JP2004534714A - カーボンナノチューブの安定した水分散液の生成 - Google Patents
カーボンナノチューブの安定した水分散液の生成 Download PDFInfo
- Publication number
- JP2004534714A JP2004534714A JP2003512477A JP2003512477A JP2004534714A JP 2004534714 A JP2004534714 A JP 2004534714A JP 2003512477 A JP2003512477 A JP 2003512477A JP 2003512477 A JP2003512477 A JP 2003512477A JP 2004534714 A JP2004534714 A JP 2004534714A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- dispersant
- swcnt
- detergent
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/172—Sorting
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/845—Purification or separation of fullerenes or nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/847—Surface modifications, e.g. functionalization, coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Molecular Biology (AREA)
- Textile Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】
本発明は、米国航空宇宙局によって与えられるコントラクトNCC9−41の下の政府支援によってなされた。米国政府は、本発明の特定の権利を有する。
【0002】
本出願は、2001年7月10日に出願された米国特許仮出願番号60/303,816、“単一壁のカーボンナノチューブ構造の分離及び精製”から優先権を主張する。上述の特許仮出願の開示全体は本願明細書に援用される。
【0003】
本発明は、単一壁のカーボンナノチューブを、汚染物質、即ち単一壁のカーボンナノチューブ構造を生成した後の非精製物質に存在するカーボン及び金属触媒粒子から分離し精製する方法に関する。特に、本発明は、個々の単一壁のカーボンナノチューブ構造をナノチューブ構造の束を含む原料から分離し精製する適切な分散剤溶液の利用に関する。
【背景技術】
【0004】
1991年に発見された後、特にナノ技術、複合材料、電子機器及び生物学分野におけるカーボンナノチューブ構造の多くの潜在的な利用により、このような構造の化学的及び物理的特性に対する関心が増大されてきた。したがって、研究及び応用を目的とするカーボンナノチューブ構造に対する需要が最近増加されており、よって不純物が無くそれ自体の適切な特性を容易に分離し得る単一壁のカーボンナノチューブ(SWCNT)構造の効率的生産が要求されている。
【0005】
SWCNT構造の生成用に開発された3つの最も一般的な生成方法として、高圧の一酸化炭素(HipCO)プロセス、パルスレー気化(PLV)プロセス、及びアーク放電(ARC)プロセスがある。これらのプロセスの各々は、金属触媒粒子の存在の下で高温及び/又は高圧で遊離炭素原子を表層上に被着させることによってSWCNT構造を生成する。これらのプロセスにより形成された原料は、非晶質カーボン(即ち、SWCNT構造を形成しない炭素原子のグラフンシート)、金属触媒粒子、使用プロセスの類型に従う有機不純物及び様々なフラーレンからなる汚染物質の母体に埋められるチューブの束として形成されるSWCNT構造を含む。これらの生成方法によって形成されるナノチューブの束は分離するのが極めて困難である。
【0006】
形成されたSWCNT構造の物理的及び化学的特性(例えば、ナノチューブの長さ、化学的処理及び表面粘着力)を完全に特徴づけるため、各構造を囲んでいる汚染の母体は除去されるべきであり、チューブの束は各SWCNT構造が個々に分析され得るように分離及び分散されるべきである。個々のSWCNT構造の適当な分散を維持することによって、形成されたナノチューブの特徴付けは、機械工学的方法を用いてなされ得る。例えば、生成方法の一つ以上の要素に対する変更態様に基づいて、分散されたSWCNT構造を容易に分析し特徴づける(例えば、ナノチューブの長さ、張力の強さの変更、又はSWCNT構造のカーボン母体に限定された原子の編入を決定する)ことが望ましい。
【0007】
更に、上記の分野への使用のために容易に操作できる構造の形態において個々に分離されたSWCNT構造を生成するのが望ましい。せいぜい、分離された材料成分を物理的に操作できる既存の方法論は、従来の部分的に分散して精製されたSWCNT構造のナノメートルレベルの寸法よりはマイクロレベルの寸法で測定される要素を必要とする。しかし、生物学的システムは、SWCNT構造未満の大きさの物理的な寸法を有する分離された要素(例えば、タンパク質)を正確な空間の方位をもって常規的に操作する。従って、免疫グロブリン又はエピトープ特有の結合型タンパク質のような生物学的“ツール”が特に構造を認識し物理的に操作するのに利用し得るようにSWCNT構造が生物学的に誘導され得る場合、SWCNT構造を正確に空間的に方向付ける可能性は高くなる。このような接近方法が実現されるため、SWCNT構造は、生物学的SWCNTの誘導及び操作プロセスの際、生物学的合成物の最適の機能に一致する方式で原料から個々に分離されるべきである。換言すれば、SWCNT構造は、その構造を効果的に操作するために室温で略中性のpHを表す水成の緩衝システムにおいて個々で自由に分散された構造として生成されなければならない。
【0008】
チューブを囲んでいる汚染母体を除去することによってSWCNT構造を精製し分離する現在の方法は、様々な物理的及び化学的処置を採用する。これらの処置は、金属触媒粒子及び非晶質カーボンの汚染を化学的に低下させる試しにおいて原料の高温酸逆流、金属粒子を除去する磁気分離技術の使用、SWCNT構造を汚染物質から分離するための差動遠心分離の使用、超音波処理を利用して原料のSWCNT構造及び物理的な分裂から汚染物質を除去する物理的なサイジングメッシュ(即ち、サイズ排除コラム)の使用を含む。尚、構造を精製し分離するための試しにおける有機溶媒溶液においてSWCNT構造を部分的に分散する技術が開発されてきた。
【0009】
現在利用できる方法の全ては、多くの理由による制約がある。先ず、注意する点としては、現在の精製方法では原料からの精製されたSWCNT構造の生成量が乏しいことである。これらの方法のいずれかから得られる最終的なSWCNT生成品は、また、一般に大量の汚染母体物質を含んで精製されたSWCNT構造をナノチューブのロープ又は束として得られるようにし、よって得られる最終的なSWCNT構造を分析し特徴づけることをむずかしくする。これらの方法は、更に、ナノチューブへの損傷の原因となる長期の化学的又は物理的処理により、比較的短い長さ(例えば、150−250nm)の精製されたSWCNT構造を算出する。又、現在利用される多くの分離技術は、SWCNT構造の生物学的誘導に不適当な環境条件を生成する有機溶媒溶液又は他の有害合成物を必要とする。現在利用される有機溶媒溶液は、個々に分離されたチューブでない、束状態のSWCNT構造を可溶性にすることができる。更に、現在の分離技術においては、ナノチューブから汚染母体物質を除去するのに使用される溶媒又は他の有害合成物からナノチューブ構造を獲得するために、長期間の快速力の遠心分離(即ち、約100,000xg)が必要である。
【0010】
現在、研究及び他の応用へのカーボンナノチューブの使用に係っている産業及び学術研究所における大きな課題は、離散的で完全に分離されたSWCNT構造のソースの限定である。SWCNT構造に対する巨大な用途の可能性の研究を妨害するのは、非晶質カーボン及び金属触媒粒子のように相当な量の汚染物のないよく特徴づけられたSWCNT材の供給が限られていることである。
【0011】
従って現在、このような構造を求める要求に応ずる速くて効率的な方法でカーボンナノチューブ生成プロセスの原料から、高い産出量の精製されたSWCNT構造を得る必要性が存在している。尚、適切な長さを有し生物学的誘導及び容易な操作を特徴とする離散的で個別的な構造(即ち、束でない)としてSWCNT構造を提供するのが望ましい。
【発明の開示】
【発明が解決しようとする課題】
【0012】
従って、上記の観点、及び本発明が完全に説明されたときに明瞭になる他の理由により、本発明の目的は、他の応用に適している適当な長さを有する高算出量の良質なSWCNT構造を得るため、汚染物質を含む原料内に配置したSWCNT構造を急速で効果的に分離及び精製する方法を提供することである。
【0013】
本発明の他の目的は、他の応用に適している離散的で分離されたナノチューブ構造を算出するように溶液内の分離及び精製されたSWCNT構造を原料から分散させる方法を提供することである。
【0014】
本発明の更に他の目的は、SWCNT構造の容易な操作を達成するように生物学的誘導手続きに適している構造を与える適切な溶液において分離及び精製されたSWCNT構造を分散させる方法を提供することである。
【0015】
本発明の更に他の目的は、長期間(即ち、数週から数ヶ月)にわたって安定している単一の離散的なSWCNTの水性分散液、SWCNTの集合又はフロッキングが発生しない分散液を提供することである。
【課題を解決するための手段】
【0016】
上述した目的は、個々のSWCNT構造を母体から分離するように適切な分散剤を含む水溶液においてSWCNT構造及び汚染物質を含む原料の母体を分散し、よって溶液内の構造を精製及び分散する方法を提供することにより、この方法の単独で及び組合で本発明によって達成される。溶液内において、分散剤は、個々のSWCNT構造を囲んで被覆し、よってその構造が溶液からの分離時束よりは分離を維持するようにする。本発明の実施に有用な適切な分散剤は、一般に水溶性を有すると共に疎水性合成物と相互作用する能力を呈している試薬である。本発明に使われ得る典型的な分散剤には、合成の自然洗浄剤、デオキシコール酸塩、シクロデクストリン、ポロキサマー、サポゲニングリコシド、カオトロピック塩及びイオン対合剤がある。
【0017】
本発明の上記及び更なる目的、特徴及び利点は、その特定実施例の以下の詳細な説明を考慮する時、特に、添付の図面を参照する場合に明瞭になる。ここで、様々な図面の同じ参照番号は、同じ構成要素を表すのに利用される。
【発明を実施するための最良の形態】
【0018】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0019】
本発明は、生物学的活性の分散剤を有する水溶液にSWCNT構造を分散させることによって、SWCNT構造を原料から精製及び分離する方法に関する。生物学的活性の分散剤は、精製されたSWCNT構造が溶液内において個別的で離散的なSWCNT構造の分散として存在するように、汚染物質からSWCNT構造の分離を遂行する。ここで使用されているように、用語の“原料”は、制限なく上記の3つのプロセス内の単一壁のカーボンナノチューブを生成する任意のプロセスによって形成された材料を指す。原料には、一般に材料を汚染させる母体に埋め込まれるSWCNT構造がある。本願明細書において使われるように、用語の“汚染させる物質”及び“汚染物質”は、制限なく非晶質カーボン及び金属触媒粒子を含む原料内のいかなる不純物又は他の非SWCNT構成成分を指す。
【0020】
上記したように、SWCNT構造を精製し獲得するために採用された現在の方法は、化合物としてのSWCNT構造の従来の観点により、部分的には成功的でなかった。従来の観点からの離脱により、SWCNT構造は、生物学的誘導構造と類似していると考慮される。SWCNT構造のいくつかの注意すべき特性は、次の通りである。(これらの特性の全てが存在すべきではない)。該構造は、概して水に不溶性である。該構造は、概して束又はロープとして自分で結合する。該構造は、カーボンのみから作られる。そして、カーボンナノチューブの各端は、概して異なる生理化学的な特性を呈する。カーボンナノチューブの物理的な特性は、事実脂質と非常に類似しており、該脂質は、水に不溶性である生物学的合成物の一類であるが、適切な脂質分散試薬を含む水溶液に溶解され得る。このように、発明者らは、SWCNT構造が概してタンパク質又は脂質を水溶液において分散させるのに適している試薬を含む水溶液内において容易に分散され得ると認識した。
【0021】
水溶液においてSWCNT構造を最適に分散するのに効果的であるとみなされる試薬は、分散剤と呼ばれる。分散剤は、溶液内の各ナノチューブ構造及び水分子間の表面のインタフェースにおける相互作用を増加させることによって、水溶液においてSWCNT構造を略溶解し分散するのに効果的である適切な試薬でありえる。分散剤が構造的に束又はロープの形態から水溶液に個々のSWCNT構造の分散をもたらす基礎仕組みは、水分子がSWCNT表面と相互作用するのを防止するSWCNTの表面における分子力を破壊する分散剤の能力に主に基づいている。この特性に加えて、SWCNTの大きい表面領域により、SWCNT間の疎水性の相互作用を減少させる能力を最大にし、SWCNT内の空間に容易に浸透し得る充分小さいサイズでもある分子構造を、分散剤が有するのは当然である。効率的なSWCNT分散剤の更なる必要条件は、もとの溶液量の一部がナノチューブ原料の非SWCNT汚染物質の分散に利用された後にも分散剤の有用な濃度がSWCNT“束”又は“ロープ”の分散に対して維持されるように十分な高濃度に水溶液に維持され得ることである。分散剤は、概して溶液内のSWCNT構造を略精製し分散するのに効果的な量が、水溶液に加えられる。分散剤の効果的な量は、特定の応用で利用される分散剤のタイプに従って変動される。
【0022】
分散剤は、概して水溶液において疎水性合成物を囲んで適切に溶解し得る自然発生の合成洗浄剤又は他の組成物である。典型的な分散剤は、制限なく、NP−40(ノニデットP−40)、ポリオキシエチレン・ソルビトール・エステル(例えば、TWEEN?及びEMASOLTM系列の洗浄剤)、ポロキサマー(例えば、ポロキサマー188及びPluronicTM系列の洗浄剤)、臭化アンモニウム及び塩化アンモニウム(例えば、臭化セチルトリメチルアンモニウム、臭化テトラデシルアンモニウム及び塩化ドデシルピリミジニウム)のよな高い界面活性剤活性を有する自然合成洗浄剤、デオキシコール酸塩及びデオキシコール酸塩タイプの洗浄剤(例えば、タウロコール酸)、サポゲニングリコシド(例えば、サポニン)及びシクロデクストリン(例えば、α−、β−又はγ−シクロデクストリン)のような自然発生の乳化剤、ウレア及びグアニジンのようなカオトロピック塩、及びスルホン酸(例えば、1−ヘプタン−スルホン酸及び1−オクタン−スルホン酸)のようなイオン対合剤を含む。
【0023】
タウロコール酸及びシクロデクストリンのような自然発生の乳化剤は、SWCNT構造の溶解及び分散、並びに精製及び分離されたSWCNT構造の生物学的誘導を容易にする際に非常に効果的である。特に、シクロデクストリンは、グルコピラノース単位からなる“ねじり”の構造を有する3次元のドーナツ状の配向を有する。シクロデクストリン分子の“ねじり”の構造により、外側の親水性表面が水溶液内において溶解される分子を与えるようにしながら、丸い“ドーナツ”状からねじりの“ドーナツ”状に変更された時にも、その中心疎水性の領域の中でSWCNT構造の表面を引きつけて相互作用を可能にし得る。水中の天然のシクロデクストリンの可溶性は、また、例えば、シクロデクストリン分子上のメチル又はヒドロキシプロピルグループの置換によって略10倍に増加され得る。水中のシクロデクストリンの可溶性が大きければ大きいほど、溶液内の個々のSWCNT構造の分散及び分離がより大きくなる。溶液内のSWCNT構造の分散に非常に効果的である2つの典型的なシクロデクストリン誘導剤は、メチル−β−シクロデクストリン(MβC)及び2−ヒドロキシプロピル−β−シクロデクストリン(2−HP−β−C)である。しかし、注意事項は、いかなるシクロデクストリン(即ち、α、β又はγ)又はそのいかなる適切な誘導剤も本発明により利用され得ることである。更に、シクロデクストリンは、溶液内において分離されたSWCNT構造の生物学的誘導にも有用である。溶液内においてSWCNT構造を略分散させ得る適切なデオキシコール酸塩タイプの洗浄剤の典型的な例であるタウロコール酸(TA)は、哺乳類の肝臓組織において自然に生成される。シクロデクストリンの様にTAもTAの分子当たりに被覆されるSWCNT構造の表面領域が大きくなるように分子の形状を有するので、精製及び分離されたSWCNT構造の生物学的誘導を容易にすることに非常に効果的である。通常、シクロデクストリン及びデオキシコール酸塩が、約5mg/mlから約500mg/mlまでの範囲の濃度、望ましくは約50mg/mlの濃度において本発明によるSWCNT構造を最適に分散させるのに利用され得る。
【0024】
植物起源の乳化剤であるサポゲニングリコシド(例えば、サポニン)、他の自然発生のクラスも、SWCNT構造を分散させ得る。シクロデクストリン及びデオキシコール酸塩タイプ洗浄剤と同様に、これらの合成物は、自然に両親媒性であり、水中で高い可溶性を有して、水溶液において通常水不溶性の疏水性合成物(例えば、SWCNT構造)に対して保護コロイドとしての役割をすることができる。SWCNT原料の溶解は、本発明において約0.1mg/mlから約50mg/mlまでの濃度、望ましくは約10mg/mlの濃度において達成された。
【0025】
分散剤としての用途に適している合成洗浄剤は、概して高い界面活性剤活性を有し、その臨界ミセル濃度(CMC)値の約50−95%の量に利用される。これらの高い界面活性剤洗浄剤は、溶液におけるSWCNT構造の適切な可溶性を設定するようにSWCNT構造を被覆することによって、SWCNT表面/水溶液インタフェースにおいて疎水性の力を克服し得る。合成洗浄剤の界面活性剤特性は、洗浄剤分子に存在する疎水性グループに対する親水性グループの測定量を提供する親水性−脂肪親和性バランス(HLB)の項目で特徴づけられることができる。特に、ここで分散剤としての用途に適切である合成洗浄剤は、約7と約13.2との間のHLB値を有する。合成洗浄剤の濃度をそのCMCの下の適切なレベルに制限することは、また、洗浄剤分子の自己会合性により片葉材料の形成のないSWCNT構造の十分な分散を保証する。又、カオトロピック塩(例えば、ウレア及びグアニジン)は、溶液において約6Mから約9Mまでの範囲の濃度において分散剤として概して利用され(Mは、モル濃度を指す)、それに対して、イオン対合剤は、溶液において約1mMから約100mMまでの範囲の濃度において分散剤として概して利用される。
【0026】
適切な濃度及び適切な分散剤の選択が水溶液におけるSWCNT構造の望ましい分散を達成するのに重要であるが、他の要因も分散剤の分散効果を強化し得る。水溶液におけるSWCNT構造の分散に影響を及ぼす典型的な要因には、制限なく、溶液のpH、溶液の陽イオン濃度(例えば、ナトリウム、カリウム及びマグネシウム)、及び動作温度や圧力のような他の条件がある。実に、このケースの溶媒、即ち水のユニークな特性により、特に個々の水分子の間に存在し得るユニークな化学反応(即ち、水素結合、分子の集合)が、低い動作温度(即ち、0℃と10℃との間)においてSWCNT表面と水分子との間における疎水性の相互作用の減少により、SWCNT材を分散させる分散剤の能力を増加させる。この時、大部分の一般の化学反応のケースのような温度の増加よりは動作温度の減少が予測される。個々のSWCNT構造の表面と相互作用することによって、分散剤の分子は、概してSWCNTの露出した疎水性の表面を囲んで被覆する。この相互作用の結果として、束の形成及び汚染物質の母体から個々のSWCNT構造が分離され、分散剤の両親媒性性質によって水分散即ちコロイド溶液の形態の個々のSWCNT構造を離散的に分離し維持する。
【0027】
SWCNT構造を含んでいる原料は、概して分散剤を含み(例えば、機械の振動又は混合によって)適当に混合された水溶液に加えられて、SWCNT構造をもって分散剤分子の十分な相互作用及び被覆を確実にする。SWCNT構造の効果的分散を得るために分散剤水溶液に加えられ得るSWCNT材の量が概して利用される特定の分散剤及びその溶液の濃度のような要因に依存するが、効果的分散は、分散剤水溶液において1mg/mlのSWCNT構造と同じ程度の濃度を利用して成し遂げられた。十分に混合すると、即座に、分散したSWCNT構造を含んでいる溶液は、適切なサイズのフィルタ(例えば、約0.05−0.2μm濾過)にて濾過されて、溶液内のいかなる不溶性の材料(汚染物質母体)も除去し得る。一般に、0.2μmフィルタは、フィルタの粘結性及び分散されたSWCNT構造の損失を防止しながら、汚染物質の十分な除去を保証するように利用される。しかし、より小さい孔サイズのフィルタが、汚染物質のより効果的な除去を保証するように利用されることもできる。より小さい孔サイズのフィルタが実装される状況において、フィルタのケークに閉じ込められ得るいかなるSWCNT構造も、分散剤溶液におけるケークの再懸濁及び望ましい産出を得るのに必要な濾過ステップの反復によって回復され得る。あるいは、標準の十字流濾過システムが、フィルタの表面において起こる粘結量を減少させるのに利用され得る。
【0028】
遠心分離又は他の分離技術のような追加的な処理ステップが、SWCNT構造が適切に分散した後に不溶性の物質及び過剰な分散剤を溶液から除去するのに利用されることもできる。具体的には、SWCNT構造を沈殿させるために約100xg乃至10,000xgの範囲の速度で溶液を遠心分離させることにより、過剰な分散剤を除去するようにSWCNT構造を洗浄し得る。SWCNT構造は、溶液から取り出して、蒸留水において再分散され得る。洗浄プロセスは、過剰な分散剤の十分な除去を保証するように所望の回数だけ繰り返し得る。SWCNT構造は、また、透析又は適当なサイズの排除コラム(例えば、5000MWサイズの排除コラム)の使用により、溶液内の過剰な分散剤及び他の汚染物質から分離され得る。分散剤で被覆し略分離及び精製されたSWCNTを含む結果として生じる溶液は、様々な応用、特にナノ技術研究に非常に役立つ。汚染物質母体からタンパク質の抽出を可能にする必要条件としての特定の分散剤の使用によって、タンパク質機能が否定的に衝撃を与えられ得るタンパク質生化学の場合の例のように、一旦水溶液へのタンパク質の分散が行われれば、問題となる分散剤は、第2の分散剤と置換され得る。この第2の分散剤も、タンパク質分子を水溶液内に維持させるが、タンパク質機能が最高である応用においてより適当である。同様に、一旦SWCNT材の分散が行われれば、必要に応じて一次分散剤は、計画された使用により適している第2の分散剤と置換され得る。例えば、シクロデクストリンが、水溶液において個々のSWCNTの安定した分散を起こすように一次分散剤として使われ得る。シクロデクストリン分散剤は、例えば、ポロキサマー188のような第2の分散剤と置換され得る。第2の分散剤は、例えばSWCNT含有の複合材料を形成するように容易に重合される個々のSWCNTの表面を被覆する母体材料、又は標準化学を用いて容易に修正され得る分散SWCNTの表面と現在結合された化学グループの容易に接近され得るソースを提供する。
【0029】
本発明の1つの中心目的は、SWCNTが個々の離散的なナノチューブの形態(即ち、完全な分散)で水溶液において分散されることを保証することである。非分散の束の形態であるか、個々に分離されているが束の形態で再結合(即ち、不完全な分散)されているSWCNTを含む水溶液内に分散したSWCNT材の1つの特徴は、SWCNT材が順に溶液から沈殿される大きい凝集物即ち“フロック”に再結合されることである。このプロセスは、分散を0.2ミクロン・フィルタにて濾過させた後にさえ、数分から数時間の範囲内で起こる。完全な分散の場合、0.2ミクロン・フィルタによる溶液の濾過の結果、長期にわたって略凝集又はフロックが発生しなく、延長期間の間、安定の状態(即ち、無フロック)を維持する有色の液体となる。水溶液内の分散されたSWCNT又は分散剤の相対的な濃度が水の蒸発によって増加されない限り、分散は、安定している状態(即ち、SWCNTは、水溶液内において一つの離散的なナノチューブとして存在する。)を維持する。
【0030】
特定の分散剤によって溶液内に維持され得るSWCNT材の最大濃度は、溶液内に存在する個々のSWCNTの全表面積に関連する。SWCNT材の完全な水の分散は、水可溶性をSWCNT.に授けるために、溶媒(即ち、水)に露出されたSWCNTの表面積の量と露出されたSWCNTの表面と相互作用し得る分散剤の量とのバランスをとることである。水溶液において露出したSWCNT表面と相互作用し得る分散剤の量は、順に特定の分散剤の水可溶性及び各々の個別分散剤分子が相互作用し得るSWCNT表面積の量に依存する。このように、特定の分散剤の特定の濃度において完全に分散され得るSWCNT材の最大量が存在する。特定の分散剤を使用して分散し得るSWCNT材の最大量は、分散剤の自己結合(洗浄剤の場合のCMC及び乳化剤の場合のクラウド・ポイントとして公知)が起こる水溶液の分散剤の濃度で又はその下で達成される。又、かかる分散剤溶液において分散され得るSWCNT材の量は、しかし、それらの大きい物理的なサイズによってコロイド特性を呈する溶液において個々の離散的なSWCNTの飽和濃度を上回ることができない。この最大のSWCNT濃度は、順にSWCNTの長さ(即ち、その分子のサイズ)に依存し、SWCNTが長ければ長いほど、一定の分散剤濃度の水溶液において完全分散として維持され得る最大濃度を低くする。これによって、水にその最適の濃度として溶解される特定の分散剤に対して、また、完全な水の分散として維持され得るSWCNTの最大濃度(即ち、数)が存在する。ここで、その最大数は、溶液内のSWCNTの表面積と直接関連されている。
【0031】
例えば、100ナノメートルの長さ及び1ナノメートルの直径のSWCNTは、100πnm2の露出した外部の表面積を有する。10,000ナノメートル(例えば、10ミクロン)の長さ及び1ナノメートルの直径のSWCNTは、10,000πnm2の露出した外部の表面積を有する。このように、完全な分散として百の、100ナノメートル長のSWCNTを維持するのは、完全分散における10ミクロンSWCNTを保つことと同じ量の分散剤を必要とする。この実施例は、(1)分散剤の分子の形状(即ち、分散剤の単一分子が相互作用し得るSWCNT表面積の量)、(2)溶液内の分散剤の濃度、(3)露出したSWCNTの全表面積(SWCNTの長さに係る)、及び(4)完全な水の分散として存在し得るSWCNT材の最大量間の関係の重要性を示す。
【0032】
以下の実施例は、汚染物質を含んでいる原料からSWCNT構造を分離及び精製する特定の方法を開示する。具体的には、NP−40、TA、ポロキサマー188、サポニン及びシクロデクストリン誘導剤が、SWCNT構造を水溶液において分散させる際の各々の効果を示すのに利用される。各々の実施例のためのSWCNT構造を含んでいる原料は、PLVプロセスを利用して得られた。しかし、SWCNT構造が任意のプロセスを通じて提供された原料を利用して分離及び精製され得るのが重要である。更なる重要なことは、これらの実施例が例示の目的のみを有し、本発明が意図した分散剤の方法及び範囲を決して制限しない点である。
【実施例1】
【0033】
束型のSWCNT構造を含んでいる原料は、水溶液のタンパク質と脂質を溶解することに知られている3つの合成洗浄液に混入された。利用される3つの合成洗浄剤は、NP−40,SDS及びTX−100であった。これらの洗浄剤は,異なっている物理的な特性によって、洗浄剤の界面活性剤の活性が溶液のSWCNT構造の分散にどの位影響を及ぼすかを示す。SDSは、負に充電される水溶性洗浄剤分子の層で合成物を被覆することによって合成物を水に溶解する強い陰イオン洗浄剤である。反面、TX−100及びNP−40は、合成物の表面と疎水性の相互作用を経て機能し、よって水不溶性の合成物周辺で洗浄剤分子の水溶性層を形成する非イオン洗浄剤である。NP−40の界面活性剤特性(即ち、水相と非水相間で表面張力を減少させる能力)は、SDS及びTX−100よりはるかに大きい。これらの洗浄剤の各々についての報告されたHLB値は、次の通りである(例えば、Kagawa,Biochim.Biophy.Acta265:297−338(1972)及びHelenius・et・al.,Biochim.Biophy.Acta415:29−79(1975)を参照)。
【0034】
【0035】
3つの水溶液は、各々次のように準備された。1mg(総乾燥重量)量の原料は、その各々のCMC値の50%において洗浄剤(例えば、SDS、TX−100又はNP−40)の1つを含んでいる二重のガラス蒸留型の脱イオン水(ddH2O)1mlに溶解された。その後、各溶液は、室温で30分間ボルテックスされた。その結果として生じる分散液は、いかなる微粒子物質も除去するように0.2μmの酢酸セルロース・フィルタを通過する。従来の分光学的方法は、450ナノメートル(3mmの経路長)の波長において、各溶液の伝送率(%T)を測るように採用された。
【0036】
各溶液の%T値は、溶液色の表示を提供し、よって溶液内で効果的にSWCNT構造を分散する各洗浄剤の能力を比較して決定するように測定された。具体的には、%T値は、溶液の色のグレードに反比例する。SWCNT構造が特定の溶液において束ねれば(又は束に再凝集すれば)、フロック材が沈降によりSWCNT構造を溶液から除去し、よって長期間にわたって色を減少させ%T値を増加させる。あるいは、SWCNT構造が溶液内において分散状態を維持していれば、フロックが発生しなく、溶液の色は一定の状態を維持する。従って、濾過において計られる低い%T値は、溶液におけるSWCNT材のより高いレベルの分散を示し、長期間にわたる不変の%Tは、安定したSWCNT分散を反映する。
【0037】
図1A乃至1Cに示されるプロット図は、各々SWCNT構造を有する及び有しない、SDS、TX−100及びNP−40を含む溶液に対する%Tデータを提供する。図1Aの陰影をつけないバー部は、いかなる原料もない各洗浄液に対して測定された%T値を表す。陰影をつけられたバー部に対する%T値は、溶液の0.2μmの濾過直後に一度SWCNT構造を含んでいる各洗浄液に対して測定された%T値を表す。図1Aの陰影をつけられたバー・データは、明らかに、最も大きい界面活性剤特性を有するNP−40がSDSとTX−100よりはるかに低い%T値を有するのを表し、よって水溶液におけるSWCNT構造の実質的により効果的な分散を提供する。
【0038】
溶液におけるSWCNT分散に対する洗浄剤濃度の効果を例示するために、SWCNT構造を含んでいる溶液は、室温で16時間の間、150μlの最初の容積から50μlの最終の容積に蒸発された。断続的に%Tが測定され、その結果は、図1Bに示される。洗浄剤及びSWCNT構造を含んでいる各溶液に対する%T値は、時間とともに増加(即ち、色の減少との相関)し、それは洗浄剤分散におけるフロック材の目立つ外観と一致し、よってナノチューブが水に不溶性のより大きい束に再び組み合わせ始めることを示している。試験結果は、洗浄剤濃度がそのCMC値より上に増加する際、ミセルの形成が溶液において起こってSWCNT構造の分散を減少させるのを示す。このように、洗浄剤濃度の選択は、溶液におけるSWCNT構造の分散を維持する際に非常に重要である。あるいは、その結果(図1B)は、溶液の容積が水の蒸発によって減少する際、洗浄剤の相対的な濃度がCMCより上に増加し、よって溶液内において個々の離散的なSWCNTを維持し得る分散剤の量の機能的減少に現れるのみならず、溶液におけるSWCNTの相対的な濃度が増加するのを表す。SWCNT分散のコロイド特性により、このプロセスは、CMCの上に増加する洗浄剤濃度と独立的に又は連動して、%Tの増加によって順番に反映されるイベント、分散におけるSWCNTの再組合せ又は“フロック”の結果として現れる。
【0039】
更なる試験は、前の溶液と略類似した方法で準備される溶液にて行われた。しかし、これらの溶液は、蒸発を予防するように室温で密封されたガラスビンに格納された。図1Cに示されたデータによって分かるように、各々の異なる洗浄液に対する%T値の変化及び72時間後のフロック材の目立つ外観が比較的に無く、0.2μmフィラによる2回の濾過後に%Tの増加があった。
【0040】
実施例1のデータは、NP−40のような強い界面活性剤が効果的な量に利用される時に水溶液においてSWCNT構造を分散するのに非常に効果的なことを示す。更に、NP−40は、延長期間の間、溶液における構造の適切な分散を維持し得る。SDS及びTX−100のような13.2より大きいHLB値を有する弱い界面活性剤は、若干の分散を提供し得るが、SWCNT構造を原料から略分離及び精製するのには効果的でない。
【実施例2】
【0041】
TA,ポロキサマー188,サポニン及びMβCの各々の水溶液が独立的及び次のような原料とともに用意された。具体的には、各々の溶液は、50mg/mlのTA、50mg/mlのMβC、10mg/mlのサポニン又は2%(v/v)のポロキサマー188のいずれかを含む1mlのddH2Oに1mlの原料を溶解することによって準備された。各々の結果として生じる溶液は、室温で30分間ボルテックスされ、0.2μmの酢酸セルロース・フィルタを通じて濾過された。%T値は、濾過の直後に、密封されたガラスビンに濾過された原液の格納後72時間に、及び格納された溶液の第2濾過の直後に室温で濾過液に対して測定された。分散剤/SWCNT含有の溶液は、同一の方法で処理された分散剤のみを含んでいる水溶液と比較された。
【0042】
図2に示された%T値は、72時間にわたって各濾過液に対して測定された比較的一定の%T値から分かるように、SWCNT構造がその全時間の間にTA,ポロキサマー188,サポニン及びMβCの濾過液に分散されている状態を維持したのを表す。図1Bにおいて示されるように、分散されたSWCNT材のフロック又は再凝集が発生すれば、これにより分散の%Tが減少するようになる。尚、分散におけるSWCNT材のフロック又は再凝集(図2)が水の蒸発なく72時間の格納期間の間にある程度発生した場合、2番目の時間の間に0.2μmフィルタによる分散の濾過は、分散の%T値の減少による再凝集又はフロック材を除去するようになる。データは、更に、MβC濾過液が、図2のTA,ポロキサマー188,サポニン濾過液及びNP−40濾過液よりは、SWCNT構造のより大きい分散に相関して、かなり低い%T値を有したのを表す。72時間の周期後、第2回の各濾過液の0.2μm濾過後さえ、%T値の意味のある増加が観察されなかった。図2に提供された結果は、TA,サポニン、ポロキサマー188及びMβCが非常に効率的な分散剤として作用し、延長期間の間に水溶液におけるSWCNT構造の相当な分散を提供するのを明らかに表す。
【実施例3】
【0043】
前の実施例のTA及びMβC溶液に分散されたSWCNT構造は、遠心分離によって溶液の不純物から分離された。具体的には、SWCNT構造は、10,000xgの遠心分離速度において2.5cm高さの液柱を有する1ml容積の溶液から沈殿された。又、NP−40、TA,MβC、サポニン又はポロキサマー188に分散されたSWCNTのサブ集団は、順番に増加する遠心分離速度(例えば、1,000xg、2,500xg、5,000xg及び7,500xg)を用いて同じサンプルから収集され得る。このように、これらの結果は、そのサイズに従って細胞構造を分離するのに差動の遠心分離を使用し得る生物学的分離の場合(例えば、ジェイ エム グラハムおよびディー リックウッド編 「テクニック レビュード イン サブセルラー フラクショネーション−プラクティカル アプローチ」アイアールエル プレス オックスフォード発行 1996年)に、類似した接近方法がここで記載されている水の分散から異なるサイズのSWCNTを収集するのに利用され得るのを暗示する。従来のSWCNT精製技術がSWCNT構造のいかなる沈殿を獲得するように100,000xgの超過の遠心分離速度を概して必要とし、非常に短い(即ち、約250ナノメートル未満)SWCNTが存在する実験観察がこのような前の溶液において存在する点に注意する。上記の比較的低いg−力(即ち、10,000xg以下)において本発明に記載されている水の分散からSWCNTを沈殿させる能力は、これらの分散に存在するSWCNT構造がこれらの以前生成されたよりはるかに大きく(即ち、SWCNTの直径が約1nmの一定の寸法であるだけ長く)なければならなく、沈殿を起こすためには10,000xg以上の力を必要とするのを現す。
【実施例4】
【0044】
分散されたSWCNT構造を含むMβC水溶液は、次のように準備された。原料を含む200μgのSWCNTは、50mg/mlのMβCを含む1mlのddH2O溶液に溶解された。溶液は、約23,000回転数/分の最小型の逆混合機において物理的に均質にされた。その結果として生じる分散は、残っている不溶性の材料を沈殿させるように室温で30分間ボルテックスされた後、10分間100xgの速度で遠心分離された。その後、結果として生じる上澄みは、以下の方法により、5000MWのカットオフ重力供給型のサイズ排除コラム(10mlのベッド・ボリューム)を通過した。分散された溶液の1mlは、コラムの上に配置されて、50mlのddH2Oに調整された。1mlのフラクションは、ddH2Oがコラムの上部に加えられた時、コラムのベースから収集された。%T値は、各々の収集したフラクションに対して測定された。フラクション#に対する%T値は、図3に示される。減少する%T値によって指示されるように、色のついたフラクションは、溶液の分散を表した。それらの色のついたフラクション(即ち、図5のフラクション#1−10)は、集められて一緒に凝集された。この手続きは、SWCNT分散から過剰なMβCを除去するように行われた。分散されたSWCNT構造を含む結果の溶液は、SWCNT構造を溶液から沈殿させるように10、000xgで遠心分離された。その後、上澄みが捨てられ、沈殿されたSWCNTが蒸溜水で再懸濁されて、過剰な分散剤を僅か含むか含まない離散的に分離されたSWCNTの安定した水の分散を形成するようになる。再び、生物学的分子の分離を達成する生物科学(即ち、サイズ排除クロマトグラフィ)において共通に使われた方法は、SWCNT材の分離及び精製において遭遇される実験的な課題にうまく適用され得る。生物学的分離技術の理解に基づいて、異なる保持時間以後サイズ排除コラムから分散されたSWCNTの異なる量の溶出(図3において、各フラクション、即ちフラクション#1−10の%T値の相違から分かるように)は、水溶液において本当に分散した離散的なSWCNTが異なるサイズのタンパク質を分離及び精製するのに採用されたのと同じ方法でサイズ排除クロマトグラフィを使用してその長さに従って分離及び精製され得ることを暗示する。前の実施例1−3と連動して、これらのデータは、SWCNT材の分離及び精製において遭遇される実験的な課題を解決する本発明に記載されている方法が、SWCNT構造が本質的に物理化学又は有機化学の生成物としてより返って“生物学的”合成物として行動するという新規で革新的な概念に基づいて、成功したのを強く示唆する。
【0045】
SWCNT及びその対応する生成物の安定した水の分散を生成する新規な方法を記載しているが、他の変更、変動及び変化が本願明細書に記載されている教示からみて当業者に提案されると考えられる。従って、このような全ての変更、変動及び変化が添付の請求項に記載された本発明の範囲内にあると理解される。
【図面の簡単な説明】
【0046】
【図1A】変化された界面活性剤の強さを有する3つの合成洗浄剤を含む水溶液における%伝送(%T)値のプロット図である。
【図1B】蒸発状態の図1Aの水溶液における時間に対する%伝送(%T)のプロット図である。
【図1C】非蒸発状態の図1Aの水溶液における時間に対する%伝送(%T)のプロット図である。
【図2】タウロコール酸、ポロキサマー188、サポニン及びメチル・ベータ・シクロデクストリンを含む水溶液における時間に対する%伝送(%T)のプロット図である。
【図3】5000MWのサイズ排除コラムにおけるメチル−β−シクロデクストリン分散のSWCNT構造の分割時測定されたフラクション#に対する%伝送値のプロット図である。
Claims (41)
- 原料内に埋め込まれている単一壁のカーボンナノチューブ構造を分離する方法であって、
前記構造を溶液内に略分散させる分散剤の効果的量を含んでいる前記溶液に前記構造を混合する段階を含む方法。 - 前記構造を前記溶液に混合する段階は、前記構造を前記原料の汚染物質から実質的に分離することを特徴とする請求項1に記載の方法。
- 前記分散剤は、高い界面活性剤、デオキシコール酸塩、シクロデクストリン、カオトロピック塩、ポロキサマー、サポニングリコシド及びイオン対合剤を有する洗浄剤からなるグループから選択されることを特徴とする請求項1に記載の方法。
- 前記分散剤は、洗浄剤を含み、前記溶液の前記洗浄剤の効果的量は、前記洗浄剤の臨界ミセル濃度の約95%以下であることを特徴とする請求項1に記載の方法。
- 前記溶液の前記洗浄剤の前記効果的量は、前記洗浄剤の臨界ミセル濃度の少なくとも約50%であることを特徴とする請求項1に記載の方法。
- 前記分散剤は、約13.2以下の親水性−脂肪親和性のバランス値を有する洗浄剤を含むことを特徴とする請求項1に記載の方法。
- 前記分散剤は、ノニデットP−40、ポロキサマー188、ポリオキシエチレン・ソルビトール・エステル、臭化アンモニウム及び塩化アンモニウムからなるグループから選択される洗浄剤であることを特徴とする請求項1に記載の方法。
- 前記分散剤は、シクロデクストリン、サポニン及びタウロコール酸からなるグループから選択されることを特徴とする請求項1に記載の方法。
- 前記分散剤の前記効果的量は、約500mg/ml以下であることを特徴とする請求項8に記載の方法。
- 前記分散剤の前記効果的量は、少なくとも約5mg/mlであることを特徴とする請求項8に記載の方法。
- 前記分散剤は、メチル−β−シクロデクストリン及び2−ヒドロキシプロピル−β−シクロデクストリンからなるグループから選択されるシクロデクストリン誘導剤であることを特徴とする請求項1に記載の方法。
- 前記分散剤は、ウレア及びグアニジンからなるグループから選択されるカオトロピック塩であることを特徴とする請求項1に記載の方法。
- 前記溶液の前記カオトロピック塩の効果的量は、約9M.以下であることを特徴とする請求項12に記載の方法。
- 前記溶液の前記カオトロピック塩の効果的量は、少なくとも約6Mであることを特徴とする請求項12に記載の方法。
- 前記分散剤は、スルホン酸であり、前記溶液の前記スルホン酸の前記効果的量は、約100mM以下であることを特徴とする請求項1に記載の方法。
- 前記スルホン酸は、1−ヘプタン−スルホン酸及び1−オクタン−スルホン酸からなるグループから選択されることを特徴とする請求項15に記載の方法。
- 前記構造の精製された濾過液を形成するために前記溶液をフィルタに通過させる段階と、
前記構造の精製された溶液を形成するために前記溶液をサイズ排除コラムに通過させる段階との中の少なくとも1つによって前記溶液内の前記原料から前記構造を分離する段階を更に含むことを特徴とする請求項1に記載の方法。 - 前記フィルタは、0.20μm以下のサイズの孔を備えることを特徴とする請求項17に記載の方法。
- 前記溶液の前記構造を沈殿させるために約10,000xg以下の範囲の速度で前記溶液を遠心分離する段階と、
前記構造を前記溶液から分離する段階と、
第2の溶液において前記構造を略分散するために前記第2の溶液に前記構造を混合する段階とを更に含み、前記第2の溶液は、前記構造との混合前に前記分散剤を略有しないことを特徴とする請求項1に記載の方法。 - 原料内に埋め込まれている単一壁のカーボンナノチューブ構造を精製する方法であって、
前記構造を前記原料の汚染物質から略分離するために分散剤の効果的量を含んでいる溶液に前記構造を混合する段階を含む方法。 - 分散剤にて被覆されている単一壁のカーボンナノチューブ構造を有する溶液を含む単一壁のカーボンナノチューブ生成物であって、前記構造は、前記溶液内において略分散される生成物。
- 前記構造は、略汚染物質を有しないことを特徴とする請求項21に記載の生成物。
- 前記分散剤は、高い界面活性剤活性、ポロキサマー、サポニングリコシド、デオキシコール酸塩、シクロデクストリン、カオトロピック塩及びイオン対合剤を有する洗浄剤からなるグループから選択されることを特徴とする請求項21に記載の生成物。
- 前記分散剤は、洗浄剤の臨界ミセル濃度の約95%以下の量に前記溶液に前記洗浄剤を含むことを特徴とする請求項21に記載の生成物。
- 前記分散剤は、前記洗浄剤の臨界ミセル濃度の少なくとも約50%の量に前記溶液に前記洗浄剤を含むことを特徴とする請求項21に記載の生成物。
- 前記分散剤は、約13.2以下の親水性−脂肪親和性のバランス値を有する洗浄剤を含むことを特徴とする請求項21に記載の生成物。
- 前記分散剤は、ノニデットP−40、ポロキサマー188、ポリオキシエチレン・ソルビトール・エステル、臭化アンモニウム及び塩化アンモニウムからなるグループから選択される洗浄剤であることを特徴とする請求項21に記載の生成物。
- 前記分散剤は、シクロデクストリン、サポニン及びタウロコール酸からなるグループから選択されることを特徴とする請求項21に記載の生成物。
- 前記分散剤は、約500mg/ml以下の量に前記溶液内にあることを特徴とする請求項28に記載の生成物。
- 前記分散剤は、少なくとも約5mg/mlの量に前記溶液内にあることを特徴とする請求項28に記載の生成物。
- 前記分散剤は、メチル−β−シクロデクストリン及び2−ヒドロキシプロピル−β−シクロデクストリンからなるグループから選択されるシクロデクストリン誘導剤であることを特徴とする請求項21に記載の生成物。
- 前記分散剤は、ウレア及びグアニジンからなるグループから選択されるカオトロピック塩であることを特徴とする請求項21に記載の生成物。
- 前記カオトロピック塩は、約9M.以下の量に前記溶液にあることを特徴とする請求項32に記載の生成物。
- 前記カオトロピック塩は、少なくとも約6Mの量に前記溶液にあることを特徴とする請求項32に記載の生成物。
- 前記分散剤は、スルホン酸であり、前記スルホン酸は、約100mM以下の量に前記溶液にあることを特徴とする請求項21に記載の生成物。
- 前記スルホン酸は、1−ヘプタン−スルホン酸及び1−オクタン−スルホン酸からなるグループから選択されることを特徴とする請求項35に記載の生成物。
- カーボンナノチューブを汚染物質から分離する方法であって、
ナノチューブ溶液を生成するために汚染物質を含んでいるナノチューブ含有の材料を少なくとも一つの分散剤を含んでいる水性媒体に導入する段階と、
分散されたナノチューブ溶液を形成するためにナノチューブの露出された表面を分散剤にて被覆するように前記溶液を動揺させる段階と、
過剰な分散剤媒体を分散されたナノチューブ溶液から除去する段階とを含む方法。 - 前記分散剤は、洗浄剤、界面活性剤、乳化剤、カオトロピック塩及びイオン対合剤を含むことを特徴とする請求項1に記載の方法。
- 複数のカーボンナノチューブから成るカーボンナノチューブの束を個々の離散的なカーボンナノチューブフィラメントに変換する方法であって、ナノチューブの束を溶液において個々のフィラメントに略分散させる効果的量の分散剤を含んでいる水性媒体に前記ナノチューブの束を導入する段階を含む方法。
- ナノチューブ含有の分散剤水溶液を含む離散的なカーボンナノチューブを格納する媒体であって、前記ナノチューブの表面は、分散剤にて被覆され、前記分散剤は、ナノチューブが互いに付着されるのを防止する媒体。
- カーボンナノチューブの束を水性媒体において個々のカーボンナノチューブフィラメントに溶解する方法であって、ナノチューブの束を溶液において個々のフィラメントに略分散させる効果的量の分散剤を含んでいる水性媒体に前記ナノチューブの束を導入する段階を含む方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30381601P | 2001-07-10 | 2001-07-10 | |
US09/932,986 US6878361B2 (en) | 2001-07-10 | 2001-08-21 | Production of stable aqueous dispersions of carbon nanotubes |
PCT/US2002/019824 WO2003006725A1 (en) | 2001-07-10 | 2002-07-08 | Production of stable aqueous dispersions of carbon nanotubes |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004534714A true JP2004534714A (ja) | 2004-11-18 |
JP2004534714A5 JP2004534714A5 (ja) | 2008-05-29 |
JP4355570B2 JP4355570B2 (ja) | 2009-11-04 |
Family
ID=26973664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003512477A Expired - Fee Related JP4355570B2 (ja) | 2001-07-10 | 2002-07-08 | カーボンナノチューブの安定した水分散液の生成 |
Country Status (5)
Country | Link |
---|---|
US (2) | US6878361B2 (ja) |
EP (1) | EP1412568A4 (ja) |
JP (1) | JP4355570B2 (ja) |
CA (1) | CA2453395C (ja) |
WO (1) | WO2003006725A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004276232A (ja) * | 2003-02-24 | 2004-10-07 | Mitsubishi Electric Corp | カーボンナノチューブ分散液およびその製造方法 |
JP2010195671A (ja) * | 2009-01-30 | 2010-09-09 | Kawaken Fine Chem Co Ltd | 分散安定性の高いカーボンナノ粒子水性分散液、その製造方法及びカーボンナノ粒子分散膜材 |
JP2013519620A (ja) * | 2010-02-12 | 2013-05-30 | ナンテロ,インク. | ナノチューブファブリック層又はフィルム内の密度、多孔率及び/又は間隙サイズを制御するための方法 |
JPWO2019180956A1 (ja) * | 2018-03-23 | 2021-03-11 | 日本電気株式会社 | ナノカーボン分散液の保管方法 |
KR20210041777A (ko) * | 2019-10-08 | 2021-04-16 | 한국세라믹기술원 | 천연 풀러렌의 수분산성 개선 방법 및 상기 방법에 의해 제조된 천연 풀러렌의 용도 |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6689835B2 (en) * | 2001-04-27 | 2004-02-10 | General Electric Company | Conductive plastic compositions and method of manufacture thereof |
US6723299B1 (en) * | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
US7166266B2 (en) * | 2001-07-10 | 2007-01-23 | Gb Tech, Inc. | Isolation and purification of single walled carbon nanotube structures |
EP1483202B1 (en) * | 2002-03-04 | 2012-12-12 | William Marsh Rice University | Method for separating single-wall carbon nanotubes and compositions thereof |
US7147894B2 (en) * | 2002-03-25 | 2006-12-12 | The University Of North Carolina At Chapel Hill | Method for assembling nano objects |
US20040034177A1 (en) * | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
CN100375201C (zh) | 2002-06-14 | 2008-03-12 | 海珀里昂催化国际有限公司 | 基于导电微细碳纤维的油墨和涂料 |
DE10241294A1 (de) * | 2002-09-04 | 2004-03-18 | Basf Ag | Hybriddispersionen aus Polyadditionsprodukten und radikalischen Polymerisaten |
AU2003251307A1 (en) * | 2002-09-10 | 2004-04-30 | The Trustees Of The University Pennsylvania | Carbon nanotubes: high solids dispersions and nematic gels thereof |
US7666382B2 (en) * | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
US7285591B2 (en) * | 2003-03-20 | 2007-10-23 | The Trustees Of The University Of Pennsylvania | Polymer-nanotube composites, fibers, and processes |
FR2853657B1 (fr) * | 2003-04-10 | 2005-06-24 | Centre Nat Rech Scient | Macromolecules auto assemblees et photopolymerisees autour de nanotubes de carbone, un procede pour leur preparation, et leurs applications |
US20040211942A1 (en) * | 2003-04-28 | 2004-10-28 | Clark Darren Cameron | Electrically conductive compositions and method of manufacture thereof |
WO2004106420A2 (en) * | 2003-05-22 | 2004-12-09 | Zyvex Corporation | Nanocomposites and method for production |
US20040232389A1 (en) * | 2003-05-22 | 2004-11-25 | Elkovitch Mark D. | Electrically conductive compositions and method of manufacture thereof |
US20040262581A1 (en) * | 2003-06-27 | 2004-12-30 | Rodrigues David E. | Electrically conductive compositions and method of manufacture thereof |
JP2007512658A (ja) * | 2003-08-08 | 2007-05-17 | ゼネラル・エレクトリック・カンパニイ | 導電性組成物及びその製造方法 |
US7026432B2 (en) * | 2003-08-12 | 2006-04-11 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
US7354988B2 (en) * | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
US7504051B2 (en) * | 2003-09-08 | 2009-03-17 | Nantero, Inc. | Applicator liquid for use in electronic manufacturing processes |
US7309727B2 (en) * | 2003-09-29 | 2007-12-18 | General Electric Company | Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions |
US20050070658A1 (en) * | 2003-09-30 | 2005-03-31 | Soumyadeb Ghosh | Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions |
US7052618B2 (en) | 2004-01-28 | 2006-05-30 | Agilent Technologies, Inc. | Nanostructures and methods of making the same |
IL160145A0 (en) * | 2004-01-29 | 2004-06-20 | Univ Ben Gurion | Method for the preparation of dispersions of carbon nanotubes |
JP5254608B2 (ja) * | 2004-04-13 | 2013-08-07 | ザイベックス パフォーマンス マテリアルズ、インク. | モジュール式ポリ(フェニレンエチレニン)の合成方法及びナノマテリアルを機能化するためにその電子特性を微調整する方法 |
US7217428B2 (en) | 2004-05-28 | 2007-05-15 | Technology Innovations Llc | Drug delivery apparatus utilizing cantilever |
JP2005342937A (ja) * | 2004-06-01 | 2005-12-15 | National Printing Bureau | 印刷機用ローラ及びその製造方法 |
US20060293434A1 (en) * | 2004-07-07 | 2006-12-28 | The Trustees Of The University Of Pennsylvania | Single wall nanotube composites |
US7296576B2 (en) * | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US20070116627A1 (en) * | 2005-01-25 | 2007-05-24 | California Institute Of Technology | Carbon nanotube compositions and devices and methods of making thereof |
KR100616666B1 (ko) * | 2005-01-27 | 2006-08-28 | 삼성전기주식회사 | 카본나노튜브에 구아니딘기를 형성하는 방법,구아니딘기가 형성된 카본나노튜브를 기판에 부착하는방법 및 이에 따라 제조된 카본나노튜브 및 기판 |
US7462656B2 (en) * | 2005-02-15 | 2008-12-09 | Sabic Innovative Plastics Ip B.V. | Electrically conductive compositions and method of manufacture thereof |
US20060188723A1 (en) * | 2005-02-22 | 2006-08-24 | Eastman Kodak Company | Coating compositions containing single wall carbon nanotubes |
US8246995B2 (en) | 2005-05-10 | 2012-08-21 | The Board Of Trustees Of The Leland Stanford Junior University | Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells |
US8033501B2 (en) * | 2005-06-10 | 2011-10-11 | The Boeing Company | Method and apparatus for attaching electrically powered seat track cover to through hole seat track design |
US20070037057A1 (en) * | 2005-08-12 | 2007-02-15 | Douglas Joel S | Non printed small volume in vitro analyte sensor and methods |
US20070158619A1 (en) * | 2006-01-12 | 2007-07-12 | Yucong Wang | Electroplated composite coating |
KR100773551B1 (ko) | 2006-04-14 | 2007-11-07 | 삼성전자주식회사 | 탄소나노튜브 분산액 및 그 제조 방법 |
WO2008100333A2 (en) * | 2006-08-10 | 2008-08-21 | William Marsh Rice University | Polymer composites mechanically reinforced with alkyl and urea functionalized nanotubes |
US8057686B2 (en) * | 2007-03-02 | 2011-11-15 | Micron Technology, Inc. | Nanotube separation methods |
KR100851983B1 (ko) * | 2007-05-14 | 2008-08-12 | 삼성전자주식회사 | 탄소나노튜브 분산액 |
WO2009018092A1 (en) * | 2007-07-27 | 2009-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
US7998368B2 (en) * | 2007-11-26 | 2011-08-16 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Aqueous solution dispersement of carbon nanotubes |
CN101239715B (zh) * | 2008-03-06 | 2010-04-21 | 广州大学 | 一种二醋酸纤维素-碳纳米管衍生物及其制备方法和用途 |
KR100960033B1 (ko) | 2008-06-18 | 2010-05-28 | 재단법인 대구테크노파크 | 전도성 탄소나노튜브 폴리머 복합체의 제조방법 및 그를위한 탄소나노튜브 분산방법 |
US20110300126A1 (en) * | 2008-11-11 | 2011-12-08 | Marianna Foldvari | Dispersion and debundling of carbon nanotubes using gemini surfactant compounds |
FR2941938B1 (fr) | 2009-02-06 | 2011-05-06 | Commissariat Energie Atomique | Procede de kit de separation de nanotubes de carbone metalliques et semi-conducteurs. |
WO2010099446A1 (en) * | 2009-02-26 | 2010-09-02 | Massachusetts Institute Of Technology | Systems and methods using photoluminescent nanostructure based hydrogels |
CN102001620A (zh) * | 2009-08-31 | 2011-04-06 | 索尼株式会社 | 碳纳米管制造方法、碳纳米管膜制造方法和电子设备制造方法 |
US8324487B2 (en) | 2010-06-02 | 2012-12-04 | Shen tongde | Dispersible carbon nanotubes and method for preparing same |
US9663734B2 (en) | 2011-04-02 | 2017-05-30 | Bcr Science Pllc | Solutions of allotropes of carbon and methods of making and using the same |
US9174842B2 (en) * | 2011-10-14 | 2015-11-03 | Georgia Tech Research Corporation | Single-walled metal oxide and metal sulphide nanotubes/polymer composites |
CN102397553B (zh) * | 2011-11-24 | 2013-05-22 | 中国药科大学 | 一种利用驱替物提高碳纳米管药物递送系统中药物释放的方法 |
US9290381B2 (en) | 2013-09-26 | 2016-03-22 | Georgia Tech Research Corporation | Functionalized single-walled nanotubes and methods thereof |
JP6427541B2 (ja) * | 2016-09-16 | 2018-11-21 | 本田技研工業株式会社 | 亜鉛−ニッケル複合めっき浴及びめっき方法 |
CN110963483B (zh) * | 2019-12-31 | 2021-09-10 | 新材料与产业技术北京研究院 | 一种水系碳纳米管分散液及其制备方法 |
CN113861789A (zh) * | 2021-05-26 | 2021-12-31 | 浙江工业大学 | 石墨烯改性环氧-丙烯酸树脂功能性涂料及其制备方法 |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9203037D0 (en) * | 1992-02-11 | 1992-03-25 | Salutar Inc | Contrast agents |
JP2522469B2 (ja) | 1993-02-01 | 1996-08-07 | 日本電気株式会社 | カ―ボン・ナノチュ―ブの精製法 |
US5424054A (en) * | 1993-05-21 | 1995-06-13 | International Business Machines Corporation | Carbon fibers and method for their production |
JPH0822733B2 (ja) * | 1993-08-04 | 1996-03-06 | 工業技術院長 | カーボンナノチューブの分離精製方法 |
JP2595903B2 (ja) * | 1994-07-05 | 1997-04-02 | 日本電気株式会社 | 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法 |
JPH0850133A (ja) | 1994-08-05 | 1996-02-20 | Toray Ind Inc | 免疫化学的測定方法 |
JPH08178924A (ja) | 1994-12-27 | 1996-07-12 | Tokuyama Corp | 菌表層抗原の製造方法 |
JP2682486B2 (ja) | 1995-01-18 | 1997-11-26 | 日本電気株式会社 | カーボンナノチューブの精製方法 |
JP3415324B2 (ja) | 1995-03-17 | 2003-06-09 | 東洋炭素株式会社 | 炭素クラスターを溶解させた液体中における不溶すす成分の固定化方法 |
JP3493533B2 (ja) | 1995-05-30 | 2004-02-03 | 大阪府 | フラーレン類の分離精製方法 |
AU718983B2 (en) | 1995-10-06 | 2000-05-04 | Vertex Pharmaceuticals Incorporated | Butyrate prodrugs of lactic acid |
JP2735055B2 (ja) | 1995-11-30 | 1998-04-02 | 日本電気株式会社 | カーボン・ナノチューブの精製方法 |
JP2737736B2 (ja) | 1996-01-12 | 1998-04-08 | 日本電気株式会社 | カーボン単層ナノチューブの製造方法 |
JP2002503204A (ja) | 1996-03-06 | 2002-01-29 | ハイピリオン カタリシス インターナショナル インコーポレイテッド | 官能化されたナノチューブ |
DE69739191D1 (de) * | 1996-05-15 | 2009-02-12 | Hyperion Catalysis Internat In | Graphitnanofasern in elektrochemischen kondensatoren |
US5853877A (en) * | 1996-05-31 | 1998-12-29 | Hyperion Catalysis International, Inc. | Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film |
DE69728410T2 (de) * | 1996-08-08 | 2005-05-04 | William Marsh Rice University, Houston | Makroskopisch manipulierbare, aus nanoröhrenanordnungen hergestellte vorrichtungen |
JP3607782B2 (ja) | 1996-10-17 | 2005-01-05 | 東洋炭素株式会社 | 単層ナノチューブの分離・精製方法及び金属内包ナノカプセルの分離・精製方法 |
RU2085484C1 (ru) | 1996-11-13 | 1997-07-27 | Виктор Иванович Петрик | Способ и устройство для производства фуллеренов |
RU2086503C1 (ru) | 1997-02-03 | 1997-08-10 | Виктор Иванович Петрик | Способ промышленного производства фуллеренов |
US5904852A (en) * | 1997-04-16 | 1999-05-18 | University Of South Carolina | Process for purifying fullerenes |
RU2133727C1 (ru) | 1998-01-12 | 1999-07-27 | Институт нефтехимии и катализа с опытным заводом АН Республики Башкортостан | Способ получения этилсодержащих фуллеренов c60 |
DE69908016T2 (de) | 1998-04-09 | 2004-08-19 | Enterprise Ireland | Zusammensetzung enthaltend Nanoröhren und eine organische Verbindung |
FR2778846B1 (fr) | 1998-05-25 | 2001-05-11 | Commissariat Energie Atomique | Procede de fixation et/ou de cristallisation de macromolecules biologiques sur des nanotubes de carbone et ses applications |
US6368569B1 (en) * | 1998-10-02 | 2002-04-09 | University Of Kentucky Research Foundation | Method of solubilizing unshortened carbon nanotubes in organic solutions |
US6187823B1 (en) * | 1998-10-02 | 2001-02-13 | University Of Kentucky Research Foundation | Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines |
US6331262B1 (en) * | 1998-10-02 | 2001-12-18 | University Of Kentucky Research Foundation | Method of solubilizing shortened single-walled carbon nanotubes in organic solutions |
DE60038732T2 (de) | 1999-03-23 | 2008-11-20 | Rosseter Holdings Ltd. | Verfahren und vorrichtung zur herstellung von höheren fullerenen und nanoröhren |
EP1059266A3 (en) * | 1999-06-11 | 2000-12-20 | Iljin Nanotech Co., Ltd. | Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition |
KR100382878B1 (ko) | 1999-06-15 | 2003-05-09 | 일진나노텍 주식회사 | 고순도 탄소나노튜브의 합성 방법 |
KR100364095B1 (ko) | 1999-06-15 | 2002-12-12 | 일진나노텍 주식회사 | 탄소나노튜브의 대량 정제 방법 |
US6465132B1 (en) * | 1999-07-22 | 2002-10-15 | Agere Systems Guardian Corp. | Article comprising small diameter nanowires and method for making the same |
KR19990073589A (ko) | 1999-07-27 | 1999-10-05 | 이철진 | 저압화학기상증착법에 의한 탄소나노튜브의 대량 합성. |
KR19990073590A (ko) | 1999-07-27 | 1999-10-05 | 이철진 | 플라즈마 화학기상증착법에 의한 고순도 탄소나노튜브의 대량합성. |
EP1226295A4 (en) * | 1999-08-12 | 2004-10-13 | Midwest Research Inst | SINGLE WALL PURE CARBON NANOTUBES |
SE9903079L (sv) | 1999-08-31 | 2001-03-01 | Ultratec Ltd | Förfarande för framställning av nanorörformigt material och material vilket framställts genom detta förfarande |
JP2001146409A (ja) | 1999-10-11 | 2001-05-29 | Cheol Jin Lee | 炭素ナノチューブのチップオープン方法及び精製方法 |
ATE355323T1 (de) | 1999-12-07 | 2006-03-15 | Univ Rice William M | Orientierte nanofaser eingebunden in einer polymermatrix |
WO2001057284A1 (en) | 2000-02-01 | 2001-08-09 | William Marsh Rice University | Containerless mixing of metals and polymers with fullerenes and nanofibers to produce reinforced advanced materials |
CN1335257A (zh) | 2000-07-21 | 2002-02-13 | 中国科学院成都有机化学研究所 | 一种制备碳纳米管的催化剂 |
AU2002236431A1 (en) * | 2000-08-23 | 2002-05-21 | A. Kuper Cynthia | Method for utilizing sol-gel processing in the production of a macroscopic two or three dimensionally ordered array of single wall nanotubes (swnts) |
US7008563B2 (en) | 2000-08-24 | 2006-03-07 | William Marsh Rice University | Polymer-wrapped single wall carbon nanotubes |
US6682677B2 (en) * | 2000-11-03 | 2004-01-27 | Honeywell International Inc. | Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns |
US20020102193A1 (en) * | 2001-01-31 | 2002-08-01 | William Marsh Rice University | Process utilizing two zones for making single-wall carbon nanotubes |
US7052668B2 (en) * | 2001-01-31 | 2006-05-30 | William Marsh Rice University | Process utilizing seeds for making single-wall carbon nanotubes |
US7090819B2 (en) * | 2001-02-12 | 2006-08-15 | William Marsh Rice University | Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof |
US6752977B2 (en) * | 2001-02-12 | 2004-06-22 | William Marsh Rice University | Process for purifying single-wall carbon nanotubes and compositions thereof |
IL142254A0 (en) | 2001-03-26 | 2002-03-10 | Univ Ben Gurion | Method for the preparation of stable suspensions of single carbon nanotubes |
US20020172767A1 (en) * | 2001-04-05 | 2002-11-21 | Leonid Grigorian | Chemical vapor deposition growth of single-wall carbon nanotubes |
JP3887315B2 (ja) * | 2001-04-12 | 2007-02-28 | ザ ペン ステート リサーチ ファウンデーション | 開放端を有する精製単層カーボンナノチューブを合成する方法 |
US6723299B1 (en) | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
US7157068B2 (en) * | 2001-05-21 | 2007-01-02 | The Trustees Of Boston College | Varied morphology carbon nanotubes and method for their manufacture |
US7288238B2 (en) * | 2001-07-06 | 2007-10-30 | William Marsh Rice University | Single-wall carbon nanotube alewives, process for making, and compositions thereof |
US20030012951A1 (en) * | 2001-07-10 | 2003-01-16 | Clarke Mark S.F. | Analysis of isolated and purified single walled carbon nanotube structures |
US7166266B2 (en) | 2001-07-10 | 2007-01-23 | Gb Tech, Inc. | Isolation and purification of single walled carbon nanotube structures |
-
2001
- 2001-08-21 US US09/932,986 patent/US6878361B2/en not_active Expired - Lifetime
-
2002
- 2002-07-08 JP JP2003512477A patent/JP4355570B2/ja not_active Expired - Fee Related
- 2002-07-08 WO PCT/US2002/019824 patent/WO2003006725A1/en active Application Filing
- 2002-07-08 CA CA002453395A patent/CA2453395C/en not_active Expired - Fee Related
- 2002-07-08 EP EP02747947A patent/EP1412568A4/en not_active Withdrawn
-
2004
- 2004-11-02 US US10/978,333 patent/US7968073B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004276232A (ja) * | 2003-02-24 | 2004-10-07 | Mitsubishi Electric Corp | カーボンナノチューブ分散液およびその製造方法 |
JP2010195671A (ja) * | 2009-01-30 | 2010-09-09 | Kawaken Fine Chem Co Ltd | 分散安定性の高いカーボンナノ粒子水性分散液、その製造方法及びカーボンナノ粒子分散膜材 |
JP2013519620A (ja) * | 2010-02-12 | 2013-05-30 | ナンテロ,インク. | ナノチューブファブリック層又はフィルム内の密度、多孔率及び/又は間隙サイズを制御するための方法 |
JPWO2019180956A1 (ja) * | 2018-03-23 | 2021-03-11 | 日本電気株式会社 | ナノカーボン分散液の保管方法 |
JP7120300B2 (ja) | 2018-03-23 | 2022-08-17 | 日本電気株式会社 | ナノカーボン分散液の保管方法 |
US11479469B2 (en) | 2018-03-23 | 2022-10-25 | Nec Corporation | Method for storing a nanocarbon dispersion liquid |
KR20210041777A (ko) * | 2019-10-08 | 2021-04-16 | 한국세라믹기술원 | 천연 풀러렌의 수분산성 개선 방법 및 상기 방법에 의해 제조된 천연 풀러렌의 용도 |
KR102349033B1 (ko) | 2019-10-08 | 2022-01-11 | 한국세라믹기술원 | 천연 풀러렌의 수분산성 개선 방법 및 상기 방법에 의해 제조된 천연 풀러렌의 용도 |
Also Published As
Publication number | Publication date |
---|---|
CA2453395A1 (en) | 2003-01-23 |
EP1412568A4 (en) | 2005-08-31 |
US20030026754A1 (en) | 2003-02-06 |
CA2453395C (en) | 2009-11-17 |
EP1412568A1 (en) | 2004-04-28 |
US6878361B2 (en) | 2005-04-12 |
JP4355570B2 (ja) | 2009-11-04 |
WO2003006725A1 (en) | 2003-01-23 |
US7968073B2 (en) | 2011-06-28 |
US20050112053A1 (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4355570B2 (ja) | カーボンナノチューブの安定した水分散液の生成 | |
JP2004534714A5 (ja) | ||
US7166266B2 (en) | Isolation and purification of single walled carbon nanotube structures | |
Bonard et al. | Purification and size‐selection of carbon nanotubes | |
Borode et al. | Surfactant-aided dispersion of carbon nanomaterials in aqueous solution | |
Vaisman et al. | The role of surfactants in dispersion of carbon nanotubes | |
Hu et al. | Non‐covalent functionalization of carbon nanotubes with surfactants and polymers | |
Shenderova et al. | Seeding slurries based on detonation nanodiamond in DMSO | |
JP5663806B2 (ja) | カーボンナノチューブの安価な分離方法と分離材並びに分離容器 | |
KR100682381B1 (ko) | 단일벽 탄소 나노튜브-난백 단백질 복합체 및 그 제조 방법 | |
CA2441560A1 (en) | Method for the preparation of stable suspensions and powders of single carbon nanotubes | |
Tang et al. | Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethylacetamide | |
JP2013518017A (ja) | 脱バンドル化したナノチューブの分散および回収 | |
Hobbie et al. | Colloidal particles coated and stabilized by DNA-wrapped carbon nanotubes | |
JP2006176362A (ja) | カーボンナノチューブ薄膜の製造方法 | |
Iwataki et al. | Competition between compaction of single chains and bundling of multiple chains in giant DNA molecules | |
Nii et al. | Controlling the adsorption and desorption of double-stranded DNA on functionalized carbon nanotube surface | |
Zhai et al. | Incorporation and recovery of SWNTs through phase behavior and aggregates transition induced by changes in pH in a catanionic surfactants system | |
US7578941B2 (en) | Length-based liquid-liquid extraction of carbon nanotubes using a phase transfer catalyst | |
US20030012951A1 (en) | Analysis of isolated and purified single walled carbon nanotube structures | |
KR102393063B1 (ko) | 질화붕소 나노튜브의 정제방법 | |
Kojima et al. | Liquid crystalline behaviors of single-walled carbon nanotubes in an aqueous sodium cholate dispersion | |
US20110042618A1 (en) | Systems and methods for handling and/or isolating nanotubes and other nanostructures | |
Scalia | Liquid crystals of carbon nanotubes and carbon nanotubes in liquid crystals | |
Nilsson et al. | Ammonium laurate surfactant for cleaner deposition of carbon nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20061211 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20061218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070911 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20071210 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20071217 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080110 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080118 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080208 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080218 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20080310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090803 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |