合体原料として上記不飽和カルボン酸を少なくとも1つ有する重合体を挙げることができる。これらのカルボキシル基含有化合物のなかでも、後述する金属錯体モノマーやその誘導体を得やすく且つより低い温度状態で金属酸化物が得られ易いという点でアルコールと反応して後述する予備反応物さらには金属酸化物の形成をより低い温度で起こし易い化合物が好ましく、水中(25℃、0.1モル/L)での酸解離定数pKaが4.5〜5であるものがより好ましく、具体的には、飽和カルボン酸が好ましく、さらに、立体的にも反応性が高い点で酢酸が最も好ましい。また、カルボキシル基含有化合物が液体の場合は、後述の反応溶媒としても用いることもできる。
【0024】
本発明の方法においては、上記出発原料となる金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合系とは、該金属アルコキシ基含有化合物およびカルボキシル基含有化合物をそれぞれ少なくとも一部ずつ混ぜ合わせた段階以降の系を意味する。この混合系の内部状態としては、金属アルコキシ基含有化合物およびカルボキシル基含有化合物のいずれもが原料状態の化学構造を変化させずに存在している状態であることに限らず、例えば、金属アルコキシ基含有化合物およびカルボキシル基含有化合物の少なくとも1つが溶解状態下で特有の化学構造に変化して存在している状態であってもよいし、金属アルコキシ基含有化合物とカルボキシル基含有化合物とがこれらの予備反応物となって存在している状態であってもよく、すなわち、出発原料そのままの状態から何れの状態に変化して存在していてもよい。
【0025】
ここでいう予備反応物(以下、予備反応物bと称することがある。)は、金属アルコキシ基含有化合物とカルボキシル基含有化合物とから得られるものであって、金属アルコキシ基含有化合物とカルボキシル基含有化合物との反応による反応物として金属酸化物(以下、金属酸化物Bと称することがある。)が生成されるまでの任意の段階の状態の反応中間体であり、生成される金属酸化物Bに対する前駆体(金属酸化物前駆体)である。すなわち、予備反応物bは、出発原料としての金属アルコキシ基含有化合物でもカルボキシル基含有化合物でもなく、両者の反応物ではあるが、生成される金属酸化物Bでもない金属酸化物前駆体である。なお、上述の金属酸化物Bが生成されるまでの任意の段階の状態とは、用いた金属アルコキシ基含有化合物のうちの50重量%以上が粒径5nm以上の粒子状の金属酸化物Bの生成が認められる前の状態をいうとする。
【0026】
また、上記予備反応物bは、例えば、カルボキシル基含有化合物またはカルボキシル基含有化合物を含む溶媒に金属アルコキシ基含有化合物を溶解させるだけで直ちに得られる場合もあるが、好ましくは金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合と、緩やかな昇温(金属酸化物Bが得られる高温状態にするよりも緩やかな条件下での昇温)と、好ましくは加圧下での加熱とにより得られる。予備反応物bは溶液状態であることが好ましい。
予備反応物bとしては、特に限定はされないが、例えば、1)金属アルコキシ基含有化合物の金属原子に、カルボキシル基含有化合物が−COOH基または−COO基を介して配位(吸着による配位も含む。)してなる金属錯体モノマー(この場合、アルコキシ基の一部がカルボキシ基で置換された錯体も含まれる。)、2)金属アルコキシ基含有化合物が酸素原子を介して「金属−酸素−金属」の結合が形成されてなる縮合物に原料のアルコキシ基以外にさらにカルボキシル基含有化合物が配位(吸着による配位も含む。)してなる化合物(金属錯体モノマー誘導体)、などが好ましく挙げられる。なかでも、1)でいう金属錯体モノマーがより好ましく挙げられる。また、上記金属錯体モノマーは、上述のような方法以外の方法によっても得ることができる。上述の方法以外によって得られた金属錯体モノマーをさらに加熱することにより金属酸化物を得ることもできる。
【0027】
出発原料となる金属アルコキシ基含有化合物とカルボキシル基含有化合物との使用量に関しては、それらの配合割合(カルボキシル基含有化合物/金属アルコキシ基含有化合物)が、特に限定はされないが、金属アルコキシ基含有化合物に含有されている金属原子Mの平均原子価数Navを用いて、好ましくは下限が0.8Nav超、さらに好ましくは1.2Nav超であり、また、好ましくは上限が10Nav未満である。ここで、平均原子価数Navは、金属アルコキシ基含有化合物として、含有金属元素の異なるp種の金属アルコキシ基含有化合物(含有金属元素がそれぞれM1、M2、M3、・・・、Mpであるp種の金属アルコキシ基含有化合物(2≦p))を併せて用いる場合、下記数式:
【0028】
【数1】
Figure 2005029408
【0029】
(数式中、Niは、金属Miの原子価(価数)を表す。また、Xiは、金属アルコキシ基含有化合物として用いた金属元素Miのモル数を表す。pは2以上の整数である。)
から算出することができる。また、出発原料として用いたカルボキシル基含有化合物の総量に含まれるカルボキシル基の数が、出発原料として用いた金属アルコキシ基含有化合物の総量に含まれるアルコキシ基の数N’に対して、0.8N’超であることが好ましく、1N’〜10N’が特に好ましい。なお、数値範囲を表す際に、数値の後ろに「超」と付した場合は、その数値を含まずそれより大きい数値範囲を示すものとする。
【0030】
金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合系は、ペースト状、懸濁液状、溶液状などの流動性のある液状であることが好ましい。さらに、必要に応じて、後述する反応溶媒をも混合することによって、上記液状としてもよい。通常、金属アルコキシ基含有化合物は、特に限定はされないが、金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合系においては、粒子状で分散した状態、溶解した状態、または、一部が溶解した状態で残りが粒子状で分散している状態、などの状態で存在する。
金属カルボン酸塩とアルコールとを出発原料として金属酸化物Aを得るか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として金属酸化物Bを得るにあたっては、さらに反応溶媒を用いてもよい。具体的には、これら出発原料を混合するにあたり、あるいは、これら出発原料の混合系を高温状態にするにあたり、さらに反応溶媒を加えた上で行うようにすればよい。
【0031】
反応溶媒をも用いる場合、その使用量については、特に限定はないが、金属酸化物Aを得る場合は、出発原料として用いた全ての金属カルボン酸塩およびアルコールと反応溶媒との合計使用量に対する、上記全ての金属カルボン酸塩の合計使用量の割合が0.1〜50重量%となるようにすることが好ましい。同様に、金属酸化物Bを得る場合は、出発原料として用いた全ての金属アルコキシ基含有化合物およびカルボキシル基含有化合物と反応溶媒との合計使用量に対する、上記全ての金属アルコキシ基含有化合物の合計使用量の割合が0.1〜50重量%となるようにすることが好ましい。これによって、金属酸化物を経済的に得ることができる。
【0032】
上記反応溶媒としては、水以外の溶媒、すなわち、非水溶媒が好ましい。非水溶媒としては、例えば、エチルベンゼン、オクタン、キシレン類、シクロヘキサン、シクロヘキシルベンゼン、ジメチルナフタレン、スチレン、ソルベントナフサ、デカリン、デカン、テトラリン、ドデシルベンゼン、トルエン、メチルシクロヘキサン、メチルシクロペンタン、流動パラフィン等の炭化水素;各種ハロゲン化炭化水素;アルコール(フェノール類や、多価アルコールおよびその誘導体で水酸基を有する化合物なども含む);アニソール、エピクロロヒドリン、エポキシブタン、クラウンエーテル類、ジイソアミルエーテル、ジエチルアセタート、ジオキサン、ジグリシジルエーテル、ジフェニルエーテル、ジブチルエーテル、ジベンジルエーテル、ジメチルエーテル、メチル−t−ブチルエーテル等のエーテルおよびアセタール;アセチルアセトン、アセトアルデヒド、アセトフェノン、アセトン、イソホロン、エチル−n−ブチルケトン、ジアセトンアルコール、ジイソブチルケトン、シクロヘキサノン、ジ−n−プロピルケトン、ホロン、メシチルオキシド、メチル−n−アミルケトン、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノン、メチル−n−ヘプチルケトン等のケトンおよびアルデヒド;アジピン酸ジエチル、アセチルクエン酸トリエチル、アセト酢酸エチル、アビエチン酸メチル、安息香酸ベンジル、安息香酸メチル、イソ吉草酸イソアミル、イソ吉草酸エチル、ギ酸プロピル、クエン酸トリブチル、ケイ皮酸メチル、酢酸2−エチルヘキシル、酢酸シクロヘキシル、酢酸n−ブチル、酢酸ベンジル、酢酸メチル、酢酸メチルシクロヘキシル、サリチル酸ベンジル、サリチル酸メチル、シュウ酸ジブチル、酒石酸ジエチル、ステアリン酸エチル、ステアリン酸ブチル、セバシン酸ジオクチル、セバシン酸ジブチル、炭酸ジフェニル、炭酸ジメチル、乳酸ブチル、乳酸メチル、フタル酸ジオクチル、フタル酸ジメチル、γ−ブチロラクトン、プロピオン酸ブチル、プロピオン酸ベンジル、プロピオン酸メチル、ホウ酸エステル類、マレイン酸ジオクチル、マロン酸ジメチル、酪酸イソアミル、酪酸メチル、リン酸エステル類等のエステル;エチレンカーボナート、プロピレンカーボネート、エチレングリコールジアセタート、エチレングリコールジエチルエーテル、エチレングリコールジグリシジルエーテル、エチレングリコールジブチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジアセタート、ジプロピレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールジベンゾエート、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、トリエチレングリコールジ−2−エチルブチラート、トリエチレングリコールジメチルエーテル、ポリエチレングリコール脂肪酸ジエステル、両末端に水酸基を有しないポリ(オキシエチレン−オキシプロピレン)誘導体等の多価アルコール類のすべての水酸基の水素がアルキル基やアシル基で置換された誘導体化合物;カルボン酸およびその無水物や、シリコーン油、鉱物油等を挙げることができる。反応溶媒としては、親水性溶媒が特に好ましい。具体的には、常温(25℃)において、水を5重量%以上含み溶液状態になり得る溶媒が好ましく、任意の量の水を含み溶液状態になり得る溶媒がより好ましい。
【0033】
上記アルコール(フェノールや、多価アルコールおよびその誘導体で水酸基を有する化合物を含む。以下、アルコールと示す場合は同様とする。)としては、金属酸化物Aを得る場合に用いるアルコールとして列挙したものと同様のものを好ましく挙げることができる。
反応溶媒としては、さらに、アミンやアルカノールアミン等のいわゆるアミン類を用いることもできるが、該アミン類は、大量に用いると(具体的には、出発原料を混合したものに含まれる金属の原子数と同量もしくは多い量を用いると)、予備反応物aや予備反応物bの生成が阻害されたり、金属酸化物Aや金属酸化物Bの生成反応が阻害されることがある。よって、該アミン類を反応溶媒として使用する場合は、金属カルボン酸塩または金属アルコキシ基含有化合物の金属換算原子数に対するモル比で0.1以下となる量を使用することが好ましい。
【0034】
金属酸化物Bを得る場合は、反応溶媒としては、特に、非水溶媒のうちでも、アルコール性またはフェノール性水酸基を有しない非水溶媒である非アルコール性有機溶媒が好ましく、これを用いた際の反応収率が高い。非アルコール性有機溶媒としては、例えば、炭化水素;ハロゲン化炭化水素; エーテルおよびアセタール;ケトンおよびアルデヒド;エステル;多価アルコール類のすべての水酸基の水素がアルキル基やアセトキシ基で置換された誘導体化合物;カルボン酸およびその無水物や、シリコーン油、鉱物油等を挙げることができる。これらの非アルコール性有機溶媒のなかでも、エーテルおよびアセタール;ケトンおよびアルデヒド;エステル;多価アルコール類のすべての水酸基の活性水素がアルキル基やアセトキシ基で置換された誘導体化合物等が好ましい。
【0035】
金属酸化物Aは、前述したように、出発原料を金属カルボン酸塩とアルコールとし、これらの混合系を高温状態にすることにより得られることが好ましいが、上記混合系を高温状態にするとは、上記混合系の温度を常温よりも高い温度であって金属酸化物Aが生成し得る温度、またはそれ以上の温度に昇温することである。上記高温状態の温度(金属酸化物Aが生成し得る温度)は、得ようとする金属酸化物の種類等によって異なるが、通常50℃以上であり、結晶性の高い金属酸化物を得るためには、100℃以上が好ましく、さらに100〜300℃の範囲であるのが好ましい。
【0036】
上記混合系を高温状態にする際の具体的な昇温手段(予備反応物aを得る場合に緩やかな高温状態にする際の昇温手段も含む)としては、ヒーター、温風や熱風による加熱が一般的であるが、これらに制限されるものではない。混合系を高温状態にする際は、常圧下、加圧下、減圧下のいずれの圧力下で行ってもよく、特に限定はされないが、加圧下で出発原料を加熱等により高温状態にすることがより好ましい。また、反応溶媒等の沸点が金属酸化物Aの生成される反応温度よりも低い場合は、耐圧反応装置を用いて行うことも好ましい。通常、反応温度、反応時の気相圧は、溶媒となる成分の臨界点以下で行うが、超臨界条件で行うこともできる。
【0037】
金属酸化物Aを生成させる場合においては、金属カルボン酸塩とアルコールとの混合系に含まれる水分が少ない方が、得られる金属酸化物の欠陥が少なくなるため好ましい。具体的には、上記混合系中に、出発原料として使用した金属カルボン酸塩中の金属原子に対してモル比で4未満のわずかな水分しか含有しないことが好ましく、水分がモル比で1未満であるとさらに好ましく、0.5未満であると特に好ましく、0.1未満が最も好ましい。
本発明の方法では、金属酸化物Aは金属カルボン酸塩とアルコールとの混合系を高温状態にすることにより得ることができるが、該高温状態は、金属カルボン酸塩とアルコールとを混合すると同時かまたは混合した後に得られていればよく、すなわち、上記混合系を得るための出発原料の混合と、該混合系を高温状態にするための昇温とは、別々となるようにしてもよいし、同時(一部同時も含む)となるようにしてもよく、特に限定はされない。より詳しくは、上記混合系の昇温のための具体的手段(例えば加熱等)は、上記出発原料の混合に関わらず任意の方法・タイミングで行うことができ、例えば、混合前の出発原料の少なくとも一方を加熱等しておくことで混合と同時に該混合系を昇温させるようにしてもよいし、混合して得られる混合系に対して、該混合をしながらか又は該混合を終了した後で、加熱等を施し該混合系を昇温させるようにしてもよく、特に限定はされない。したがって、この混合と、昇温のための加熱等とのタイミングとしては、特に限定はされないが、具体的には、例えば、1)金属カルボン酸塩とアルコールとを混合しておいて、これを加熱等により昇温し高温状態にする、2)アルコールを所定温度に加熱等しておき、これに金属カルボン酸塩を混合することで、混合系を昇温させ高温状態にする、3)反応溶媒と金属カルボン酸塩とを混合して所定温度に加熱等しておき、これにアルコールを混合することで、混合系を昇温させ高温状態にする、4)各成分(金属カルボン酸塩およびアルコール、および必要に応じて反応溶媒)を別々に加熱等しておいた後、これらを混合することで、混合系を昇温させ高温状態にする、5)金属カルボン酸塩とアルコールとを混合(および、必要により、上記高温状態にするよりも緩やかな条件下で加熱等)して予備反応物aを得ておいて、これを加熱等により昇温し高温状態にする、等が好ましく挙げられる。
【0038】
なお、予備反応物aを、金属カルボン酸塩とアルコールとの、混合、および、上記高温状態にするよりも緩やかな条件下での加熱等により得る場合、該混合と該昇温のための加熱等とのタイミングとしては、上述した金属酸化物Aを得る際の混合と昇温のための加熱等とのタイミングと同様であることが好ましい。
金属酸化物Bは、上述のように、出発原料を金属アルコキシ基含有化合物とカルボキシル基含有化合物とし、これらの混合系を高温状態にすることにより得られるものが好ましいが、上記混合系を高温状態にするとは、上記混合系の温度を常温よりも高い温度であって金属酸化物Bが生成し得る温度、またはそれ以上の温度に昇温することである。上記高温状態の温度(金属酸化物Bが生成し得る温度)は、得ようとする金属酸化物の種類等によって異なるが、通常50℃以上であり、結晶性の高い金属酸化物を得るためには、100℃以上が好ましく、さらに100〜300℃の範囲であるのが好ましい。
【0039】
上記混合系を高温状態にする際の具体的な昇温手段(予備反応物bを得る場合に緩やかな高温状態にする際の昇温手段も含む)としては、前述の金属酸化物Aを得る場合と同様の手段が採用できる。混合系を高温状態にする際は、常圧下、加圧下、減圧下のいずれの圧力下で行ってもよく、特に限定はされないが、加圧下で出発原料を加熱等により高温状態にすることがより好ましい。また、反応溶媒等の沸点が金属酸化物Bの生成される反応温度よりも低い場合は、耐圧反応装置を用いて行うことも好ましい。通常、反応温度、反応時の気相圧は、溶媒の臨界点以下で行うが、超臨界状態で行うこともできる。
【0040】
金属酸化物Bを生成させる場合においては、金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合系に含まれる水分が少ない方が、得られる金属酸化物の欠陥が少なくなるため好ましい。具体的には、上記混合系中に、出発原料として使用した金属アルコキシ基含有化合物中の金属原子に対してモル比で1未満のわずかな水分しか含有しないことが好ましく、水分がモル比で0.2未満であるとさらに好ましく、0.1未満であると特に好ましい。
本発明の方法においては、金属酸化物Bは金属アルコキシ基含有化合物とカルボキシル基含有化合物との混合系を高温状態にすることにより得ることができるが、該高温状態は、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを混合すると同時かまたは混合した後に得られていればよく、すなわち、上記混合系を得るための出発原料の混合と、該混合系を高温状態にするための昇温とは、別々となるようにしてもよいし、同時(一部同時も含む)となるようにしてもよく、特に限定はされない。より詳しくは、上記混合系の昇温のための具体的手段(例えば加熱等)は、上記出発原料の混合に関わらず任意の方法・タイミングで行うことができ、例えば、混合前の出発原料の少なくとも一方を加熱等しておくことで混合と同時に該混合系を昇温させるようにしてもよいし、混合して得られる混合系に対して、該混合をしながらか又は該混合を終了した後で、加熱等を施し該混合系を昇温させるようにしてもよく、特に限定はされない。したがって、この混合と、昇温のための加熱等とのタイミングとしては、特に限定はされないが、具体的には、例えば、1)金属アルコキシ基含有化合物とカルボキシル基含有化合物とを混合しておいて、これを加熱等により昇温し高温状態にする、2)カルボキシル基含有化合物を所定温度に加熱等しておき、これに金属アルコキシ基含有化合物を混合することで、混合系を昇温させ高温状態にする、3)反応溶媒と金属アルコキシ基含有化合物とを混合して所定温度に加熱等しておき、これにカルボキシル基含有化合物を混合することで、混合系を昇温させ高温状態にする、4)各成分(金属アルコキシ基含有化合物およびカルボキシル基含有化合物、および必要に応じて反応溶媒)を別々に加熱等しておいた後、これらを混合することで、混合系を昇温させ高温状態にする、5)金属アルコキシ基含有化合物とカルボキシル基含有化合物とを混合(および、必要により、上記高温状態にするよりも緩やかな条件下で加熱等)して予備反応物bを得ておいて、これを加熱等により昇温し高温状態にする、等が好ましく挙げられる。
【0041】
なお、予備反応物bを、金属アルコキシ基含有化合物とカルボキシル基含有化合物との、混合、および、上記高温状態にするよりも緩やかな条件下での加熱等により得る場合、該混合と該昇温のための加熱等とのタイミングとしては、上述した金属酸化物Bを得る際の混合と昇温のための加熱等とのタイミングと同様であることが好ましい。
本発明の方法において用いることのできる基材、すなわち、金属酸化物膜の被覆対象となり得る基材としては、その材質等は、特に限定されず、例えば、酸化物、窒化物、炭化物等のセラミクス、ガラスなどの無機物;PET、PBT、PENなどのポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、アモルファスポリオレフィン樹脂、ポリアリレート樹脂、アラミド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマーなどの耐熱性樹脂フィルムとして知れられる樹脂フィルム、シートのほか、従来公知の(メタ)アクリル樹脂、PVC樹脂、PVDC樹脂、PVA樹脂、EVOH樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、PTFE、PVF、PGF、ETFE等のフッ素樹脂、エポキシ樹脂、ポリオレフィン樹脂等の各種樹脂からなるフィルムやシート各種樹脂高分子、および、これら各種樹脂高分子にアルミ、アルミナ、シリカなどを蒸着したフィルム等の加工品、などの有機物;各種金属類などが好ましく挙げられる。
【0042】
上記基材の形状・形態としては、例えば、フィルム状、シート状、板状、繊維状、積層体状などが挙げられるが、用途・使用目的等に応じて選択すればよく、特に限定はされない。また、上記基材は、機能面においても、特に限定はされず、例えば、光学的には透明、不透明;電気的には絶縁体、導電体、p型またはn型の半導体あるいは誘電体;磁気的には磁性体、非磁性体;など、用途・使用目的等に応じて選択すればよい。
本発明の金属酸化物膜の形成方法においては、基材の表面に金属酸化物を膜として生成させ定着させるにあたり、上述した混合系を上記基材に接触させ、この接触系を高温状態にすることにより行うことが好ましく、いわゆる塗布法に属する方法や液中析出法(浸漬法)に属する方法が例示される。
【0043】
具体的には、例えば、上記接触系を高温状態にすることが、上述した混合系を表面に塗布してなる基材を高温状態にするか、上述した混合系に基材を漬けておいて高温状態にすることにより、基材の表面に金属酸化物を膜として生成させ定着させるようにすることが好ましく例示され、ここでいう金属酸化物の生成・定着の方法については、前者は、いわゆる塗布法に属し、後者は、いわゆる液中析出法(浸漬法)に属する方法である。
また、上述した混合系を、高温状態にしながらか高温状態にしておいて、上記基材の表面に塗布することにより、基材の表面に金属酸化物を膜として生成させ定着させるようにすることも好ましく例示され、ここでいう金属酸化物の生成・定着の方法は、いわゆる塗布法に属する方法である。
【0044】
本発明の方法においては、基材の表面に金属酸化物を膜として生成させ定着させるにあたり、上述した塗布法や液中析出法(浸漬法)に属する方法のうち従来公知の方法であれば、いずれの方法も好ましく適用できるが、例えば、塗布法に属する方法として、スピンコート法、スプレー法、ディップコート法、フローコート法およびバーコート法などを好ましく適用できる。
以下、本発明の方法により得られる金属酸化物膜の一般的特徴について、詳しく説明する。
本発明の方法により得られる金属酸化物膜は、基材の表面などに形成され得る金属酸化物の膜であるが、例えば、基材表面上の所望の面積部分に切れ目なく連続的に広がって存在している形態(以下、連続膜と称することがある。)であってもよいし、基材表面上の所望の面積部分に不連続的に存在している形態(以下、不連続膜と称することがある。)であってもよい。不連続膜では、金属酸化物が、基材表面に部分的に存在しているが、それら各部分の大きさ、面積、厚みおよび形状等については特に限定されない。具体的には、例えば、金属酸化物が、基材表面に微細なドット状で存在している形態や、いわゆる海島構造のように存在している形態(上記ドット状ほど微細ではない)や、縞模様状に存在している形態や、これら形態を合わせた形態等が挙げられる。
【0045】
上記連続膜および不連続膜において、膜を構成する金属酸化物の構造としては、特に限定はされないが、具体的には、例えば、所望の大きさの空間を有する多孔質構造や、マクロ的に見てこのような多孔質構造ではない一体的な密実構造(すなわち実質的に緻密な構造)を挙げることができる。また、上記いずれの構造においても、マクロ的に見て、1次粒子としての金属酸化物が集合してなる構造であっても、2次粒子化した金属酸化物が集合してなる構造であっても、さらに大きく凝集粒子化した金属酸化物が集合してなる構造であっても、これら形態が混在してなる構造であってもよく、特に限定はされるわけではない。なお、このような金属酸化物の各種構造は、上記不連続膜においては、部分的に存在している個々の膜のすべてが備えている必要は無く、一部の膜のみが備えるものであってもよい。
【0046】
上記1次粒子としての金属酸化物、2次粒子化した金属酸化物、および、さらに大きく凝集粒子化した金属酸化物の形状としては、特に限定はされないが、具体的には、例えば、球状、楕円球状、立方体状、直方体状、多面体状、ピラミッド状、柱状、チューブ状、りん片状、(六角)板状等の薄片状などが挙げられる。
金属酸化物膜を構成する金属酸化物は、結晶性の金属酸化物であっても、非結晶性の金属酸化物であってもよく、特に限定はされない。結晶性の金属酸化物とは、規則的な原子配列が周期性をもって認められる結晶子からなる金属酸化物であると定義することができ、電子線回折学的および/またはX線回折学的に、格子定数および/または回折パターンから金属酸化物の同定ができるものをいい、そうでないものは非結晶性の金属酸化物であるとする。導電性、半導体特性、熱伝導性、(光)磁気特性、誘電特性、発光特性、光の吸収、反射特性などの電気機能、磁気機能、半導体機能、光機能などの各種機能に優れる点では、結晶性であることが好ましい。また、上記結晶性の金属酸化物は、単結晶からなるものであっても、多結晶体からなるものであってもよく、特に限定はされない。
【0047】
金属酸化物膜を構成する金属酸化物が結晶性である場合は、電気伝導性、熱伝導性、音波伝搬性、光伝送性などの伝導、伝搬、伝送機能膜、高屈折率膜、紫外線吸収や熱線反射等の光選択吸収、反射、透過膜、エレクトロクロミズム膜などとしての機能を発揮させようとするには、本発明の微粒子含有金属酸化物膜が連続膜であることが好ましい。(光)触媒機能膜、色素増感型太陽電池用半導体膜などの大きい表面積が必要とされる膜や、低屈折率膜などとしての機能を発揮させようとするには、金属酸化物膜が多孔質構造であり、かつ、金属酸化物膜が連続膜であることが好ましいであることが好ましい。また、金属酸化物膜の場合、紫外線発光体や蛍光体などの発光機能膜などとしての機能を発揮させようとする場合は、単結晶からなる金属酸化物の連続膜または不連続膜であることが好ましい。
【0048】
金属酸化物膜を構成する金属酸化物が結晶性である場合、その結晶子の配向性については、特に限定はされないが、具体的には、結晶子の結晶軸方向が被覆対象となる基材等の表面に垂直に配向していても特定の角度をもって配向していても、あるいは、基材表面に沿うように該表面と平行に配向していてもよい。また、全ての結晶子の配向性が揃っていても、ランダムであっても、一部が同じ配向性で残りがランダムであってもよく、特に限定はされないが、結晶子の配向性が揃っている方が、電気や熱の伝導特性;(光)磁気的性質;スピン半導体性質;強誘電性、焦電性、圧電性等の誘電特性;発光特性;電子線放出特性等において優れたものとなるため好ましい。全ての結晶子が基材表面に垂直に配向している金属酸化物からなる金属酸化物膜は、電子線放出素子としての特有の優れた効果を発揮する点で好ましい。
【0049】
金属酸化物膜を構成する金属酸化物が結晶性である場合、その結晶子の形状は、特に限定はされないが、具体的には、例えば、球状、楕円球状、立方体状、直方体状、多面体状、ピラミッド状、柱状、チューブ状、りん片状、(六角)板状等の薄片状や、過飽和度の高い条件下で結晶の稜や角が優先的に伸びて生成した樹枝状、骸晶状などが挙げられる。なかでも、結晶子形状が、柱状、特に、太さが100nm以下、好ましくは50nm以下、さらに好ましくは20nm以下の柱状、および/または、とがった先端を有するいわゆる先鋭性を有する形状である金属酸化物からなる金属酸化物膜は、発光特性や電子線放出特性に優れる点で好ましい。
【0050】
金属酸化物膜を構成する金属酸化物が結晶性である場合、その結晶子の大きさについては、特に限定はされないが、具体的には、結晶子の結晶軸方向の大きさは以下の範囲が好ましい。
すなわち、金属酸化物膜が連続層である場合、各結晶子の結晶軸方向の大きさは、通常、1nm〜1μmであることが好ましい。
また、金属酸化物膜が不連続層である場合は、膜中に存在する金属酸化物が単結晶からなるものであれば、各単結晶(各結晶子)の結晶軸方向の大きさは、通常、1nm〜10μmであることが好ましく、存在する金属酸化物が多結晶体からなるものであれば、各結晶子の結晶軸方向の大きさは、通常、1nm〜100nmであることが好ましい。
【0051】
さらに、金属酸化物膜が不連続膜であり、かつ、存在する金属酸化物が単結晶からなるものである場合であって、発光素子や電子線放出素子として使用する場合は、各結晶子の形状が量子ドット状であり、大きさが10nm以下であること、あるいは、各結晶子の形状が柱状であり、大きさについては長径と短径の比(長径/短径)が2〜100であって短径(太さ)が100nm以下(好ましくは50nm以下、より好ましくは20nm以下)であること、が好ましい。さらに、先鋭性を有する結晶子形状であると、電子線放出特性に優れる点でより好ましい。
【0052】
また、金属酸化物膜を構成する金属酸化物は、可視光に対して透過性が高いことが好ましく、具体的には、金属酸化物膜のバンドギャップが3.1eV以上のエネルギー帯域にあるものが好ましい。このように可視光に対する透過性が高い金属酸化物を用いると、金属酸化物膜として優れた透明導電膜、発光体膜等を設計しやすい。
本発明の方法により得られる金属酸化物膜は、特定の組み合わせの出発原料から得られる金属酸化物を必須とする膜であるが、膜を構成する金属酸化物が結晶性であるか非結晶性であるかに関わらず、金属酸化物膜は、有機基(金属酸化物に直接結合した有機基を含むものであってもよいし、有機基が除去されてなるものであってもよい。該有機基は、金属酸化物の出発原料として用いられる金属カルボン酸塩、金属アルコキシ基含有化合物、アルコールあるいはカルボキシル基含有化合物由来のアルコキシル基やカルボキシル基の一部であることが好ましい。金属酸化物膜が有機基を含む場合、有機基は、金属酸化物膜全体中、炭素/金属(原子%)で4原子%未満であることが好ましい。一方、有機基が除去されてなる金属酸化物膜としては、気相中(空気中などの酸化性雰囲気下、還元性雰囲気下、不活性雰囲気下など)での加熱により有機基が分解されたものや、液相中での加熱により有機基が分解されたものや、酸性または塩基性の水溶液による処理や、カルボキシル基であればアルコール処理、アルコキシ基であれば酢酸処理などの化学的方法により除去されたもの、および、コロナ放電処理やプラズマ処理などの物理的により除去されたものが挙げられる。
【0053】
本発明の方法により得られる金属酸化物膜の厚み(被覆対象となる基材等の表面に対して垂直な方向の厚み)は、特に限定はされないが、通常、1nm〜1000μmであることが好ましく、より好ましくは1nm〜10μmである。特に、得られる金属酸化物膜が多孔質状構造の連続層または不連続層である場合は、10nm〜100μmがより好ましい。上記厚みが1nm未満であると、所望の金属酸化物の機能が発揮されないおそれがあり、1000μmを超えると、機能面においてさらなる向上は見られず、かえってコスト高となったり、厚くなり過ぎて使用しにくくなるおそれがある。
【0054】
本発明の方法により得られる金属酸化物膜においては、該膜を構成する金属酸化物は、単一酸化物、複合酸化物および固溶体酸化物のいずれであってもよく、特に限定はされないが、導電性機能などに優れる点では2種以上の金属元素を含有する複合酸化物あるいは固溶体酸化物が好ましい。以下に、単一酸化物、複合酸化物および固溶体酸化物それぞれについての具体例を示す。
〔単一酸化物〕
3次元格子構造を有する酸化物として、MO型酸化物(LiO、NaO、KO、RbO;CuO、AgO);MO型酸化物(MgO、CaO、SrO、BaO;FeO、CoO、NiO、MnO;TiO、VO;BeO、ZnO;NbO;PdO、PtO、CuO、AgO);M型酸化物(Al、Ti、V、Fe、Cr、Rh、Ga;Mn、Sc、 Y、In、Tl;α−Bi、β−Bi、γ−Bi;B;ランタノイド系金属酸化物);MO型酸化物(ZrO、HfO、CeO、ThO、UO;TiO、SnO、VO、CrO、MoO、WO、MnO、GeO;SiO、GeO);MO型酸化物(ReO、WO)が挙げられる。
【0055】
低次元格子構造を有する酸化物として、層状格子構造酸化物(MO型酸化物(CaO);MO型酸化物(PbO、SnO);M型酸化物(V);MO型酸化物(MoO)等);鎖状格子構造酸化物(HgO、SeO、CrO、Sb);分子格子構造酸化物(RuO、OsO、Tc、Sb)が挙げられる。
〔複合酸化物〕
ABO型複合酸化物(LiBO;LiGaO;γ−LiAlO;LiFeO、LiInO、LiScO、LiEuO、LiNiO、LiVO、NaFeO、NaInO;CuCrO、CuFeO、PdCoO、PdCrO、PdRhO、PtCoO);ABO型複合酸化物(ScTiO、ScVO;FeVO、MnFeO、FeCrO、TiVO、FeTiO、CoMnO、CoVO、NiTiO、CdTiO、LiNbO;LiSbO;PbReO、BiYO、AOの最密面を有するABO型酸化物として、BaNiO、ペロブスカイト酸化物(KTaO、NaNbO、BaMnO、SrTiO;BiAlO、PbSnO、BaTiO、PbTiO;LaAlO、LiNiO、BiFeO、KNbO;GdFeO、YFeO、NdGaO、CaTiO)、BaMnO、SrTiO、SrReSrO12、BaRuO等);ABO型複合酸化物(PBO、BeSO;CrVO、ZnCrO;α−MnMoO;CaWO、CaMoO;Bi(MoO、Eu(WO;MNbO、MTaO(M:3価);CaCrO、YVO;CrVO、AlAsO;FeVO、FeWO、MnWO、NiWO;CuWO;CoMoO);AB型複合酸化物(NiCr、CoCr、MnCr、NiFe、CoFe、MnFe、ZnFe;BeSiO;CaFe、CaTi等)などが挙げられる。
【0056】
上記列挙した酸化物以外にも、ケイ酸塩やアルミノケイ酸塩;Mo、W、V、Nb、Ta等のポリ酸であって、異種原子を取り込んだヘテロポリ酸、さらに、Mo、W、V等の一部を異種金属で置換した混合ヘテロポリ酸や、これらの塩等も、複合酸化物として挙げられる。
〔固溶体酸化物〕
固溶体酸化物とは、単一酸化物または複合酸化物に、任意の異種金属を固溶した侵入型または置換型固溶体酸化物と定義される。
上記単一酸化物または複合酸化物が上記金属酸化物Aである場合、固溶させる異種金属は、金属カルボン酸塩や金属アルコキシ基含有化合物に由来するものであることが好ましいが、なかでも、金属カルボン酸塩由来のものが、固溶率の高い固溶体が得られるためより好ましい。
【0057】
また、上記単一酸化物または複合酸化物が上記金属酸化物Bである場合、固溶させる異種金属は、金属アルコキシ基含有化合物や金属カルボン酸塩に由来するものであることが好ましいが、なかでも、金属アルコキシ基含有化合物由来のものが、固溶率の高い固溶体が得られるためより好ましい。
以下、固溶体酸化物について具体的に例示するが、特にこれらに限定はされない。
(1)導電性酸化物
上記金属酸化物に、導電性を高める目的で、ドナーやアクセプターとなる異種金属元素やフッ素、水素などを含有または固溶させることがあるが、これらの酸化物も本発明でいう金属酸化物に含まれる。例えば、ZnOにAl、In、Ga、Si;TiOにTa;FeにTi;BaTiOにLa、Ta;InにSn、Ti;SnOにSb、P、F;MgInにH;というようなn型半導性酸化物にドナーとなる異種金属元素を含有させてなるn型導電性酸化物や、NiOにLi;CoOにLi;FeOにLi;MnOにLi;BiにBa;CrにMg;LaCrOにSr;LaMnOにSr;SrCuにK;というようなp型半導性酸化物にアクセプターとなる異種元素を含有させてなるp型導電性酸化物が挙げられる。さらに、KO−11FeにTiを添加してなるイオン−電子複合伝導体や、イオン伝導体として知られる酸化ジルコニウムにY、Sc等の金属をドープ(固溶)してなる酸化ジルコニウム系固溶体も含まれる。通常、固溶させるドナーあるいはアクセプターの濃度は、母体の金属酸化物の金属に対する原子数比で表して、0.01〜20%、好ましくは0.1〜5%である。これら導電性酸化物は、通常、熱線を含む赤外線吸収または反射機能を有するので、熱線遮蔽材料としても有用である。また、上述のLaMnOにSrを含有させてなるp型導電性酸化物のように、前記したペロブスカイト型酸化物やスピネル型酸化物等の複合酸化物中の金属元素の一部を任意の異種金属元素で置換してなるものも含まれる。
【0058】
これらの導電性酸化物のうち、n型導電性酸化物は、熱線を含む赤外線吸収能に優れるので、赤外線遮断材料としても有用である。
(2)希薄磁性半導体酸化物
、TiO、Fe、ZnO、In、SnO、BaTiO、MgInなどの酸化物や、これらに異種金属を固溶してなるか酸素欠陥を導入してなるn型又はp型半導体または導電性の酸化物に、Fe、Cr、Mn、Co、Ni等の磁性金属イオンを固溶させることによって得ることができる。
好ましい磁性金属イオンの濃度は、半導体または導電体の酸化物における金属に対する原子数比で、1%以上が好ましく、3%以上がより好ましく、特に好ましくは10〜30%である。
(3)蛍光体酸化物
単一酸化物または複合酸化物などの母体結晶酸化物に、発光中心となる金属イオン又は非金属元素の1種または2種以上を固溶させてなる酸化物である。発光中心となる金属イオンとしては、例えば、Mn(II)、Cr(III)、Ag(I)、Cu(II)、Sb(III)、Sn(II)、Pb(II)、Tl(I)等の典型金属元素のイオンや遷移金属元素のイオンの他、Eu(II)、Eu(III)、Nd(III)、Tb(III)、Pr(III)、Yb(III)、Sm(III)、Ho(III)等のランタノイド金属元素のイオンなどを好ましく用いることができ、非金属元素としては、例えば、FおよびCl等のハロゲン原子などを好ましく用いることができる。また、母体結晶酸化物としては、可視光および/または近赤外線領域の光に対して実質的に吸収のない酸化物が好ましく、ZnO、ZnSiO、Y、SnO、In等がより好ましい。
【0059】
ZnOにMn(II)、Sb(III)をZnに対する原子数比で0.1〜5%固溶させてなる蛍光体は、特に、金属イオンが均一分散した固溶体が得られる点で好ましい。
以下に、本発明の金属酸化物膜が有する各種機能・特性と、これを発揮するのに有効な膜を構成する金属酸化物成分を例示する。
高屈折率機能:酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化インジウム、酸化クロム、アルミナ、および、これらの酸化物に異種金属をドープしてなるものなど。(これらは反射やぎらつきの防止もできる。)
紫外線吸収機能:酸化チタン、酸化第1鉄、酸化亜鉛、酸化セリウムなど。
【0060】
赤外線吸収機能:酸化インジウムにTiやSn等の4価金属元素またはフッ素を固溶した酸化インジウム系固溶体、酸化第2スズにPやSb等の5価金属元素またはフッ素を固溶した酸化第2スズ系固溶体、および、酸化亜鉛にAlやIn等の3価金属元素を固溶した酸化亜鉛系固溶体など。
電気伝導機能:上記の酸化インジウム、酸化第1スズ、酸化第2スズ、酸化亜鉛、酸化チタン、酸化鉄、酸化ニッケル、酸化銅などのn型、p型半導体として知られる酸化物およびこれらにドーパントまたはアクセプターとなる金属元素を固溶した固溶体、亜酸化銅、チタンブラック等の如く安定な酸化物を還元処理して得られるような低原子価金属の酸化物などの電子伝導性酸化物;酸化ジルコニウム等のイオン伝導性酸化物。
【0061】
熱伝導機能;アルミナ、酸化亜鉛など。
磁気機能:マンガンフェライト(MnFe)やニッケルフェライト(NiFe)等のフェライト、マグネタイト(Fe)などの強磁性酸化物など。
光触媒機能:酸化チタン、酸化亜鉛など。
熱電変換機能:酸化亜鉛にインジウムをドープしてなるもの、酸化亜鉛にアルミニウムをドープしてなるもの、In−ZnO系ホモロガス化合物など。
光電変換用半導体:酸化チタン、酸化亜鉛など。
【0062】
圧電体:酸化亜鉛など。
表面弾性波素子用:酸化亜鉛など。
透明導電膜:赤外線吸収機能を有する金属酸化物と同様。
蛍光体、発光体:酸化亜鉛や酸化亜鉛にマンガンをドープしてなるもの等の酸化亜鉛系のものなど。(紫外線発光体またはグリーン発光体として用い得る。)
エレクトロルミネッセンス:WOやNaxWO等の酸化タングステン系のものなど。
本発明の方法により得られる金属酸化物膜は、金属酸化物の有する上記各種優れた機能・特性により、各種機能性分野における用途に用いることができる。例えば、透明導電、帯電防止、面状発熱体、熱伝導、導電体、半導体、光吸収体、磁性体、電波吸収、電磁波遮断、希薄磁性半導体、紫外線吸収、熱線反射、高屈折率、低屈折率、反射防止、発光・蛍光体、電子線放出素子、(光)触媒、太陽電池用半導体、電極、光電変換素子、熱電変換素子、表面弾性波素子、(強)誘電体、圧電体、バリスターおよびエレクトロルミネッセンス等の機能・特性を有する膜として、フィルム、ガラス、セラミックスあるいは金属等の基材表面に形成して、機能性フィルム等とし、窓材(自動車用、建築用等)、農業用資材、メモリー素子、光源、表示デバイス、情報通信・伝送の各種デバイス、太陽電池などの各種用途分野で有用な材料として好適に用いることができる。
【0063】
【実施例】
以下に、実施例および比較例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。なお、以下では、便宜上、「重量部」を単に「部」と記すことがある。
実施例および比較例における測定方法を以下に示す。
<酸化物膜の表面抵抗値>
得られた酸化物膜の表面抵抗値(Ω/□)を、抵抗率計(製品名:ハイレスタIP、三菱油化社製)を用いて測定した。
【0064】
[実施例1]
撹拌機、添加口、温度計、窒素ガス導入口および留出ガス出口を備えた、外部より加熱することのできるガラス製反応容器に、酢酸亜鉛5部、トリエチルアミン5.5部およびエチレングリコールモノブチルエーテル82部を混合仕込みし、反応器内を窒素パージした後、混合物を常温から5℃/分の昇温速度で110℃まで昇温して、10分保持した後、冷却することにより、透明な溶液(金属酸化物前駆体溶液)を得た。
得られた透明溶液を、一回の噴霧時間を0.5秒としたスプレーガンを用いて、ホットプレート上で350℃に加熱された無アクリルガラス基板上に、40回間歇噴霧し、酸化亜鉛膜を得た。
【0065】
得られた酸化亜鉛膜に、8WのUVランプ(波長366nm、CAMAG社製)で5分間照射し、遮光状態で保存した。
[比較例1]
得られた酸化亜鉛膜にUVランプの照射を行わず、自然光下で保存した以外は、実施例1と同様にして、酸化亜鉛膜を得た。
[比較例2]
得られた酸化亜鉛膜にUVランプの照射を行わず、遮光状態で保存した以外は、実施例1と同様にして、酸化亜鉛膜を得た。
上記実施例および比較例で得られた酸化亜鉛膜について、製膜直後、製膜から1日経過後および製膜から5日経過後の、表面抵抗値(Ω/□)について、上記方法により測定した。その結果を表1に示す。
【0066】
【表1】
Figure 2005029408
【0067】
【発明の効果】
本発明によれば、金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として生成する金属酸化物を基材の表面に膜として定着させるにあたり、製膜後の各種物性、例えば電気的性質、特に表面抵抗値が、より素早く且つ長期間にわたり安定性を保持し得る金属酸化物膜を容易に得ることのできる、金属酸化物膜の形成方法を提供することができる。

Claims (1)

  1. 金属カルボン酸塩とアルコールとを出発原料とするか、または、金属アルコキシ基含有化合物とカルボキシル基含有化合物とを出発原料として生成する金属酸化物を基材の表面に膜として定着させる、金属酸化物膜の形成方法において、前記生成途中および/または前記生成後の金属酸化物に紫外線照射する、ことを特徴とする、金属酸化物膜の形成方法。
JP2003194656A 2003-07-09 2003-07-09 金属酸化物膜の形成方法 Pending JP2005029408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194656A JP2005029408A (ja) 2003-07-09 2003-07-09 金属酸化物膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194656A JP2005029408A (ja) 2003-07-09 2003-07-09 金属酸化物膜の形成方法

Publications (1)

Publication Number Publication Date
JP2005029408A true JP2005029408A (ja) 2005-02-03

Family

ID=34205735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194656A Pending JP2005029408A (ja) 2003-07-09 2003-07-09 金属酸化物膜の形成方法

Country Status (1)

Country Link
JP (1) JP2005029408A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547195A (ja) * 2005-06-16 2008-12-25 イーストマン コダック カンパニー 亜鉛酸化物をベースとした半導体材料を含む薄膜トランジスタ
JP2010084179A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ニッケル酸化物膜を有する積層体
JP4635116B1 (ja) * 2009-09-28 2011-02-23 第一工業製薬株式会社 金属塩含有組成物、基板、基板の製造方法
JP2011044679A (ja) * 2009-08-21 2011-03-03 J Touch Corp 光透過性の振動素子とそのモジュール
WO2013118353A1 (ja) * 2012-02-08 2013-08-15 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法および金属酸化膜
WO2013137228A1 (ja) * 2012-03-13 2013-09-19 国立大学法人名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法
WO2013145160A1 (ja) * 2012-03-28 2013-10-03 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法および金属酸化膜
JP5651790B2 (ja) * 2012-02-08 2015-01-14 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法
WO2016143025A1 (ja) * 2015-03-09 2016-09-15 東芝三菱電機産業システム株式会社 太陽電池の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008547195A (ja) * 2005-06-16 2008-12-25 イーストマン コダック カンパニー 亜鉛酸化物をベースとした半導体材料を含む薄膜トランジスタ
JP2010084179A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ニッケル酸化物膜を有する積層体
JP2011044679A (ja) * 2009-08-21 2011-03-03 J Touch Corp 光透過性の振動素子とそのモジュール
KR101315268B1 (ko) * 2009-09-28 2013-10-08 다이이치 고교 세이야쿠 가부시키가이샤 금속염 함유 조성물, 기판 및 기판의 제조 방법
JP4635116B1 (ja) * 2009-09-28 2011-02-23 第一工業製薬株式会社 金属塩含有組成物、基板、基板の製造方法
WO2011036730A1 (ja) * 2009-09-28 2011-03-31 第一工業製薬株式会社 金属塩含有組成物、基板、基板の製造方法
US8999450B2 (en) 2009-09-28 2015-04-07 Dai-Ichi Kogyo Seiyaku Co., Ltd. Metal salt-containing composition, substrate, manufacturing method of substrate
WO2013118353A1 (ja) * 2012-02-08 2013-08-15 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法および金属酸化膜
TWI552204B (zh) * 2012-02-08 2016-10-01 東芝三菱電機產業系統股份有限公司 金屬氧化膜之製造方法及金屬氧化膜
CN104105817A (zh) * 2012-02-08 2014-10-15 东芝三菱电机产业系统株式会社 金属氧化膜的制造方法和金属氧化膜
JP5651790B2 (ja) * 2012-02-08 2015-01-14 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法
JPWO2013137228A1 (ja) * 2012-03-13 2015-08-03 国立大学法人 名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法
WO2013137228A1 (ja) * 2012-03-13 2013-09-19 国立大学法人名古屋工業大学 酸化亜鉛微細粒子及び/又は酸化亜鉛膜の製造方法
CN104203828A (zh) * 2012-03-28 2014-12-10 东芝三菱电机产业系统株式会社 金属氧化膜的制造方法及金属氧化膜
JPWO2013145160A1 (ja) * 2012-03-28 2015-08-03 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法および金属酸化膜
WO2013145160A1 (ja) * 2012-03-28 2013-10-03 東芝三菱電機産業システム株式会社 金属酸化膜の製造方法および金属酸化膜
US10351957B2 (en) 2012-03-28 2019-07-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing metal oxide film and metal oxide film
WO2016143025A1 (ja) * 2015-03-09 2016-09-15 東芝三菱電機産業システム株式会社 太陽電池の製造方法
JPWO2016143025A1 (ja) * 2015-03-09 2017-08-31 東芝三菱電機産業システム株式会社 太陽電池の製造方法

Similar Documents

Publication Publication Date Title
JP4323156B2 (ja) 微粒子含有金属酸化物膜およびその形成方法
JP4287124B2 (ja) 金属酸化物被着体およびその製造方法
TWI599622B (zh) 形成金屬氧化物薄膜用的塗佈液、金屬氧化物薄膜、場效電晶體及製造場效電晶體的方法
TWI483925B (zh) 含烷氧銦的組成物,彼之製法以及彼之應用
JP4248312B2 (ja) 金属酸化物の製造方法
JP2005029408A (ja) 金属酸化物膜の形成方法
JP3974756B2 (ja) 金属酸化物系粒子の製法
JP2004149389A (ja) 金属酸化物粒子の製造方法
JP2021040154A (ja) n型酸化物半導体膜形成用塗布液、n型酸化物半導体膜の製造方法、及び電界効果型トランジスタの製造方法
JP4391737B2 (ja) 金属の製造方法
EP2784137B1 (en) PZT-based ferroelectric thin film-forming composition, method of preparing the same, and method of forming PZT-based ferroelectric thin film using the same
JP2003201106A (ja) 金属酸化物系粒子の製造方法および金属酸化物膜の形成方法
EP2767613A2 (en) LaNiO3 thin film-forming composition and method of forming LaNiO3 thin film using the same
JP6029816B2 (ja) 金属酸化物半導体薄膜の製造方法
JP2004099358A (ja) 金属酸化物被覆粒子の製造方法
JP2004149390A (ja) 金属酸化物膜の形成方法
JP2004149391A (ja) 金属酸化物膜形成用組成物
JPWO2013129701A1 (ja) 導電性膜の形成方法
JP2004256377A (ja) 金属酸化物膜の製造方法
JP4248224B2 (ja) 酸化亜鉛薄膜
JP2004231495A (ja) 金属酸化物膜の製造方法
JP5016192B2 (ja) 金属酸化物粒子およびその用途
JP5741303B2 (ja) ペロブスカイト型酸化物膜形成用水溶液
US20140367674A1 (en) Process for forming an amorphous conductive oxide film
JP2012025633A (ja) 金属酸化物微粒子の製造方法