CN111129137A - 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管 - Google Patents

具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管 Download PDF

Info

Publication number
CN111129137A
CN111129137A CN201911241773.8A CN201911241773A CN111129137A CN 111129137 A CN111129137 A CN 111129137A CN 201911241773 A CN201911241773 A CN 201911241773A CN 111129137 A CN111129137 A CN 111129137A
Authority
CN
China
Prior art keywords
sic
region
nio
thickness
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911241773.8A
Other languages
English (en)
Other versions
CN111129137B (zh
Inventor
王曦
钟艺文
蒲红斌
陈春兰
王敏
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201911241773.8A priority Critical patent/CN111129137B/zh
Publication of CN111129137A publication Critical patent/CN111129137A/zh
Application granted granted Critical
Publication of CN111129137B publication Critical patent/CN111129137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,p‑NiO层向上依次设置有n‑SiC缓冲层、n‑SiC漂移区,n‑SiC漂移区上镶嵌有p‑SiC阱区,p‑SiC阱区上镶嵌有p‑SiC欧姆接触区与n‑SiC发射区;n‑SiC漂移区、p‑SiC阱区、以及n‑SiC发射区上表面共同覆盖有栅绝缘介质薄膜及栅极;p‑SiC欧姆接触区、n‑SiC发射区上表面共同覆盖有发射极;栅极上方覆盖有绝缘钝化介质薄膜;发射极及绝缘钝化介质薄膜上表面共同覆盖有金属;p‑NiO层下端面覆盖有集电极。本发明的结构,使SiC n‑IGBT的正向导通性能更优,通态功耗更低。

Description

具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
技术领域
本发明属于半导体器件技术领域,涉及一种具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管。
背景技术
碳化硅(SiC)材料具有禁带宽度大、热导率高、临界雪崩击穿电场强度高、饱和载流子漂移速度大及热稳定性好等优点,使用SiC制作的电力电子器件具有更低的通态压降、更高的工作频率、更低的功耗、更小的体积以及更优的耐高温特性,更适合应用于电力电子电路。SiC绝缘栅双极晶体管(IGBT)作为SiC高压器件中的一种,具有阻断电压高、通流能力强、开关速度快等优点,能有效提升高压直流输电系统(HVDC)、智能电网电能传输系统、以及脉冲电力电子技术领域的功率密度与效率。
随着SiC材料生长与器件工艺技术的不断进步,理论性能更优的SiC n-IGBT已能够实现。虽然SiC n-IGBT在降低功耗、提升速度等方面具有更大的性能优势,但由于SiC pn结正向开启电压高,使SiC n-IGBT存在较高的正向开启电压。此外,铝受主在SiC中的电离能较高(0.19eV),导致p型SiC材料中的有效载流子浓度较低,造成SiC n-IGBT中p+n空穴注入效率低的问题,使n-漂移区的电导调制作用效果较差,阻碍了SiC n-IGBT通态电阻的进一步降低。
Yan-juan Liu等人2017年在文章《4H-SiC trench IGBT with lower on-statevoltage drop》中通过在发射区引入沟槽结构有效降低了n-IGBT的通态压降,但由于位于集电区侧的SiC p+n结依旧具有较高的开启电压以及较弱的空穴注入能力,所以整个器件仍旧存在正向开启电压较高的问题。
Jin Wei等2019年在文章《Gate Structure Design of SiC Trench IGBTs forInjection-Enhancement Effect》中使用浮空p区屏蔽结构提升了SiC沟槽型n-IGBT的电子注入能力,有效降低了SiC n-IGBT的通态损耗。但SiC p+n结依旧具有较高的开启电压以及较弱的空穴注入能力,所以该SiC n-IGBT仍旧存在正向开启电压较高的问题。
因此,针对上述技术问题,有必要研制一种高性能、高可行性的技术方案,用于改善SiC n-IGBT正向开启电压较高、通态电阻较大的问题。
发明内容
本发明的目的是提供一种具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,解决了现有技术中的SiC n-IGBT正向开启电压较高、n-漂移区电导调制作用效果差,导致通态电阻较大的问题。
本发明所采用的技术方案是,一种具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,包括p-NiO层,该p-NiO层的材料为p型NiO,
在p-NiO层上表面设置有n-SiC缓冲层,该n-SiC缓冲层的材料为n型SiC;
在n-SiC缓冲层上表面设置有n-SiC漂移区,该n-SiC漂移区的材料为n型SiC;
在n-SiC漂移区上表面镶嵌有p-SiC阱区,该p-SiC阱区的材料为p型SiC;
在p-SiC阱区上表面镶嵌有p-SiC欧姆接触区与n-SiC发射区;
在n-SiC漂移区上表面、p-SiC阱区上表面、以及远离p-SiC欧姆接触区的n-SiC发射区上表面共同覆盖有栅绝缘介质薄膜;
在栅绝缘介质薄膜上表面覆盖有栅极;
在p-SiC欧姆接触区上表面、靠近p-SiC欧姆接触区一侧的n-SiC发射区上表面共同覆盖有发射极;
在栅极上方覆盖有绝缘钝化介质薄膜,同时绝缘钝化介质薄膜伸进发射极与栅极之间的空间;
在发射极及绝缘钝化介质薄膜上表面共同覆盖有金属;
在p-NiO层下端面覆盖有集电极。
本发明的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征还在于:
所述的p-NiO层的厚度为0.1μm-100μm,该p-NiO层的上下端表面积为1μm2-2000cm2
所述的n-SiC缓冲层的厚度为0.1μm-5.0μm,该n-SiC缓冲层的上下端表面积为1μm2-2000cm2
所述的n-SiC漂移区的厚度为30μm-500μm,该n-SiC漂移区的上下端表面积为1μm2-2000cm2
所述的p-SiC阱区的厚度为0.5μm-5.0μm,该p-SiC阱区的上下端表面积为1μm2-2000cm2
所述的p-SiC欧姆接触区的材料为p型SiC,杂质浓度高于p-SiC阱区;该p-SiC欧姆接触区的厚度为0.1μm-1.0μm;
所述的n-SiC发射区的材料为n型SiC;该n-SiC发射区的厚度为0.1μm-1.0μm。
所述的栅极的厚度为50nm-5μm;面积与所覆盖的栅绝缘介质薄膜相同;栅极的材料选用多晶硅、Al、Cu、Ni、Ti、W等单种或多种的组合;
所述的发射极的厚度为50nm-5.0μm;面积大于所覆盖p-SiC欧姆接触区的上表面积,小于p-SiC欧姆接触区与n-SiC发射区的上表面积之和;该发射极的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合。
所述的栅绝缘介质薄膜的厚度为10nm-200nm;该栅绝缘介质薄膜的材料选用SiO2、Al2O3、HfO2等单种绝缘介质或多种绝缘介质的组合;
所述的绝缘钝化介质薄膜的厚度为50nm-5.0μm;该绝缘钝化介质薄膜的材料选用SiO2、Al2O3、Si3N4、HfO2等单种绝缘介质或多种绝缘介质的组合。
所述的金属的厚度为0.5μm-5.0μm;该金属的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合;
所述的集电极的厚度为50nm-5.0μm;该集电极的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合。
本发明的有益效果是,相比于传统SiC n-IGBT结构,在功能上本发明SiC绝缘栅双极晶体管具有NiO/SiC pn异质结结构后,具有更低的正向开启电压,以及更优的n漂移区电导调制作用效果,使SiC n-IGBT获得更优的正向导通性能,更低的通态功耗,为SiC n-IGBT性能的提升提供可行的技术方案,具有良好的应用前景。
附图说明
图1是本发明器件的结构示意图;
图2是本发明器件的NiO/SiC pn异质结IV特性曲线。
图中,1.p-NiO层,2.n-SiC缓冲层,3.n-SiC漂移区,4.p-SiC阱区,5.p-SiC欧姆接触区,6.n-SiC发射区,7.栅绝缘介质薄膜,8.栅极,9.发射极,10.集电极,11.绝缘钝化介质薄膜,12.金属。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
参照图1,本发明器件的结构是,包括p-NiO层1,该p-NiO层1的材料为p型NiO,该p-NiO层1的厚度为0.1μm-100μm,该p-NiO层1的上下端表面积为1μm2-2000cm2
在p-NiO层1上表面设置有n-SiC缓冲层2,该n-SiC缓冲层2的材料为n型SiC,该n-SiC缓冲层2的厚度为0.1μm-5.0μm,该n-SiC缓冲层2的上下端表面积为1μm2-2000cm2
在n-SiC缓冲层2上表面设置有n-SiC漂移区3,该n-SiC漂移区3的材料为n型SiC,该n-SiC漂移区3的厚度为30μm-500μm,该n-SiC漂移区3的上下端表面积为1μm2-2000cm2
在n-SiC漂移区3上表面镶嵌有p-SiC阱区4,该p-SiC阱区4的材料为p型SiC,该p-SiC阱区4的厚度为0.5μm-5.0μm,该p-SiC阱区4的上下端表面积为1μm2-2000cm2
在p-SiC阱区4上表面镶嵌有p-SiC欧姆接触区5与n-SiC发射区6;该p-SiC欧姆接触区5的材料为p型SiC,杂质浓度高于p-SiC阱区4;该n-SiC发射区6的材料为n型SiC;该p-SiC欧姆接触区5的厚度为0.1μm-1.0μm;该n-SiC发射区6的厚度为0.1μm-1.0μm;
在(裸露的)n-SiC漂移区3上表面、p-SiC阱区4上表面、以及远离p-SiC欧姆接触区5的n-SiC发射区6上表面共同覆盖有栅绝缘介质薄膜7;该栅绝缘介质薄膜7的厚度为10nm-200nm;该栅绝缘介质薄膜7的材料选用SiO2、Al2O3、HfO2等单种绝缘介质或多种绝缘介质的组合;
在栅绝缘介质薄膜7上表面覆盖有栅极8;该栅极8的厚度为50nm-5μm;面积与所覆盖的栅绝缘介质薄膜7相同;栅极8的材料选用多晶硅、Al、Cu、Ni、Ti、W等单种或多种的组合;
在p-SiC欧姆接触区5上表面、靠近p-SiC欧姆接触区5一侧的n-SiC发射区6上表面共同覆盖有发射极9;该发射极9的厚度为50nm-5.0μm;面积大于所覆盖p-SiC欧姆接触区5的上表面积,小于p-SiC欧姆接触区5与n-SiC发射区6的上表面积之和;该发射极9的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合;
在栅极8上方覆盖有绝缘钝化介质薄膜11,同时绝缘钝化介质薄膜11伸进发射极9与栅极8之间的空间,将发射极9与栅极8隔开;该绝缘钝化介质薄膜11的厚度为50nm-5.0μm;该绝缘钝化介质薄膜11的材料选用SiO2、Al2O3、Si3N4、HfO2等单种绝缘介质或多种绝缘介质的组合;
在发射极9及绝缘钝化介质薄膜11上表面共同覆盖有金属12,金属12用于互联或引线;该金属12的厚度为0.5μm-5.0μm;该金属12的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合;
在p-NiO层1下端面覆盖有集电极10;该集电极10的厚度为50nm-5.0μm;该集电极10的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合。
p-SiC欧姆接触区5与n-SiC发射区6上表面的面积之和小于p-SiC阱区4的上表面的面积;n-SiC发射区6远离p-SiC欧姆接触区5一侧的边缘距p-SiC阱区4边缘的距离为50nm-2.0μm;p-SiC阱区4俯视形状为三角形、矩形、五边形、六边形、八边形、圆形、长条形之一,或其组合形状;各p-SiC阱区4之间的距离为100nm-100μm。
由于上述的p-NiO层1和n-SiC缓冲层2的设置,本发明SiC绝缘栅双极晶体管才具有低正向开启电压、低通态电阻的特点,称为具有NiO/SiC pn异质的SiC n-IGBT。
实施例
下面以具有NiO/SiC pn异质结的20kV 4H-SiC n-IGBT为例,对本发明器件进行进一步的详细说明。
本实施例的器件结构如图1所示,包括p-NiO层1,以及p-NiO层1上表面的n-SiC缓冲层2、n-SiC漂移区3、p-SiC阱区4,p-SiC欧姆接触区5、n-SiC发射区6、栅绝缘介质薄膜7、栅极8、发射极9,集电极10、绝缘钝化介质薄膜11以及金属12。
该实施例的20kV具有NiO/SiC pn异质结的4H-SiC n-IGBT制备方法,按照以下步骤具体实施:
步骤1、采用低压热壁化学气相淀积法在4H-SiC材质的衬底上制作n-SiC缓冲层2,4H-SiC衬底的厚度为300μm,掺杂类型为n型,掺杂浓度为2×1018cm-3;n-SiC缓冲层2的掺杂类型、杂质浓度与厚度对应为n型/1×1017cm-3/1.5μm;
步骤2、采用低压热壁化学气相淀积法在n-SiC缓冲层2上表面生长n-SiC漂移区3形成用于4H-SiC n-IGBT制作的耐压层结构;n-SiC漂移区3的掺杂类型、杂质浓度与厚度对应为n型/2×1014cm-3/180μm;
步骤3、采用化学机械抛光与等离子体刻蚀相结合的方法去除4H-SiC衬底,使n-SiC缓冲层2的下表面露出;
步骤4、通过高温高能离子注入法在n-SiC漂移区3上表面形成p-SiC阱区4;p-SiC阱区4的结深为0.8μm,杂质浓度为5×1018cm-3,掺杂类型为p型;
步骤5、通过高温高能离子注入法在p-SiC阱区4上表面形成p-SiC欧姆接触区5和n-SiC发射区6;p-SiC欧姆接触区5和n-SiC发射区6的掺杂类型、结深及杂质浓度对应分别为p型/0.3μm/5×1018cm-3和n型/0.3μm/5×1018cm-3;在退火炉中进行高温激活退火处理;
步骤6、采用磁控溅射法、溶胶凝胶法或化学气相淀积法在n-SiC缓冲层2下表面生长p-NiO层1;p-NiO层1的掺杂类型、杂质浓度与厚度分别为p型/5×1018cm-3/1.0μm;
步骤7、使用高温氮钝化氧化工艺在p-SiC阱区4、p-SiC欧姆接触区5和n-SiC发射区6上表面形成栅绝缘介质薄膜7;使用化学气相淀积的方法在晶片上表面淀积栅极8;栅绝缘介质薄膜7与栅极8的材料和厚度分别对应为SiO2/50nm、多晶硅/1.0μm;使用光刻与刻蚀技术,将p-SiC欧姆接触区5和n-SiC发射区6靠近p-SiC欧姆接触区5一侧上表面的栅绝缘介质薄膜7和栅极8去除,保留其他部分的栅绝缘介质薄膜7和栅极8;
步骤8、在栅绝缘介质薄膜7和栅极8四周侧壁及上表面用化学气相淀积结合光刻与刻蚀的工艺方法制作绝缘介质钝化薄膜11,绝缘介质钝化薄膜11为SiO2,厚度为0.5μm;
步骤9、在p-SiC欧姆接触区5和n-SiC发射区靠近p-SiC欧姆接触区5一侧的上表面,通过淀积结合光刻与刻蚀的工艺方法制作发射极9;发射极9为Ti/Ni/Al/Au多层金属,厚度分别为50nm/50nm/100nm/50nm;
步骤10、在p-NiO层下表面,通过淀积的方法制作集电极10;集电极10为Ni/Ti金属,厚度分别为100nm/50nm;
步骤11、氩气保护下快速热退火,退火温度为1050℃,退火时间为200秒;
步骤12、在发射极9上方、绝缘介质钝化薄膜11上方,通过沉积结合光刻与刻蚀的工艺方法制作金属12;金属12为Al,厚度为2.0μm;
步骤13、在集电极10下表面沉积1.0μm金属Ag,加厚集电极10厚度;
步骤14、通过沉积、光刻、刻蚀相组合的工艺方法,制作栅极PAD,完成制备。
如图2所示,是本发明实施例所制备的NiO/SiC pn异质结的IV特性曲线,可以看出,NiO/SiC pn异质结的正向开启电压在1.3V-1.4V之间,明显低于SiC pn同质结。通过分析明显看出,本发明NiO/SiC pn异质结结构拥有更低的正向开启电压,且空穴注入能力更强,因此,具有NiO/SiC pn异质结的SiC n-IGBT的性能得到明显改善。

Claims (7)

1.一种具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:包括p-NiO层(1),该p-NiO层(1)的材料为p型NiO,
在p-NiO层(1)上表面设置有n-SiC缓冲层(2),该n-SiC缓冲层(2)的材料为n型SiC;
在n-SiC缓冲层(2)上表面设置有n-SiC漂移区(3),该n-SiC漂移区(3)的材料为n型SiC;
在n-SiC漂移区(3)上表面镶嵌有p-SiC阱区(4),该p-SiC阱区(4)的材料为p型SiC;
在p-SiC阱区(4)上表面镶嵌有p-SiC欧姆接触区(5)与n-SiC发射区(6);
在n-SiC漂移区(3)上表面、p-SiC阱区(4)上表面、以及远离p-SiC欧姆接触区(5)的n-SiC发射区(6)上表面共同覆盖有栅绝缘介质薄膜(7);
在栅绝缘介质薄膜(7)上表面覆盖有栅极(8);
在p-SiC欧姆接触区(5)上表面、靠近p-SiC欧姆接触区(5)一侧的n-SiC发射区(6)上表面共同覆盖有发射极(9);
在栅极(8)上方覆盖有绝缘钝化介质薄膜(11),同时绝缘钝化介质薄膜(11)伸进发射极(9)与栅极(8)之间的空间;
在发射极(9)及绝缘钝化介质薄膜(11)上表面共同覆盖有金属(12);
在p-NiO层(1)下端面覆盖有集电极(10)。
2.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的p-NiO层(1)的厚度为0.1μm-100μm,该p-NiO层(1)的上下端表面积为1μm2-2000cm2
所述的n-SiC缓冲层(2)的厚度为0.1μm-5.0μm,该n-SiC缓冲层(2)的上下端表面积为1μm2-2000cm2
3.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的n-SiC漂移区(3)的厚度为30μm-500μm,该n-SiC漂移区(3)的上下端表面积为1μm2-2000cm2
所述的p-SiC阱区(4)的厚度为0.5μm-5.0μm,该p-SiC阱区(4)的上下端表面积为1μm2-2000cm2
4.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的p-SiC欧姆接触区(5)的材料为p型SiC,杂质浓度高于p-SiC阱区(4);该p-SiC欧姆接触区(5)的厚度为0.1μm-1.0μm;
所述的n-SiC发射区(6)的材料为n型SiC;该n-SiC发射区(6)的厚度为0.1μm-1.0μm。
5.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的栅极(8)的厚度为50nm-5μm;面积与所覆盖的栅绝缘介质薄膜(7)相同;栅极(8)的材料选用多晶硅、Al、Cu、Ni、Ti、W等单种或多种的组合;
所述的发射极(9)的厚度为50nm-5.0μm;面积大于所覆盖p-SiC欧姆接触区(5)的上表面积,小于p-SiC欧姆接触区(5)与n-SiC发射区(6)的上表面积之和;该发射极(9)的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合。
6.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的栅绝缘介质薄膜(7)的厚度为10nm-200nm;该栅绝缘介质薄膜(7)的材料选用SiO2、Al2O3、HfO2等单种绝缘介质或多种绝缘介质的组合;
所述的绝缘钝化介质薄膜(11)的厚度为50nm-5.0μm;该绝缘钝化介质薄膜(11)的材料选用SiO2、Al2O3、Si3N4、HfO2等单种绝缘介质或多种绝缘介质的组合。
7.根据权利要求1所述的具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管,其特征在于:所述的金属(12)的厚度为0.5μm-5.0μm;该金属(12)的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合;
所述的集电极(10)的厚度为50nm-5.0μm;该集电极(10)的材料选用Ni、Ti、Al、Ag、Au、W、Mo等单种金属或多种金属的组合。
CN201911241773.8A 2019-12-06 2019-12-06 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管 Active CN111129137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911241773.8A CN111129137B (zh) 2019-12-06 2019-12-06 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911241773.8A CN111129137B (zh) 2019-12-06 2019-12-06 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管

Publications (2)

Publication Number Publication Date
CN111129137A true CN111129137A (zh) 2020-05-08
CN111129137B CN111129137B (zh) 2023-02-24

Family

ID=70496261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911241773.8A Active CN111129137B (zh) 2019-12-06 2019-12-06 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管

Country Status (1)

Country Link
CN (1) CN111129137B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670338A (zh) * 2020-12-23 2021-04-16 西安理工大学 具有低门槛电压的SiC绝缘栅双极晶体管及其制造方法
CN113488560A (zh) * 2021-06-21 2021-10-08 西安理工大学 一种全光控SiC高压器件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057202A1 (en) * 2009-09-09 2011-03-10 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
WO2016189308A1 (en) * 2015-05-28 2016-12-01 Anvil Semiconductors Limited Bipolar Power Semiconductor Transistor
CN108400164A (zh) * 2018-04-23 2018-08-14 广东美的制冷设备有限公司 异质结碳化硅的绝缘栅极晶体管及其制作方法
CN108717945A (zh) * 2018-05-24 2018-10-30 西安理工大学 一种具有NiO/SiC异质发射结的SiC光触发晶闸管
CN208674127U (zh) * 2018-06-19 2019-03-29 广东美的制冷设备有限公司 逆导型绝缘栅双极型晶体管、智能功率模块和空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057202A1 (en) * 2009-09-09 2011-03-10 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
WO2016189308A1 (en) * 2015-05-28 2016-12-01 Anvil Semiconductors Limited Bipolar Power Semiconductor Transistor
CN108400164A (zh) * 2018-04-23 2018-08-14 广东美的制冷设备有限公司 异质结碳化硅的绝缘栅极晶体管及其制作方法
CN108717945A (zh) * 2018-05-24 2018-10-30 西安理工大学 一种具有NiO/SiC异质发射结的SiC光触发晶闸管
CN208674127U (zh) * 2018-06-19 2019-03-29 广东美的制冷设备有限公司 逆导型绝缘栅双极型晶体管、智能功率模块和空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LICHEN SUN ET AL: "Analysis of the novel Si/SiC heterojunction IGBT characteristics by TCAD simulation", 《SUPERLATTICES AND MICROSTRUCTURES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670338A (zh) * 2020-12-23 2021-04-16 西安理工大学 具有低门槛电压的SiC绝缘栅双极晶体管及其制造方法
CN112670338B (zh) * 2020-12-23 2024-06-21 南京晟芯半导体有限公司 具有低门槛电压的SiC绝缘栅双极晶体管及其制造方法
CN113488560A (zh) * 2021-06-21 2021-10-08 西安理工大学 一种全光控SiC高压器件及其制造方法

Also Published As

Publication number Publication date
CN111129137B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN111312802B (zh) 低开启电压和低导通电阻的碳化硅二极管及制备方法
JP4967200B2 (ja) 逆阻止型igbtを逆並列に接続した双方向igbt
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN107658340B (zh) 一种双沟槽的低导通电阻、小栅电荷的碳化硅mosfet器件与制备方法
CN111146274B (zh) 一种碳化硅沟槽igbt结构及其制造方法
CN103928532A (zh) 一种碳化硅沟槽mos结势垒肖特基二极管及其制备方法
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
JP6183087B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JPWO2015019797A1 (ja) 高耐圧半導体装置およびその製造方法
CN115579397A (zh) 双级沟槽栅碳化硅mosfet及其制备方法
CN111129137B (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
CN114927562B (zh) 碳化硅jfet器件结构及其制备方法
CN111048580A (zh) 一种碳化硅绝缘栅双极晶体管及其制作方法
CN114944421B (zh) 一种沟槽型碳化硅绝缘栅场效应晶体管及其制作方法
CN115832057A (zh) 一种碳化硅mosfet器件以及制备方法
CN110473914B (zh) 一种SiC-MOS器件的制备方法
CN115425065A (zh) 一种碳化硅igbt器件及其制造方法
CN117894846B (zh) 低功耗平面栅型碳化硅mosfet功率器件及其制造方法
CN108717945B (zh) 一种具有NiO/SiC异质发射结的SiC光触发晶闸管
CN112951905B (zh) 一种SiC逆导型绝缘栅双极型晶体管器件及其制造方法
CN114695519A (zh) 屏蔽层状态自动切换的沟槽型碳化硅igbt器件及制备方法
CN116525683B (zh) 一种深阱型SiC Mosfet器件及制备方法
CN206574721U (zh) 一种集成肖特基二极管的SiC双沟槽型MOSFET器件
CN103681811A (zh) 一种非完全发射区的绝缘栅双极晶体管及其制备方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant