JP2004502306A - 速度飽和モードでの動作時に線形伝達特性を持つmosfetデバイスとその製造方法及び動作方法 - Google Patents
速度飽和モードでの動作時に線形伝達特性を持つmosfetデバイスとその製造方法及び動作方法 Download PDFInfo
- Publication number
- JP2004502306A JP2004502306A JP2002505689A JP2002505689A JP2004502306A JP 2004502306 A JP2004502306 A JP 2004502306A JP 2002505689 A JP2002505689 A JP 2002505689A JP 2002505689 A JP2002505689 A JP 2002505689A JP 2004502306 A JP2004502306 A JP 2004502306A
- Authority
- JP
- Japan
- Prior art keywords
- region
- conductivity type
- transition region
- transition
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000012546 transfer Methods 0.000 title abstract description 17
- 238000011017 operating method Methods 0.000 title 1
- 230000007704 transition Effects 0.000 claims abstract description 206
- 239000000758 substrate Substances 0.000 claims description 56
- 239000004065 semiconductor Substances 0.000 claims description 50
- 230000000779 depleting effect Effects 0.000 claims description 18
- 239000002019 doping agent Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 230000005669 field effect Effects 0.000 claims description 11
- 239000007943 implant Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims 1
- 230000010354 integration Effects 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 claims 1
- 238000005036 potential barrier Methods 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 7
- 230000003321 amplification Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000002513 implantation Methods 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 241001354791 Baliga Species 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823487—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41741—Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/7722—Field effect transistors using static field induced regions, e.g. SIT, PBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
- H01L29/7832—Field effect transistors with field effect produced by an insulated gate with multiple gate structure the structure comprising a MOS gate and at least one non-MOS gate, e.g. JFET or MESFET gate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Amplifiers (AREA)
Abstract
本発明に係るMOSFETは高線形伝達特性(例えばId−Vg)を実現し、線形電力増幅器に有効に使用することができる。これらの線形伝達特性は、線形モードで動作するチャネルと、同時に大きな電圧に対応して電流飽和モードで動作するドリフト領域と、を有するMOSFETによって実現される。比較的濃くドープされた遷移領域は好ましくは前記チャネル領域と前記ドリフト領域との間に与えられる。空乏化されると、この遷移領域は、別個かつ同時に線形モードと電流飽和モードとを維持するポテンシャル障壁を実現する。
Description
【0001】
[発明の分野]
本発明は半導体スイッチングデバイス、特に電源スイッチングや電力増幅の用途のためのスイッチングデバイスに関する。
【0002】
[発明の背景]
パワーMOSFETは一般に電源スイッチングや電力増幅を必要とする用途のために開発されてきた。電源スイッチング用途のための市販のデバイスは一般的にDMOSFETとUMOSFETである。これらのデバイスにおける主な目的の一つは、電力損失を減らすために低いオン抵抗率(low specific on−resistance)を実現することである。パワーMOSFETでは、ゲート電極が適切なゲートバイアスの印加のターンオン(turn−on)とターンオフ(turn−off)の制御を実現する。例えば、N型エンハンスメントMOSFET(N−type enhancement MOSFET)におけるターンオンは、正のゲートバイアスの印加に応じて導電性N型反転層チャネル(「チャネル領域(channel region)」とも呼ばれる)がP型ベース領域内に形成されたときに起きる。この反転層チャネルは、N型ソース領域とN型ドレイン領域とを電気接続して、それらの間の多数キャリア伝導を可能にする。
【0003】
パワーMOSFETのゲート電極は、一般的には二酸化シリコンの介在絶縁層(intervening insulating layer)によってベース領域から分離される。ゲートはベース領域から絶縁されているので、MOSFETを伝導状態に維持し、またはMOSFETをオンステートからオフステート若しくはオフステートからオンステートへスイッチするためにほとんどゲート電流は必要とされない。ゲートはMOSFETのベース領域とでコンデンサを形成するので、ゲート電流はスイッチング時は小さく保たれる。結果、充電電流と放電電流(「変位電流(displacement current)」)だけがスイッチ時に必要とされる。絶縁ゲート電極(insulated−gate electrode)に付随する高い入力インピーダンスのために、ゲートには最小限の電流需要があり、ゲート駆動回路が簡単に実現できる。さらに、MOSFETにおける電流伝導は反転層チャネルを通る多数キャリア輸送(majority carrier transport)によって生じるので、余分な少数キャリアの再結合と蓄積に伴う遅延は存在しない。従って、パワーMOSFETのスイッチ速度はバイポーラトランジスタ(bipolar transistor)よりも速い大きさのオーダにすることができる。バイポーラトランジスタと異なり、パワーMOSFETは、高い電流密度と、「二次降伏(second breakdown)」として知られる破壊的故障メカニズムに遭遇することなく比較的長い持続期間の間、高電圧の印加とに耐えるように設計することができる。パワーMOSFETの両端にわたる順方向電圧降下は温度の上昇に伴って増加するので、パワーMOSFETは簡単に並列にすることもでき、それにより並列接続されたデバイスでの安定した電流分配が増進される。
【0004】
DMOSFETとUMOSFETはPWS出版(PWS Publishing Co.)から1995年に刊行されたB.J.Baliga著の「パワー半導体デバイス(Power Semiconductor Devices)」と題されたテキスト(ISBN0−534−94098−6)により詳細に記述されており、そのテキストの内容が本願に援用される。このテキストの第7章335乃至425ページにパワーMOSFETが記述されている。ACCUFET(accumulation FET)、INVFET(inversion FET)及びN+ドレイン領域内へ拡がるトレンチ(trench)型ゲート電極を持つEXTFET(extended trench FET)を含むシリコンパワーMOSFETの例は、1994年5月発行のIEEEトランザクション第41巻第5号(IEEE Transactions on Electron Devices,Vol41,No5,May(1994))に掲載されたT.Syau、P.VenkatramanとB.J.Baliga著の「超低オン抵抗率を持つUMOSFET構造の比較:ACCUFET、EXTFET、INVFET及び従来型UMOSFET(Comparison of Ultralow Specific On−Resistance UMOSFET Structures:The ACCUFET,EXTFET,INVFET,and Convention UMOSFETs)」と題された論文にも開示されている。Syau等によって説明されたように、100乃至250μΩcm2の範囲のオン抵抗率が、最大25ボルトに対応する能力があるデバイスにおいて実験的に実証された。しかしながら、これらのデバイスの性能は、トレンチの底にあるゲート酸化物(gate oxide)において順方向耐圧(forward blocking voltage)に対応しなければならないという事実によって制限された。
【0005】
図1に、前記Syau等の論文にある図1(d)の複製を示す。これは従来のUMOSFET構造を開示する。ブロッキング・モードの動作(blocking mode of operation)において、このUMOSFETは、高い最大耐圧能力を得るために比較的低いレベルでドープされなければならないN型ドリフト層の両端にかかるほとんどの順方向耐圧に対応するが、しかしながら、低いドーピングレベル(不純物の添加レベル)は一般にオンステート直列抵抗を増加させる。高い耐圧と低いオンステート抵抗といった競合する設計要件に基づいて、オン抵抗率(Ron,sp)を最大耐圧(BV)と関係付けるパワーデバイスに対するメリットのある基本的な数値が導出されている。前記したB.J.Baligaのテキストの373ページに説明されているように、N型シリコン・ドリフト領域の理想的なオン抵抗率は次の関係式によって与えられる。
Ron,sp=5.93×10−9(BV)2.5・・・(1)
従って、60ボルトのブロッキング能力を持つデバイスでは、理想的オン抵抗率は170μΩcm2である。しかしながら、チャネルから更なる抵抗の寄与があるので、UMOSFETの報告されたオン抵抗率は一般にはずっとより高い。例えば、730μΩcm2のオン抵抗率を持つUMOSFETは、1989年発行の固体エレクトロニクス第32巻第3号(Solid−State Electronics,Vol32,No3(1989))の247乃至251ページに掲載されたH.Chang著の「トレンチ・ゲート構造を備えた60V縦型二重拡散MOSFETの数値的及び実験的比較(Numerical and Experimental Comparison of 60V Vertical Double−Diffused MOSFETs and MOSFETs With A Trench−Gate Structure)」と題された論文に開示されている。しかしながら、このデバイスではドリフト領域において理想よりも低い一様なドーピング濃度が、順方向高電圧をブロックする際にトレンチのボトムコーナ近くの高濃度の電気力線を補正するために必要とされた。米国特許第5,637,989号、第5,742,076号及び1997年8月6日出願の米国特許出願番号08/906,916は縦方向電流搬送能力(vertical current carrying capability)を持つ人気のあるパワー半導体デバイスを開示しており、本願においてそれらの特許及び特許出願の内容が援用される。
【0006】
特に、Baligaに付与された米国特許第5,637,898号は、GD−UMOSFET(graded−doped UMOSFET)と一般に呼ばれる好ましいシリコン電界効果トランジスタを開示している。図2に米国特許第5,637,898号にある図3の複製を示す。集積型パワー半導体デバイスの電界効果トランジスタ(integrated power semiconductor device field effect transistor)の単位セル100は、1μmの幅「Wc」を持ち、第1の導電型の濃くドープされた(例えばN+型)ドレイン層基板114と、線形漸変的ドーピング濃度(linearly graded doping concentration)をその中に有する第1の導電型のドリフト層112と、第2の導電型(例えばP型)の比較的薄いベース層116と第1の導電型の濃くドープされた(例えばN+型)ソース層118とを含んでよい。ドリフト層112は、層厚4μmを持つN型にin−situドープされた単結晶シリコン層を、層厚100μmと1×1018cm−3(例えば1×1019cm−3)より大きなドーピング濃度とをその中に持つN型ドレイン層114上にエピタキシャル成長させることによって形成されてよい。ドリフト層112は、ドレイン層114とのN+/N接合部において最大濃度3×1017cm−3を持ち、そのN+/N接合部からの距離3μm(つまり深さ1μm)のところで最小濃度1×1016cm−3になり、その最小濃度が一定の状態に上側面(フェース)まで継続する、線形漸変的ドーピング濃度もその中に持つ。ベース層116はホウ素といったP型ドーパントをドリフト層112に100kEVのエネルギーと1×1014cm−2のドーズレベルで注入することによって形成されてよい。次いでそのP型ドーパントはドリフト層112内へ深さ0.5μmまで拡散されてよい。ヒ素といったN型ドーパントも50kEVのエネルギーと1×1015cm−2のドーズレベルで注入されてよい。次にN型とP型のドーパントがそれぞれ深さ0.5μmと1.0μmまで同時に拡散され、ドレイン層、ドリフト層及びソース層を含む複合半導体基板を形成することが可能である。
【0007】
次に三番目の次元の方向(図示されていない)に拡がる一対の対向する側壁120aと底120bを持つストライプ形トレンチ(stripe−shaped trench)が基板内に形成される。1μmの幅Wcを持つ単位セル100について、トレンチはプロセスが終了した時点で好ましくは0.5μmの幅「Wt」を持つよう形成される。次にゲート絶縁領域(gate insulating region)124と導電性ゲート126(例えばポリシリコン)を具備する絶縁ゲート電極(insulated gate electrode)がトレンチ内に形成される。ゲート絶縁領域124のトレンチの底120bとドリフト層112とに隣接して拡がる部分は約2000Åの厚み「T1」を有しており、トレンチの底で高い電界が生じることを防止し、トレンチの側壁120aに沿って実質上一様なポテンシャル勾配を実現する。ゲート絶縁領域124のベース層116とソース層118とに対向して拡がっている部分は約500Åの厚み「T2」を有しており、デバイスの閾値電圧を2乃至3ボルトに維持する。15ボルトのゲートバイアスにおける単位セル100のシミュレーションによって、60ボルトの最大耐圧能力と、60ボルトのパワーUMOSFETに対する170μΩcm2の理想的オン抵抗率よりも4倍小さい40μΩcm2のオン抵抗率(Ron、sp)とを有する縦型シリコン電界効果トランジスタが実現できることが確認された。これらの優れた特性にもかかわらず、図2のトランジスタは、全ゲート・ドレイン間容量(CGD(gate−to−drain capacitance))が大きすぎる場合にHFOM(relatively low high−frequency figure−of−merit)に悩まされる場合がある。MOSFETの不適切な終端(edge termination)もまた最大耐圧が実現されるのを妨げる場合がある。漸変的ドリフト領域とトレンチベースのソース電極とを有する別のUMOSFETもBaligaに付与された米国特許第5,998,833号に開示されており、その内容は本願に援用される。
【0008】
パワーMOSFETは電力増幅(power amplification)用途(例えばオーディオまたは無線)にも使用される場合がある。これらの用途では、伝達特性(transfer characteristic)(例えばId−Vg)の線形性は符号ひずみ(signal distortion)を最小にするために非常に重要になる。これらの電力増幅用途に使用される市販のデバイスは一般にLDMOSとガリウムヒ素MESFETである。しかしながら以下説明されるように、LDMOSトランジスタを含むパワーMOSFETは符号ひずみにつながる可能性がある非線形特性を持つ場合がある。パワーMOSFETにおける電流飽和の物理はM.Sze著の「半導体デバイスの物理(Physics of Semiconductor Devices)」(1981年)と題されたテキストの8−2−2節、438−451ページに説明されている。このテキストに説明されているように、MOSFETは一般に2つのモードの中の一つのモードで働く。低いドレイン電圧において(ゲート電圧と比較して)、MOSFETはIdとVgとの間の関係が実質上線形である線形モードで動作する。ここで、相互コンダクタンス(gm)はVgに依存しない。
gm=(Z/L)unsCoxVd・・・(2)
ZとLはそれぞれチャネル幅とチャネル長である。unsはチャネル移動度(channel mobility)、Coxはゲート酸化物(gate oxide)の固有静電容量(specific capacitance)、そしてVdはドレイン電圧である。しかしながら、ドレイン電圧が増加してゲート電圧(Vg)に匹敵するようになると、MOSFETはチャネルのピンチオフの結果として飽和モード(saturation mode)で動作する。これが起こるとき、相互コンダクタンスgmは以下のように表現される。
gm=(Z/L)unsCox(Vg−Vth)・・・(3)
Vgはゲート電圧、VthはMOSFETの閾値電圧を表す。従って式(3)によって示されるように、飽和動作時には、相互コンダクタンスはゲートバイアスの増加に伴って増加する。このためドレイン電流(出力側)とゲート電圧(入力側)との関係は、ドレイン電流がゲート電圧の自乗として増加するので、非線形となる。この非線形性は電力増幅における符号ひずみの原因となり得る。更に、チャネルに沿った電圧降下がゲート電圧未満に留まりながら約1×104V/cm以上の縦方向電界を作り出すのに十分な大きさになると、チャネルにある電子はキャリア速度飽和のために微分移動度が減少した状態となって移動する。
【0009】
こうして、電力スイッチングと電力増幅の用途のためのパワーMOSFETを開発する試みにもかかわらず、高電圧に対応することができ、高電圧に対応するときに高線形伝達特性(highly linear transfer characteristics)を示す改善された電気特性を有する、パワーMOSFETを開発する必要性が継続して存在している。
【0010】
[発明の概要]
本発明が提供するMOSFETは、高線形伝達特性(例えば、ld:Vg)を実現し、例えば線形パワーアンプにおいて有効に使用することができる。線形パワーアンプの一般的な用途には無線やオーディオの用途が含まれる。これらの好ましい線形伝達特性(linear transfer characteristics)は、反転層チャネル(inversion−layer channel)を有し、(デバイス内の)他の領域が電流飽和モード(current saturation mode)で動作する間に、その反転層チャネルは線形モード(linear mode)で動作するように構成されたMOSFETデバイスを形成することにより達成される可能性がある。特に、このMOSFETデバイスは、MOSFETのドリフト領域が速度飽和モード(velocity saturation mode)で動作する間に、反転層チャネルが線形モードで(チャネル・ピンチオフ(channel pinch−off)とチャネルにおける速度飽和のいずれも無く)動作させられることができるように構成される。第1の導電型の遷移領域も好ましくはチャネルとドリフト領域との間に提供される。この遷移領域は好ましくはドリフト領域の少なくとも一部分と比べて比較的濃くドープされる。遷移領域におけるドーピング濃度は、低いドレイン電圧においてチャネルの順方向オンステート伝導を可能とし、かつ、ドレイン電圧が増加させられてMOSFETのゲート電極に印加される電圧の大きさを超えてもチャネルを線形モードに維持するのに十分なレベルに好ましくは設定される。この線形モードはしばしば三極管モード(triode mode of operation)と呼ばれている。大幅な範囲(significant range)のゲート電圧にわたって線形モードで動作させられると、一定の相互コンダクタンス値(δId/δVgs)がより大きなダイナミック・レンジにわたって実現することができる。
【0011】
MOSFETの設計では、遷移領域が好ましくはチャネルにおける(遷移領域に隣接する端部における)電圧がゲート電圧に等しくなる前に十分に空乏化されるようにする。ここに使用されている表現で遷移領域が「十分に空乏化される(fully depleted)」ということは、遷移領域を横断する順方向オンステート電流路のJFET型ピンチオフ(JFET−style pinch−off)を少なくとも実現するのに十分なほどに遷移領域が空乏化される、ことを意味すると解釈されるべきである。十分な空乏化(full depletion)を達成するために、第2の導電型の比較的濃くドープされた(例えばP+型)領域が遷移領域に隙間なく近接して与えられ、MOSFETのソース領域に電気接続される。その結果、チャネルにおける電圧が増加するにつれて、遷移領域内でJFET型ピンチオフが生じるまで遷移領域はますます空乏化される。遷移領域におけるこのJFET型ピンチオフはチャネルのドレイン側における電圧(Vcd)がゲート電圧に等しくなる前(すなわちVcd≦Vgs)に起きるように設計することができる。例えば、0.1≦Vcd≦0.5ボルトかつVgs=4.0ボルトのときに遷移領域が十分に空乏化されるようにMOSFETは設計されてよい。
【0012】
本発明の第1の実施態様として提供される集積型パワーデバイス(integrated power device)は絶縁ゲート型電界効果トランジスタ(insulated−gate field effect transistor)を具備し、この絶縁ゲート型電界効果トランジスタは、このトランジスタのドレイン領域が速度飽和モード(velocity saturation mode of operation)でそれと同時に動作する間に、順方向オンステート伝導(forward on−state conduction)時に線形モード(linear mode of operation)で動作する反転層チャネルを有する。好ましくは、このトランジスタは、第1の導電型のソース領域(source region)とドレイン・コンタクト領域(drain contact region)とをその中に有する半導体基板を具備する。第2の導電型のベース領域(base region)も提供され、このベース領域は前記半導体基板の一表面に隣接して拡がる。前記表面まで拡がり前記ベース領域とで整流接合(rectifying junction)を形成する第1の導電型の遷移領域が提供される。更に、絶縁ゲート電極(insulated gate electrode)が、前記表面上に前記ソース領域、前記ベース領域及び前記遷移領域と対向して拡がり、それに十分な大きさのゲートバイアスを印加することにより前記ベース領域内に反転層チャネルが誘導形成されるようにした。前記遷移領域と前記ドレイン・コンタクト領域との間に拡がる第1の導電型のドリフト領域が提供される。このドリフト領域は、前記遷移領域とで第1の非整流接合(non−rectifying junction)を形成し、該第1の非整流接合のドリフト領域側に、該第1の非整流接合の遷移領域側の第1の導電型のドーピング濃度未満の第1の導電型のドーピング濃度を有する。
【0013】
これらのトランジスタは、前記反転層チャネルが線形モードで動作している間に前記遷移領域を十分に空乏化するための、前記遷移領域に隣接した手段も好ましくは含む。前記遷移領域を十分に空乏化するための前記手段は、前記遷移領域に隣接するように配置された第2の導電型の埋込領域を含んでよい。この埋込領域は好ましくは前記ベース領域とで非整流接合を形成し、前記ベース領域によってソース・コンタクト(source contact)に電気接続される。前記遷移領域を十分に空乏化するための前記手段は、前記ベース領域に接触する第2の導電型の領域も具備してよい。前記半導体基板内に拡がり、前記遷移領域との界面を画定する側壁を有するトレンチも提供される。更に、絶縁ソース電極が前記トレンチ内に提供され、それは前記ソース・コンタクトによって前記ソース領域に電気接続される。
【0014】
本発明の第2の好ましい実施態様として提供されるUMOSFETは、第1の導電型のソース領域とドレイン・コンタクト領域とを有する半導体基板と、その半導体基板内にあるトレンチとを具備してよい。絶縁ゲート電極も前記トレンチ内に提供されてよい。前記トレンチは好ましくは、前記絶縁ゲート電極と前記トレンチの底との間に拡がる埋込ソース電極(buried source electrode)も備える。前記埋込ソース電極と前記ソース領域とは一緒に電気接続される。第2の導電型のベース領域も半導体基板内に提供される。このベース領域は、前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することにより前記ベース領域内に反転層チャネルが誘導形成されるように、前記トレンチの側壁まで拡がる。前記トレンチの側壁まで前記埋込ソース電極と対向して拡がる第1の導電型のドリフト領域が提供される。動作中、このドリフト領域は速度飽和モードで動作する。アイソレーションを実現してチャネル領域とドリフト領域においてそれぞれ線形モードと速度飽和モードを可能にすることによって性能を改善するために、前記ドリフト領域と前記ベース領域との間に拡がる遷移領域(transition region)が提供される。この遷移領域は前記ドリフト領域と前記ベース領域とでそれぞれ非整流接合(non−rectifying junction)と整流接合(rectifying junction)を形成する。前記遷移領域は、前記ドリフト領域の前記非整流接合に隣接して拡がる一部分における第1の導電型のドーピング濃度と比較してより高い第1の導電型のドーピング濃度もその中に有する。このUMOSFETは、前記ドリフト領域が前記非整流接合から前記ドレイン領域への方向に増加する漸変的ドーピング・プロファイル(graded doping profile)をその中に持つようにそのドリフト領域をドープすることによってGD−UMOSFETも構築する場合がある。前記ベース領域のドーピング・プロファイル及び形状も、前記チャネルにおける電圧がゲート電圧に近づくにつれて前記チャネル領域が十分に空乏化されるように仕立てられてよい。
【0015】
本発明の第3の実施態様として提供される縦型MOSFET(vertical MOSFET)は、半導体基板と、その半導体基板内にあるトレンチとを具備してよい。ソース電極も前記トレンチ内に提供されてよい。このソース電極は電気絶縁層によって前記トレンチの側壁と底から隔離される。絶縁ゲート電極も半導体基板の上側面(フェース)上に提供され、第2の導電型のベース領域が前記半導体基板内に提供される。前記ベース領域は絶縁ゲート電極に対向して拡がる。好ましい縦型MOSFETは、前記ベース領域内に拡がりそのベース領域とでPN整流接合を形成する第1の導電型のソース領域も備える。デバイス特性を改善するために、前記ソース領域は前記絶縁ソース領域と電気接続される。第1の導電型の遷移領域もMOSFETのチャネルとドリフト領域との間の隔離を実現するために利用される。この遷移領域は前記トレンチの側壁から前記ベース領域まで拡がり、そのベース領域とでPN接合を形成して、前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することにより前記ソース領域から前記遷移領域まで拡がる反転層チャネルが誘導形成されるようにする。ドリフト領域も半導体基板内に提供され、このドリフト領域は前記トレンチの側壁に隣接して拡がる。このドリフト領域は、前記ドリフト領域における第1の導電型のドーピング濃度が前記遷移領域における第1の導電型のドーピング濃度未満となる場所に、前記遷移領域とで非整流接合を形成する。特に、前記遷移領域における最大の第1の導電型のドーピング濃度は前記した非整流接合の場所での前記ドリフト領域における第1の導電型のドーピング濃度の約10倍よりも大きい。
【0016】
本発明の第4の実施態様として提供される横型MOSFET(lateral MOSFET)は、その上側面(フェース)まで拡がる第1の導電型のエピタキシャル領域(epitaxial region)をその中に有する半導体基板と、そのエピタキシャル領域内にある第2の導電型のベース領域とを具備してよい。第1の導電型のソース領域も前記ベース領域内に拡がり、そのベース領域とでPN接合を形成する。それとは対照的に、ドレイン・コンタクト領域は前記エピタキシャル領域内に提供されるが、しかし前記ベース領域とは空間的に隔てられる。絶縁ゲート電極も前記半導体基板の前記上側面(フェース)上に提供される。このゲート電極は前記ベース領域と対向して拡がる。前記半導体基板内に拡がり前記ベース領域とでPN接合を形成する好ましい遷移領域も提供される。前記遷移領域の位置決め(positioning)は、前記絶縁ゲート電極に十分な大きさのゲートバイアスが印加されることにより前記ベース領域内に前記ソース領域から前記遷移領域まで拡がる反転層チャネルが誘導形成されるようにする。オンステート動作(on−state operation)時に速度飽和モードで動作する第1の導電型のドリフト領域も提供される。このドリフト領域は前記遷移領域から前記ドレイン・コンタクト領域まで拡がり、前記遷移領域と前記ドレイン・コンタクト領域とでそれぞれ第1及び第2の非整流接合を形成する。前記ドリフト領域における最小の第1の導電型のドーピング濃度は好ましくは前記遷移領域における最大の第1の導電型のドーピング濃度未満である。第2の導電型の埋込層(buried layer)も提供される。この埋込層は、前記遷移領域の少なくとも一部分と全く対向して拡がり、前記ベース領域とで非整流接合を形成し、前記ベース領域と比較してより高い第2の導電型のドーピング濃度を有する。
【0017】
本発明は更に、横型MOSFETをその中に有する縦型パワーデバイスを製造する好ましい方法を提供する。この方法は、第1の導電型のドリフト領域をそれ自体の中に有し、かつ前記ドリフト領域とそれ自体の上側面(フェース)との間に拡がる第1の導電型の遷移領域を有する半導体基板を形成する工程を含む。前記遷移領域は好ましくは、前記ドリフト領域における最小のドーピング濃度の約10倍よりも大きな最大のドーピング濃度をその中に有する。次に、前記遷移領域を経て前記ドリフト領域内へと拡がる第2の導電型のベース領域が形成される。好ましくはトレンチも前記半導体基板内に形成される。特に、前記遷移領域を経て前記ドリフト領域内へと拡がり、前記遷移領域の一部分によって前記ベース領域から空間的に隔てられるトレンチが形成される。次に絶縁電極が前記トレンチ内に形成され、ゲート電極が前記上側面(フェース)上に形成される。横型MOSFETを画定するために、第1の導電型のドーパントを半導体基板内に選択注入して、それにより前記ベース領域内のソース領域と、前記ベース領域から前記遷移領域内へと拡がるチャネル拡張領域(channel region extension)とを画定する工程が実行される。チャネル拡張領域の形成により、ゲート電極を前記遷移領域上で横方向に拡げる必要性がなくなる。次に、前記ソース領域を前記トレンチ内の前記絶縁電極に電気接続するソース・コンタクトが提供される。
【0018】
これらの上述した実施態様は、線形パワーアンプや電力スイッチングの用途に有効に使用することができる、高線形伝達特性(例えばld:Vg)を有するMOSFETを実現する。好ましくチャネルピンチオフの前に十分に空乏化される遷移領域を使用することにより、チャネルは線形モードで動作させられることができ、かつドリフト領域は、大電圧に対応し、速度飽和モードで動作させられることができる。
【0019】
[好適な実施態様の説明]
以下、本発明の好ましい実施の態様を添付図面を参照しながら詳細に説明する。しかしながら本発明は異なった形式で実施されてよく、ここに説明される実施態様に限定されるべきではない。これらの実施態様は、本開示が周到かつ完全であり、当業者に本発明の技術的範囲を十分に明らかにするよう、提供されるものである。添付図面では、層と領域の厚みは明確にするために誇張して描かれている。層が別の層または基板の「上(on)」にあると言うときは、その層は、直にその他の層若しくは基板上にあり得る、または介在層も存在する場合がある、ことも理解されたい。更に、用語「第1の導電型」と「第2の導電型」はN型またはP型といった正反対の導電型を言うが、しかしながらここに説明されるそれぞれの実施態様は相補的な態様も含む。類似の符号は全体を通じて類似の要素に付される。
【0020】
まず図3を参照して、本発明の第1の実施態様によるUMOSFETを説明する。特に、集積型UMOSFETの単位セル200は所定の幅「Wc」(例えば1μm)を有し、第1の導電型の濃くドープされた(例えばN+型)ドレイン・コンタクト層114と、線形漸変的ドーピング・プロファイル(linearly graded doping profile)をその中に有する第1の導電型のドリフト層112と、約1×1017cm−3の比較的高いN型ドーピング(不純物の添加)濃度をその中に有する場合がある第1の導電型の遷移領域117と、を具備する。図示されているように、遷移領域117はドリフト領域112とで非整流接合(non−rectifying junction)を形成し、遷移領域117のN型ドーピング濃度は、遷移領域117との非整流接合(部)まで拡がるN型ドリフト層112の一部分におけるN型ドーピング濃度よりも高い。
【0021】
第2の導電型(例えばP型)の比較的薄いベース層116も遷移領域117上に提供され、その遷移領域とでPN整流接合を形成する。このベース層116は約0.2μmの層厚を有する。第1の導電型の比較的濃くドープされた(例えばN+型)ソース層118も図示されているようにベース層116上に提供される。ソース電極128bとドレイン電極130もそれぞれ第1及び第2の面(フェース)上にソース層118とドレイン・コンタクト層とでオーム性接触するよう提供される。ソース電極128bは好ましくは、遷移領域117を経て拡がるP+型ベース拡張領域119とでオーミックコンタクト(ohmic contact)を形成する。比較的濃くドープされた遷移領域117がベース層116とドリフト層112との間に与えられ、ベース層116内に形成された反転層チャネルが、それと同時にドリフト領域が速度飽和モードで動作する間に、(チャネル・ピンチオフまたは速度飽和することなく)線形モードで動作させられることを可能にすることで性能が改善されるようにした。
【0022】
遷移領域117におけるドーピング濃度は好ましくは、低いドレイン電圧において反転層チャネルの順方向オンステート伝導を可能にし、ドレイン電圧が増加してゲート電極127に印加される電圧の大きさを超える際にチャネルを線形モードに維持するのに十分なレベルに設定される。この線形モードはしばしば三極管モード(triode mode of operation)と言われる。このUMOSFETの好ましい設計では、チャネルのドレイン側における(すなわち遷移領域117に隣接する端部における)電圧Vcdが0≦Vcd≦Vgsであるときに遷移領域117が十分に空乏化される。Vgsはゲート・ソース間電圧(gate−to−source voltage)である。例えば、このUMOSFETは、0.2≦Vcd≦0.5ボルトかつVgs=4.0ボルトであるときに遷移領域117が十分に空乏化されるように設計される。十分な空乏化を実現するために、P+型ベース拡張領域119は遷移領域117に直に近接するよう(すなわち複数のトレンチがその中に並んだ多重セル・デバイスにおけるそれぞれのメサ(mesa)の中央に)提供される。その結果、チャネルにおける電圧が増加するにつれ、遷移領域117がJFETの従来の動作に類似した方法でピンチオフされるまで遷移領域117はますます空乏化される。
【0023】
ドリフト層112と遷移領域117は100μmの層厚で1×1018cm−3(例えば1×1019cm−3)より大きな第1の導電型のドーピング濃度をその中に有するN型ドレイン・コンタクト層114(例えばN+型基板)上に約4μmの層厚を有するN型のin−situドープされた単結晶シリコン層をエピタキシャル成長させることにより形成される。図示されているように、ドリフト層112は、ドレイン・コンタクト層114とのN+/N非整流接合部において約5×1016cm−3(例えば3×1017cm−3)より大きな最大濃度と、遷移領域117との接合部において約1×1016cm−3の最小濃度とを有する、線形漸変的ドーピング・プロファイル(linearly graded doping profile)をその中に有してよい。ベース層116はホウ素といったP型ドーパントを例えば100keVのエネルギーと約1×1014cm−2のドーズレベルでドリフト層112に注入することによって形成されてよい。次にP型ドーパントがドリフト層112内に深さ0.8μmまで拡散されてよい。次にヒ素といったN型ドーパントが50keVのエネルギーと1×1015cm−2のドーズレベルで注入されてよい。次にN型ドーパントとP型ドーパントが同時にそれぞれ深さ0.5μmと深さ1.0μmまで拡散される。ベース層116における第2の導電型(例えばP型)ドーピング濃度も好ましくは、ソース層118とのPN接合部(すなわち第1のPN接合)における約5×1016cm−3より大きい。選択注入工程もP+型ベース拡張領域119を画定するために比較的高いドーズレベルと高いエネルギーレベルで実行されてよい。
【0024】
次いで三番目の次元(図示されていない)に拡がる一対の対向する側壁120aと底120bを有するストライプ形トレンチ(stripe−shaped trench)が基板内に形成される。1.0μmの幅Wcを有する単位セル100では、プロセスが終了した時点でトレンチは0.5μmの幅「Wt」を有する。ゲート電極/ソース電極絶縁領域125、ゲート電極127(例えばポリシリコン)とトレンチベースのソース電極128a(例えばポリシリコン)もトレンチ内に形成される。ゲート電極127は比較的小さく形成され、かつトレンチ全体を占有しないので、スイッチング時に単位セル200を駆動するために必要とされるゲート電荷量は(他のパラメータと大きさは全て同じと仮定して)図2の単位セルを駆動するために必要とされるゲート電荷量よりずっと少ない。
【0025】
ここで、トレンチベースのソース電極128aは第3の次元(図示されていない)でソース電極128bに電気接続される。ゲート電極/ソース電極絶縁領域125の、トレンチの底120bとドリフト層112とに隣接して拡がる部分は、トレンチのボトムコーナ(bottom corners)に集中する高電界の発生を防止し、トレンチの側壁120aに沿って実質上一様な電位勾配を実現するために、例えば1500Åと5000Åの間の範囲にある厚み「T1」も有してよい。しかしながら、ゲート電極/ソース電極絶縁領域125の、ベース層116とソース層118とに対向して拡がる部分は好ましくは、当該デバイスの閾値電圧を約2乃至3ボルトに維持するために、約750Å未満、より好ましくは250Åの厚み「T2」を有する。
【0026】
図3のデバイスのシミュレーションも半メサ幅(half−mesa width)が0.5μmで1μmの半セルピッチ(half−cell pitch)を有する単位セルに対して実行された。厚みT2は250Åに設定され、ベース層116の層厚は、ピークのドーピング濃度が2×1017cm−3で、0.2μmに設定された。ゲート電極127は深さ0.6μmまで拡がり、トレンチの深さは4.7μmに設定された。厚みT1も3000Åに設定された。遷移領域117とドリフト層112におけるドーピング濃度は図3の右側に示されたプロファイルの通りである。これらの特性に基づいて、Id−Vd曲線の間の間隔が一様になった優れた電流飽和特性が(2乃至4ボルトの範囲のゲートバイアスにおいて)観測された。2乃至4ボルトの範囲のゲートバイアスに対して線形性が高いId−Vg伝達特性も観測された。
【0027】
次に図4を参照して、本発明の第2の実施態様による、横型MOSFET領域(lateral MOSFET region)をその中に有する好ましい縦型デバイス300を説明する。図示されたように、この好ましいデバイス300は半導体基板の上側面(フェース)上に横型MOSFETを含む。この横型MOSFETのソース領域、チャネル領域とドレイン領域はN+型ソース領域、P型ベース領域とN型遷移領域とによって形成される。N型遷移領域とP型ベース領域は漸変的ドーピング・プロファイルをその中に有するN型ドリフト領域内に提供される。ソース領域、ベース領域とドリフト領域の縦方向のドーピング・プロファイルは図4の右側に示されている。図示されているように、トレンチも基板内に提供される。このトレンチは好ましくは電気絶縁層(例えば酸化層)で区画され、ソース電極で充たされる。遷移領域は、ドリフト領域の上部と比べて比較的高いレベルの濃度1×1017cm−3にドープされてよく、トレンチの側壁からP型ベース領域まで拡がる。遷移領域はドリフト領域とで非整流接合を形成し、ベース領域とでPN整流接合を形成する。当業者によって理解されるところでは、横型MOSFETのゲート電極に十分に正のゲートバイアスを印加することによって、ベース領域の、ゲート電極のすぐ下に拡がる部分に、反転層チャネルが誘導形成されることになる。この反転層チャネルは、ドレイン・コンタクトがソース・コンタクトと比較して正にバイアスされると、順方向オンステート動作(forward on−state operation)時にソース領域を遷移領域に電気接続することになる。ゲート電極は、チャネルと遷移領域との間に十分な電気接続を(遷移領域とベース領域との間のPN接合部の固有の空乏領域(built−in depletion region)の影響を押しとどめることによって)実現するためにトレンチの側壁の比較的近くまで拡がるようにかたどられるようにしてもよい。
【0028】
本発明の好ましい側面によれば、ドリフト領域は、ドリフト領域の第1の導電型のドーピング濃度が遷移領域の第1の導電型のドーピング濃度未満である場所に、遷移領域とで非整流接合を形成する。特に、遷移領域における最大の第1の導電型のドーピング濃度は好ましくは、その非整流接合の場所でドリフト領域における第1の導電型のドーピング濃度の約10倍よりも大きい。図示されているように、この非整流接合はトレンチの側壁からP型ベース領域まで伸びる。デバイス300の設計では、チャネルにおける電圧が(遷移領域側で)ゲート電圧に等しくなる前のポイントで、より好ましくは、チャネルにおける電圧がゲート電圧の小さな割合でしかないポイントで、十分に空乏化されるようにした。十分な空乏化を達成するために、P型ベース領域は十分に高いレベルでドープされ(かつ十分な深さを有し)、遷移領域とP型ベース領域との間のPN接合部で形成される空乏領域がそのPN接合が逆バイアスされるようになるときに主に遷移領域の側に拡がるようにした。結果、チャネルにおける電圧が増加するにつれ、遷移領域がピンチオフされるまでその遷移領域はますます空乏化されるようになる。
【0029】
図4のデバイスのシミュレーションは、チャネル幅が0.2μmで図に示された縦方向のドーピング・プロファイルを有する横型MOSFETについても実行された。遷移領域におけるN型のドーピング濃度も1×1017cm−3に設定され、ドリフト領域におけるドーピング濃度は遷移領域との非整流接合部において1×1016cm−3であった。これらの特性に基づいて、Id−Vd曲線の間の間隔が一様になった優れた電流飽和特性が(2乃至3ボルトの範囲にあるゲートバイアスで)観測された。線形性が高いId−Vg伝達特性も2乃至3ボルトの範囲にあるゲートバイアスで観測された。
【0030】
次に図5A乃至図5Gを参照して、横型MOSFETをその中に有する好ましい縦型デバイスを製造する好ましい方法を説明する。特に、図5Aに、濃くドープされた半導体基板400(ドレイン・コンタクト層)上にN型のin−situドープされたエピタキシャル層402を成長させる工程を示す。図5Aの右側に示されているように、エピタキシャル層402は、漸変的ドーピング・プロファイルをその中に有するドリフト領域405と、そのドリフト領域405上にN型遷移領域403とを含む。図示されているように、N型遷移領域403はエピタキシャル層402の上面まで拡がり、約1×1017cm−3のレベルまでドープされてよい。ドリフト領域405における最小ドーピング濃度も約1×1016cm−3のレベルに設定されてよい。次に図5Bを参照して説明すると、P型ベース領域のドーパントをエピタキシャル層402内に選択注入する工程の間、第1のマスク(図示されていない)が使用されてよい。注入されたP型ベース領域用ドーパントをドライブイン(drive−in)してベース領域404を画定するためのアニール工程が実行されてよい。図示されているように、P型ベース領域404は遷移領域403よりかなりずっと濃くドープされてよく、エピタキシャル層402内に遷移領域403よりも深く拡がってよい。ベース領域404は、エピタキシャル層402の表面から間隔を置いて比較的高いピークのドーピング濃度も有してよい。特に、ベース領域404の表面におけるドーピング濃度は、望みの閾値電圧を設定するために前記ピークよりも低くてよく、そのピーク値はオンステート動作時に遷移領域403に十分な空乏を実現する値に設定されてよい。
【0031】
図5Cに示されているように、次に従来のフォトリソグラフィ画定化エッチング工程(photolithographically defined etching steps)を使ってエピタキシャル層402内にトレンチが形成されてよい。次にトレンチの側壁と底は電気絶縁層406で区画される。トレンチの側壁とベース領域404との間の間隔は、遷移領域403における比較的高いドーピング濃度にもかかわらず、十分な逆バイアスが遷移領域403とベース領域404との間のPN接合に設定されたらすぐに遷移領域403が十分に空乏化され得るように、設計される。例えば、絶縁保護酸化物の被着工程(conformal oxide deposition step)が、酸化絶縁層をエピタキシャル層402の表面上とトレンチ内に画定するために実行されてよい。次いでトレンチは例えばドープされたポリシリコン領域408で補充されてよい。次に、ドープされたポリシリコン領域408と電気絶縁層406を平坦化してエピタキシャル層402の表面を露出させるために従来の平坦化(planarization)工程が実行されてよい。図5Dを参照して説明すると、次に表面上及びポリシリコン領域408上にゲート酸化層410を成長または被着させるために従来の工程が実行されてよい。次いでドープされたポリシリコンの層がゲート酸化層410上に被着させられてよい。この層は、ベース領域404と対向して拡がるゲート電極412を画定するために従来の技術を使用してかたどられて(パタン化されて)よい。
【0032】
次に図5Eを参照して説明すると、次にソース領域414とチャネル拡張領域416は、ゲート電極412と別のかたどられたフォトレジスト層(図示されない)を注入マスクとして使用してN型ドーパントをエピタキシャル層402内に高いドーズレベルで注入することによって形成されてよい。チャネル拡張領域416は好ましくは、順方向オンステート動作時のベース領域404における反転層チャネルの電気接続を改善して、ゲート電極をN型遷移領域403上で横方向に拡張することに伴う追加のゲート静電容量を除去するよう設計される。注入済みのN型ドーパントをドライブインして、更にベース領域404のP型ドーパントをドライブインするためにアニール工程(annealing step)が実行されてよい。図5Fに示されているように、比較的厚い被膜保護(passivation)用酸化物のブランケット層418がコンタクトウィンドウをその中に画定するために被着させられ、かつかたどられてよい。次に図5Gに示されているように、メタリゼーション(metallization)層が付着させられ、次いでソース電極420を画定するようかたどられてよい。同様に、次にメタリゼーション層は半導体基板の裏面上にドレイン電極422として付着させられてよい。
【0033】
次に図6を参照して説明すると、好ましい横型MOSFET(例えばLDMOS)は、N型エピタキシャル層内に形成されてよいP型ベース領域を具備する。図示されているように、このN型エピタキシャル層は従来の技術を使用してP型基板上に形成されてよい。ゲート酸化絶縁層(gate oxide insulating layer)とゲート電極も好ましくはN型エピタキシャル層の表面上に提供される。図示されているように、ゲート電極はP型ベース領域に対向して拡がる。ゲート電極を注入マスク(implant mask)として使用してベース領域内にN+型ソース領域を画定し、そしてN+型ドレイン・コンタクト領域を画定するために、選択注入工程が実行されてよい。図示されているようにP型ベース領域とN型エピタキシャル層の中にN型遷移領域を画定するために別の選択注入工程も実行されてよい。この注入工程は、その中に約1×1017cm−3のドーピング濃度を持つ遷移領域を提供するために十分なドーズで実行されてよい。遷移領域を画定するために使用されたのと同じ注入マスクは、ベース領域とエピタキシャル層の中にP型ドーパントを注入する工程の際の注入マスクとしても使用されてよい。後者の注入工程は、遷移領域と並ぶP+型埋込層を画定するのにそれぞれ十分なドーズレベルとエネルギーレベルとで実行されてよい。図示されているように、このP+型埋込層はP型ベース領域とで非整流接合を形成し、P型ベース領域によってソース電極に電気接続される。遷移領域をドレイン・コンタクト領域に電気接続する横方向N型ドリフト領域を画定するために選択注入工程も実行されてよい。特に、N型ドリフト領域は好ましくは、遷移領域におけるN型ドーピング濃度がドリフト領域におけるN型ドーピング濃度より約10倍大きいポイントで遷移領域とで非整流接合を形成する。遷移領域からドレイン領域への方向に増加する横方向のドーピング・プロファイルを有するドリフト領域を画定するためにも従来の技術が使用されてよい。ソース・コンタクトとドリフト領域との結合を実現するために、ソース・コンタクトは図示されているようにドリフト領域上に拡がるようにかたどられてよい。
【0034】
ゲート電圧の関数として伝達曲線及び相互コンダクタンスのグラフが図7Aと図7Bに示される。特に、図7Aは、図6のデバイスに関する例示的な伝達曲線を、遷移領域とP+型埋込層とを備えた場合(曲線A)と、遷移領域とP+型埋込層とを備えていない場合(曲線B)とで示している。図7Aにおいて曲線Aを曲線Bと比較して判るように、例えばVcd=0.2ボルトのときに遷移領域を十分に空乏化するよう設計できる遷移領域及びP+型埋込層の組み合わせを使用して、より高線形伝達特性を得ることができる。図7Aの曲線Aが曲線Bよりもより高線形伝達特性を示しているという事実は図7Bの相互コンダクタンス曲線によって最も良く示すことができる。特に、図7Bの曲線Aは、約4ボルトでフラットな相互コンダクタンス(gm〜4×10−5mhos/micron)を示す。相互コンダクタンスがフラットであるポイントでもしゲート電圧振幅(gate voltage swing)が0.5ボルトであれば、gmの1%の変化が実現される可能性がある。それとは対照的に、gm〜4×10−5mhos/micronで電圧が約7ボルトのところで、曲線Bは遷移領域とP+型埋込層が使用されないときのgmの7%の変化を実証する。従って、図6のデバイスはずっと大きなダイナミックレンジ(dynamic range)を有することが期待できる。
【0035】
次に図8を参照して別の好ましい横型MOSFETデバイス600の断面を説明する。デバイス600は、第1の導電型(例えばN型)のエピタキシャル層606を第2の導電型(例えばP型)の半導体基板層604上に具備する。基板コンタクト602も複合半導体基板の第2の面(フェース)上に提供される。図示されているように、第2の導電型のベース領域618がエピタキシャル層606内に与えられる。第1の導電型の複合ドレイン領域(composite drain region)もエピタキシャル層606内に与えられる。この複合ドレイン領域は、遷移領域610(N型として示されている)、ドリフト領域608(N型LDD領域として示されている)、及びドレイン・コンタクト領域(N+として示されている)とを具備する。ドレイン・コンタクト(DRAIN)も図示されているようにドレイン・コンタクト領域上に提供されてよい。ドリフト領域608は、遷移領域610の第1の導電型のドーピング濃度未満の一様な第1の導電型のドーピング濃度をその中に有してよい。代わりに、ドリフト領域608は遷移領域610からドレイン・コンタクト領域612まで伸びる方向に増加する横方向の漸変的ドーピング・プロファイルをその中に有してよい。遷移領域610は約2×1017cm−3のレベルでドープされてよく、ドリフト領域608の遷移領域610に密接に隣接して拡がる一部分は約1×1016cm−3のレベルでドープされてよい。この横型MOSFETデバイス600は好ましくは、ベース領域618内に拡がるソース領域620を含む。当業者であれば理解できるように、ゲート電極(GATE)に十分な大きさのゲートバイアスを印加することにより、ベース領域618内に反転層チャネルが誘導形成される。この反転層チャネルはソース領域620を遷移領域610に電気接続することになる。本発明のこの実施態様の好ましい側面によれば、オンステート動作時に、チャネルにおける最大電圧が実質上ゲートバイアスの大きさ未満のレベルに保たれた状態でチャネルは線形モードに維持されることが可能である。更に、第2の導電型(P+として示されている)の第1及び第2の制御領域614と616は、ドレイン・ソース間電圧が増加するにつれて遷移領域610を空乏化するための手段として使用することができる。図示されているように、第1及び第2の制御領域614と616は両方ともにソース・コンタクト(SOURCE)に電気接続される。第2の制御領域616は複合半導体基板の第1の面(フェース)にてソース・コンタクトに電気接続され、第1の制御領域614はベース領域618によってソース・コンタクトに電気接続される。第1及び第2の制御領域614と616の対向する側面の間の間隔は、正のドレイン・ソース間電圧がその対向する側面の間に拡がる遷移領域610の一部分を十分にピンチオフする電圧に影響を与える。第1の制御領域614(図6のP+型埋込領域に類似する)に加えて第2の制御領域616を使用することにより、より濃くドープされた遷移領域610を使用することが可能になる。例えば、図6のデバイスにおける遷移領域と比べて、図8のデバイスの遷移領域610はそれが同じドレイン・ソース間電圧において十分に空乏化する前に2倍の電荷を有する場合がある。高い遷移領域電荷を与える能力によって、その上で相互コンダクタンスが一定になるダイナミックレンジ(ゲート電圧振幅)が増加する(例えば図7Aと図7Bを参照)。
【0036】
次に図9を参照して別の好ましい横型MOSFETデバイス700の断面を説明する。デバイス700は第1の導電型(例えばN型)のエピタキシャル層706を第2の導電型(例えばP型)の半導体基板層704上に具備する。基板コンタクト702もこの複合半導体基板の第2の面(フェース)上に提供される。第2の導電型のベース領域718は図示されているようにエピタキシャル層706内に提供される。第1の導電型の複合ドレイン領域もエピタキシャル層706内に提供される。この複合ドレイン領域は遷移領域710(N型で示されている)、ドリフト領域708(N型LDD領域で示されている)とドレイン・コンタクト領域(N+で示されている)とを具備する。ドレイン・コンタクト(DRAIN)も図示されているようにドレイン・コンタクト領域上に提供されてよい。ドリフト領域708は、遷移領域710における第1の導電型のドーピング濃度未満の一様な第1の導電型のドーピング濃度をその中に有してよい。代わりに、ドリフト領域708は遷移領域710からドレイン・コンタクト領域712まで伸びる方向に増加する横方向の漸変的ドーピング・プロファイルをその中に有してよい。遷移領域710は約2×1017cm−3のレベルでドープされてよく、ドリフト領域708の遷移領域710に密接に隣接して拡がる一部分は約1×1016cm−3のレベルでドープされてよい。この横型MOSFETデバイス700は好ましくは、ベース領域718内に拡がるソース領域720も含む。当業者が理解するところでは、ゲート電極(GATE)に十分な大きさのゲートバイアスを印加することにより、ベース領域718内に反転層チャネルが誘導形成される。この反転層チャネルはソース領域720を遷移領域710に電気接続することになる。チャネルが線形モードで動作している間に遷移領域710を空乏化するためにP+型埋込領域714も提供されてよい。所与のドレイン・ソース間バイアスに対して空乏化の度合いを増大させるために、ソース・コンタクト(SOURCE)が遷移領域710と対向するよう拡張され、その遷移領域から比較的薄い絶縁層(例えば酸化層)によって絶縁され間隔が置かれる。オンステート動作時には、ソース・コンタクト拡張部(source contact extension)と遷移領域710との間のMIS(metal−insulator−semiconductor)接合に設定される逆バイアス(reverse bias)によって遷移領域710の空乏化が更に誘導されることになる。
【0037】
次に図10を参照して、別の好ましいUMOSFETデバイス800を説明する。このデバイス800は図3のデバイスに類似しているが、しかしながら、トレンチ内の埋込ソース電極と遷移領域810との間に拡がる一部分のトレンチ酸化物は埋込ソース電極と遷移領域810との間の結合の度合いを増大させるために薄くされ、それにより、順方向オンステート動作時にドレイン・ソース間電圧が増加されるにつれ遷移領域810が空乏化される割合が増す。図10に示されているように、UMOSFETデバイス800はN+型基板層804(例えばドレイン・コンタクト層)、ドレイン電極802と、漸変的ドーピング濃度をその中に有する場合があるドリフト領域806とを含む。P型ベース領域818も、遷移領域810とソース領域820との間に提供される。図示されているように濃くドープされたベース拡張領域(base region extension)814も提供される。このベース拡張領域814はトレンチ内の埋込ソース電極と組んで、ベース領域818内の反転層チャネルがピンチオフされる前に(すなわち線形モードを抜け出る前に)遷移領域810を十分に空乏化する働きをする。
【0038】
次いで図11を参照して、横型MOSFETをその中に有する別の好ましい縦型デバイス900を説明する。このデバイス900は図5Gのデバイスに類似しているが、しかしながら、トレンチ内のソース電極924と遷移領域910との間に拡がる一部分のトレンチ酸化物は埋込ソース電極924と遷移領域910との間の結合の度合いを増大させるために薄くされる。図11に示されているように、デバイス900はN+型基板層904(例えばドレイン・コンタクト層)、ドレイン電極902と、漸変的ドーピング濃度をその中に有する場合があるドリフト領域906とを含む。図示されているようにP型ベース領域918も提供される。ソース領域920とチャネル拡張領域922(N+で示されている)も提供されてよい。ソース領域とチャネル拡張領域922は従来のCMOS製造技術を使用してゲート電極(GATE)にセルフアライン(自己整合、self−align)されてよい。
【0039】
最後に、添付図面と本明細書では、本発明の一般的な好ましい実施態様が開示されてきた。特定の用語が採用されているが、それらは限定目的のためではなく、包括的かつ記述的な意味合いにおいて使用されている。本発明の範囲は以下の請求項によって定められる。
【図面の簡単な説明】
【図1】従来のUMOSFETの断面図である。
【図2】従来の別のUMOSFETの断面と、そのドーピング・プロファイルを示した図である。
【図3】本発明の一実施態様によるGD−UMOSFETの断面と、そのドーピング・プロファイルを示した図である。
【図4】本発明の一実施態様による横型MOSFETを具備した縦型デバイスの断面と、そのドーピング・プロファイルを示した図である。
【図5A】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5B】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5C】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5D】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5E】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5F】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5G】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図6】本発明の一実施態様による横型MOSFETの断面図である。
【図7A】図6のデバイスが遷移領域とP+型埋込層を使って設計されたときの伝達曲線(曲線A)と、遷移領域とP+型埋込層を使わないで設計されたときの伝達曲線(曲線B)と、を示した図である。
【図7B】図7Aの伝達曲線に基づく相互コンダクタンス対ゲート電圧のグラフを示した図である。
【図8】本発明の一実施態様による横型MOSFETの断面図である。
【図9】本発明のもう一つの実施態様による横型MOSFETの断面図である。
【図10】本発明の一実施態様による縦型MOSFETの断面図である。
【図11】本発明のもう一つの実施態様によるその中に横型MOSFETを有する縦型デバイスの断面図である。
[発明の分野]
本発明は半導体スイッチングデバイス、特に電源スイッチングや電力増幅の用途のためのスイッチングデバイスに関する。
【0002】
[発明の背景]
パワーMOSFETは一般に電源スイッチングや電力増幅を必要とする用途のために開発されてきた。電源スイッチング用途のための市販のデバイスは一般的にDMOSFETとUMOSFETである。これらのデバイスにおける主な目的の一つは、電力損失を減らすために低いオン抵抗率(low specific on−resistance)を実現することである。パワーMOSFETでは、ゲート電極が適切なゲートバイアスの印加のターンオン(turn−on)とターンオフ(turn−off)の制御を実現する。例えば、N型エンハンスメントMOSFET(N−type enhancement MOSFET)におけるターンオンは、正のゲートバイアスの印加に応じて導電性N型反転層チャネル(「チャネル領域(channel region)」とも呼ばれる)がP型ベース領域内に形成されたときに起きる。この反転層チャネルは、N型ソース領域とN型ドレイン領域とを電気接続して、それらの間の多数キャリア伝導を可能にする。
【0003】
パワーMOSFETのゲート電極は、一般的には二酸化シリコンの介在絶縁層(intervening insulating layer)によってベース領域から分離される。ゲートはベース領域から絶縁されているので、MOSFETを伝導状態に維持し、またはMOSFETをオンステートからオフステート若しくはオフステートからオンステートへスイッチするためにほとんどゲート電流は必要とされない。ゲートはMOSFETのベース領域とでコンデンサを形成するので、ゲート電流はスイッチング時は小さく保たれる。結果、充電電流と放電電流(「変位電流(displacement current)」)だけがスイッチ時に必要とされる。絶縁ゲート電極(insulated−gate electrode)に付随する高い入力インピーダンスのために、ゲートには最小限の電流需要があり、ゲート駆動回路が簡単に実現できる。さらに、MOSFETにおける電流伝導は反転層チャネルを通る多数キャリア輸送(majority carrier transport)によって生じるので、余分な少数キャリアの再結合と蓄積に伴う遅延は存在しない。従って、パワーMOSFETのスイッチ速度はバイポーラトランジスタ(bipolar transistor)よりも速い大きさのオーダにすることができる。バイポーラトランジスタと異なり、パワーMOSFETは、高い電流密度と、「二次降伏(second breakdown)」として知られる破壊的故障メカニズムに遭遇することなく比較的長い持続期間の間、高電圧の印加とに耐えるように設計することができる。パワーMOSFETの両端にわたる順方向電圧降下は温度の上昇に伴って増加するので、パワーMOSFETは簡単に並列にすることもでき、それにより並列接続されたデバイスでの安定した電流分配が増進される。
【0004】
DMOSFETとUMOSFETはPWS出版(PWS Publishing Co.)から1995年に刊行されたB.J.Baliga著の「パワー半導体デバイス(Power Semiconductor Devices)」と題されたテキスト(ISBN0−534−94098−6)により詳細に記述されており、そのテキストの内容が本願に援用される。このテキストの第7章335乃至425ページにパワーMOSFETが記述されている。ACCUFET(accumulation FET)、INVFET(inversion FET)及びN+ドレイン領域内へ拡がるトレンチ(trench)型ゲート電極を持つEXTFET(extended trench FET)を含むシリコンパワーMOSFETの例は、1994年5月発行のIEEEトランザクション第41巻第5号(IEEE Transactions on Electron Devices,Vol41,No5,May(1994))に掲載されたT.Syau、P.VenkatramanとB.J.Baliga著の「超低オン抵抗率を持つUMOSFET構造の比較:ACCUFET、EXTFET、INVFET及び従来型UMOSFET(Comparison of Ultralow Specific On−Resistance UMOSFET Structures:The ACCUFET,EXTFET,INVFET,and Convention UMOSFETs)」と題された論文にも開示されている。Syau等によって説明されたように、100乃至250μΩcm2の範囲のオン抵抗率が、最大25ボルトに対応する能力があるデバイスにおいて実験的に実証された。しかしながら、これらのデバイスの性能は、トレンチの底にあるゲート酸化物(gate oxide)において順方向耐圧(forward blocking voltage)に対応しなければならないという事実によって制限された。
【0005】
図1に、前記Syau等の論文にある図1(d)の複製を示す。これは従来のUMOSFET構造を開示する。ブロッキング・モードの動作(blocking mode of operation)において、このUMOSFETは、高い最大耐圧能力を得るために比較的低いレベルでドープされなければならないN型ドリフト層の両端にかかるほとんどの順方向耐圧に対応するが、しかしながら、低いドーピングレベル(不純物の添加レベル)は一般にオンステート直列抵抗を増加させる。高い耐圧と低いオンステート抵抗といった競合する設計要件に基づいて、オン抵抗率(Ron,sp)を最大耐圧(BV)と関係付けるパワーデバイスに対するメリットのある基本的な数値が導出されている。前記したB.J.Baligaのテキストの373ページに説明されているように、N型シリコン・ドリフト領域の理想的なオン抵抗率は次の関係式によって与えられる。
Ron,sp=5.93×10−9(BV)2.5・・・(1)
従って、60ボルトのブロッキング能力を持つデバイスでは、理想的オン抵抗率は170μΩcm2である。しかしながら、チャネルから更なる抵抗の寄与があるので、UMOSFETの報告されたオン抵抗率は一般にはずっとより高い。例えば、730μΩcm2のオン抵抗率を持つUMOSFETは、1989年発行の固体エレクトロニクス第32巻第3号(Solid−State Electronics,Vol32,No3(1989))の247乃至251ページに掲載されたH.Chang著の「トレンチ・ゲート構造を備えた60V縦型二重拡散MOSFETの数値的及び実験的比較(Numerical and Experimental Comparison of 60V Vertical Double−Diffused MOSFETs and MOSFETs With A Trench−Gate Structure)」と題された論文に開示されている。しかしながら、このデバイスではドリフト領域において理想よりも低い一様なドーピング濃度が、順方向高電圧をブロックする際にトレンチのボトムコーナ近くの高濃度の電気力線を補正するために必要とされた。米国特許第5,637,989号、第5,742,076号及び1997年8月6日出願の米国特許出願番号08/906,916は縦方向電流搬送能力(vertical current carrying capability)を持つ人気のあるパワー半導体デバイスを開示しており、本願においてそれらの特許及び特許出願の内容が援用される。
【0006】
特に、Baligaに付与された米国特許第5,637,898号は、GD−UMOSFET(graded−doped UMOSFET)と一般に呼ばれる好ましいシリコン電界効果トランジスタを開示している。図2に米国特許第5,637,898号にある図3の複製を示す。集積型パワー半導体デバイスの電界効果トランジスタ(integrated power semiconductor device field effect transistor)の単位セル100は、1μmの幅「Wc」を持ち、第1の導電型の濃くドープされた(例えばN+型)ドレイン層基板114と、線形漸変的ドーピング濃度(linearly graded doping concentration)をその中に有する第1の導電型のドリフト層112と、第2の導電型(例えばP型)の比較的薄いベース層116と第1の導電型の濃くドープされた(例えばN+型)ソース層118とを含んでよい。ドリフト層112は、層厚4μmを持つN型にin−situドープされた単結晶シリコン層を、層厚100μmと1×1018cm−3(例えば1×1019cm−3)より大きなドーピング濃度とをその中に持つN型ドレイン層114上にエピタキシャル成長させることによって形成されてよい。ドリフト層112は、ドレイン層114とのN+/N接合部において最大濃度3×1017cm−3を持ち、そのN+/N接合部からの距離3μm(つまり深さ1μm)のところで最小濃度1×1016cm−3になり、その最小濃度が一定の状態に上側面(フェース)まで継続する、線形漸変的ドーピング濃度もその中に持つ。ベース層116はホウ素といったP型ドーパントをドリフト層112に100kEVのエネルギーと1×1014cm−2のドーズレベルで注入することによって形成されてよい。次いでそのP型ドーパントはドリフト層112内へ深さ0.5μmまで拡散されてよい。ヒ素といったN型ドーパントも50kEVのエネルギーと1×1015cm−2のドーズレベルで注入されてよい。次にN型とP型のドーパントがそれぞれ深さ0.5μmと1.0μmまで同時に拡散され、ドレイン層、ドリフト層及びソース層を含む複合半導体基板を形成することが可能である。
【0007】
次に三番目の次元の方向(図示されていない)に拡がる一対の対向する側壁120aと底120bを持つストライプ形トレンチ(stripe−shaped trench)が基板内に形成される。1μmの幅Wcを持つ単位セル100について、トレンチはプロセスが終了した時点で好ましくは0.5μmの幅「Wt」を持つよう形成される。次にゲート絶縁領域(gate insulating region)124と導電性ゲート126(例えばポリシリコン)を具備する絶縁ゲート電極(insulated gate electrode)がトレンチ内に形成される。ゲート絶縁領域124のトレンチの底120bとドリフト層112とに隣接して拡がる部分は約2000Åの厚み「T1」を有しており、トレンチの底で高い電界が生じることを防止し、トレンチの側壁120aに沿って実質上一様なポテンシャル勾配を実現する。ゲート絶縁領域124のベース層116とソース層118とに対向して拡がっている部分は約500Åの厚み「T2」を有しており、デバイスの閾値電圧を2乃至3ボルトに維持する。15ボルトのゲートバイアスにおける単位セル100のシミュレーションによって、60ボルトの最大耐圧能力と、60ボルトのパワーUMOSFETに対する170μΩcm2の理想的オン抵抗率よりも4倍小さい40μΩcm2のオン抵抗率(Ron、sp)とを有する縦型シリコン電界効果トランジスタが実現できることが確認された。これらの優れた特性にもかかわらず、図2のトランジスタは、全ゲート・ドレイン間容量(CGD(gate−to−drain capacitance))が大きすぎる場合にHFOM(relatively low high−frequency figure−of−merit)に悩まされる場合がある。MOSFETの不適切な終端(edge termination)もまた最大耐圧が実現されるのを妨げる場合がある。漸変的ドリフト領域とトレンチベースのソース電極とを有する別のUMOSFETもBaligaに付与された米国特許第5,998,833号に開示されており、その内容は本願に援用される。
【0008】
パワーMOSFETは電力増幅(power amplification)用途(例えばオーディオまたは無線)にも使用される場合がある。これらの用途では、伝達特性(transfer characteristic)(例えばId−Vg)の線形性は符号ひずみ(signal distortion)を最小にするために非常に重要になる。これらの電力増幅用途に使用される市販のデバイスは一般にLDMOSとガリウムヒ素MESFETである。しかしながら以下説明されるように、LDMOSトランジスタを含むパワーMOSFETは符号ひずみにつながる可能性がある非線形特性を持つ場合がある。パワーMOSFETにおける電流飽和の物理はM.Sze著の「半導体デバイスの物理(Physics of Semiconductor Devices)」(1981年)と題されたテキストの8−2−2節、438−451ページに説明されている。このテキストに説明されているように、MOSFETは一般に2つのモードの中の一つのモードで働く。低いドレイン電圧において(ゲート電圧と比較して)、MOSFETはIdとVgとの間の関係が実質上線形である線形モードで動作する。ここで、相互コンダクタンス(gm)はVgに依存しない。
gm=(Z/L)unsCoxVd・・・(2)
ZとLはそれぞれチャネル幅とチャネル長である。unsはチャネル移動度(channel mobility)、Coxはゲート酸化物(gate oxide)の固有静電容量(specific capacitance)、そしてVdはドレイン電圧である。しかしながら、ドレイン電圧が増加してゲート電圧(Vg)に匹敵するようになると、MOSFETはチャネルのピンチオフの結果として飽和モード(saturation mode)で動作する。これが起こるとき、相互コンダクタンスgmは以下のように表現される。
gm=(Z/L)unsCox(Vg−Vth)・・・(3)
Vgはゲート電圧、VthはMOSFETの閾値電圧を表す。従って式(3)によって示されるように、飽和動作時には、相互コンダクタンスはゲートバイアスの増加に伴って増加する。このためドレイン電流(出力側)とゲート電圧(入力側)との関係は、ドレイン電流がゲート電圧の自乗として増加するので、非線形となる。この非線形性は電力増幅における符号ひずみの原因となり得る。更に、チャネルに沿った電圧降下がゲート電圧未満に留まりながら約1×104V/cm以上の縦方向電界を作り出すのに十分な大きさになると、チャネルにある電子はキャリア速度飽和のために微分移動度が減少した状態となって移動する。
【0009】
こうして、電力スイッチングと電力増幅の用途のためのパワーMOSFETを開発する試みにもかかわらず、高電圧に対応することができ、高電圧に対応するときに高線形伝達特性(highly linear transfer characteristics)を示す改善された電気特性を有する、パワーMOSFETを開発する必要性が継続して存在している。
【0010】
[発明の概要]
本発明が提供するMOSFETは、高線形伝達特性(例えば、ld:Vg)を実現し、例えば線形パワーアンプにおいて有効に使用することができる。線形パワーアンプの一般的な用途には無線やオーディオの用途が含まれる。これらの好ましい線形伝達特性(linear transfer characteristics)は、反転層チャネル(inversion−layer channel)を有し、(デバイス内の)他の領域が電流飽和モード(current saturation mode)で動作する間に、その反転層チャネルは線形モード(linear mode)で動作するように構成されたMOSFETデバイスを形成することにより達成される可能性がある。特に、このMOSFETデバイスは、MOSFETのドリフト領域が速度飽和モード(velocity saturation mode)で動作する間に、反転層チャネルが線形モードで(チャネル・ピンチオフ(channel pinch−off)とチャネルにおける速度飽和のいずれも無く)動作させられることができるように構成される。第1の導電型の遷移領域も好ましくはチャネルとドリフト領域との間に提供される。この遷移領域は好ましくはドリフト領域の少なくとも一部分と比べて比較的濃くドープされる。遷移領域におけるドーピング濃度は、低いドレイン電圧においてチャネルの順方向オンステート伝導を可能とし、かつ、ドレイン電圧が増加させられてMOSFETのゲート電極に印加される電圧の大きさを超えてもチャネルを線形モードに維持するのに十分なレベルに好ましくは設定される。この線形モードはしばしば三極管モード(triode mode of operation)と呼ばれている。大幅な範囲(significant range)のゲート電圧にわたって線形モードで動作させられると、一定の相互コンダクタンス値(δId/δVgs)がより大きなダイナミック・レンジにわたって実現することができる。
【0011】
MOSFETの設計では、遷移領域が好ましくはチャネルにおける(遷移領域に隣接する端部における)電圧がゲート電圧に等しくなる前に十分に空乏化されるようにする。ここに使用されている表現で遷移領域が「十分に空乏化される(fully depleted)」ということは、遷移領域を横断する順方向オンステート電流路のJFET型ピンチオフ(JFET−style pinch−off)を少なくとも実現するのに十分なほどに遷移領域が空乏化される、ことを意味すると解釈されるべきである。十分な空乏化(full depletion)を達成するために、第2の導電型の比較的濃くドープされた(例えばP+型)領域が遷移領域に隙間なく近接して与えられ、MOSFETのソース領域に電気接続される。その結果、チャネルにおける電圧が増加するにつれて、遷移領域内でJFET型ピンチオフが生じるまで遷移領域はますます空乏化される。遷移領域におけるこのJFET型ピンチオフはチャネルのドレイン側における電圧(Vcd)がゲート電圧に等しくなる前(すなわちVcd≦Vgs)に起きるように設計することができる。例えば、0.1≦Vcd≦0.5ボルトかつVgs=4.0ボルトのときに遷移領域が十分に空乏化されるようにMOSFETは設計されてよい。
【0012】
本発明の第1の実施態様として提供される集積型パワーデバイス(integrated power device)は絶縁ゲート型電界効果トランジスタ(insulated−gate field effect transistor)を具備し、この絶縁ゲート型電界効果トランジスタは、このトランジスタのドレイン領域が速度飽和モード(velocity saturation mode of operation)でそれと同時に動作する間に、順方向オンステート伝導(forward on−state conduction)時に線形モード(linear mode of operation)で動作する反転層チャネルを有する。好ましくは、このトランジスタは、第1の導電型のソース領域(source region)とドレイン・コンタクト領域(drain contact region)とをその中に有する半導体基板を具備する。第2の導電型のベース領域(base region)も提供され、このベース領域は前記半導体基板の一表面に隣接して拡がる。前記表面まで拡がり前記ベース領域とで整流接合(rectifying junction)を形成する第1の導電型の遷移領域が提供される。更に、絶縁ゲート電極(insulated gate electrode)が、前記表面上に前記ソース領域、前記ベース領域及び前記遷移領域と対向して拡がり、それに十分な大きさのゲートバイアスを印加することにより前記ベース領域内に反転層チャネルが誘導形成されるようにした。前記遷移領域と前記ドレイン・コンタクト領域との間に拡がる第1の導電型のドリフト領域が提供される。このドリフト領域は、前記遷移領域とで第1の非整流接合(non−rectifying junction)を形成し、該第1の非整流接合のドリフト領域側に、該第1の非整流接合の遷移領域側の第1の導電型のドーピング濃度未満の第1の導電型のドーピング濃度を有する。
【0013】
これらのトランジスタは、前記反転層チャネルが線形モードで動作している間に前記遷移領域を十分に空乏化するための、前記遷移領域に隣接した手段も好ましくは含む。前記遷移領域を十分に空乏化するための前記手段は、前記遷移領域に隣接するように配置された第2の導電型の埋込領域を含んでよい。この埋込領域は好ましくは前記ベース領域とで非整流接合を形成し、前記ベース領域によってソース・コンタクト(source contact)に電気接続される。前記遷移領域を十分に空乏化するための前記手段は、前記ベース領域に接触する第2の導電型の領域も具備してよい。前記半導体基板内に拡がり、前記遷移領域との界面を画定する側壁を有するトレンチも提供される。更に、絶縁ソース電極が前記トレンチ内に提供され、それは前記ソース・コンタクトによって前記ソース領域に電気接続される。
【0014】
本発明の第2の好ましい実施態様として提供されるUMOSFETは、第1の導電型のソース領域とドレイン・コンタクト領域とを有する半導体基板と、その半導体基板内にあるトレンチとを具備してよい。絶縁ゲート電極も前記トレンチ内に提供されてよい。前記トレンチは好ましくは、前記絶縁ゲート電極と前記トレンチの底との間に拡がる埋込ソース電極(buried source electrode)も備える。前記埋込ソース電極と前記ソース領域とは一緒に電気接続される。第2の導電型のベース領域も半導体基板内に提供される。このベース領域は、前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することにより前記ベース領域内に反転層チャネルが誘導形成されるように、前記トレンチの側壁まで拡がる。前記トレンチの側壁まで前記埋込ソース電極と対向して拡がる第1の導電型のドリフト領域が提供される。動作中、このドリフト領域は速度飽和モードで動作する。アイソレーションを実現してチャネル領域とドリフト領域においてそれぞれ線形モードと速度飽和モードを可能にすることによって性能を改善するために、前記ドリフト領域と前記ベース領域との間に拡がる遷移領域(transition region)が提供される。この遷移領域は前記ドリフト領域と前記ベース領域とでそれぞれ非整流接合(non−rectifying junction)と整流接合(rectifying junction)を形成する。前記遷移領域は、前記ドリフト領域の前記非整流接合に隣接して拡がる一部分における第1の導電型のドーピング濃度と比較してより高い第1の導電型のドーピング濃度もその中に有する。このUMOSFETは、前記ドリフト領域が前記非整流接合から前記ドレイン領域への方向に増加する漸変的ドーピング・プロファイル(graded doping profile)をその中に持つようにそのドリフト領域をドープすることによってGD−UMOSFETも構築する場合がある。前記ベース領域のドーピング・プロファイル及び形状も、前記チャネルにおける電圧がゲート電圧に近づくにつれて前記チャネル領域が十分に空乏化されるように仕立てられてよい。
【0015】
本発明の第3の実施態様として提供される縦型MOSFET(vertical MOSFET)は、半導体基板と、その半導体基板内にあるトレンチとを具備してよい。ソース電極も前記トレンチ内に提供されてよい。このソース電極は電気絶縁層によって前記トレンチの側壁と底から隔離される。絶縁ゲート電極も半導体基板の上側面(フェース)上に提供され、第2の導電型のベース領域が前記半導体基板内に提供される。前記ベース領域は絶縁ゲート電極に対向して拡がる。好ましい縦型MOSFETは、前記ベース領域内に拡がりそのベース領域とでPN整流接合を形成する第1の導電型のソース領域も備える。デバイス特性を改善するために、前記ソース領域は前記絶縁ソース領域と電気接続される。第1の導電型の遷移領域もMOSFETのチャネルとドリフト領域との間の隔離を実現するために利用される。この遷移領域は前記トレンチの側壁から前記ベース領域まで拡がり、そのベース領域とでPN接合を形成して、前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することにより前記ソース領域から前記遷移領域まで拡がる反転層チャネルが誘導形成されるようにする。ドリフト領域も半導体基板内に提供され、このドリフト領域は前記トレンチの側壁に隣接して拡がる。このドリフト領域は、前記ドリフト領域における第1の導電型のドーピング濃度が前記遷移領域における第1の導電型のドーピング濃度未満となる場所に、前記遷移領域とで非整流接合を形成する。特に、前記遷移領域における最大の第1の導電型のドーピング濃度は前記した非整流接合の場所での前記ドリフト領域における第1の導電型のドーピング濃度の約10倍よりも大きい。
【0016】
本発明の第4の実施態様として提供される横型MOSFET(lateral MOSFET)は、その上側面(フェース)まで拡がる第1の導電型のエピタキシャル領域(epitaxial region)をその中に有する半導体基板と、そのエピタキシャル領域内にある第2の導電型のベース領域とを具備してよい。第1の導電型のソース領域も前記ベース領域内に拡がり、そのベース領域とでPN接合を形成する。それとは対照的に、ドレイン・コンタクト領域は前記エピタキシャル領域内に提供されるが、しかし前記ベース領域とは空間的に隔てられる。絶縁ゲート電極も前記半導体基板の前記上側面(フェース)上に提供される。このゲート電極は前記ベース領域と対向して拡がる。前記半導体基板内に拡がり前記ベース領域とでPN接合を形成する好ましい遷移領域も提供される。前記遷移領域の位置決め(positioning)は、前記絶縁ゲート電極に十分な大きさのゲートバイアスが印加されることにより前記ベース領域内に前記ソース領域から前記遷移領域まで拡がる反転層チャネルが誘導形成されるようにする。オンステート動作(on−state operation)時に速度飽和モードで動作する第1の導電型のドリフト領域も提供される。このドリフト領域は前記遷移領域から前記ドレイン・コンタクト領域まで拡がり、前記遷移領域と前記ドレイン・コンタクト領域とでそれぞれ第1及び第2の非整流接合を形成する。前記ドリフト領域における最小の第1の導電型のドーピング濃度は好ましくは前記遷移領域における最大の第1の導電型のドーピング濃度未満である。第2の導電型の埋込層(buried layer)も提供される。この埋込層は、前記遷移領域の少なくとも一部分と全く対向して拡がり、前記ベース領域とで非整流接合を形成し、前記ベース領域と比較してより高い第2の導電型のドーピング濃度を有する。
【0017】
本発明は更に、横型MOSFETをその中に有する縦型パワーデバイスを製造する好ましい方法を提供する。この方法は、第1の導電型のドリフト領域をそれ自体の中に有し、かつ前記ドリフト領域とそれ自体の上側面(フェース)との間に拡がる第1の導電型の遷移領域を有する半導体基板を形成する工程を含む。前記遷移領域は好ましくは、前記ドリフト領域における最小のドーピング濃度の約10倍よりも大きな最大のドーピング濃度をその中に有する。次に、前記遷移領域を経て前記ドリフト領域内へと拡がる第2の導電型のベース領域が形成される。好ましくはトレンチも前記半導体基板内に形成される。特に、前記遷移領域を経て前記ドリフト領域内へと拡がり、前記遷移領域の一部分によって前記ベース領域から空間的に隔てられるトレンチが形成される。次に絶縁電極が前記トレンチ内に形成され、ゲート電極が前記上側面(フェース)上に形成される。横型MOSFETを画定するために、第1の導電型のドーパントを半導体基板内に選択注入して、それにより前記ベース領域内のソース領域と、前記ベース領域から前記遷移領域内へと拡がるチャネル拡張領域(channel region extension)とを画定する工程が実行される。チャネル拡張領域の形成により、ゲート電極を前記遷移領域上で横方向に拡げる必要性がなくなる。次に、前記ソース領域を前記トレンチ内の前記絶縁電極に電気接続するソース・コンタクトが提供される。
【0018】
これらの上述した実施態様は、線形パワーアンプや電力スイッチングの用途に有効に使用することができる、高線形伝達特性(例えばld:Vg)を有するMOSFETを実現する。好ましくチャネルピンチオフの前に十分に空乏化される遷移領域を使用することにより、チャネルは線形モードで動作させられることができ、かつドリフト領域は、大電圧に対応し、速度飽和モードで動作させられることができる。
【0019】
[好適な実施態様の説明]
以下、本発明の好ましい実施の態様を添付図面を参照しながら詳細に説明する。しかしながら本発明は異なった形式で実施されてよく、ここに説明される実施態様に限定されるべきではない。これらの実施態様は、本開示が周到かつ完全であり、当業者に本発明の技術的範囲を十分に明らかにするよう、提供されるものである。添付図面では、層と領域の厚みは明確にするために誇張して描かれている。層が別の層または基板の「上(on)」にあると言うときは、その層は、直にその他の層若しくは基板上にあり得る、または介在層も存在する場合がある、ことも理解されたい。更に、用語「第1の導電型」と「第2の導電型」はN型またはP型といった正反対の導電型を言うが、しかしながらここに説明されるそれぞれの実施態様は相補的な態様も含む。類似の符号は全体を通じて類似の要素に付される。
【0020】
まず図3を参照して、本発明の第1の実施態様によるUMOSFETを説明する。特に、集積型UMOSFETの単位セル200は所定の幅「Wc」(例えば1μm)を有し、第1の導電型の濃くドープされた(例えばN+型)ドレイン・コンタクト層114と、線形漸変的ドーピング・プロファイル(linearly graded doping profile)をその中に有する第1の導電型のドリフト層112と、約1×1017cm−3の比較的高いN型ドーピング(不純物の添加)濃度をその中に有する場合がある第1の導電型の遷移領域117と、を具備する。図示されているように、遷移領域117はドリフト領域112とで非整流接合(non−rectifying junction)を形成し、遷移領域117のN型ドーピング濃度は、遷移領域117との非整流接合(部)まで拡がるN型ドリフト層112の一部分におけるN型ドーピング濃度よりも高い。
【0021】
第2の導電型(例えばP型)の比較的薄いベース層116も遷移領域117上に提供され、その遷移領域とでPN整流接合を形成する。このベース層116は約0.2μmの層厚を有する。第1の導電型の比較的濃くドープされた(例えばN+型)ソース層118も図示されているようにベース層116上に提供される。ソース電極128bとドレイン電極130もそれぞれ第1及び第2の面(フェース)上にソース層118とドレイン・コンタクト層とでオーム性接触するよう提供される。ソース電極128bは好ましくは、遷移領域117を経て拡がるP+型ベース拡張領域119とでオーミックコンタクト(ohmic contact)を形成する。比較的濃くドープされた遷移領域117がベース層116とドリフト層112との間に与えられ、ベース層116内に形成された反転層チャネルが、それと同時にドリフト領域が速度飽和モードで動作する間に、(チャネル・ピンチオフまたは速度飽和することなく)線形モードで動作させられることを可能にすることで性能が改善されるようにした。
【0022】
遷移領域117におけるドーピング濃度は好ましくは、低いドレイン電圧において反転層チャネルの順方向オンステート伝導を可能にし、ドレイン電圧が増加してゲート電極127に印加される電圧の大きさを超える際にチャネルを線形モードに維持するのに十分なレベルに設定される。この線形モードはしばしば三極管モード(triode mode of operation)と言われる。このUMOSFETの好ましい設計では、チャネルのドレイン側における(すなわち遷移領域117に隣接する端部における)電圧Vcdが0≦Vcd≦Vgsであるときに遷移領域117が十分に空乏化される。Vgsはゲート・ソース間電圧(gate−to−source voltage)である。例えば、このUMOSFETは、0.2≦Vcd≦0.5ボルトかつVgs=4.0ボルトであるときに遷移領域117が十分に空乏化されるように設計される。十分な空乏化を実現するために、P+型ベース拡張領域119は遷移領域117に直に近接するよう(すなわち複数のトレンチがその中に並んだ多重セル・デバイスにおけるそれぞれのメサ(mesa)の中央に)提供される。その結果、チャネルにおける電圧が増加するにつれ、遷移領域117がJFETの従来の動作に類似した方法でピンチオフされるまで遷移領域117はますます空乏化される。
【0023】
ドリフト層112と遷移領域117は100μmの層厚で1×1018cm−3(例えば1×1019cm−3)より大きな第1の導電型のドーピング濃度をその中に有するN型ドレイン・コンタクト層114(例えばN+型基板)上に約4μmの層厚を有するN型のin−situドープされた単結晶シリコン層をエピタキシャル成長させることにより形成される。図示されているように、ドリフト層112は、ドレイン・コンタクト層114とのN+/N非整流接合部において約5×1016cm−3(例えば3×1017cm−3)より大きな最大濃度と、遷移領域117との接合部において約1×1016cm−3の最小濃度とを有する、線形漸変的ドーピング・プロファイル(linearly graded doping profile)をその中に有してよい。ベース層116はホウ素といったP型ドーパントを例えば100keVのエネルギーと約1×1014cm−2のドーズレベルでドリフト層112に注入することによって形成されてよい。次にP型ドーパントがドリフト層112内に深さ0.8μmまで拡散されてよい。次にヒ素といったN型ドーパントが50keVのエネルギーと1×1015cm−2のドーズレベルで注入されてよい。次にN型ドーパントとP型ドーパントが同時にそれぞれ深さ0.5μmと深さ1.0μmまで拡散される。ベース層116における第2の導電型(例えばP型)ドーピング濃度も好ましくは、ソース層118とのPN接合部(すなわち第1のPN接合)における約5×1016cm−3より大きい。選択注入工程もP+型ベース拡張領域119を画定するために比較的高いドーズレベルと高いエネルギーレベルで実行されてよい。
【0024】
次いで三番目の次元(図示されていない)に拡がる一対の対向する側壁120aと底120bを有するストライプ形トレンチ(stripe−shaped trench)が基板内に形成される。1.0μmの幅Wcを有する単位セル100では、プロセスが終了した時点でトレンチは0.5μmの幅「Wt」を有する。ゲート電極/ソース電極絶縁領域125、ゲート電極127(例えばポリシリコン)とトレンチベースのソース電極128a(例えばポリシリコン)もトレンチ内に形成される。ゲート電極127は比較的小さく形成され、かつトレンチ全体を占有しないので、スイッチング時に単位セル200を駆動するために必要とされるゲート電荷量は(他のパラメータと大きさは全て同じと仮定して)図2の単位セルを駆動するために必要とされるゲート電荷量よりずっと少ない。
【0025】
ここで、トレンチベースのソース電極128aは第3の次元(図示されていない)でソース電極128bに電気接続される。ゲート電極/ソース電極絶縁領域125の、トレンチの底120bとドリフト層112とに隣接して拡がる部分は、トレンチのボトムコーナ(bottom corners)に集中する高電界の発生を防止し、トレンチの側壁120aに沿って実質上一様な電位勾配を実現するために、例えば1500Åと5000Åの間の範囲にある厚み「T1」も有してよい。しかしながら、ゲート電極/ソース電極絶縁領域125の、ベース層116とソース層118とに対向して拡がる部分は好ましくは、当該デバイスの閾値電圧を約2乃至3ボルトに維持するために、約750Å未満、より好ましくは250Åの厚み「T2」を有する。
【0026】
図3のデバイスのシミュレーションも半メサ幅(half−mesa width)が0.5μmで1μmの半セルピッチ(half−cell pitch)を有する単位セルに対して実行された。厚みT2は250Åに設定され、ベース層116の層厚は、ピークのドーピング濃度が2×1017cm−3で、0.2μmに設定された。ゲート電極127は深さ0.6μmまで拡がり、トレンチの深さは4.7μmに設定された。厚みT1も3000Åに設定された。遷移領域117とドリフト層112におけるドーピング濃度は図3の右側に示されたプロファイルの通りである。これらの特性に基づいて、Id−Vd曲線の間の間隔が一様になった優れた電流飽和特性が(2乃至4ボルトの範囲のゲートバイアスにおいて)観測された。2乃至4ボルトの範囲のゲートバイアスに対して線形性が高いId−Vg伝達特性も観測された。
【0027】
次に図4を参照して、本発明の第2の実施態様による、横型MOSFET領域(lateral MOSFET region)をその中に有する好ましい縦型デバイス300を説明する。図示されたように、この好ましいデバイス300は半導体基板の上側面(フェース)上に横型MOSFETを含む。この横型MOSFETのソース領域、チャネル領域とドレイン領域はN+型ソース領域、P型ベース領域とN型遷移領域とによって形成される。N型遷移領域とP型ベース領域は漸変的ドーピング・プロファイルをその中に有するN型ドリフト領域内に提供される。ソース領域、ベース領域とドリフト領域の縦方向のドーピング・プロファイルは図4の右側に示されている。図示されているように、トレンチも基板内に提供される。このトレンチは好ましくは電気絶縁層(例えば酸化層)で区画され、ソース電極で充たされる。遷移領域は、ドリフト領域の上部と比べて比較的高いレベルの濃度1×1017cm−3にドープされてよく、トレンチの側壁からP型ベース領域まで拡がる。遷移領域はドリフト領域とで非整流接合を形成し、ベース領域とでPN整流接合を形成する。当業者によって理解されるところでは、横型MOSFETのゲート電極に十分に正のゲートバイアスを印加することによって、ベース領域の、ゲート電極のすぐ下に拡がる部分に、反転層チャネルが誘導形成されることになる。この反転層チャネルは、ドレイン・コンタクトがソース・コンタクトと比較して正にバイアスされると、順方向オンステート動作(forward on−state operation)時にソース領域を遷移領域に電気接続することになる。ゲート電極は、チャネルと遷移領域との間に十分な電気接続を(遷移領域とベース領域との間のPN接合部の固有の空乏領域(built−in depletion region)の影響を押しとどめることによって)実現するためにトレンチの側壁の比較的近くまで拡がるようにかたどられるようにしてもよい。
【0028】
本発明の好ましい側面によれば、ドリフト領域は、ドリフト領域の第1の導電型のドーピング濃度が遷移領域の第1の導電型のドーピング濃度未満である場所に、遷移領域とで非整流接合を形成する。特に、遷移領域における最大の第1の導電型のドーピング濃度は好ましくは、その非整流接合の場所でドリフト領域における第1の導電型のドーピング濃度の約10倍よりも大きい。図示されているように、この非整流接合はトレンチの側壁からP型ベース領域まで伸びる。デバイス300の設計では、チャネルにおける電圧が(遷移領域側で)ゲート電圧に等しくなる前のポイントで、より好ましくは、チャネルにおける電圧がゲート電圧の小さな割合でしかないポイントで、十分に空乏化されるようにした。十分な空乏化を達成するために、P型ベース領域は十分に高いレベルでドープされ(かつ十分な深さを有し)、遷移領域とP型ベース領域との間のPN接合部で形成される空乏領域がそのPN接合が逆バイアスされるようになるときに主に遷移領域の側に拡がるようにした。結果、チャネルにおける電圧が増加するにつれ、遷移領域がピンチオフされるまでその遷移領域はますます空乏化されるようになる。
【0029】
図4のデバイスのシミュレーションは、チャネル幅が0.2μmで図に示された縦方向のドーピング・プロファイルを有する横型MOSFETについても実行された。遷移領域におけるN型のドーピング濃度も1×1017cm−3に設定され、ドリフト領域におけるドーピング濃度は遷移領域との非整流接合部において1×1016cm−3であった。これらの特性に基づいて、Id−Vd曲線の間の間隔が一様になった優れた電流飽和特性が(2乃至3ボルトの範囲にあるゲートバイアスで)観測された。線形性が高いId−Vg伝達特性も2乃至3ボルトの範囲にあるゲートバイアスで観測された。
【0030】
次に図5A乃至図5Gを参照して、横型MOSFETをその中に有する好ましい縦型デバイスを製造する好ましい方法を説明する。特に、図5Aに、濃くドープされた半導体基板400(ドレイン・コンタクト層)上にN型のin−situドープされたエピタキシャル層402を成長させる工程を示す。図5Aの右側に示されているように、エピタキシャル層402は、漸変的ドーピング・プロファイルをその中に有するドリフト領域405と、そのドリフト領域405上にN型遷移領域403とを含む。図示されているように、N型遷移領域403はエピタキシャル層402の上面まで拡がり、約1×1017cm−3のレベルまでドープされてよい。ドリフト領域405における最小ドーピング濃度も約1×1016cm−3のレベルに設定されてよい。次に図5Bを参照して説明すると、P型ベース領域のドーパントをエピタキシャル層402内に選択注入する工程の間、第1のマスク(図示されていない)が使用されてよい。注入されたP型ベース領域用ドーパントをドライブイン(drive−in)してベース領域404を画定するためのアニール工程が実行されてよい。図示されているように、P型ベース領域404は遷移領域403よりかなりずっと濃くドープされてよく、エピタキシャル層402内に遷移領域403よりも深く拡がってよい。ベース領域404は、エピタキシャル層402の表面から間隔を置いて比較的高いピークのドーピング濃度も有してよい。特に、ベース領域404の表面におけるドーピング濃度は、望みの閾値電圧を設定するために前記ピークよりも低くてよく、そのピーク値はオンステート動作時に遷移領域403に十分な空乏を実現する値に設定されてよい。
【0031】
図5Cに示されているように、次に従来のフォトリソグラフィ画定化エッチング工程(photolithographically defined etching steps)を使ってエピタキシャル層402内にトレンチが形成されてよい。次にトレンチの側壁と底は電気絶縁層406で区画される。トレンチの側壁とベース領域404との間の間隔は、遷移領域403における比較的高いドーピング濃度にもかかわらず、十分な逆バイアスが遷移領域403とベース領域404との間のPN接合に設定されたらすぐに遷移領域403が十分に空乏化され得るように、設計される。例えば、絶縁保護酸化物の被着工程(conformal oxide deposition step)が、酸化絶縁層をエピタキシャル層402の表面上とトレンチ内に画定するために実行されてよい。次いでトレンチは例えばドープされたポリシリコン領域408で補充されてよい。次に、ドープされたポリシリコン領域408と電気絶縁層406を平坦化してエピタキシャル層402の表面を露出させるために従来の平坦化(planarization)工程が実行されてよい。図5Dを参照して説明すると、次に表面上及びポリシリコン領域408上にゲート酸化層410を成長または被着させるために従来の工程が実行されてよい。次いでドープされたポリシリコンの層がゲート酸化層410上に被着させられてよい。この層は、ベース領域404と対向して拡がるゲート電極412を画定するために従来の技術を使用してかたどられて(パタン化されて)よい。
【0032】
次に図5Eを参照して説明すると、次にソース領域414とチャネル拡張領域416は、ゲート電極412と別のかたどられたフォトレジスト層(図示されない)を注入マスクとして使用してN型ドーパントをエピタキシャル層402内に高いドーズレベルで注入することによって形成されてよい。チャネル拡張領域416は好ましくは、順方向オンステート動作時のベース領域404における反転層チャネルの電気接続を改善して、ゲート電極をN型遷移領域403上で横方向に拡張することに伴う追加のゲート静電容量を除去するよう設計される。注入済みのN型ドーパントをドライブインして、更にベース領域404のP型ドーパントをドライブインするためにアニール工程(annealing step)が実行されてよい。図5Fに示されているように、比較的厚い被膜保護(passivation)用酸化物のブランケット層418がコンタクトウィンドウをその中に画定するために被着させられ、かつかたどられてよい。次に図5Gに示されているように、メタリゼーション(metallization)層が付着させられ、次いでソース電極420を画定するようかたどられてよい。同様に、次にメタリゼーション層は半導体基板の裏面上にドレイン電極422として付着させられてよい。
【0033】
次に図6を参照して説明すると、好ましい横型MOSFET(例えばLDMOS)は、N型エピタキシャル層内に形成されてよいP型ベース領域を具備する。図示されているように、このN型エピタキシャル層は従来の技術を使用してP型基板上に形成されてよい。ゲート酸化絶縁層(gate oxide insulating layer)とゲート電極も好ましくはN型エピタキシャル層の表面上に提供される。図示されているように、ゲート電極はP型ベース領域に対向して拡がる。ゲート電極を注入マスク(implant mask)として使用してベース領域内にN+型ソース領域を画定し、そしてN+型ドレイン・コンタクト領域を画定するために、選択注入工程が実行されてよい。図示されているようにP型ベース領域とN型エピタキシャル層の中にN型遷移領域を画定するために別の選択注入工程も実行されてよい。この注入工程は、その中に約1×1017cm−3のドーピング濃度を持つ遷移領域を提供するために十分なドーズで実行されてよい。遷移領域を画定するために使用されたのと同じ注入マスクは、ベース領域とエピタキシャル層の中にP型ドーパントを注入する工程の際の注入マスクとしても使用されてよい。後者の注入工程は、遷移領域と並ぶP+型埋込層を画定するのにそれぞれ十分なドーズレベルとエネルギーレベルとで実行されてよい。図示されているように、このP+型埋込層はP型ベース領域とで非整流接合を形成し、P型ベース領域によってソース電極に電気接続される。遷移領域をドレイン・コンタクト領域に電気接続する横方向N型ドリフト領域を画定するために選択注入工程も実行されてよい。特に、N型ドリフト領域は好ましくは、遷移領域におけるN型ドーピング濃度がドリフト領域におけるN型ドーピング濃度より約10倍大きいポイントで遷移領域とで非整流接合を形成する。遷移領域からドレイン領域への方向に増加する横方向のドーピング・プロファイルを有するドリフト領域を画定するためにも従来の技術が使用されてよい。ソース・コンタクトとドリフト領域との結合を実現するために、ソース・コンタクトは図示されているようにドリフト領域上に拡がるようにかたどられてよい。
【0034】
ゲート電圧の関数として伝達曲線及び相互コンダクタンスのグラフが図7Aと図7Bに示される。特に、図7Aは、図6のデバイスに関する例示的な伝達曲線を、遷移領域とP+型埋込層とを備えた場合(曲線A)と、遷移領域とP+型埋込層とを備えていない場合(曲線B)とで示している。図7Aにおいて曲線Aを曲線Bと比較して判るように、例えばVcd=0.2ボルトのときに遷移領域を十分に空乏化するよう設計できる遷移領域及びP+型埋込層の組み合わせを使用して、より高線形伝達特性を得ることができる。図7Aの曲線Aが曲線Bよりもより高線形伝達特性を示しているという事実は図7Bの相互コンダクタンス曲線によって最も良く示すことができる。特に、図7Bの曲線Aは、約4ボルトでフラットな相互コンダクタンス(gm〜4×10−5mhos/micron)を示す。相互コンダクタンスがフラットであるポイントでもしゲート電圧振幅(gate voltage swing)が0.5ボルトであれば、gmの1%の変化が実現される可能性がある。それとは対照的に、gm〜4×10−5mhos/micronで電圧が約7ボルトのところで、曲線Bは遷移領域とP+型埋込層が使用されないときのgmの7%の変化を実証する。従って、図6のデバイスはずっと大きなダイナミックレンジ(dynamic range)を有することが期待できる。
【0035】
次に図8を参照して別の好ましい横型MOSFETデバイス600の断面を説明する。デバイス600は、第1の導電型(例えばN型)のエピタキシャル層606を第2の導電型(例えばP型)の半導体基板層604上に具備する。基板コンタクト602も複合半導体基板の第2の面(フェース)上に提供される。図示されているように、第2の導電型のベース領域618がエピタキシャル層606内に与えられる。第1の導電型の複合ドレイン領域(composite drain region)もエピタキシャル層606内に与えられる。この複合ドレイン領域は、遷移領域610(N型として示されている)、ドリフト領域608(N型LDD領域として示されている)、及びドレイン・コンタクト領域(N+として示されている)とを具備する。ドレイン・コンタクト(DRAIN)も図示されているようにドレイン・コンタクト領域上に提供されてよい。ドリフト領域608は、遷移領域610の第1の導電型のドーピング濃度未満の一様な第1の導電型のドーピング濃度をその中に有してよい。代わりに、ドリフト領域608は遷移領域610からドレイン・コンタクト領域612まで伸びる方向に増加する横方向の漸変的ドーピング・プロファイルをその中に有してよい。遷移領域610は約2×1017cm−3のレベルでドープされてよく、ドリフト領域608の遷移領域610に密接に隣接して拡がる一部分は約1×1016cm−3のレベルでドープされてよい。この横型MOSFETデバイス600は好ましくは、ベース領域618内に拡がるソース領域620を含む。当業者であれば理解できるように、ゲート電極(GATE)に十分な大きさのゲートバイアスを印加することにより、ベース領域618内に反転層チャネルが誘導形成される。この反転層チャネルはソース領域620を遷移領域610に電気接続することになる。本発明のこの実施態様の好ましい側面によれば、オンステート動作時に、チャネルにおける最大電圧が実質上ゲートバイアスの大きさ未満のレベルに保たれた状態でチャネルは線形モードに維持されることが可能である。更に、第2の導電型(P+として示されている)の第1及び第2の制御領域614と616は、ドレイン・ソース間電圧が増加するにつれて遷移領域610を空乏化するための手段として使用することができる。図示されているように、第1及び第2の制御領域614と616は両方ともにソース・コンタクト(SOURCE)に電気接続される。第2の制御領域616は複合半導体基板の第1の面(フェース)にてソース・コンタクトに電気接続され、第1の制御領域614はベース領域618によってソース・コンタクトに電気接続される。第1及び第2の制御領域614と616の対向する側面の間の間隔は、正のドレイン・ソース間電圧がその対向する側面の間に拡がる遷移領域610の一部分を十分にピンチオフする電圧に影響を与える。第1の制御領域614(図6のP+型埋込領域に類似する)に加えて第2の制御領域616を使用することにより、より濃くドープされた遷移領域610を使用することが可能になる。例えば、図6のデバイスにおける遷移領域と比べて、図8のデバイスの遷移領域610はそれが同じドレイン・ソース間電圧において十分に空乏化する前に2倍の電荷を有する場合がある。高い遷移領域電荷を与える能力によって、その上で相互コンダクタンスが一定になるダイナミックレンジ(ゲート電圧振幅)が増加する(例えば図7Aと図7Bを参照)。
【0036】
次に図9を参照して別の好ましい横型MOSFETデバイス700の断面を説明する。デバイス700は第1の導電型(例えばN型)のエピタキシャル層706を第2の導電型(例えばP型)の半導体基板層704上に具備する。基板コンタクト702もこの複合半導体基板の第2の面(フェース)上に提供される。第2の導電型のベース領域718は図示されているようにエピタキシャル層706内に提供される。第1の導電型の複合ドレイン領域もエピタキシャル層706内に提供される。この複合ドレイン領域は遷移領域710(N型で示されている)、ドリフト領域708(N型LDD領域で示されている)とドレイン・コンタクト領域(N+で示されている)とを具備する。ドレイン・コンタクト(DRAIN)も図示されているようにドレイン・コンタクト領域上に提供されてよい。ドリフト領域708は、遷移領域710における第1の導電型のドーピング濃度未満の一様な第1の導電型のドーピング濃度をその中に有してよい。代わりに、ドリフト領域708は遷移領域710からドレイン・コンタクト領域712まで伸びる方向に増加する横方向の漸変的ドーピング・プロファイルをその中に有してよい。遷移領域710は約2×1017cm−3のレベルでドープされてよく、ドリフト領域708の遷移領域710に密接に隣接して拡がる一部分は約1×1016cm−3のレベルでドープされてよい。この横型MOSFETデバイス700は好ましくは、ベース領域718内に拡がるソース領域720も含む。当業者が理解するところでは、ゲート電極(GATE)に十分な大きさのゲートバイアスを印加することにより、ベース領域718内に反転層チャネルが誘導形成される。この反転層チャネルはソース領域720を遷移領域710に電気接続することになる。チャネルが線形モードで動作している間に遷移領域710を空乏化するためにP+型埋込領域714も提供されてよい。所与のドレイン・ソース間バイアスに対して空乏化の度合いを増大させるために、ソース・コンタクト(SOURCE)が遷移領域710と対向するよう拡張され、その遷移領域から比較的薄い絶縁層(例えば酸化層)によって絶縁され間隔が置かれる。オンステート動作時には、ソース・コンタクト拡張部(source contact extension)と遷移領域710との間のMIS(metal−insulator−semiconductor)接合に設定される逆バイアス(reverse bias)によって遷移領域710の空乏化が更に誘導されることになる。
【0037】
次に図10を参照して、別の好ましいUMOSFETデバイス800を説明する。このデバイス800は図3のデバイスに類似しているが、しかしながら、トレンチ内の埋込ソース電極と遷移領域810との間に拡がる一部分のトレンチ酸化物は埋込ソース電極と遷移領域810との間の結合の度合いを増大させるために薄くされ、それにより、順方向オンステート動作時にドレイン・ソース間電圧が増加されるにつれ遷移領域810が空乏化される割合が増す。図10に示されているように、UMOSFETデバイス800はN+型基板層804(例えばドレイン・コンタクト層)、ドレイン電極802と、漸変的ドーピング濃度をその中に有する場合があるドリフト領域806とを含む。P型ベース領域818も、遷移領域810とソース領域820との間に提供される。図示されているように濃くドープされたベース拡張領域(base region extension)814も提供される。このベース拡張領域814はトレンチ内の埋込ソース電極と組んで、ベース領域818内の反転層チャネルがピンチオフされる前に(すなわち線形モードを抜け出る前に)遷移領域810を十分に空乏化する働きをする。
【0038】
次いで図11を参照して、横型MOSFETをその中に有する別の好ましい縦型デバイス900を説明する。このデバイス900は図5Gのデバイスに類似しているが、しかしながら、トレンチ内のソース電極924と遷移領域910との間に拡がる一部分のトレンチ酸化物は埋込ソース電極924と遷移領域910との間の結合の度合いを増大させるために薄くされる。図11に示されているように、デバイス900はN+型基板層904(例えばドレイン・コンタクト層)、ドレイン電極902と、漸変的ドーピング濃度をその中に有する場合があるドリフト領域906とを含む。図示されているようにP型ベース領域918も提供される。ソース領域920とチャネル拡張領域922(N+で示されている)も提供されてよい。ソース領域とチャネル拡張領域922は従来のCMOS製造技術を使用してゲート電極(GATE)にセルフアライン(自己整合、self−align)されてよい。
【0039】
最後に、添付図面と本明細書では、本発明の一般的な好ましい実施態様が開示されてきた。特定の用語が採用されているが、それらは限定目的のためではなく、包括的かつ記述的な意味合いにおいて使用されている。本発明の範囲は以下の請求項によって定められる。
【図面の簡単な説明】
【図1】従来のUMOSFETの断面図である。
【図2】従来の別のUMOSFETの断面と、そのドーピング・プロファイルを示した図である。
【図3】本発明の一実施態様によるGD−UMOSFETの断面と、そのドーピング・プロファイルを示した図である。
【図4】本発明の一実施態様による横型MOSFETを具備した縦型デバイスの断面と、そのドーピング・プロファイルを示した図である。
【図5A】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5B】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5C】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5D】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5E】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5F】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図5G】本発明の一実施態様によるデバイスを製造する好ましい方法を説明するための中間的な構造体を示した図である。
【図6】本発明の一実施態様による横型MOSFETの断面図である。
【図7A】図6のデバイスが遷移領域とP+型埋込層を使って設計されたときの伝達曲線(曲線A)と、遷移領域とP+型埋込層を使わないで設計されたときの伝達曲線(曲線B)と、を示した図である。
【図7B】図7Aの伝達曲線に基づく相互コンダクタンス対ゲート電圧のグラフを示した図である。
【図8】本発明の一実施態様による横型MOSFETの断面図である。
【図9】本発明のもう一つの実施態様による横型MOSFETの断面図である。
【図10】本発明の一実施態様による縦型MOSFETの断面図である。
【図11】本発明のもう一つの実施態様によるその中に横型MOSFETを有する縦型デバイスの断面図である。
Claims (46)
- 絶縁ゲート型電界効果トランジスタを具備し、前記トランジスタは、順方向オンステート伝導時に該トランジスタのドレイン領域が速度飽和モードで動作すると同時に線形モードで動作する反転層チャネルをその中に有する、ことを特徴とする集積型パワーデバイス。
- 第1の導電型のソース領域及びドレイン・コンタクト領域をその中に有する半導体基板と、
前記半導体基板の一表面に隣接して拡がる第2の導電型のベース領域と、
前記表面まで拡がり前記ベース領域とで整流接合を形成する第1の導電型の遷移領域と、
前記ソース領域、前記ベース領域及び前記遷移領域と対向して前記表面上に拡がり、それに十分な大きさのゲートバイアスを印加することにより前記ソース領域と前記遷移領域との間に反転層チャネルが誘導形成されるようにした、絶縁ゲート電極と、
前記遷移領域と前記ドレイン・コンタクト領域との間に拡がり、前記遷移領域とで第1の非整流接合を形成し、前記第1の非整流接合のそれ自体の側に前記第1の非整流接合の前記遷移領域側の第1の導電型のドーピング濃度未満の第1の導電型のドーピング濃度を有する、第1の導電型のドリフト領域と、を具備することを特徴とする請求項1に記載の集積型パワーデバイス。 - 前記反転層チャネルが線形モードで動作している間に前記遷移領域を十分に空乏化するための、前記遷移領域に隣接した手段を更に具備する、ことを特徴とする請求項2に記載の集積型パワーデバイス。
- 前記遷移領域を十分に空乏化するための前記手段は、前記遷移領域に隣接するように配置された第2の導電型の埋込領域を具備する、ことを特徴とする請求項3に記載の集積型パワーデバイス。
- 前記埋込領域は前記ベース領域とで非整流接合を形成する、ことを特徴とする請求項4に記載の集積型パワーデバイス。
- 前記遷移領域を十分に空乏化するための前記手段は、前記ベース領域と接触する第2の導電型の領域を具備する、ことを特徴とする請求項3に記載の集積型パワーデバイス。
- 前記半導体基板内に拡がり、前記遷移領域との界面を画定する側壁を有するトレンチと、
前記トレンチ内に拡がり、前記ソース領域に電気接続された絶縁ソース電極と、を更に具備する、ことを特徴とする請求項3に記載の集積型パワーデバイス。 - 縦型デバイスであって、前記絶縁ゲート型電界効果トランジスタは横型トランジスタであり、前記半導体基板は第1及び第2の対向する面(フェース)を有し、前記絶縁ゲート電極と前記ソース領域は前記第1の面に隣接して形成され、前記ドレイン・コンタクト領域は前記第2の面に隣接して形成された、ことを特徴とする請求項7に記載の集積型パワーデバイス。
- 前記半導体基板の前記表面と前記第1の面(フェース)とは同一の広がりを持つ、ことを特徴とする請求項8に記載の集積型パワーデバイス。
- 前記ドリフト領域は前記トレンチの側壁に沿って拡がる、ことを特徴とする請求項9に記載の集積型パワーデバイス。
- 前記遷移領域を十分に空乏化するための前記手段は、
前記遷移領域とで整流接合を形成し、前記ベース領域とで非整流接合を形成する、第2の導電型の第1の制御領域と、
前記遷移領域内に拡がり、該遷移領域とで整流接合を形成する、第2の導電型の第2の制御領域と、を具備することを特徴とする請求項3に記載の集積型パワーデバイス。 - 前記ソース領域上に拡がり、前記第2の制御領域に電気接続されたソース・コンタクトを更に具備する、ことを特徴とする請求項11に記載の集積型パワーデバイス。
- 前記ソース・コンタクトは前記ベース領域上に拡がり、前記第1の制御領域は前記ベース領域によって前記ソース・コンタクトと電気結合する、ことを特徴とする請求項12に記載の集積型パワーデバイス。
- 前記ソース領域上に拡がり、かつ前記遷移領域と対向して拡がって該遷移領域とでMIS接合を形成する、ソース・コンタクトを更に具備する、ことを特徴とする請求項5に記載の集積型パワーデバイス。
- 第1の導電型のソース領域とドレイン・コンタクト領域とを有する半導体基板と、
前記半導体基板内にあるトレンチと、
前記トレンチ内にある絶縁ゲート電極と、
前記半導体基板内にあって、前記トレンチの一側壁まで拡がって前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することによりその中に反転層チャネルが誘導形成されるようにした、第2の導電型のベース領域と、
前記ドレイン・コンタクト領域上にあって、前記トレンチの前記側壁まで拡がる、第1の導電型のドリフト領域と、
前記ドリフト領域と前記ベース領域との間に拡がり、それらの領域とでそれぞれ非整流接合と整流接合とを形成し、前記ドリフト領域の前記非整流接合に隣接して拡がる一部分における第1の導電型のドーピング濃度と比較してより高い第1の導電型のドーピング濃度をその中に有する、遷移領域と、を具備することを特徴とするUMOSFET。 - 前記ドリフト領域は、前記非整流接合から前記ドレイン・コンタクト領域への方向に増大する漸変的ドーピング・プロファイルをその中に有する、ことを特徴とする請求項15に記載のUMOSFET。
- 前記トレンチ内にあって、前記絶縁ゲート電極と前記トレンチの底との間に拡がり、前記ソース領域に電気接続された、埋込ソース電極を更に具備する、ことを特徴とする請求項15に記載のUMOSFET。
- 前記反転層チャネルが線形モードで動作している間に前記遷移領域を十分に空乏化するための、該遷移領域に隣接した手段を更に具備する、ことを特徴とする請求項15に記載のUMOSFET。
- 前記遷移領域を十分に空乏化するための前記手段はベース拡張領域を具備し、前記遷移領域は前記ベース拡張領域と前記トレンチの前記側壁との間に拡がる、ことを特徴とする請求項18に記載のUMOSFET。
- 第2の導電型のベース領域をその中に有する第1の導電型の半導体基板と、
前記ベース領域内にあって、該ベース領域とでPN接合を形成する、第1の導電型のソース領域と、
前記半導体基板内にあって、前記ベース領域内まで拡がり該ベース領域とでPN接合を形成する第1の導電型の遷移領域を含む、第1の導電型のドレイン領域と、
前記ベース領域と対向して拡がり、それに十分な大きさのゲートバイアスを印加することにより前記ベース領域内に前記ソース領域から前記遷移領域まで拡がるとともに順方向オンステート・モードの動作時に前記ソース領域と前記遷移領域とでそれぞれの非整流接合を形成する反転層チャネルを誘導形成するようにした、絶縁ゲート電極と、
前記オンステート・モードの動作時に、かつ前記反転層チャネルがピンチオフする前に、前記遷移領域を十分に空乏化するための、前記ベース領域に電気接続された手段と、を具備することを特徴とするMOSFET。 - 前記ドレイン領域は、
前記遷移領域とで非整流接合を形成する第1の導電型のドリフト領域と、
前記ドリフト領域とで非整流接合を形成する第1の導電型のドレイン・コンタクト領域と、を更に具備することを特徴とする請求項20に記載のMOSFET。 - 前記ドレイン・コンタクト領域は前記ドリフト領域よりも濃くドープされており、前記遷移領域内の最大の第1の導電型ドーピング濃度は前記ドリフト領域内の最小の第1の導電型のドーピング濃度の約10倍よりも大きい、ことを特徴とする請求項21に記載のMOSFET。
- 前記遷移領域を十分に空乏化するための前記手段は、
前記遷移領域とで整流接合を形成し、前記ベース領域とで非整流接合を形成する、第2の導電型の第1の制御領域と、
前記遷移領域内に拡がり該遷移領域とで整流接合を形成する、第2の導電型の第2の制御領域と、を具備することを特徴とする請求項20に記載のMOSFET。 - 前記ソース領域上に拡がり、前記第2の制御領域に電気接続された、ソース・コンタクトを更に具備する、ことを特徴とする請求項23に記載のMOSFET。
- 前記ソース・コンタクトは前記ベース領域上に拡がり、前記第1の制御領域は前記ベース領域によって前記ソース・コンタクトに電気結合される、ことを特徴とする請求項24に記載のMOSFET。
- 前記ソース領域上に拡がり、かつ前記遷移領域と対向して拡がって該遷移領域とでMIS接合を形成する、ソース・コンタクトを更に具備する、ことを特徴とする請求項23に記載のMOSFET。
- 横型MOSFETを具備し、前記トランジスタは、順方向オンステート伝導時に該トランジスタのドレイン領域の第1の部分が速度飽和モードで動作すると同時に線形モードで動作する反転層チャネルをその中に有し、前記ドレイン領域は、順方向オンステート伝導時に前記反転層チャネルとで非整流接合を形成するとともに該ドレイン領域の前記第1の部分よりも濃くドープされた遷移領域を具備する、ことを特徴とする集積型パワーデバイス。
- 前記横型MOSFETは、前記反転層チャネルが線形モードで動作している間に前記遷移領域を十分に空乏化するための、前記遷移領域に隣接した手段を具備する、ことを特徴とする請求項27に記載の集積型パワーデバイス。
- 前記遷移領域を十分に空乏化するための前記手段は、順方向オンステート伝導時に前記反転層チャネルがその中に形成される前記横型MOSFETのベース領域に電気接続された第2の導電型の埋込領域を具備する、ことを特徴とする請求項28に記載の集積型パワーデバイス。
- 前記遷移領域を十分に空乏化するための前記手段は、順方向オンステート伝導時に前記反転層チャネルがその中に形成される前記横型MOSFETのベース領域と接触した第2の導電型の領域を具備する、ことを特徴とする請求項28に記載の集積型パワーデバイス。
- その一面まで拡がる第1の導電型の第1の領域をその中に有する半導体基板と、
前記第1の領域内にあって、該第1の領域とでPN接合を形成する、第2の導電型のベース領域と、
前記ベース領域内にある第1の導電型のソース領域と、
前記第1の領域内にある第1の導電型のドレイン・コンタクト領域と、
前記一面上に前記ベース領域と対向して拡がる絶縁ゲート電極と、
前記半導体基板内に拡がり前記ベース領域とでPN接合を形成して、前記絶縁ゲート電極に十分な大きさのゲートバイアスを印加することにより前記ベース領域内に前記ソース領域から前記遷移領域まで拡がる反転層チャネルが誘導形成されるようにした、第1の導電型の遷移領域と、
前記遷移領域と前記ドレイン・コンタクト領域との間に拡がり、それら二つの領域とでそれぞれ第1及び第2の非整流接合を形成し、前記遷移領域内の最大のドーピング濃度未満の最小のドーピング濃度をその中に有する、第1の導電型のドリフト領域と、を具備することを特徴とする横型MOSFET。 - 前記ベース領域内にある前記反転層チャネルが順方向オンステート・モードの動作時にピンチオフされる前に前記遷移領域を十分に空乏化するための、前記遷移領域に隣接した手段を更に具備する、ことを特徴とする請求項31に記載の横型MOSFET。
- 前記遷移領域は前記ソース領域よりも薄くドープされており、かつ、前記ドリフト領域の最小ドーピング濃度よりも少なくとも10倍濃くドープされている、ことを特徴とする請求項32に記載の横型MOSFET。
- 前記遷移領域を十分に空乏化するための前記手段は、前記遷移領域の少なくとも一部分と完全に対向して拡がり、前記ベース領域とで非整流接合を形成し、前記ベース領域と比較してより高い第2の導電型のドーピング濃度をその中に有する、第2の導電型の埋込層を具備する、ことを特徴とする請求項32に記載の横型MOSFET。
- 前記埋込層は前記遷移領域とセルフアラインされている、ことを特徴とする請求項34に記載の横型MOSFET。
- 前記第1の領域はN型エピタキシャル層を具備する、ことを特徴とする請求項35に記載の横型MOSFET。
- 前記遷移領域を十分に空乏化するための前記手段は、
前記遷移領域とで整流接合を形成し、前記ベース領域とで非整流接合を形成する、第2の導電型の第1の制御領域と、
前記遷移領域内に拡がり、該遷移領域とで整流接合を形成する、第2の導電型の第2の制御領域と、を具備することを特徴とする請求項32に記載の横型MOSFET。 - 前記ソース領域上に拡がり、前記第2の制御領域に電気接続されるソース・コンタクトを更に具備する、ことを特徴とする請求項37に記載の横型MOSFET。
- 前記ソース・コンタクトは前記ベース領域上に拡がり、前記第1の制御領域は前記ベース領域によって前記ソース・コンタクトに電気接続される、ことを特徴とする請求項38に記載の横型MOSFET。
- 前記ソース領域上に拡がり、前記遷移領域と対向して拡がって該遷移領域とでMIS接合を形成する、ソース・コンタクトを更に具備する、ことを特徴とする請求項37に記載の横型MOSFET。
- 絶縁ゲート型電界効果トランジスタを動作させる方法であって、
前記トランジスタのゲート電極に正電圧を印加する段階と、
順方向オンステート伝導時に、前記ゲート電極に印加された前記正電圧の大きさ未満の大きさの正電圧を前記トランジスタのドレイン領域に印加すると同時にチャネル/ドレイン接合部において該ドレイン領域の一部分を十分に空乏化する段階と、を具備することを特徴とする絶縁ゲート型電界効果トランジスタの動作方法。 - 絶縁ゲート型電界効果トランジスタを動作させる方法であって、
前記トランジスタのゲート電極に正電圧を印加する段階と、
順方向オンステート伝導時に、前記ゲート電極に印加された前記正電圧の大きさ未満の大きさの正電圧をチャネル/ドレイン接合部に誘導する正電圧を前記トランジスタのドレイン領域に印加すると同時に該チャネル/ドレイン接合部において該ドレイン領域の一部分を十分に空乏化する段階と、を具備することを特徴とする絶縁ゲート型電界効果トランジスタの動作方法。 - 第1の導電型のソース領域とドレイン・コンタクト領域とをその中に有する半導体基板を形成する工程と、
前記半導体基板の一表面に隣接して拡がる第2の導電型のベース領域を形成する工程と、
前記表面まで拡がり、前記ベース領域とで整流接合を形成する、第1の導電型の遷移領域を形成する工程と、
前記表面上に、前記ソース領域、前記ベース領域及び前記遷移領域と対向して拡がり、それ自体に十分な大きさのゲートバイアスを印加することにより反転層チャネルが誘導形成されるようにする、絶縁ゲート電極を形成する工程と、
前記遷移領域と前記ドレイン・コンタクト領域との間に拡がり、前記遷移領域とで第1の非整流接合を形成し、前記第1の非整流接合のそれ自体の側に該第1の非整流接合の前記遷移領域側の第1の導電型のドーピング濃度未満の第1の導電型のドーピング濃度を有する、第1の導電型のドリフト領域を形成する工程と、を具備することを特徴とするMOSFETの製造方法。 - 横型MOSFETをその中に有する縦型パワーデバイスを製造する方法であって、
第1の導電型のドリフト領域をその中に有し、かつ、その一面と該ドリフト領域との間に拡がり該ドリフト領域内の最小ドーピング濃度よりも大きな最大ドーピング濃度を有する第1の導電型の遷移領域を有する、半導体基板を形成する工程と、
前記遷移領域を経て前記ドリフト領域内へ拡がる第2導電型のベース領域を形成する工程と、
前記遷移領域を経て前記ドリフト領域内へ拡がり、該遷移領域の一部分によって前記ベース領域から空間的に隔てられた側壁を有するトレンチを形成する工程と、
前記トレンチ内に絶縁電極を形成する工程と、
前記半導体基板の前記一面上にゲート電極を形成する工程と、
前記半導体基板内に第1の導電型のドーパントを注入して、前記ベース領域内にソース領域と、前記ベース領域から前記遷移領域内へ拡がるチャネル拡張領域と、を画定する工程と、
前記ソース領域を前記トレンチ内の前記絶縁電極に電気接続するソース・コンタクトを形成する工程と、を具備することを特徴とする縦型パワーデバイスの製造方法。 - 前記ドリフト領域はその中に漸変的ドーピング・プロファイルを有し、前記遷移領域は前記ドリフト領域内の最小ドーピング濃度の約10倍よりも大きなレベルにドープされる、ことを特徴とする請求項44に記載の縦型パワーデバイスの製造方法。
- 前記ドリフト領域はその中に漸変的ドーピング・プロファイルを有し、前記遷移領域は前記ドリフト領域内の最小ドーピング濃度の約10倍よりも大きなレベルにドープされる、ことを特徴とする請求項45に記載の縦型パワーデバイスの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/602,414 US6545316B1 (en) | 2000-06-23 | 2000-06-23 | MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same |
PCT/US2001/018072 WO2002001644A2 (en) | 2000-06-23 | 2001-06-05 | Power mosfet and methods of forming and operating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004502306A true JP2004502306A (ja) | 2004-01-22 |
Family
ID=24411247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002505689A Pending JP2004502306A (ja) | 2000-06-23 | 2001-06-05 | 速度飽和モードでの動作時に線形伝達特性を持つmosfetデバイスとその製造方法及び動作方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US6545316B1 (ja) |
EP (1) | EP1312121A2 (ja) |
JP (1) | JP2004502306A (ja) |
KR (1) | KR20030036239A (ja) |
CN (1) | CN1211863C (ja) |
AU (1) | AU6817401A (ja) |
WO (1) | WO2002001644A2 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066922A (ja) * | 2004-08-27 | 2006-03-09 | Internatl Rectifier Corp | トレンチベースのソースおよびゲート電極を有するパワーデバイス |
JP2012023272A (ja) * | 2010-07-16 | 2012-02-02 | Toshiba Corp | 半導体装置 |
JP2012204636A (ja) * | 2011-03-25 | 2012-10-22 | Toshiba Corp | 半導体装置およびその製造方法 |
JP2013093482A (ja) * | 2011-10-27 | 2013-05-16 | Renesas Electronics Corp | 半導体装置および半導体装置の製造方法 |
JP2013171931A (ja) * | 2012-02-20 | 2013-09-02 | Renesas Electronics Corp | 半導体装置及び半導体装置の製造方法 |
US8541834B2 (en) | 2011-03-24 | 2013-09-24 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing same |
JP2014225693A (ja) * | 2014-08-04 | 2014-12-04 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP2016537809A (ja) * | 2013-10-21 | 2016-12-01 | ヴィシェイ−シリコニックス | 高エネルギードーパント注入技術を用いた半導体構造 |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE514192T1 (de) * | 2000-03-31 | 2011-07-15 | Ihp Gmbh | Cmos-kompatibler lateraler dmos-transistor |
US7745289B2 (en) | 2000-08-16 | 2010-06-29 | Fairchild Semiconductor Corporation | Method of forming a FET having ultra-low on-resistance and low gate charge |
US6916745B2 (en) | 2003-05-20 | 2005-07-12 | Fairchild Semiconductor Corporation | Structure and method for forming a trench MOSFET having self-aligned features |
US6803626B2 (en) | 2002-07-18 | 2004-10-12 | Fairchild Semiconductor Corporation | Vertical charge control semiconductor device |
US6818513B2 (en) | 2001-01-30 | 2004-11-16 | Fairchild Semiconductor Corporation | Method of forming a field effect transistor having a lateral depletion structure |
JP5025071B2 (ja) * | 2001-02-01 | 2012-09-12 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
US6624470B2 (en) * | 2001-05-30 | 2003-09-23 | Fuji Electric Co., Ltd. | Semiconductor device and a method for manufacturing same |
US6573558B2 (en) * | 2001-09-07 | 2003-06-03 | Power Integrations, Inc. | High-voltage vertical transistor with a multi-layered extended drain structure |
US6858500B2 (en) | 2002-01-16 | 2005-02-22 | Fuji Electric Co., Ltd. | Semiconductor device and its manufacturing method |
DE10207309B4 (de) * | 2002-02-21 | 2015-07-23 | Infineon Technologies Ag | MOS-Transistoreinrichtung |
US7576388B1 (en) | 2002-10-03 | 2009-08-18 | Fairchild Semiconductor Corporation | Trench-gate LDMOS structures |
US7652326B2 (en) | 2003-05-20 | 2010-01-26 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
EP1661186A2 (en) * | 2003-08-27 | 2006-05-31 | Koninklijke Philips Electronics N.V. | Electronic device comprising an ldmos transistor |
KR100994719B1 (ko) | 2003-11-28 | 2010-11-16 | 페어차일드코리아반도체 주식회사 | 슈퍼정션 반도체장치 |
US7368777B2 (en) | 2003-12-30 | 2008-05-06 | Fairchild Semiconductor Corporation | Accumulation device with charge balance structure and method of forming the same |
US7183610B2 (en) * | 2004-04-30 | 2007-02-27 | Siliconix Incorporated | Super trench MOSFET including buried source electrode and method of fabricating the same |
US7402863B2 (en) * | 2004-06-21 | 2008-07-22 | International Rectifier Corporation | Trench FET with reduced mesa width and source contact inside active trench |
JP2008505480A (ja) * | 2004-06-30 | 2008-02-21 | アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド | 深い位置にクランプダイオードを備えたトレンチ型mosfet |
US7352036B2 (en) | 2004-08-03 | 2008-04-01 | Fairchild Semiconductor Corporation | Semiconductor power device having a top-side drain using a sinker trench |
DE102004045944B4 (de) | 2004-09-22 | 2018-08-16 | Infineon Technologies Ag | MOS-Feldeffekttransistor |
KR100641555B1 (ko) * | 2004-12-30 | 2006-10-31 | 동부일렉트로닉스 주식회사 | 트랜치 소스 구조를 갖는 수평형 디모스 트랜지스터 |
DE102005009000B4 (de) * | 2005-02-28 | 2009-04-02 | Infineon Technologies Austria Ag | Vertikales Halbleiterbauelement vom Grabenstrukturtyp und Herstellungsverfahren |
CN102867825B (zh) | 2005-04-06 | 2016-04-06 | 飞兆半导体公司 | 沟栅场效应晶体管结构及其形成方法 |
JP5215849B2 (ja) * | 2005-07-13 | 2013-06-19 | エヌエックスピー ビー ヴィ | Ldmosトランジスタ及びその製造方法 |
DE102006056809B9 (de) * | 2006-12-01 | 2009-01-15 | Infineon Technologies Austria Ag | Anschlussstruktur für ein elektronisches Bauelement |
JP4728210B2 (ja) * | 2006-12-12 | 2011-07-20 | Okiセミコンダクタ株式会社 | 高耐圧縦型mosトランジスタ |
US7521332B2 (en) * | 2007-03-23 | 2009-04-21 | Alpha & Omega Semiconductor, Ltd | Resistance-based etch depth determination for SGT technology |
US8021563B2 (en) * | 2007-03-23 | 2011-09-20 | Alpha & Omega Semiconductor, Ltd | Etch depth determination for SGT technology |
US7615847B2 (en) * | 2007-03-23 | 2009-11-10 | Infineon Technologies Austria Ag | Method for producing a semiconductor component |
DE102007014038B4 (de) * | 2007-03-23 | 2015-02-12 | Infineon Technologies Austria Ag | Verfahren zur Herstellung eines Halbleiterbauelements |
US20090057869A1 (en) * | 2007-08-31 | 2009-03-05 | Alpha & Omega Semiconductor, Ltd. | Co-packaged high-side and low-side nmosfets for efficient dc-dc power conversion |
JP2010541212A (ja) | 2007-09-21 | 2010-12-24 | フェアチャイルド・セミコンダクター・コーポレーション | 電力デバイスのための超接合構造及び製造方法 |
US8426960B2 (en) * | 2007-12-21 | 2013-04-23 | Alpha & Omega Semiconductor, Inc. | Wafer level chip scale packaging |
US7772668B2 (en) | 2007-12-26 | 2010-08-10 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
US20120273916A1 (en) | 2011-04-27 | 2012-11-01 | Yedinak Joseph A | Superjunction Structures for Power Devices and Methods of Manufacture |
US7943445B2 (en) * | 2009-02-19 | 2011-05-17 | International Business Machines Corporation | Asymmetric junction field effect transistor |
JP2011009352A (ja) * | 2009-06-24 | 2011-01-13 | Renesas Electronics Corp | 半導体装置およびその製造方法ならびにそれを用いた電源装置 |
JP5149922B2 (ja) * | 2010-02-23 | 2013-02-20 | 富士電機株式会社 | 半導体素子 |
US8432000B2 (en) | 2010-06-18 | 2013-04-30 | Fairchild Semiconductor Corporation | Trench MOS barrier schottky rectifier with a planar surface using CMP techniques |
US8487371B2 (en) | 2011-03-29 | 2013-07-16 | Fairchild Semiconductor Corporation | Vertical MOSFET transistor having source/drain contacts disposed on the same side and method for manufacturing the same |
CN102738232B (zh) * | 2011-04-08 | 2014-10-22 | 无锡维赛半导体有限公司 | 超结功率晶体管结构及其制作方法 |
US8772868B2 (en) | 2011-04-27 | 2014-07-08 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8786010B2 (en) | 2011-04-27 | 2014-07-22 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8673700B2 (en) | 2011-04-27 | 2014-03-18 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8836028B2 (en) | 2011-04-27 | 2014-09-16 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8785279B2 (en) | 2012-07-30 | 2014-07-22 | Alpha And Omega Semiconductor Incorporated | High voltage field balance metal oxide field effect transistor (FBM) |
US8680613B2 (en) | 2012-07-30 | 2014-03-25 | Alpha And Omega Semiconductor Incorporated | Termination design for high voltage device |
US9224852B2 (en) * | 2011-08-25 | 2015-12-29 | Alpha And Omega Semiconductor Incorporated | Corner layout for high voltage semiconductor devices |
US8541302B2 (en) | 2011-12-15 | 2013-09-24 | Semiconductor Components Industries, Llc | Electronic device including a trench with a facet and a conductive structure therein and a process of forming the same |
US8592279B2 (en) | 2011-12-15 | 2013-11-26 | Semicondcutor Components Industries, LLC | Electronic device including a tapered trench and a conductive structure therein and a process of forming the same |
US8679919B2 (en) | 2011-12-15 | 2014-03-25 | Semiconductor Components Industries, Llc | Electronic device comprising a conductive structure and an insulating layer within a trench and a process of forming the same |
US8647970B2 (en) | 2011-12-15 | 2014-02-11 | Semiconductor Components Industries, Llc | Electronic device comprising conductive structures and an insulating layer between the conductive structures and within a trench |
US8802530B2 (en) * | 2012-06-06 | 2014-08-12 | Alpha And Omega Semiconductor Incorporated | MOSFET with improved performance through induced net charge region in thick bottom insulator |
US9054183B2 (en) * | 2012-07-13 | 2015-06-09 | United Silicon Carbide, Inc. | Trenched and implanted accumulation mode metal-oxide-semiconductor field-effect transistor |
US8951867B2 (en) * | 2012-12-21 | 2015-02-10 | Alpha And Omega Semiconductor Incorporated | High density trench-based power MOSFETs with self-aligned active contacts and method for making such devices |
US9142655B2 (en) | 2013-03-12 | 2015-09-22 | Infineon Technologies Ag | Semiconductor device |
US9696736B2 (en) | 2013-03-15 | 2017-07-04 | Fairchild Semiconductor Corporation | Two-terminal current limiter and apparatus thereof |
US9520390B2 (en) | 2013-03-15 | 2016-12-13 | Semiconductor Components Industries, Llc | Electronic device including a capacitor structure and a process of forming the same |
US8803236B1 (en) * | 2013-05-30 | 2014-08-12 | Vanguard International Semiconductor Corporation | Lateral double diffused metal-oxide-semiconductor device and method for fabricating the same |
JP6218462B2 (ja) | 2013-07-04 | 2017-10-25 | 三菱電機株式会社 | ワイドギャップ半導体装置 |
US9679890B2 (en) | 2013-08-09 | 2017-06-13 | Fairchild Semiconductor Corporation | Junction-less insulated gate current limiter device |
US20150118810A1 (en) * | 2013-10-24 | 2015-04-30 | Madhur Bobde | Buried field ring field effect transistor (buf-fet) integrated with cells implanted with hole supply path |
US9735147B2 (en) | 2014-09-15 | 2017-08-15 | Fairchild Semiconductor Corporation | Fast and stable ultra low drop-out (LDO) voltage clamp device |
JP6400545B2 (ja) * | 2015-09-11 | 2018-10-03 | 株式会社東芝 | 半導体装置 |
US10229993B2 (en) * | 2016-03-14 | 2019-03-12 | Maxin Integrated Products, Inc. | LDMOS transistors including resurf layers and stepped-gates, and associated systems and methods |
KR101786738B1 (ko) * | 2016-05-11 | 2017-10-18 | 현대오트론 주식회사 | 반도체 장치 |
US10468485B2 (en) * | 2017-05-26 | 2019-11-05 | Allegro Microsystems, Llc | Metal-oxide semiconductor (MOS) device structure based on a poly-filled trench isolation region |
DE102017130223B4 (de) | 2017-12-15 | 2020-06-04 | Infineon Technologies Ag | Halbleitervorrichtung mit elektrisch parallel geschalteten planaren Feldeffekttransistorzellen und zugehöriger DC-DC-Wandler |
JP7405517B2 (ja) * | 2019-03-29 | 2023-12-26 | ローム株式会社 | 半導体装置 |
US11049934B2 (en) | 2019-09-18 | 2021-06-29 | Globalfoundries U.S. Inc. | Transistor comprising a matrix of nanowires and methods of making such a transistor |
CN113013229A (zh) * | 2021-02-25 | 2021-06-22 | 厦门大学 | 一种碳化硅umosfet功率器件及其制备方法 |
EP4092740A1 (en) * | 2021-05-21 | 2022-11-23 | Infineon Technologies Austria AG | Semiconductor die with a vertical transistor device |
CN113410309A (zh) * | 2021-06-23 | 2021-09-17 | 电子科技大学 | 一种低比导通电阻的分立栅mosfet器件及其制造方法 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4705759B1 (en) | 1978-10-13 | 1995-02-14 | Int Rectifier Corp | High power mosfet with low on-resistance and high breakdown voltage |
US5191396B1 (en) | 1978-10-13 | 1995-12-26 | Int Rectifier Corp | High power mosfet with low on-resistance and high breakdown voltage |
JPS5553462A (en) | 1978-10-13 | 1980-04-18 | Int Rectifier Corp | Mosfet element |
US5008725C2 (en) | 1979-05-14 | 2001-05-01 | Internat Rectifer Corp | Plural polygon source pattern for mosfet |
US4680853A (en) | 1980-08-18 | 1987-07-21 | International Rectifier Corporation | Process for manufacture of high power MOSFET with laterally distributed high carrier density beneath the gate oxide |
US4593302B1 (en) | 1980-08-18 | 1998-02-03 | Int Rectifier Corp | Process for manufacture of high power mosfet laterally distributed high carrier density beneath the gate oxide |
US4419811A (en) | 1982-04-26 | 1983-12-13 | Acrian, Inc. | Method of fabricating mesa MOSFET using overhang mask |
NL8203870A (nl) | 1982-10-06 | 1984-05-01 | Philips Nv | Halfgeleiderinrichting. |
US4789882A (en) | 1983-03-21 | 1988-12-06 | International Rectifier Corporation | High power MOSFET with direct connection from connection pads to underlying silicon |
US4975751A (en) | 1985-09-09 | 1990-12-04 | Harris Corporation | High breakdown active device structure with low series resistance |
US4941026A (en) | 1986-12-05 | 1990-07-10 | General Electric Company | Semiconductor devices exhibiting minimum on-resistance |
JP2570742B2 (ja) | 1987-05-27 | 1997-01-16 | ソニー株式会社 | 半導体装置 |
GB2206994A (en) | 1987-06-08 | 1989-01-18 | Philips Electronic Associated | Semiconductor device |
US5229633A (en) | 1987-06-08 | 1993-07-20 | U.S. Philips Corporation | High voltage lateral enhancement IGFET |
JP2771172B2 (ja) * | 1988-04-01 | 1998-07-02 | 日本電気株式会社 | 縦型電界効果トランジスタ |
US5283201A (en) | 1988-05-17 | 1994-02-01 | Advanced Power Technology, Inc. | High density power device fabrication process |
US5216807A (en) | 1988-05-31 | 1993-06-08 | Canon Kabushiki Kaisha | Method of producing electrical connection members |
US5113236A (en) | 1990-12-14 | 1992-05-12 | North American Philips Corporation | Integrated circuit device particularly adapted for high voltage applications |
DE69209678T2 (de) | 1991-02-01 | 1996-10-10 | Philips Electronics Nv | Halbleiteranordnung für Hochspannungsverwendung und Verfahren zur Herstellung |
US5362979A (en) | 1991-02-01 | 1994-11-08 | Philips Electronics North America Corporation | SOI transistor with improved source-high performance |
US5246870A (en) | 1991-02-01 | 1993-09-21 | North American Philips Corporation | Method for making an improved high voltage thin film transistor having a linear doping profile |
GB9106108D0 (en) | 1991-03-22 | 1991-05-08 | Philips Electronic Associated | A lateral insulated gate field effect semiconductor device |
JPH05160407A (ja) * | 1991-12-09 | 1993-06-25 | Nippondenso Co Ltd | 縦型絶縁ゲート型半導体装置およびその製造方法 |
DE69317004T2 (de) | 1992-03-26 | 1998-06-10 | Texas Instruments Inc | Hochspannungstruktur mit oxydisolierter Source und RESURF-Drift-Zone in Massivsilizium |
US5213986A (en) | 1992-04-10 | 1993-05-25 | North American Philips Corporation | Process for making thin film silicon-on-insulator wafers employing wafer bonding and wafer thinning |
US5430314A (en) | 1992-04-23 | 1995-07-04 | Siliconix Incorporated | Power device with buffered gate shield region |
US5640034A (en) | 1992-05-18 | 1997-06-17 | Texas Instruments Incorporated | Top-drain trench based resurf DMOS transistor structure |
JP3383377B2 (ja) | 1993-10-28 | 2003-03-04 | 株式会社東芝 | トレンチ構造の縦型のノーマリーオン型のパワーmosfetおよびその製造方法 |
US5498898A (en) | 1993-12-28 | 1996-03-12 | Nippon Steel Corporation | Semiconductor device using element isolation by field shield |
JPH0897411A (ja) | 1994-09-21 | 1996-04-12 | Fuji Electric Co Ltd | 横型高耐圧トレンチmosfetおよびその製造方法 |
JP3395473B2 (ja) | 1994-10-25 | 2003-04-14 | 富士電機株式会社 | 横型トレンチmisfetおよびその製造方法 |
JP3325736B2 (ja) * | 1995-02-09 | 2002-09-17 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
DE19534154C2 (de) | 1995-09-14 | 2001-06-28 | Siemens Ag | Durch Feldeffekt steuerbares Leistungs-Halbleiterbauelement |
US5648671A (en) | 1995-12-13 | 1997-07-15 | U S Philips Corporation | Lateral thin-film SOI devices with linearly-graded field oxide and linear doping profile |
DE19611045C1 (de) * | 1996-03-20 | 1997-05-22 | Siemens Ag | Durch Feldeffekt steuerbares Halbleiterbauelement |
US5710451A (en) | 1996-04-10 | 1998-01-20 | Philips Electronics North America Corporation | High-voltage lateral MOSFET SOI device having a semiconductor linkup region |
US5710455A (en) | 1996-07-29 | 1998-01-20 | Motorola | Lateral MOSFET with modified field plates and damage areas |
US5918137A (en) | 1998-04-27 | 1999-06-29 | Spectrian, Inc. | MOS transistor with shield coplanar with gate electrode |
US5998833A (en) | 1998-10-26 | 1999-12-07 | North Carolina State University | Power semiconductor devices having improved high frequency switching and breakdown characteristics |
-
2000
- 2000-06-23 US US09/602,414 patent/US6545316B1/en not_active Expired - Lifetime
-
2001
- 2001-06-05 AU AU6817401A patent/AU6817401A/xx active Pending
- 2001-06-05 EP EP01946079A patent/EP1312121A2/en not_active Withdrawn
- 2001-06-05 CN CNB018144608A patent/CN1211863C/zh not_active Expired - Fee Related
- 2001-06-05 WO PCT/US2001/018072 patent/WO2002001644A2/en not_active Application Discontinuation
- 2001-06-05 JP JP2002505689A patent/JP2004502306A/ja active Pending
- 2001-06-05 KR KR1020027017493A patent/KR20030036239A/ko not_active Application Discontinuation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006066922A (ja) * | 2004-08-27 | 2006-03-09 | Internatl Rectifier Corp | トレンチベースのソースおよびゲート電極を有するパワーデバイス |
JP2012023272A (ja) * | 2010-07-16 | 2012-02-02 | Toshiba Corp | 半導体装置 |
TWI470768B (zh) * | 2010-07-16 | 2015-01-21 | Toshiba Kk | Semiconductor device |
US8541834B2 (en) | 2011-03-24 | 2013-09-24 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing same |
JP2012204636A (ja) * | 2011-03-25 | 2012-10-22 | Toshiba Corp | 半導体装置およびその製造方法 |
JP2013093482A (ja) * | 2011-10-27 | 2013-05-16 | Renesas Electronics Corp | 半導体装置および半導体装置の製造方法 |
JP2013171931A (ja) * | 2012-02-20 | 2013-09-02 | Renesas Electronics Corp | 半導体装置及び半導体装置の製造方法 |
JP2016537809A (ja) * | 2013-10-21 | 2016-12-01 | ヴィシェイ−シリコニックス | 高エネルギードーパント注入技術を用いた半導体構造 |
JP2014225693A (ja) * | 2014-08-04 | 2014-12-04 | 株式会社東芝 | 半導体装置およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1312121A2 (en) | 2003-05-21 |
WO2002001644A2 (en) | 2002-01-03 |
US6545316B1 (en) | 2003-04-08 |
CN1211863C (zh) | 2005-07-20 |
KR20030036239A (ko) | 2003-05-09 |
WO2002001644A3 (en) | 2002-07-04 |
AU6817401A (en) | 2002-01-08 |
CN1447987A (zh) | 2003-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6545316B1 (en) | MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same | |
US6784486B2 (en) | Vertical power devices having retrograded-doped transition regions therein | |
US6781194B2 (en) | Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein | |
US6800897B2 (en) | Integrated circuit power devices having junction barrier controlled schottky diodes therein | |
TWI773303B (zh) | 具有蕭特基或類蕭特基接觸的功率電晶體的裝置和方法 | |
US6649975B2 (en) | Vertical power devices having trench-based electrodes therein | |
JP2771172B2 (ja) | 縦型電界効果トランジスタ | |
US7504690B2 (en) | Power semiconductor devices | |
US5637898A (en) | Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance | |
JP3129298B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
US7476932B2 (en) | U-shape metal-oxide-semiconductor (UMOS) gate structure for high power MOS-based semiconductor devices | |
KR100762545B1 (ko) | Lmosfet 및 그 제조 방법 | |
GB2572442A (en) | Power semiconductor device with a double gate structure | |
US6355944B1 (en) | Silicon carbide LMOSFET with gate reach-through protection | |
US20040155286A1 (en) | Semiconductor device with enhanced drain and gate | |
CN117613098A (zh) | 垂直沟槽型电容耦合栅控结型场效应晶体管及其制备方法 |