CN113013229A - 一种碳化硅umosfet功率器件及其制备方法 - Google Patents

一种碳化硅umosfet功率器件及其制备方法 Download PDF

Info

Publication number
CN113013229A
CN113013229A CN202110209222.4A CN202110209222A CN113013229A CN 113013229 A CN113013229 A CN 113013229A CN 202110209222 A CN202110209222 A CN 202110209222A CN 113013229 A CN113013229 A CN 113013229A
Authority
CN
China
Prior art keywords
layer
thickness
concentration
source region
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110209222.4A
Other languages
English (en)
Inventor
吴志明
邹娴
王伟平
孔丽晶
康俊勇
吴雅苹
李煦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiujiang Research Institute Of Xiamen University
Xiamen University
Original Assignee
Jiujiang Research Institute Of Xiamen University
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiujiang Research Institute Of Xiamen University, Xiamen University filed Critical Jiujiang Research Institute Of Xiamen University
Priority to CN202110209222.4A priority Critical patent/CN113013229A/zh
Publication of CN113013229A publication Critical patent/CN113013229A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种碳化硅UMOSFET功率器件及其制备方法,其器件结构包括从下到上依次包括漏电极、N+衬底层、N‑漂移层、N+电流扩散层、P型掺杂层、源区层、两个源电极;两个所述源电极之间设有源区接触层,所述源区接触层的底端设有栅电极,所述栅电极的外壁上包裹有栅极介质,所述栅极介质依次贯穿所述N+电流扩散层、P型掺杂层、源区层,所述栅极介质镶嵌在N‑漂移层的顶端。本发明通过在材料生长时改变掺杂气体流量,外延自下而上掺杂浓度渐变的漂移层,达到提高器件击穿电压并保持低导通电阻的目的,最终实现高性能器件的制备。

Description

一种碳化硅UMOSFET功率器件及其制备方法
技术领域
本发明涉及微电子技术领域,具体来说,涉及一种碳化硅UMOSFET功率器件及其制备方法。
背景技术
碳化硅是一种宽禁带半导体材料,具有禁带宽度大、电子饱和速率高、击穿场强高以及热导率高的优点,在高频、高温、大功率电子器件中有广泛的应用前景。在功率电子领域中,碳化硅MOSFET器件具有栅极驱动简单、开关时间短、功率密度大、转换效率高等特点,在电子电力系统中已被广泛应用。
从结构上来说,碳化硅MOSFET主要分为两类,一类是双注入型MOSFET(VDMOSFET),另一类是槽栅MOSFET(UMOSFET)。VDMOSFET的基区和源区采用离子注入工艺,容易造成晶格损伤,降低界面质量,同时在栅氧层下方存在JEFT(结型场效应晶体管,JunctionField-EffectTransistor)区,这使得器件导通电阻很大,影响器件的性能。UMOSFET具有垂直的沟道,消除了器件的JEFT电阻,导通电阻比VDMOSFET在同等条件下有明显的降低。另外,UMOSFET的沟道区和源区通过外延生长形成,避免了离子注入对材料的损伤,更进一步降低了器件的导通电阻。
但是碳化硅UMOSFET中,由于碳化硅具较大的介电常数和很高的击穿电场,但是SiO2的介电常数较小,只有碳化硅的2/5,根据高斯定理SiO2层需要承受的电场强度约为碳化硅的2.5倍左右,导致SiO2/SiC界面电场非常强,等电位线在栅槽拐角处存在电场集中效应,导致栅氧层介质最大电场峰值变高,容易使栅氧结介质层提前发生击穿,降低器件的可靠性。
因此需要提供一种新型碳化硅UMOSFET结构,改善UMOSFET器件性能,提高击穿电压。
发明内容
针对相关技术中的问题,本发明提出一种碳化硅UMOSFET功率器件,以解决上述背景技术中提出的问题。
为了实现上述技术目的,本发明的技术方案是这样的:
设计一种碳化硅UMOSFET功率器件,其结构从下到上依次包括漏电极、N+衬底层、N- 漂移层、N+电流扩散层、P型掺杂层、源区层、两个源电极;两个所述源电极之间设有源区接触层,所述源区接触层的底端设有栅电极,所述栅电极的外壁上包裹有栅极介质,所述栅极介质依次贯穿所述N+电流扩散层、P型掺杂层、源区层,所述栅极介质镶嵌在N- 漂移层的顶端。
进一步,所述N-漂移层为掺杂浓度渐变的漂移层,且掺杂浓度自所述N+衬底层到N+电流扩散层方向逐渐增加,所述N-漂移层包含若干子层;所述子层数为3~10层,每层厚度可变。
进一步,所述栅极介质为SiO2
进一步,所述N-漂移层内掺杂有磷离子;所述N-漂移层中靠近N+衬底层一侧的磷离子浓度最高,所述N-漂移层中靠近N+电流扩散层一侧的磷离子浓度最低,所述磷离子的最高浓度为浓度为8×1015cm-3~5×1016cm-3,所述磷离子的最低浓度为1×1015cm-3~5 ×1015cm-3,所述N-漂移层的厚度为10um~20um。
进一步,所述N+电流扩散层的材质为掺杂有浓度为8×1015cm-3~1×1017cm-3磷离子的N型4H-SiC,所述N+电流扩散层的厚度为1um~2um。
进一步,所述N+衬底层的厚度为100um~500um,所述N+衬底层的材质为掺杂有浓度为5×1018cm-3~5×1019cm-3磷离子的N型4H-SiC。
进一步,所述源区层的厚度为2um~3um,所述源区层内掺杂有浓度为1×1017cm-3~ 1×1018cm-3的铝离子。
进一步,所述源区接触层的厚度为0.5um,所述源区接触层内掺杂有浓度为5×1018cm-3的磷离子。
一种碳化硅UMOSFET功率器件的制备方法,包括以下步骤:
步骤S1,取厚度为100um~500um,氮离子掺杂浓度为5×1018cm-3的N+碳化硅衬底片,在温度为1600℃、压力为150mbar、反应气体为硅烷和丙烷、掺杂源气体为PH3、载运气体为PH3的条件下进行RCA清洗,通过改变PH3气体流量调控掺杂浓度,在清洗后的衬底上外延生长掺杂浓度逐渐变化的N-漂移层,其中,N-漂移层掺杂离子为磷离子,掺杂浓度逐渐递减,最底部浓度为8×1015cm-3~5×1016cm-3,最高处掺杂浓度为1×1015cm-3~5× 1015cm-3,N-漂移层的整体厚度10um~20um;
步骤S2,在N-漂移层上方外延生长N+电流扩散层,并进行工艺处理,掺杂离子为磷离子,掺杂浓度为8×1015cm-3~1×1017cm-3的N型4H-SiC,其厚度为1um~2um;
步骤S3,在N+电流扩散层上方外延生长一层P型掺杂层,P型掺杂层整体厚度为2um~3um,掺杂离子为铝离子,掺杂浓度为1×1017cm-3~1×1018cm-3
步骤S4,在P型掺杂层上生长一层源区层,源区层是厚度为0.5um,磷离子掺杂浓度为5 ×1018cm-3
步骤S5,刻蚀形成源区接触层;
步骤S6,在器件中间刻蚀形成槽,刻蚀到N+电流扩散层底部,厚度为3.5um~6um,宽度为3μm~5μm;
步骤S7,通过热氧化工艺制备栅槽介质SiO2,厚度为50nm~100nm;
步骤S8,在栅槽介质SiO2内淀积poly-Si层;
步骤S9,制备钝化层,腐蚀开电极接触孔制备栅电极;
步骤S10,先正面蒸发金属,制备栅电极、源电极,再在背面制备漏电极。
进一步,所述步骤S2中,工艺处理的条件为:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,掺杂源气体为PH3
本发明的有益效果:
1、这种碳化硅UMOSFET功率器件通过调节漂移层结构和掺杂浓度,采用掺杂浓度自下而上逐渐降低的方法制作器件,一方面降低栅槽底部N型外延层的掺杂浓度,以此降低栅槽底部电场强度。考虑到漂移层的掺杂浓度会影响器件的导通电阻,所以采取浓度渐变的方式,保证整个漂移层的平均掺杂浓度没有降低,不会增大器件的导通电阻。同时,通过浓度渐变方式,不至于在漂移层中产生电子传输势垒,有利于器件导通电阻。
2、本发明通过在掺杂浓度最低的漂移层上方于P型外延层下方加入一层高浓度掺杂层,增加电子流通宽度,进一步降低漂移层区电阻,降低栅槽底部电场强度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例所述一种碳化硅UMOSFET功率器件的结构示意图;
图2是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图一;
图3是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图二;
图4是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图三;
图5是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图四;
图6是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图五;
图7是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图六;
图8是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图七;
图9是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图八;
图10是根据本发明实施例所述一种碳化硅UMOSFET功率器件的工艺流程示意图九;
图中:1、N+衬底层;2、N-漂移层;3、N+电流扩散层;4、P型掺杂层;5、源区层;6、栅极介质;7、栅电极;8、漏电极;9、源电极;10、源区接触层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图1-10所示,根据本发明实施例所述的一种碳化硅UMOSFET功率器件,其结构从下到上依次包括漏电极8、N+衬底层1、N-漂移层2、N+电流扩散层3、P型掺杂层4、源区层 5、两个源电极9;两个所述源电极9之间设有源区接触层10,所述源区接触层10的底端设有栅电极7,所述栅电极7的外壁上包裹有栅极介质6,所述栅极介质6依次贯穿所述 N+电流扩散层3、P型掺杂层4、源区层5,所述栅极介质6镶嵌在N-漂移层2的顶端。
在本实施例中,所述N-漂移层2为掺杂浓度渐变的漂移层,且掺杂浓度自所述N+衬底层1到N+电流扩散层3方向逐渐增加,所述N-漂移层2的子层数为4层,每层厚度可变。
在本实施例中,所述栅极介质6为SiO2
在本实施例中,所述N-漂移层2内掺杂有磷离子;所述N-漂移层2中靠近N+衬底层1一侧的磷离子浓度最高,所述N-漂移层2中靠近N+电流扩散层3一侧的磷离子浓度最低,所述磷离子的最高浓度为浓度为8×1015cm-3,所述磷离子的最低浓度为2×1015cm-3,所述N-漂移层2的厚度为10um。
在本实施例中,所述N+电流扩散层3的材质为掺杂有浓度为3×1015cm-3磷离子的N型4H-SiC,所述N+电流扩散层3的厚度为1um。
在本实施例中,所述N+衬底层1的厚度为200um,所述N+衬底层1的材质为掺杂有浓度为5×1018cm-3磷离子的N型4H-SiC。
在本实施例中,所述源区层5的厚度为0.5um,所述源区层5内掺杂有浓度为1×1017cm-3的铝离子。
在本实施例中,所述源区接触层10的厚度为0.5um,所述源区接触层10内掺杂有浓度为5×1018cm-3的磷离子。
在本实施例中,所述P型掺杂层4整体厚度为3um,掺杂离子为铝离子,掺杂浓度为1×1017cm-3cm-3
一种碳化硅UMOSFET功率器件的制备方法,包括以下步骤:
步骤S1,取厚度为200um,氮离子掺杂浓度为5×1018cm-3的N+碳化硅衬底片,在温度为 1600℃、压力为150mbar、反应气体为硅烷和丙烷、掺杂源气体为PH3的条件下进行RCA清洗,通过改变PH3气体流量调控掺杂浓度,在清洗后的衬底上外延生长掺杂浓度逐渐变化的N-漂移层2,其中,N-漂移层2掺杂离子为磷离子,掺杂浓度逐渐递减,自下而上磷离子掺杂浓度为8×1015cm-3、6×1015cm-3、4×1015cm-3、2×1015cm-3,每层厚度为3um, N-漂移层2的整体厚度10um;
步骤S2,在N-漂移层2上方外延生长N+电流扩散层3,并进行工艺处理,掺杂离子为磷离子,掺杂浓度为8×1015cm-3的N型4H-SiC,其厚度为1um;
步骤S3,在N+电流扩散层3上方外延生长一层P型掺杂层4,材料为P型SiC,P型掺杂层4整体厚度为2um,掺杂离子为铝离子,掺杂浓度为2×1017cm-3;工艺条件是:温度为 1600℃,压力为150mbar,反应气体为硅烷和丙烷,载运气体为三甲基铝;
步骤S4,在P型掺杂层4上生长一层源区层5,源区层5是厚度为0.5um,磷离子掺杂浓度为5×1018cm-3;工艺条件是:温度为1600℃,压力为200mbar,反应气体为硅烷和丙烷,载运气体为PH3
步骤S5,刻蚀形成源区接触层10;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP 刻蚀,形成P-base接触;
步骤S6,在器件中间刻蚀形成槽,刻蚀到N+电流扩散层3底部,厚度为3.5um,宽度为3 μm,这样槽的底角就与N-漂移层接触保护;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成栅槽;
步骤S7,通过热氧化工艺制备栅槽介质SiO2,厚度为50nm,栅槽深度为5um;工艺条件是:1150℃干氧,再在1000℃下NO退火,降低SiC/SiO2界面粗糙度;
步骤S8,在栅槽介质SiO2内淀积poly-Si层;工艺条件是:采用低压热璧化学气相淀积法,温度为650℃、压强为60-80Pa,反应气体为硅烷磷化氢,运载气体为氩气,生长poly-Si 填满栅槽,磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成多晶硅栅,最后去胶清洗;步骤S9,制备钝化层,腐蚀开电极接触孔制备栅电极7;工艺方法:在器件正面淀积一层 Si3N4,然后涂光刻胶,腐蚀钝化层开电极接触孔,再去胶清洗;其中,钝化层的材料为Si3N4;步骤S10,先正面蒸发金属,制备栅电极7、源电极9,再在背面制备漏电极8;工艺方法:先在正面电子束蒸发金属制备栅电极、源电极,再涂光刻胶,腐蚀多余的金属,去胶,清洗;再在器件背面电子束蒸发金属制备漏电极,腐蚀掉多余的金属,去胶,清洗;其中,源极电极9、漏极电极为8和栅电极10材料为Au。
在本实施例中,所述步骤S2中,工艺处理的条件为:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,掺杂源气体为PH3
实施例二:
如图1-10所示,一种碳化硅UMOSFET功率器件,其结构从下到上依次包括漏电极8、N+ 衬底层1、N-漂移层2、N+电流扩散层3、P型掺杂层4、源区层5、两个源电极9;两个所述源电极9之间设有源区接触层10,所述源区接触层10的底端设有栅电极7,所述栅电极 7的外壁上包裹有栅极介质6,所述栅极介质6依次贯穿所述N+电流扩散层3、P型掺杂层 4、源区层5,所述栅极介质6镶嵌在N-漂移层2的顶端。
在本实施例中,所述N-漂移层2为掺杂浓度渐变的漂移层,且掺杂浓度自所述N+衬底层1到N+电流扩散层3方向逐渐增加,所述N-漂移层2包含子层数为4层,每层厚度可变。
在本实施例中,所述栅极介质6为SiO2
在本实施例中,所述N-漂移层2内掺杂有磷离子;所述N-漂移层2中靠近N+衬底层1一侧的磷离子浓度最高,所述N-漂移层2中靠近N+电流扩散层3一侧的磷离子浓度最低,所述磷离子的最高浓度为浓度为1×1016cm-3,所述磷离子的最低浓度为2×1015cm-3,所述N-漂移层2的厚度为10um。
在本实施例中,所述N+电流扩散层3的材质为掺杂有浓度为1×1017cm-3磷离子的N型4H-SiC,所述N+电流扩散层3的厚度为2um。
在本实施例中,所述N+衬底层1的厚度为500um,所述N+衬底层1的材质为掺杂有浓度为5×1019cm-3磷离子的N型4H-SiC。
在本实施例中,所述源区层5的厚度为0.5um,所述源区层5内掺杂有浓度为1×1018cm-3的铝离子。
在本实施例中,所述源区接触层10的厚度为0.5um,所述源区接触层10内掺杂有浓度为5×1018cm-3的磷离子。
一种碳化硅UMOSFET功率器件的制备方法,包括以下步骤:
步骤S1,取厚度为500um,氮离子掺杂浓度为5×1018cm-3的N+碳化硅衬底片,在温度为 1600℃、压力为150mbar、反应气体为硅烷和丙烷、掺杂源气体为PH3、载运气体为PH3的条件下进行RCA清洗,通过改变PH3气体流量调控掺杂浓度,在清洗后的衬底上外延生长掺杂浓度逐渐变化的N-漂移层2,其中,N-漂移层2掺杂离子为磷离子,掺杂浓度逐渐递减,材料为N型SiC材料,自下而上磷离子掺杂浓度为1×1016cm-3、8×1015cm-3、5× 1015cm-3、2×1015cm-3,分别的厚度为4um、3um、2um、1um;
步骤S2,在N-漂移层2上方外延生长N+电流扩散层3,并进行工艺处理,掺杂离子为磷离子,掺杂浓度为6×1016cm-3的N型4H-SiC,其厚度为1.5um;
步骤S3,在N+电流扩散层3上方外延生长一层P型掺杂层4,P型掺杂层4整体厚度为2um,掺杂离子为铝离子,掺杂浓度为5×1017cm-3;工艺条件是:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,载运气体为三甲基铝;
步骤S4,在P型掺杂层4上生长一层源区层5,源区层5是厚度为0.5um,磷离子掺杂浓度为5×1018cm-3;工艺条件是:温度为1600℃,压力为200mbar,反应气体为硅烷和丙烷,载运气体为PH3
步骤S5,刻蚀形成源区接触层10;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP 刻蚀,形成P-base接触;
步骤S6,在器件中间刻蚀形成槽,刻蚀到N+电流扩散层3底部,厚度为6um,宽度为5μm;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成栅槽;
步骤S7,通过热氧化工艺制备栅槽介质SiO2,厚度为100nm,栅槽深度为5um;工艺条件是:1150℃干氧,再在1000℃下NO退火,降低SiC/SiO2界面粗糙度;
步骤S8,在栅槽介质SiO2内淀积poly-Si层;工艺条件是:采用低压热璧化学气相淀积法,温度为650℃、压强为60-80Pa,反应气体为硅烷磷化氢,运载气体为氩气,生长poly-Si 填满栅槽,磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成多晶硅栅,最后去胶清洗;
步骤S9,制备钝化层,腐蚀开电极接触孔制备栅电极7;工艺方法:在器件正面淀积一层 Si3N4,然后涂光刻胶,腐蚀钝化层开电极接触孔,再去胶清洗;其中,钝化层材料为Si3N4
步骤S10,先正面蒸发金属,制备栅电极7、源电极9,再在背面制备漏电极8;工艺方法:先在正面电子束蒸发金属制备栅电极、源电极,再涂光刻胶,腐蚀多余的金属,去胶,清洗;再在器件背面电子束蒸发金属制备漏电极,腐蚀掉多余的金属,去胶,清洗;其中,源极电极9、漏极电极为8和栅电极10材料为Au。
在本实施例中,所述步骤S2中,工艺处理的条件为:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,掺杂源气体为PH3
实施例三:
如图1-10所示,一种碳化硅UMOSFET功率器件,其结构从下到上依次包括漏电极8、N+ 衬底层1、N-漂移层2、N+电流扩散层3、P型掺杂层4、源区层5、两个源电极9;两个所述源电极9之间设有源区接触层10,所述源区接触层10的底端设有栅电极7,所述栅电极 7的外壁上包裹有栅极介质6,所述栅极介质6依次贯穿所述N+电流扩散层3、P型掺杂层 4、源区层5,所述栅极介质6镶嵌在N-漂移层2的顶端。
在本实施例中,所述N-漂移层2为掺杂浓度渐变的漂移层,且掺杂浓度自所述N+衬底层1到N+电流扩散层3方向逐渐增加,所述N-漂移层2包含子层数为6层,每层厚度可变。
在本实施例中,所述栅极介质6为SiO2
在本实施例中,所述N-漂移层2内掺杂有磷离子;所述N-漂移层2中靠近N+衬底层1一侧的磷离子浓度最高,所述N-漂移层2中靠近N+电流扩散层3一侧的磷离子浓度最低,所述磷离子的最高浓度为浓度为1×1015cm-3,所述磷离子的最低浓度为1×1015cm-3,所述N-漂移层2的厚度为15um。
在本实施例中,所述N+电流扩散层3的材质为掺杂有浓度为5×1016cm-3磷离子的N型4H-SiC,所述N+电流扩散层3的厚度为2um。
在本实施例中,所述N+衬底层1的厚度为300um,所述N+衬底层1的材质为掺杂有浓度为8×1018cm-3磷离子的N型4H-SiC。
在本实施例中,所述源区层5的厚度为1um,所述源区层5内掺杂有浓度为5×1017cm-3的铝离子。
在本实施例中,所述源区接触层10的厚度为0.5um,所述源区接触层10内掺杂有浓度为5×1018cm-3的磷离子。
一种碳化硅UMOSFET功率器件的制备方法,包括以下步骤:
步骤S1,取厚度为300um,氮离子掺杂浓度为5×1018cm-3的N+碳化硅衬底片,在温度为 1600℃、压力为150mbar、反应气体为硅烷和丙烷、掺杂源气体为PH3、载运气体为PH3的条件下进行RCA清洗,通过改变PH3气体流量调控掺杂浓度,在清洗后的衬底上外延生长掺杂浓度逐渐变化的N-漂移层2,其中,N-漂移层2掺杂离子为磷离子,掺杂浓度逐渐递减,N-漂移层2的材料为N型SiC材料,自下而上磷离子掺杂浓度为1×1016cm-3、9× 1015cm-3、7×1015cm-3、5×1015cm-3、3×1015cm-3、1×1015cm-3,每层厚度分别为3um、3um、 3um、2um、2um、2um;
步骤S2,在N-漂移层2上方外延生长N+电流扩散层3,并进行工艺处理,掺杂离子为磷离子,掺杂浓度为5×1016cm-3的N型4H-SiC,其厚度为2um;
步骤S3,在N+电流扩散层3上方外延生长一层P型掺杂层4,P型掺杂层4整体厚度为2um,掺杂离子为铝离子,掺杂浓度为7×1017cm-3;工艺条件是:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,载运气体为三甲基铝;
步骤S4,在P型掺杂层4上生长一层源区层5,源区层5是厚度为1um,磷离子掺杂浓度为5×1018cm-3;工艺条件是:温度为1600℃,压力为200mbar,反应气体为硅烷和丙烷,载运气体为PH3
步骤S5,刻蚀形成源区接触层10;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP 刻蚀,形成P-base接触;
步骤S6,在器件中间刻蚀形成槽,刻蚀到N+电流扩散层3底部,厚度为3.5um,宽度为3 μm,这样槽的底角就与N-漂移层接触保护;工艺条件是:磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成栅槽;
步骤S7,通过热氧化工艺制备栅槽介质SiO2,厚度为50nm,栅槽深度为5um;工艺条件是:1150℃干氧,再在1000℃下NO退火,降低SiC/SiO2界面粗糙度;
步骤S8,在栅槽介质SiO2内淀积poly-Si层;工艺条件是:采用低压热璧化学气相淀积法,温度为650℃、压强为60-80Pa,反应气体为硅烷磷化氢,运载气体为氩气,生长poly-Si 填满栅槽,磁控溅射200nm的Ti膜再涂光刻胶,ICP刻蚀,形成多晶硅栅,最后去胶清洗;步骤S9,制备钝化层,腐蚀开电极接触孔制备栅电极7;工艺方法:在器件正面淀积一层 Si3N4,然后涂光刻胶,腐蚀钝化层开电极接触孔,再去胶清洗;其中,钝化层的材料为Si3N4;步骤S10,先正面蒸发金属,制备栅电极7、源电极9,再在背面制备漏电极8;工艺方法:先在正面电子束蒸发金属制备栅电极、源电极,再涂光刻胶,腐蚀多余的金属,去胶,清洗;再在器件背面电子束蒸发金属制备漏电极,腐蚀掉多余的金属,去胶,清洗;其中,源极电极9、漏极电极为8和栅电极10材料为Au。
在本实施例中,所述步骤S2中,工艺处理的条件为:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,掺杂源气体为PH3
综上所述,本发明通过调节N-漂移层2的结构和掺杂浓度,采用N-漂移层2掺杂浓度自下而上逐渐减小的方法,降低P型掺杂层4的掺杂浓度,从而降低栅电极7底部电场强度,增大器件的击穿电压。考虑到N-漂移层2的掺杂浓度会影响器件的导通电阻,所以采取浓度递增的方式,保证整个N-漂移层2的具有相对高的平均掺杂浓度,不会增大器件的导通电阻。同时通过在掺杂浓度最低的N-漂移层2上方于P型掺杂层4下方加入一层掺杂浓度较高的N+电流扩散层3,增大电子流通宽度,进一步降低N-漂移层2电阻,降低栅电极7中栅槽底部电场强度。
在本发明的描述中,需要理解的是,指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种碳化硅UMOSFET功率器件,其特征在于,其结构从下到上依次包括漏电极(8)、N+衬底层(1)、N-漂移层(2)、N+电流扩散层(3)、P型掺杂层(4)、源区层(5)、两个源电极(9);两个所述源电极(9)之间设有源区接触层(10),所述源区接触层(10)的底端设有栅电极(7),所述栅电极(7)的外壁上包裹有栅极介质(6),所述栅极介质(6)依次贯穿所述N+电流扩散层(3)、P型掺杂层(4)、源区层(5),所述栅极介质(6)镶嵌在N-漂移层(2)的顶端。
2.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述N-漂移层(2)为掺杂浓度渐变的漂移层,且掺杂浓度自所述N+衬底层(1)到N+电流扩散层(3)方向逐渐增加,所述N-漂移层(2)包含若干子层,所述子层数为3~10层,每层厚度可变。
3.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述栅极介质(6)为SiO2
4.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述N-漂移层(2)内掺杂有磷离子;所述N-漂移层(2)中靠近N+衬底层(1)一侧的磷离子浓度最高,所述N-漂移层(2)中靠近N+电流扩散层(3)一侧的磷离子浓度最低,所述磷离子的最高浓度为浓度为8×1015cm-3~5×1016cm-3,所述磷离子的最低浓度为1×1015cm-3~5×1015cm-3,所述N-漂移层(2)的厚度为10um~20um。
5.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述N+电流扩散层(3)的材质为掺杂有浓度为8×1015cm-3~1×1017cm-3磷离子的N型4H-SiC,所述N+电流扩散层(3)的厚度为1um~2um。
6.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述N+衬底层(1)的厚度为100um~500um,所述N+衬底层(1)的材质为掺杂有浓度为5×1018cm-3~5×1019cm-3磷离子的N型4H-SiC。
7.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述源区层(5)的厚度为2um~3um,所述源区层(5)内掺杂有浓度为1×1017cm-3~1×1018cm-3的铝离子。
8.根据权利要求1所述的一种碳化硅UMOSFET功率器件,其特征在于,所述源区接触层(10)的厚度为0.5um,所述源区接触层(10)内掺杂有浓度为5×1018cm-3的磷离子。
9.根据权利要求1所述的一种碳化硅UMOSFET功率器件的制备方法,其特征在于,包括以下步骤:
步骤S1,取厚度为100um~500um,氮离子掺杂浓度为5×1018cm-3的N+碳化硅衬底片,在温度为1600℃、压力为150mbar、反应气体为硅烷和丙烷、掺杂源气体为PH3、载运气体为PH3的条件下进行RCA清洗,通过改变PH3气体流量调控掺杂浓度,在清洗后的衬底上外延生长掺杂浓度逐渐变化的N-漂移层(2),其中,N-漂移层(2)掺杂离子为磷离子,掺杂浓度逐渐递减,最底部浓度为8×1015cm-3~5×1016cm-3,最高处掺杂浓度为1×1015cm-3~5×1015cm-3,N-漂移层(2)的整体厚度10um~20um;
步骤S2,在N-漂移层(2)上方外延生长N+电流扩散层(3),并进行工艺处理,掺杂离子为磷离子,掺杂浓度为8×1015cm-3~1×1017cm-3的N型4H-SiC,其厚度为1um~2um;
步骤S3,在N+电流扩散层(3)上方外延生长一层P型掺杂层(4),P型掺杂层(4)整体厚度为2um~3um,掺杂离子为铝离子,掺杂浓度为1×1017cm-3~1×1018cm-3
步骤S4,在P型掺杂层(4)上生长一层源区层(5),源区层(5)是厚度为0.5um,磷离子掺杂浓度为5×1018cm-3
步骤S5,刻蚀形成源区接触层(10);
步骤S6,在器件中间刻蚀形成槽,刻蚀到N+电流扩散层(3)底部,厚度为3.5um~6um,宽度为3μm~5μm;
步骤S7,通过热氧化工艺制备栅槽介质SiO2,厚度为50nm~100nm;
步骤S8,在栅槽介质SiO2内淀积poly-Si层;
步骤S9,制备钝化层,腐蚀开电极接触孔制备栅电极(7);
步骤S10,先正面蒸发金属,制备栅电极(7)、源电极(9),再在背面制备漏电极(8)。
10.根据权利要求9所述的一种碳化硅UMOSFET功率器件的制备方法,其特征在于,所述步骤S2中,工艺处理的条件为:温度为1600℃,压力为150mbar,反应气体为硅烷和丙烷,掺杂源气体为PH3
CN202110209222.4A 2021-02-25 2021-02-25 一种碳化硅umosfet功率器件及其制备方法 Pending CN113013229A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110209222.4A CN113013229A (zh) 2021-02-25 2021-02-25 一种碳化硅umosfet功率器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110209222.4A CN113013229A (zh) 2021-02-25 2021-02-25 一种碳化硅umosfet功率器件及其制备方法

Publications (1)

Publication Number Publication Date
CN113013229A true CN113013229A (zh) 2021-06-22

Family

ID=76385722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110209222.4A Pending CN113013229A (zh) 2021-02-25 2021-02-25 一种碳化硅umosfet功率器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113013229A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436976A (zh) * 2021-06-30 2021-09-24 泰科天润半导体科技(北京)有限公司 一种圆形栅功率器件的自对准p型制造方法
CN113658866A (zh) * 2021-07-08 2021-11-16 深圳天狼芯半导体有限公司 一种功率器件的制备方法及功率器件
CN113871468A (zh) * 2021-07-20 2021-12-31 厦门大学 一种具有叠栅结构的碳化硅mis器件及其制备方法
CN117423749A (zh) * 2023-12-19 2024-01-19 山东大学 一种改善短路能力的SiC MOSFET器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637898A (en) * 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US20020030237A1 (en) * 2000-06-30 2002-03-14 Ichiro Omura Power semiconductor switching element
US20020185679A1 (en) * 2000-06-23 2002-12-12 Baliga Bantval Jayant Power semiconductor devices having linear transfer characteristics and methods of forming and operating same
US6545316B1 (en) * 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
US20120187419A1 (en) * 2009-07-15 2012-07-26 Infineon Technologies Ag Production Method for a Unipolar Semiconductor Component and Semiconductor Device
CN104900701A (zh) * 2015-04-18 2015-09-09 西安电子科技大学 带有双区浮动结的碳化硅umosfet器件及制作方法
CN105593997A (zh) * 2013-10-04 2016-05-18 三菱电机株式会社 碳化硅半导体装置及其制造方法
US9525059B1 (en) * 2015-09-11 2016-12-20 Kabushiki Kaisha Toshiba Semiconductor device with graded drift region
CN109087952A (zh) * 2018-08-23 2018-12-25 电子科技大学 具有低比导通电阻的分离栅vdmos器件及制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637898A (en) * 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5998833A (en) * 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US20020185679A1 (en) * 2000-06-23 2002-12-12 Baliga Bantval Jayant Power semiconductor devices having linear transfer characteristics and methods of forming and operating same
US6545316B1 (en) * 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
US20020030237A1 (en) * 2000-06-30 2002-03-14 Ichiro Omura Power semiconductor switching element
US20120187419A1 (en) * 2009-07-15 2012-07-26 Infineon Technologies Ag Production Method for a Unipolar Semiconductor Component and Semiconductor Device
CN105593997A (zh) * 2013-10-04 2016-05-18 三菱电机株式会社 碳化硅半导体装置及其制造方法
CN104900701A (zh) * 2015-04-18 2015-09-09 西安电子科技大学 带有双区浮动结的碳化硅umosfet器件及制作方法
US9525059B1 (en) * 2015-09-11 2016-12-20 Kabushiki Kaisha Toshiba Semiconductor device with graded drift region
CN109087952A (zh) * 2018-08-23 2018-12-25 电子科技大学 具有低比导通电阻的分离栅vdmos器件及制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436976A (zh) * 2021-06-30 2021-09-24 泰科天润半导体科技(北京)有限公司 一种圆形栅功率器件的自对准p型制造方法
CN113658866A (zh) * 2021-07-08 2021-11-16 深圳天狼芯半导体有限公司 一种功率器件的制备方法及功率器件
CN113871468A (zh) * 2021-07-20 2021-12-31 厦门大学 一种具有叠栅结构的碳化硅mis器件及其制备方法
CN117423749A (zh) * 2023-12-19 2024-01-19 山东大学 一种改善短路能力的SiC MOSFET器件
CN117423749B (zh) * 2023-12-19 2024-03-05 山东大学 一种改善短路能力的SiC MOSFET器件

Similar Documents

Publication Publication Date Title
CN106876485B (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
CN113013229A (zh) 一种碳化硅umosfet功率器件及其制备方法
JP6848317B2 (ja) 半導体装置および半導体装置の製造方法
JP5834179B2 (ja) 炭化珪素半導体装置の製造方法
US20140209999A1 (en) Semiconductor device
CN106796955B (zh) 半导体装置
JP4224253B2 (ja) 半導体装置及びその製造方法
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
JP2012164707A (ja) 半導体装置およびその製造方法
JP4842527B2 (ja) 半導体装置の製造方法
CN116525681B (zh) 集成沟道二极管的碳化硅槽栅mosfet器件及制造方法
CN112018176A (zh) 一种半导体器件及其制造方法
CN110190128B (zh) 一种碳化硅双侧深l形基区结构的mosfet器件及其制备方法
CN115472689A (zh) 一种具有超结结构的高电子迁移率晶体管及其制备方法
AU2017332300A1 (en) Method of manufacturing an insulation layer on silicon carbide and semiconductor device
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
CN112820648A (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN111446287A (zh) 一种mosfet器件及其制备方法
CN114664934B (zh) 一种含有场板的dmos晶体管及其制作方法
WO2023071284A1 (zh) 沟槽栅半导体器件及其制造方法
CN111129137A (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
CN106876471B (zh) 双槽umosfet器件
US6150671A (en) Semiconductor device having high channel mobility and a high breakdown voltage for high power applications
CN209804661U (zh) 一种碳化硅双侧深l形基区结构的mosfet器件
CN112310225A (zh) 一种功率半导体器件的制作方法及功率半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination