JP2004501203A - 創傷治癒のためのタンパク質混合物 - Google Patents

創傷治癒のためのタンパク質混合物 Download PDF

Info

Publication number
JP2004501203A
JP2004501203A JP2002505025A JP2002505025A JP2004501203A JP 2004501203 A JP2004501203 A JP 2004501203A JP 2002505025 A JP2002505025 A JP 2002505025A JP 2002505025 A JP2002505025 A JP 2002505025A JP 2004501203 A JP2004501203 A JP 2004501203A
Authority
JP
Japan
Prior art keywords
bmp
composition
growth factor
mixture
tgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002505025A
Other languages
English (en)
Other versions
JP2004501203A5 (ja
Inventor
アケラ,ラマ
ラニーリ,ジョン ピー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Orthobiologics Inc
Original Assignee
Zimmer Orthobiologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zimmer Orthobiologics Inc filed Critical Zimmer Orthobiologics Inc
Publication of JP2004501203A publication Critical patent/JP2004501203A/ja
Publication of JP2004501203A5 publication Critical patent/JP2004501203A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1875Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/827Proteins from mammals or birds
    • Y10S530/84Bones; tendons; teeth; cartilage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、BMP−7、TGF−β1、TGF−β2、TGF−β3、およびFGF−1の2つ以上を含む、骨から単離されまたは遺伝子組み換えタンパク質から作成された創傷治療に有用なタンパク質混合物。

Description

【0001】
背景
本発明は、創傷治癒に用いるための種々の増殖因子を含むタンパク質混合物の使用に関する。
【0002】
創傷治癒過程は効果的な閉鎖のためのいくつかの細胞種や増殖因子が関係する複雑なプロセスである。通常の創傷治癒過程は、おおよそ3つの段階、すなわち、炎症期、増殖期および成熟期に分けられる。炎症期は0−2日間続き、創傷領域に細胞を整然と集めることを含む。その後2−6日間の増殖期が続き、この間に傷床中の線維芽細胞、ケラチノサイト、およびその他の細胞が創傷を閉じるために活発に増殖し始める。成熟期が増殖期に続いて起こり、21日目にピークとなり、その時までに最初の瘢痕組織を再構成することによって創傷が完全に治癒される。
【0003】
問題の創傷は、特に、栄養状態、血管状態、代謝因子、年令、免疫状態、投薬状況、神経状態、心理状態を含むいくつかの原因によって、上記の創傷治癒過程の正常な時間経過に従わない。創傷治癒において、創傷領域中の壊死組織の存在、感染、外部物質の存在、乾燥の度合い、浮腫の存在、圧力、摩擦、ずりによる侵軟、皮膚炎を含むいくつかの局所的要因も重要な役割を果たしている。
【0004】
体液成分の研究から、創傷治癒過程の3つ全ての段階で、増殖因子が重要な役割を果たしていることが示された。創傷領域に集められる細胞種が、創傷治癒過程を助けおよび促進させる増殖因子を分泌する。例えば、血小板は創傷領域に最初に集められる細胞種であり、他の細胞種に対して走化性である増殖因子(血小板由来増殖因子、すなわちPDGF)を分泌し、創傷治癒過程を開始させる。そうすることによって、血小板は、新しい組織の合成を促進させる他の細胞種の集積および増殖を助ける。上記の機能特性に加えて、増殖因子は、細胞内でのタンパク質合成を調節しかつ細胞内シグナリングを制御する能力も有しており、従って細胞が他の細胞と伝達し合うことを可能にする。
【0005】
創傷治癒過程は、結合組織の形成やその部位に栄養を運ぶための新しい血管の形成を含む複雑な過程であるため、いくつかの増殖因子が関わっていることは明らかである。慢性的な創傷では、コラゲナーゼの活性が高まっており、かつ炎症性サイトカインレベルが高くなっている。さらに、創傷の体液中に増殖因子が存在しておらず、そのことは細胞を有糸分裂不能にさせる。こうした要因が創傷治癒を妨げている。これらの要因のうちいくつかについては、臨床前のモデル動物においてまたは臨床において研究がなされている。創傷治癒過程における増殖因子の研究のほとんどは、20−25日の期間内に試験を行っており、それは通常の創傷治癒過程をモデル化するに十分と見られている。しかしながら、現在は、問題の創傷が100%閉鎖するには、6ケ月またはそれ以上のようなもっと長い期間の試験が好都合であることが理解されている。
【0006】
臨床において創傷治癒での使用をFDAが認めている唯一の増殖因子は、Ortho−McNeil Pharmaceutical社からREGRANEX(登録商標)として市販されている血小板由来増殖因子(PDGF)である。REGRANEX(登録商標)は、局所投薬用の遺伝子組換えヒト血小板由来増殖因子(rhPDGF−BB)であるベカプレルミンを含む。ベカプレルミンは、血小板由来増殖因子のB鎖に対する遺伝子を酵母に挿入して組換えDNA技術によって作られる。ベカプレルミンは分子量がおよそ25KDであり、ジスルフィド結合で結合し合っている2本の同一のポリペプチド鎖から成るホモダイマーである。REGRANEX(登録商標)は、滅菌されておらず、生物汚染度が低く、保存剤が入っており、カルボキシメチルセルロースナトリウム(CMC)を基体とする局所用ゲルであり、活性物質としてベカプレルミンを含んでおり、不活性の物質として、塩化ナトリウム、酢酸ナトリウム三水和物、氷酢酸、注射用水、ならびに保存剤としてメチルパラベン、プロピルパラベンおよびm−クレゾール、ならびに安定剤として塩酸l−リジンを含んでいる。
【0007】
創傷治癒過程において種々の増殖因子の研究が行われた。こうした研究から見出された知見をいくつか下記にまとめた。
【0008】
1) PDGF−BB(REGRANEX(登録商標)中の増殖因子)は、好中球、単球、および線維芽細胞に対する化学的誘引物質である。創傷治癒適用において、細胞外マトリックスの沈積を増加させ、かつ線維芽細胞の増殖を促進させる。しかしながら、PDGFは血管形成因子ではない。したがって新しい皮膚を健康的に維持するためには別の増殖因子が必要である。
【0009】
2) 線維芽細胞増殖因子(FGF)は、毛細血管密度および線維芽細胞の増殖を高める。ゲル形態での局所的適用が試験され、タンパク質の全身的吸収が無いことが分かった(投与量の1%以下)。
【0010】
3) トランスフォーミング増殖因子β−2(TGF β−2)は、生体外および生体内の両方でいくつかの細胞種の増殖を促進し、静脈潰瘍の治癒および糖尿病性の脚潰瘍のトライアルにおいて試験された。0.5μg/cmの量で6週間使用した場合、two−arm臨床試験において、対照に対して40%の創傷サイズの減少が観察された。しかしながら、three−armクリニカル試験において、標準のXEROFORM(商標)包帯剤との比較のために2.5μg/cmで試験した場合、結果はそれほど有望なものではなった。
【0011】
4) 血小板およびマクロファージによって産生される上皮増殖因子(EGF)は、上皮細胞に対するマイトジェンである。この増殖因子は、火傷の患者において最初に試験され、初期の結果は希望が持てるものであった。しかしながら、ボランティアにおける試験では、増殖因子治療群とプラセボとの間に差は無かった。このことは、EGFがケラチノサイトの遊走には有効ではないが優れた有糸分裂促進剤(mitotic agent)であることによるものであろう。
【0012】
5) 上皮形成を増加させる能力について、ケラチノサイト増殖因子−2(KGF−2)が試験された。6日目までに裂目は閉鎖した。KGF−6は若いおよび高齢の動物において上皮再形成を促進させ、新肉芽組織形成(neo−granulation tissue formation)に関する間接的な機構を示唆する。Xia, Y.D., et al., J. Pathol.(1999) 188:431−438. 治癒創傷の機械的ストレスに対する抵抗力が高められた;従って、KGF−2は外科的創傷治癒に有効であろう(Jiminez, P.A. & Rampy, M.A. (1999)J. Surg. Res. 81:238−242)。
【0013】
6) 結合組織増殖因子(CTGF)は、分泌され、有糸分裂促進性であり、走化性であり、かつ細胞マトリクス誘導性である、成長反応性の前初期遺伝子(immediate early growth responsive gene)によってコードされている因子である。CTGFがヒトのアテローム性動脈硬化症および線維性疾患(fibrotic disorder)に関係しているということは、創傷の修復のような組織の再生においてのみならず、細胞外マトリックスの異常な沈積においても役割を果たしていることを示唆する。実際、抗CTGF抗体が、線維性カスケード(fibrotic cascade)をブロックするために用いられてきた。
【0014】
種々の増殖因子の働きに関する動力学的研究によって、顆粒球‐単球コロニー刺激因子(GMCSF)のようないくつかの増殖因子とウシFGFが連続して働くことが示された。増殖因子の組み合わせが、単一の増殖因子による治療よりも優れているであろうと仮定された。しかしながら、動物モデルにおいて、それら2つの増殖因子の組み合わせは、実際には再生過程を遅らせ、治癒は決して100%に達しなかった。従って、それら増殖因子の連続投与が試みられた:GMCSFが最初に投与され、次いで25日後にFGFが投与された。単一の試験では、対照を越える改善は何ら示されなかった。
【0015】
TGF−β、bFGF(basicFGF)およびCTGFの組み合わせを用いるさらに別の試験では、連続注射の3日後、TGF−β1、TGF−β2またはTGF−β3は皮膚線維形成を生じさせたが、その変化は一時的なものであり、連続注射の7日後には消失した。対照的に、TGF−βとbFGF、またはTGF−βとCTGFとを同時に注射するか、あるいはTGF−βの注射を最初の3日間行い、次いで続く4日間、bFGFまたはCTGFの注射を行うと、不可逆的な線維形成が観察された。このような所見は、TGF−β1が皮膚線維形成を引き起こし、bFGFまたはCTGFが種々の皮膚の繊維性疾患においてそれを維持するとことを示唆する。
【0016】
増殖因子混合物を入手するもう1つの方法としては、血液由来の血小板から放出された増殖因子を集めたものを含む血小板放出物を使うことが考えられる。この材料の有利な点は、その材料が自系または同種のものであり、容易に入手でき、かつおそらくは必要な因子を適当な割合で含んでいることである。今日まで、治癒過程における改善が初期には観察されたが、24週間目にはプラセボと増殖因子治療群との間に全く差が無かった。
【0017】
従って、ポリペプチド増殖因子のいくつかは臨床前の創傷修復モデルにおいて有意な生物学的活性が示されたが、臨床において有効であることが証明された増殖因子はヒト遺伝子組み換えPDGF−BBのみであったことは明らかである。このことは、おそらく送達が不十分であること、薬剤が不安定であること、あるいは単一因子が創傷の治癒過程の複雑なプロセスを調整できないことによるものであろう。効果的な治療は、血管形成、効率的なコラーゲンの沈積、および創傷を閉じるのに適切な上皮形成のような問題に対処しなければならない。
【0018】
発明の概要
本発明は、ヒトを含む生物の創傷治癒過程を改善する組成物および方法を含む。好ましい実施態様によれば、本発明は創傷治癒過程を改善する増殖因子の混合物を含む。本願において、「除外する」、「除外」、あるいは「除外された」の用語は、イムノアフィニティクロマトグラフィーで取り除かれるかあるいはそうでなければそのような成分が混合物中に全く含まれない程度に、指示された成分の全てが混合物から実質的に取り除かれたことを意味する。「薬学的に許容可能な担体」という用語は、その用語の通常の意味でこの中において用いられ、水も含めて既知のすべての担体を含む。
【0019】
“BP“は、米国特許第5,290,763号、第5,371,191号、および第5,563,124号明細書(それら各特許は、参照によってその全体が本願に含められる。)に記載されているように、骨由来のタンパク質のカクテルである。簡単に説明すると、カクテルは、脱塩された骨の微粒子の塩酸グアニジンによるタンパク質抽出によって調製される。抽出溶液をろ過し、限外ろ過工程を2回通す。最初の限外ろ過工程において、見かけのカットオフ分子量(MWCO)が100KDの限外ろ過膜が使われる。残留物を捨てて、見かけのMWCOが約10KDの限外ろ過膜を用いる第二の限外ろ過工程に濾液をかける。次に、残留物を透析ろ過して、グアニジンを尿素で置き換える。その後、タンパク質を含む尿素溶液に対してイオン交換クロマトグラフィーを順次行う。最初は陰イオン交換クロマトグラフィーを行い、続いて陽イオン交換クロマトグラフィーを行う。次に、VYDAC(商標)カラムを用いる分取用HPLCに上記の工程で作られた骨誘導性タンパク質をかけ、アセトニトリルの濃度をゆるく上昇させながら溶出させる。HPLCカラムからの溶出物の1分間のフラクションをプールして、BPカクテルを作る(フラクションナンバーは溶媒の組成、樹脂のサイズ、調製量の大きさ、ロット等によって多少変わるであろう)。BPカクテルの実施態様の1つは、図1−6に示されるような特性を示す。BPカクテル中の増殖因子の絶対量および相対量は、HPLCの流出液のどのフラクションを集めるかで変化する。特に好ましい実施態様ではフラクション29−34が集められる。創傷の治癒活性を損なうことなく、BP混合物からある種のタンパク質を取り除くことも考えられる。
【0020】
BPは、最初、骨形成活性を有することが分かっているタンパク質の混合物として発見された。しかしながら、それは複数の増殖因子を含んでおり、強い血管形成性を有する。特に、BPは、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、およびBMP−7、ならびにTGF−β1、TGF−β2、およびTGF−β3を含む多数の骨形態形成性のタンパク質(BMP)を含んでいる。このようなタンパク質のそれぞれの存在は、図14に示すように、イムノブロット法を用いて検出された。BPが創傷を閉鎖するのを助けるのに有効であるか否かを特定するためにBPを動物モデルにおいて試験した時、驚くべきことに、骨形成過程とは非常に異なるプロセスであるのにもかかわらず、BPが創傷治癒を促進することが発見された。
【0021】
治療されている創傷のタイプに適した、第一次および第二次の包帯剤、wet−to−dry(WDD法)包帯剤、吸収性包帯剤、粘着性でない包帯剤、半透過型の包帯剤、透明な包帯剤、親水コロイドの包帯剤、ヒドロゲル、泡包帯剤(foam dressings)、アルギネート包帯剤、外科用テープ等を含む従来の創傷用包帯剤と、本発明のタンパク質組成物とを有利に併用することができる。
【0022】
本発明に基づく組成物を、例えば、アロエベラ、アルギニン、グルタアミン、亜鉛、銅、ビタミンC、ビタミンB類、その他の栄養補助物質、抗生物質、防腐剤、抗真菌剤、脱臭剤等のその他の種々の活性成分と組み合わせてもよい。本発明の実施態様はまた、インターロイキン−1、インターロイキン−6、および腫瘍壊死因子−αのような、炎症誘発性(proinflammatory)サイトカインの活動を妨げるような種々の抗炎症剤と組み合わせてもよい。IL−1Ra、溶解性TGF−β受容体、コルトコステロイドのような、そうした阻害剤は数多く知られており、将来さらに発見されると思われる。
【0023】
1つの実施態様では、本発明は、薬学的に許容可能な担体中にBMP−3およびTGF−β2タンパク質を含む創傷治癒のための組成物である。図18に示すように、BMP−3はBP混合物中に最も高い濃度で存在する増殖因子である。TGF−β2は、創傷の治癒過程において、例えば増殖期において重要であるいくつかの細胞種の増殖を促進させるため、創傷治癒において重要な役割を果たしていると信じられている。すでに述べたように、TGF−β2は、単独で創傷治癒剤としての試験の対象となってきた。特定の機構に制限されることなく、これらの2つの増殖因子は、BPが示す創傷治癒活性において重要であると信じられている。
【0024】
別の実施態様では、本発明の組成物は、薬学的に許容可能な担体中に、BMP−3と、TGF−β2と、BMP−2、BMP−4、BMP−5、BMP−6およびBMP−7のうちの1つ以上とを含む。BMP−6は、一連の事象のカスケードを誘導し、骨形成能を有することが分かっているBMP−2およびBMP−4の両方の発現を引き起こすことが知られている。BMP−2は、肝臓組織の再生の調節にも関係している。BMP−7(OP−1としても知られている)は、創傷治癒剤として前臨床試験を現在受けている。
【0025】
別の実施態様では、本発明の組成物は、BMP−3と、TGF−β2と、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6およびBMP−7のうちの1つ以上と、さらにFGF−1、TGF−β1、およびTGF−β3のうちの1つまたはそれ以上とを含む。FGF−1は、BP中において検出されていないFGF−2ほどはその活性が高くないが、血管形成性増殖因子であることが知られている。TGF−β1およびTGF−β3は、共に細胞の増殖を促進させることが知られている。
【0026】
増殖因子活性を全く有していないと信じられている多くのタンパク質の存在がBP中において検出されている。したがって、ヒストンタンパク質、リボソームタンパク質、またはそれらの両方を含むこうしたタンパク質を本発明の組成物から除外して差し支えない。あるいは、本発明の組成物は、図2および3に示されるように(囲みの内側のレーンがBPを調製するためにプールされた)、米国特許第5,290,763号、第5,371,191号、および第5,563,124号明細書に記載されている方法で単離されたBP混合物を含んでいて差し支えない。例えば抗体結合法または当業界で公知の他の方法によって、ヒストンおよびリボソームをBPから取り除くことができる。さらに、本発明の組成物は、遺伝子組み換え法で製造されたタンパク質として供給される1つ以上のリストに挙げられている活性成分を含んでいて差し支えない。好ましくは、その成分は天然供給源から単離されたものであり、かつ少なくとも部分的にリン酸化およびグリコシル化されている。
【0027】
別の実施態様では、上記の組成物は、薬学的に許容可能な担体と共に、創傷治癒適用において使用される。薬学的に許容可能な担体として、親水コロイドの包帯剤、ヒドロゲル、泡包帯剤およびアルギネート包帯剤が挙げられる。添加される活性成分として、アルギニン、グルタミン、亜鉛、銅、ビタミンC、ビタミンB1、ビタミンB2、ビタミンB3、ビタミンB6、ビタミンB12および葉酸塩、あるいは上皮増殖因子、血小板由来増殖因子、インシュリン様増殖因子、ケラチノサイト増殖因子、筋肉内皮形成増殖因子、形質転換増殖因子−α、神経増殖因子、結合組織増殖因子および顆粒球−単球コロニー刺激因子等の増殖因子を含んでいて差し支えない。インターロイキン−1阻害剤、インターロイキン−6阻害剤および腫瘍壊死因子−α阻害剤等の炎症阻害剤もまた本発明組成物に加えて差し支えない。勿論のことであるが、特定の創傷適用に適した、鎮痛剤、殺菌剤、抗生物質およびその他の活性成分を本発明の組成物に加えても差し支えない。
【0028】
本発明の詳細な説明
実施例1. ヌードマウスに対する単回投与におけるBP
ヌードマウスにおける、メッシュ状のヒト中間層皮膚移植片で覆われた全層にわたる深さの創傷に対するBPの単回投与は、増殖因子混合物を受けなかった創傷よりも早く完全に治癒させることが分かった。BP中の増殖因子が創傷の治癒過程に影響を与える特定の態様は完全には理解されていないが、BP中に存在する複数の増殖因子の相乗的作用が、担体のみを受けた対照動物におけるよりも良好に創傷の修復を助けると仮定される。
【0029】
創傷領域が全表面積の約20%になるように、ヌードマウスに全層にわたる深さの創傷を作った。米国特許第5,290,763号、第5,371,191号、および第5,563,124号明細書に従ってBPを調製し、ポビドン担体中にいれて創傷に適用した。その後、創傷をメッシュ状のヒト中間層皮膚移植片で覆った。対照群はポビドン担体のみを受けた。包帯剤が正しい位置に留まるように、移植部位にバンドエイドを貼って閉じた。最初の包帯剤の交換は術後第5日目に行われ、その後3日ごとに交換が行われた。基本的なプロトコルは、Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds,”pp.429−442(1991) Wiley−Liss, Inc. およびCooper M.L., et al., The Effects of Epidermal Growth factor and basic Fibroblast Growth factor on Epithelialization of Meshed Skin Graft Interstices, Prog. Clin. Biol. Res.(1991)365:429−42.に記載されている。そうしたプロトコルは当分野の熟練者に周知である。
【0030】
結果は非常に有望なものであった。増殖因子を2つの投与量(100μg/創傷部位または200μg/創傷部位)の単回投薬で試験した。創傷治癒の速さまたは程度のいずれにおいても、2つの群の間に差は無かった。しかしながら、増殖因子による治療を受けた動物群と増殖因子を受けなかった対照動物群との間には顕著な差があった。術後(POD)11日目までに、増殖因子治療を受けた動物において95%の創傷の閉鎖が観察されたが、対照動物では74%の閉鎖を示したに過ぎなかった。増殖因子治療を受けた動物では術後14日目までに100%の閉鎖が見られたのに対して、対照動物では術後20日でも85%に過ぎなかった。
【0031】
表1に示すように、BPで治療した創傷における上皮層の厚さは対照動物に比べて有意に厚かった。そのデータは、BP治療動物に関しては11日目に測定し、対照動物に関しては同程度の創傷治癒の状態で測定が行われるように16日目に測定した、新真皮の厚さをmm単位で表わしている。組織学的分析によると、創傷は移植材料由来のヒト細胞によって閉鎖されており、インボルクリンおよびI型コラーゲンの免疫組織学的染色(データは示されてはいない)によって示されているように、閉鎖された創傷中にコラーゲンの沈積があることが明らかになった。表1に示されているように、BP治療後の傷床における毛細血管密度は、創傷の閉鎖時において対照動物に比べて有意に高かった。さらに、同様に表1に示されているように、低い投与量のBPで治療を受けた動物において、対照動物と比較して、BPで治療した創傷における平滑筋細胞(SMC)カウントの有意な増加があった。
【0032】
【表1】
Figure 2004501203
要約すれば、BPの単回投薬による治療は、メッシュ状のヒト中間層皮膚移植片を移植したヌードマウスの全層にわたる深さの創傷の治療期間の短縮において有効であった。さらに、治療部位の新真皮の厚さおよび毛細血管の密度は共に対照動物に比べて有意に高かった。対照的に、同様に血管形成性増殖因子であるbFGFは、同様な動物モデルで試験した時に上皮形成に対して有害な影響を有することが示された(Cooper, M.L. et al., 1991;Clinical and experimental approaches to dermal and epidermal repair:normal and chronic wounds, pp429−442; Weily−Liss, Inc.)。
【0033】
実施例2. ヒドロゲル中のBP
上記と同じ動物モデルにおいて、ヒドロゲル(カルボキシメチルセルロース)中に溶解させたBPで少数の動物(n=3)を治療した。この試験では、1%のポビドン中に溶解したBPで治療した創傷は術後8日目に上皮形成が始まった(データは示されてはいない)のに対して、ヒドロゲル中のBPで治療した創傷(n=2)は術後5日目に早くも上皮形成が始まることが観察された。何れの試験でも、担体のみを受けた対照動物は術後8日目でも上皮形成の開始は見られなかった。ヒドロゲル製剤で治療された創傷において、新真皮の厚さおよび血管形成の程度を特定するために組織試料での詳細な組織学的分析が行われている。創傷の閉鎖のデータは下記の表2に示されている。
【0034】
【表2】
Figure 2004501203
要約すると、予備試験ではあるが、結果は非常に有望なものであり、対照動物に比べてBP治療動物にけるより早い創傷の閉鎖を示した。そこで、この結果を確認するためにより広範な実験を以下のように実施した。
【0035】
実施例3.  REGRANEX(登録商標)とBPとの比較試験
糖尿病性の脚の潰瘍の治療に用いられる市販されている唯一の認可増殖因子であるREGRANEX(登録商標)(PDGF−BB)は、プラセボのゲルで治療したものでは35%であるのに対し、患者集団の50%において完全な治癒を示し、糖尿病患者において20週間にわたって繰り返し投与することで完全な治癒を示した(REGRANEX(登録商標)のアメリカ調剤情報―添付文書参照)。そこで、上記と同様の試験において、BPとREGRANEX(登録商標)との比較を行った。結果を表3および4に示した。
【0036】
【表3】
Figure 2004501203
【表4】
Figure 2004501203
閉鎖の割合(%)は下記のように要約される。
【0037】
【表5】
Figure 2004501203
最初わずかに治癒速度が遅かったが、創傷の閉鎖においてBPによる治療はREGRANEX(登録商標)と同様に優れている。BPによる治療は、僅かに少ない上皮の厚化を示し、かつ創傷領域においてかなり改善された血管形成を示した。
【0038】
実施例4. 将来の適用
BPは創傷治療薬としての見込みを示したので、次に、創傷治癒が不十分である症例においてBPを試験する。深さが全層にわたる創傷と全層ではない創傷について試験するため、糖尿病動物を使って上記と同様の実験を行う。BPに対する静脈鬱血性潰瘍および糖尿病性潰瘍の反応も評価する。
【0039】
予備的実験において、体重が325gを越えるオスのSprague Dewleyラットをストレプトゾトシンによる処置によって糖尿病にして、高血糖をグルコメトリーで確認した。体長方向に直角に、各動物の背面に4つの全層にわたる深さの切り傷を与えた。創傷を絹の縫合糸で閉じ、閉合後、創傷の裂目または切込み上に増殖因子またはプラセボを投与した。投与は2つの時点で行われた:1)0日目(創傷を導入(手術)したその日)、および、2)創傷の導入後2日後(第二回目の投与)である。切り傷の長さが術後7日目と10日目において測定された。結果を表5に示すが、BPによる治療が、種々の糖尿病性潰瘍あるいは遅いおよび/または不十分な治癒を特徴とする他の創傷の治癒において特に有効であるという希望を与えるものである。
【0040】
【表6】
Figure 2004501203
【0041】
実施例5:BPの更なる特徴付け
BPは以下のように部分的に特徴付けられている。高速液体クロマトグラフィー(“HPLC”)のフラクションを変性させ、DTTで還元し、ドデシル硫酸ナトリウム−ポリアクリルアミドゲル電気泳動(SDS−PAGE)で分離した。HPLCの1分間フラクションの27から36が図2に示されている。14、21、31、45、68および97kDaのサイズ標準を低分子量標準(Low range size standards)としてBIORAD(商標)から入手し、クーマシーブルー染色ゲルの何れかの端に示している。通常のプロトコルにおいて、図17Bにおいて同様に調製されたSDS−PAGEゲル中に示されているように、HPLCフラクション29から34をプールしてBPを作成する(図2および3の囲みを参照)。
【0042】
分析に十分なレベルのタンパク質が存在するトリプシン断片の質量分析およびアミノ酸シークエンシングによって、BPの種々の成分が特徴付けられた。1次元ゲル中の主なバンド(図3において数字で指示されている)を切り出し、溶出し、トリプシン消化を行い、その断片をHPLC精製し、さらに配列を決定した。配列データを既知の配列と比較し、最もマッチングするものが図15A−Bに示されている。全タンパク質のほんの一部の配列が決定されただけであること、および場合によっては、特定タンパク質に関してヒトのものとウシの類似物との間で変動があるという点で、こうした同定は確定的なものではない。
【0043】
同じトリプシン分画を質量分析で分析し、その質量分光写真を図7A−Oに示す。表にした結果および相同性が図16A−Fに示されており、図3−4で同定されたバンドに関する同定情報を提供する。上記のように、スポットの同定の指示は、種差および翻訳後修飾に基づく暫定的なものである。一次元ゲルからの全てのタンパク質同定の概要を図4に示す。
【0044】
図15A−B、16A−Fおよび19A−Dに記載されたBPの同定タンパク質成分は、図17Aおよび17Bに示されているように定量化された。図17BはBPの染色されたSDS−PAGEゲルであり、図17Aは同じゲルの走査濃度計(scanning densitometer)の形跡を表わす。同定されたタンパク質に印を付け、曲線の下の面積を測定することによって定量化した。図18に、その結果を全ピーク面積に対する割合(%)として表している。
【0045】
BPのSDS−PAGEゲル中には11の主要なピークがあり、これはBPのタンパク質の60%に相当する。同定されたタンパク質は大きく3つのカテゴリーに分類される:リボソームタンパク質、ヒストン、および骨形成因子(BMPs)を含む増殖因子である。リボソームタンパク質およびヒストンタンパク質は、増殖因子活性を持たないことが分かっているので、BPから活性を損なうことなく分離できる。そのような分離を行うと、それに対応して比活性が高まることが期待される。
【0046】
全く非活性における結果の損失を伴わずあるいはむしろ非活性の上昇を伴って、BPからヒストンおよびリボソームタンパク質を分離できるという仮説を確かめるために実験が計画された。特異的ヒストンタンパク質抗体または汎ヒストン抗体を用いるイムノアフィニティクロマトグラフィーによって、ヒストンをBPカクテルから取り除くことができる。創傷治癒過程および/または骨形成活性について、ヒストン除去BP(BP−H)を上記のように試験する。同様に、既知のリボソームタンパク質を取り除き、残りのタンパク質混合物(BP−R)を試験する。
【0047】
図14に挙げた一連の抗体を用いて、BPのSDS−PAGEゲルをウエスタンイムノブロット法で分析した。第二抗体に結合させた西洋ワサビペルオキシダーゼおよび化学発光基質を用いて抗体反応性の可視化を行った。さらに、市販の純TGF−β1を標準として用いてTGF−β1を定量化し、それがBPタンパク質の1%未満に相当することを特定した。抗体分析によって、図14に挙げられている各タンパク質がBP中に存在することが示された。
【0048】
さらに、図5−6に示すように、二次元ゲル電気泳動法でBPを特徴付けした。O’Farrellらの方法(O’Farrell, P.Z., Goodman, H.M. and O’farrell, P.H., Cell, 12:1133−1142,1977)に従ってKendrick Laboratory(Madison、MI)によって実施された、塩基性タンパク質の分離に適合させた二次元電気泳動法に記載されているように、タンパク質は電荷(pI)に基づいて水平方向に分離され、さらにサイズによって垂直方向に分離される。二次元電気泳動法は当分野の熟練者にはよく知られている。1.5%のpH3.5−10および0.25%のpH9−11のアンフォライン(Amersham Pharmasia Biotech, Piscataway, NJ)を用いて、非平衡pH勾配電気泳動(“NEPFGE”)を200Vで12時間行った。精製されたトロポミオシン(低い方のスポットで33,000 kDa、pI 5.2)とリゾチーム(14,000 kDa、pI 10.5−11)(Merck Index)が、pIの内部標準として試料に加えられ、矢印で記されている。
【0049】
バッファー“0”(10%グリセリン、50mMジチオスレイトール、2.3%SDS、および0.0625Mトリス、pH 6.8)中において10分間平衡化させた後、12.5%のアクリルアミドスラブゲル(厚み0.75mm)の上端に置かれたスタッキングゲルの上端に、チューブゲルをシールした。SDSスラブゲル電気泳動を12.5mA/gelで12時間実行した。
【0050】
スラブゲル電気泳動の後、ゲルのうち2枚をクーマシーブルーで染色し、残りの2枚をトランスファーバッファー(12.5mM トリスpH 8.8, 86mMグリセリン, 10%メタノール)に移し、200mAおよび100V/ゲル2枚の電圧で一夜、PVDF紙の上にトランスブロットした。スラブゲルにチューブゲルをシールしたアガロースに、分子量標準として以下のタンパク質(Sigma Chemical Co., St. Louis, MO)が加えられた:ミオシン(220,000 kDa)、フォスフォリラーゼA(94,000 kDa)、カタラーゼ(60,000 kDa)、アクチン(43,000 kDa)、カルボニックアンヒドラーゼ(29,000 kDa)、およびリゾチーム(14,000 kDa)である。図5は、その左側にサイズ標準が指示された染色2−Dゲルを示している。トロポミオシン(左の矢印)およびリゾチーム(右の矢印)も同様に指示されている。
【0051】
図6に、いくつかの同定されたタンパク質が番号の付いた円で囲まれて指示されている同じゲルを示す。上述したように、タンパク質は、質量分析およびトリプシン分解ペプチドのアミノシークエンシングで同定された。記された円のそれぞれの同定は、図6のレジェンドに与えられており、さらに、種々のタンパク質のスポットを同定するデータが図19A−Dに示されている
いくつかのタンパク質は2つ以上のサイズとして移動する(例えば、BMP−3は6つのバンドとして移動する)ので、BP成分の翻訳後修飾の程度を調べるための検討が行われた。抗フォスフォチロシンイムノブロットおよびフォスファターゼ試験によって、リン酸化の程度を測定した。図8は、濾紙上に電気ブロッティングし、SIGMA(#A−5964)から入手したマウスの抗フォスフォチロシンモノクロナール抗体で探索した二次元ゲルを示す。いくつかのタンパク質は1つ以上のチロシン残基においてリン酸化されていることが示された。
【0052】
図9A−Dに示すように、同様の二次元電気ブロッティングを、BP成分特異的抗体で探索した。BMP−2、BMP−3(図9A)、BMP−3、BMP−7(図9B)、BMP−7、BMP−2(図9C)、ならびにBMP−3およびTGF−β1(図9D)を用いて濾紙を探索した。図9AはBMP−3およびBMP−2の存在を示唆する。図9BはBMP−3およびBMP−7の存在を示唆する。図9CはBMP−7およびBMP−2の存在を示唆し、図9DはBMP−3およびTGF−β1の存在を示唆する。各濾紙は、異なるpIで移動する特徴的な単一サイズのバンドを示し、そのことはタンパク質が種々のリン酸化された状態で存在していることの特徴である。
【0053】
フォスファターゼ試験のため、10mM塩酸中のBPを、酸性フォスファターゼ(AcP)0.4ユニットと共に37℃でインキュベートした。処理試料および未処理試料をI型コラーゲンの凍結乾燥ディスクに加え、米国特許第5,290,763号、第5,563,124号および第5,371,191号明細書にすでに記載されているように、皮下移植片ラットバイオアッセイで評価した。簡単に説明すると、溶液中の10gのBPを凍結乾燥コラーゲンディスクに加え、そのディスクをラットの胸に皮下移植した。その後、アルカリフォスファターゼ(”ALP”‐骨および軟骨形成細胞のマーカーである)試験のために2週間後に、あるいは組織学的分析のために3週間後にディスクを回収した。試料のALP分析に関して、外植片をホモジナイズし、市販のキットを用いてALP活性のレベルを測定した。組織学検査に関して、外植片の薄い切片をミクロトームで切り出し、骨および軟骨の形成に関してその切片を染色および分析した。
【0054】
皮下移植片の重量(外植片の重量)とALPスコアによって、形態形成活性について、未処理のおよびフォスフォターゼ処理したBP試料を分析した。AcP処理は外植片重量およびALP値を100%からおよそ60%まで低下させた。このようにリン酸化はBP活性にとって重要である。
【0055】
また、グリコシル化についてもBPを分析した。図10は、過ヨウ素酸シッフ(PAS)―非特異的炭水化物染色法―で染色されたSDS−PAGEゲルを示しており、いくつかのBP成分はグリコシル化されている(BMP−3として同定されている星印をつけたタンパク質)ことを示唆している。図11−12は、PNGase F(ペプチド−N−グリコシダーゼF)のレベルを順次に増やして処理した2つの特定タンパク質の免疫検出結果を示している(BMP−7、図11およびBMP−2、図12)。BMP−2とBMP−7の両者ともBPにおいてある程度のグリコシル化を示しているが、PNGase Fに抵抗性のタンパク質もまたある程度含まれているように思われる(プラスの印は酵素の増加レベルを指示する)。PNGase Fおよびシアリダーゼで処理した試料の機能的活性を、外植片重量およびALP値で分析した。図13Aおよび13Bに示すように、完全な活性のためにはグリコシル化が必要であることが示されている。
【0056】
概して、BMP−2、−3、および−7はリン酸化およびグリコシル化によって修飾されている。こうした翻訳後修飾は、タンパク質形態形成活性に対して、それぞれ33%、50%の影響を与え、BPを調製する際にこうした機能性誘導体を破壊しないように注意しなければならない。

【図面の簡単な説明】
【図1】図1は、還元形態および非還元形態の本発明のタンパク質混合物のSDS−PAGEを示す
【図2】図2は、本発明の実施態様に基づくタンパク質混合物のHPLCフラクション27−36のSDS−PAGEゲルである
【図3】図3は、図4のレジェンドに対応するように同定されたバンドが指示されているSDS−PAGEゲルである
【図4】図4は、レジェンドに挙げられているように同定されたバンドが指示されている、本発明の実施態様に基づくタンパク質混合物のSDS−PAGEゲルである
【図5】図5は、内部標準が矢印で指示されている、本発明の実施態様に基づくタンパク質混合物の二次元SDS−PAGEゲルである
【図6】図6は、円で囲まれたタンパク質がレジェンド中に示唆されている、本発明の実施態様に基づくタンパク質混合物の二次元SDS−PAGEゲルである
【図7】図7は、本発明の実施態様に基づくタンパク質混合物の一次元ゲルから得られたトリプシン断片の質量分析の結果である
【図8】図8は、抗フォスフォチロシン抗体で標識した、本発明の実施態様に基づくタンパク質混合物の二次元ゲルウエスタンブロットである
【図9】図9は、指示された抗体で標識した、本発明の実施態様に基づくタンパク質混合物の二次元ゲルウエスタンブロットである
【図10】図10は、本発明の実施態様に基づくタンパク質混合物のHPLCフラクションのPAS(過ヨウ素酸シッフ)染色SDS−PAGEゲルである
【図11】図11は、本発明の実施態様に基づくタンパク質混合物をPNGase Fで処理したものの抗BMP−7染色SDS−PAGEゲルである
【図12】図12は、本発明の実施態様に基づくタンパク質混合物をPNGase Fで処理したものの抗BMP−2染色SDS−PAGEゲルである
【図13】図13は、本発明の実施態様に基づくタンパク質混合物中のグリコシル化成分の、外植片重量(図13A)およびALP値(図13B)に対する影響を示す棒グラフである
【図14】図14は、抗体のリストおよび反応性を示す表である
【図15A】図15Aは、本発明の実施態様に基づくタンパク質混合物の成分に関する、トリプシン断片の配列データを示す表である
【図15B】図15Bは図15Aの続きである
【図16A】図16Aは、本発明の実施態様に基づくタンパク質混合物の成分に関する、トリプシン断片の質量分析データを示す表である
【図16B】図16Bは図16Aの続きである
【図16C】図16Cは図16Bの続きである
【図16D】図16Dは図16Cの続きである
【図16E】図16Eは図16Dの続きである
【図16F】図16Fは図16Eの続きである
【図17】図17は、本発明の実施態様に基づくタンパク質混合物のSDS−ゲル(図17B)およびその走査濃度計スキャン(図17A)である
【図18】図18は、本発明の実施態様に基づくタンパク質混合物中のタンパク質成分の、走査濃度計による定量から得られた相対的質量を示す表である
【図19A】図19Aは、本発明の実施態様に基づくタンパク質混合物の二次元ゲルから得られた種々のタンパク質断片の質量分析データを示す表である
【図19B】図19Bは図19Aの続きである
【図19C】図19Cは図19Bの続きである
【図19D】図19Dは図19Cの続きである

Claims (24)

  1. 薬学的に許容される担体中に増殖因子BMP−3およびTGF−β2を含むことを特徴とする創傷治癒のための組成物。
  2. BMP−2、BMP−4、BMP−5、BMP−6およびBMP−7より成る群から選択される増殖因子をさらに含むことを特徴とする請求項1記載の組成物。
  3. FGF−1、TGF−β1およびTGF−β3より成る群から選択される増殖因子をさらに含むことを特徴とする請求項2記載の組成物。
  4. 前記増殖因子が、天然供給源に由来するものであり、かつ少なくとも部分的にリン酸化およびグリコシル化されていることを特徴とする請求項3記載の組成物。
  5. ヒストンタンパク質H1cおよびH1xが除かれていることを特徴とする請求項1記載の組成物。
  6. 薬学的に許容される担体中に、BMP−2、BMP−3、BMP−6およびTGF−β2を含む増殖因子の混合物を含むことを特徴とする創傷治癒のための組成物。
  7. リボソームタンパク質LORP、L6、S20、L3、S3a、S4およびL32が実質的に取り除かれていることを特徴とする請求項6記載の組成物。
  8. 前記増殖因子が、ウシの骨に由来するものであり、かつ少なくとも部分的にリン酸化およびグリコシル化されていることを特徴とする請求項7記載の組成物。
  9. 図1に同定されたタンパク質の混合物を含む組成物であって、前記混合物からヒストンタンパク質が取り除かれており、かつ該混合物が薬学的に許容される担体中に含まれていることを特徴とする創傷治癒のための組成物。
  10. リボソームタンパク質が取り除かれていることを特徴とする請求項9記載の組成物。
  11. 図1に同定されたタンパク質の混合物を含む組成物であって、前記混合物からリボソームタンパク質が取り除かれており、かつ該混合物が薬学的に許容される担体中に含まれていることを特徴とする創傷治癒のための組成物。
  12. ヒストンタンパク質がさらに取り除かれていることを特徴とする請求項11記載の組成物。
  13. 薬学的に許容される担体中に、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、BMP−7、TGF−β1、TGF−β2およびFGF−1を含むタンパク質混合物を含むことを特徴とする創傷治癒のための組成物。
  14. 前記混合物からリボソームタンパク質が実質的に取り除かれていることを特徴とする請求項13記載の組成物。
  15. 前記混合物からヒストンタンパク質が実質的に取り除かれていることを特徴とする請求項13記載の組成物。
  16. 前記タンパク質混合物の成分が、天然供給源から単離されたものであり、かつ少なくとも部分的にリン酸化およびグリコシル化されていることを特徴とする請求項13記載の組成物。
  17. 前記タンパク質混合物の成分の少なくとも1つが、遺伝子組み換えによって作られたタンパク質であることを特徴とする請求項13記載の組成物。
  18. 請求項13記載の組成物を創傷に適用することを含んでなる創傷を治癒させる方法。
  19. 薬学的に許容される担体がヒドロゲルを含むことを特徴とする請求項18記載の方法。
  20. 前記タンパク質混合物の成分が、天然供給源から単離されたものであり、かつ少なくとも部分的にリン酸化およびグリコシル化されていることを特徴とする請求項18記載の方法。
  21. 薬学的に許容される担体が、親水コロイド包帯剤、ヒドロゲル、泡包帯剤、およびアルギネート包帯剤より成る群から選択される包帯剤を含むことを特徴とする請求項18記載の方法。
  22. 前記組成物が、アルギニン、グルタミン、亜鉛、銅、ビタミンC、ビタミンB1、ビタミンB2、ビタミンB3、ビタミンB6、ビタミンB12および葉酸塩より成る群から選択される1つ以上の活性成分をさらに含むことを特徴とする請求項18記載の方法。
  23. 前記組成物が、上皮増殖因子、血小板由来増殖因子、インシュリン様増殖因子、ケラチノサイト増殖因子、筋肉内皮形成増殖因子、形質転換増殖因子−α、神経増殖因子、結合組織増殖因子および顆粒球−単球コロニー刺激因子より成る群から選択される1つ以上の増殖因子をさらに含むことを特徴とする請求項18記載の方法。
  24. 前記組成物が、インターロイキン−1阻害剤、インターロイキン−6阻害剤および腫瘍壊死因子−α阻害剤より成る群から選択される1つ以上の炎症阻害剤をさらに含むことを特徴とする請求項18記載の方法。
JP2002505025A 2000-06-28 2001-06-22 創傷治癒のためのタンパク質混合物 Pending JP2004501203A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/605,266 US7081240B1 (en) 2000-06-28 2000-06-28 Protein mixtures for wound healing
PCT/US2001/041110 WO2002000244A2 (en) 2000-06-28 2001-06-22 Protein mixtures for wound healing

Publications (2)

Publication Number Publication Date
JP2004501203A true JP2004501203A (ja) 2004-01-15
JP2004501203A5 JP2004501203A5 (ja) 2008-08-07

Family

ID=24422934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002505025A Pending JP2004501203A (ja) 2000-06-28 2001-06-22 創傷治癒のためのタンパク質混合物

Country Status (7)

Country Link
US (2) US7081240B1 (ja)
EP (1) EP1328288B1 (ja)
JP (1) JP2004501203A (ja)
CA (1) CA2413338A1 (ja)
DE (1) DE60130008T2 (ja)
ES (1) ES2291332T3 (ja)
WO (1) WO2002000244A2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69714035T2 (de) 1997-08-14 2003-03-06 Sulzer Innotec Ag, Winterthur Zusammensetzung und Vorrichtung zur Reparatur von Knorpelgewebe in vivo bestehend aus Nanokapseln mit osteoinduktiven und/oder chondroinduktiven Faktoren
US6992066B2 (en) 1998-10-16 2006-01-31 Zimmer Orthobiologics, Inc. Povidone-containing carriers for polypeptide growth factors
US7087577B2 (en) * 1998-10-16 2006-08-08 Zimmer Orthobiologies, Inc. Method of promoting natural bypass
AUPR298901A0 (en) 2001-02-07 2001-03-08 McComb Foundation, Inc., The Cell suspension preparation technique and device
US7232802B2 (en) 2001-12-21 2007-06-19 Zimmer Orthobiologics, Inc. Compositions and methods for promoting myocardial and peripheral angiogenesis
US7241874B2 (en) 2002-06-26 2007-07-10 Zimmer Ortho Biologics, Inc. Rapid isolation of osteoinductive protein mixtures from mammalian bone tissue
US7622562B2 (en) 2002-06-26 2009-11-24 Zimmer Orthobiologics, Inc. Rapid isolation of osteoinductive protein mixtures from mammalian bone tissue
SI21402A (sl) 2003-02-12 2004-08-31 LEK farmacevtska dru�ba d.d. Obloženi delci in farmacevtske oblike
EP1722810A1 (en) * 2004-02-04 2006-11-22 Stryker Corporation Combination of morphogenic proteins having tissue inductive properties
CN1279973C (zh) * 2004-07-22 2006-10-18 徐放 注射的凝胶型骨修复生物活性材料及其制备方法
US7473678B2 (en) 2004-10-14 2009-01-06 Biomimetic Therapeutics, Inc. Platelet-derived growth factor compositions and methods of use thereof
CA2641860C (en) 2006-02-09 2015-07-14 Biomimetic Therapeutics, Inc. Compositions and methods for treating bone
CA2656278C (en) 2006-06-30 2016-02-09 Biomimetic Therapeutics, Inc. Compositions and methods for treating rotator cuff injuries
US9161967B2 (en) 2006-06-30 2015-10-20 Biomimetic Therapeutics, Llc Compositions and methods for treating the vertebral column
WO2008086358A1 (en) 2007-01-08 2008-07-17 University Of Southern California Usc Stevens Skin wound healing compositions and methods of use thereof
NZ602861A (en) 2008-09-09 2014-03-28 Biomimetic Therapeutics Llc Platelet-derived growth factor compositions and methods for the treatment of tendon and ligament injuries
US8207118B2 (en) * 2009-07-17 2012-06-26 University Of Southern California Skin wound healing compositions and methods of use thereof
EP2538791B1 (en) 2010-02-22 2015-04-08 BioMimetic Therapeutics, LLC Platelet-derived growth factor compositions and methods for the treatment of tendinopathies
WO2012060832A1 (en) 2010-11-03 2012-05-10 University Of Southern California Skin wound healing compositions and methods of use thereof
US10279007B2 (en) 2010-11-15 2019-05-07 Oxygenetix Institute, Inc. Topical treatment method for healing wounds, disinfecting, covering and concealing the wound until healing occurs
AU2013205148B2 (en) 2013-03-14 2014-10-30 AVITA Medical Americas, LLC Systems and methods for tissue processing and preparation of cell suspension therefrom
EP3193953B1 (en) 2014-09-19 2020-03-11 Osiris Therapeutics, Inc. Bone repair product and methods of use thereof
US20160243023A1 (en) * 2015-02-19 2016-08-25 Elc Management Llc Novel Skin Remodeling Strategy
US20200121760A1 (en) * 2017-01-04 2020-04-23 The Trustees Of The University Ofpennsylvania Methods for scar reduction by converting scar fibroblasts into adipocytes with hair follicle-derived signals

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA874681B (en) 1986-07-01 1988-04-27 Genetics Inst Novel osteoinductive factors
US5013649A (en) 1986-07-01 1991-05-07 Genetics Institute, Inc. DNA sequences encoding osteoinductive products
US5459047A (en) * 1986-07-01 1995-10-17 Genetics Institute, Inc. BMP-6 proteins
US6150328A (en) * 1986-07-01 2000-11-21 Genetics Institute, Inc. BMP products
US6432919B1 (en) * 1986-07-01 2002-08-13 Genetics Institute, Inc. Bone morphogenetic protein-3 and compositions
US5187076A (en) 1986-07-01 1993-02-16 Genetics Institute, Inc. DNA sequences encoding BMP-6 proteins
US5543394A (en) * 1986-07-01 1996-08-06 Genetics Institute, Inc. Bone morphogenetic protein 5(BMP-5) compositions
US4950483A (en) * 1988-06-30 1990-08-21 Collagen Corporation Collagen wound healing matrices and process for their production
US5936035A (en) 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
JPH0817189B2 (ja) * 1989-01-13 1996-02-21 三菱電機株式会社 半導体装置の製造方法
US5356630A (en) 1989-02-22 1994-10-18 Massachusetts Institute Of Technology Delivery system for controlled release of bioactive factors
GB8927546D0 (en) * 1989-12-06 1990-02-07 Ciba Geigy Process for the production of biologically active tgf-beta
US6054122A (en) 1990-11-27 2000-04-25 The American National Red Cross Supplemented and unsupplemented tissue sealants, methods of their production and use
AU651421B2 (en) * 1990-11-30 1994-07-21 Celtrix Pharmaceuticals, Inc. Use of a bone morphogenetic protein in synergistic combination with TGF-beta for bone repair
US5935978A (en) * 1991-01-28 1999-08-10 Rhone-Poulenc Rorer Limited Compounds containing phenyl linked to aryl or heteroaryl by an aliphatic- or heteroatom-containing linking group
US5290763A (en) * 1991-04-22 1994-03-01 Intermedics Orthopedics/Denver, Inc. Osteoinductive protein mixtures and purification processes
US5563124A (en) * 1991-04-22 1996-10-08 Intermedics Orthopedics/ Denver, Inc. Osteogenic product and process
HUT67319A (en) * 1991-08-30 1995-03-28 Life Medical Sciences Inc Compositions for treating wounds
US5616490A (en) * 1992-12-07 1997-04-01 Ribozyme Pharmaceuticals, Inc. Ribozymes targeted to TNF-α RNA
CA2224253A1 (en) 1995-06-09 1996-12-27 Martin J. Macphee Chitin hydrogels, methods of their production and use
US6270781B1 (en) * 1999-01-08 2001-08-07 Maxim Pharmaceuticals, Inc. Method and compositions for topical treatment of damaged tissue using reactive oxygen metabolite production or release inhibitors
US20020173453A1 (en) 2000-12-15 2002-11-21 Rama Akella Method of treating renal injury

Also Published As

Publication number Publication date
EP1328288B1 (en) 2007-08-15
US7081240B1 (en) 2006-07-25
ES2291332T3 (es) 2008-03-01
US20060286157A1 (en) 2006-12-21
WO2002000244A3 (en) 2003-05-01
EP1328288A2 (en) 2003-07-23
DE60130008D1 (de) 2007-09-27
CA2413338A1 (en) 2002-01-03
DE60130008T2 (de) 2008-05-15
WO2002000244A2 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
JP2004501203A (ja) 創傷治癒のためのタンパク質混合物
JP2820209B2 (ja) 創傷治癒のためのコラーゲンマトリックスおよびその生産方法
US5149691A (en) Issue repair and regeneration through the use of platelet derived growth factor (pdgf) in combination with dexamethasone
DE69403439T2 (de) Tgf-beta zusammensetzung zum herbeiführen von knochenwachstum
JP2831132B2 (ja) 骨の形成を促進するための骨成長因子および骨吸収阻害剤
EP0957943B2 (en) Matrix-free osteogenic devices, implants and methods of use thereof
Aldinger et al. Bone morphogenetic protein: a review
DE69713597T2 (de) Zusammensetzungen enthaltend eine kombination von knochenmorphogenetischem protein und parathyroid-ähnlichem peptid
JPS6136223A (ja) 骨中のポリペプチド軟骨誘導因子
Shen et al. Innovative therapies in wound healing
WO1991005802A1 (en) Osteogenic devices
JPH01265968A (ja) 骨誘導性修復用の注入可能な組成物
KR101252978B1 (ko) 신규한 단백질 배합물
Hom et al. Growth factor therapy to improve soft tissue healing
US20120329719A1 (en) Methods of use of skin wound healing compositions
JP2004520295A (ja) 腎損傷の治療方法
Han Growth factor therapy
Leahy et al. Biologic enhancement of wound healing
KR20070111454A (ko) 신규한 단백질 배합물
JP3931353B2 (ja) 創傷治癒剤
JPH07316066A (ja) 創傷治癒剤
Ksander et al. Exogenous transforming growth factor‐β2 enhances connective tissue formation in transforming growth factor‐β1—deficient, healing‐impaired dermal wounds in mice
RU2664192C1 (ru) Рекомбинантный ген, кодирующий белок hbd-epo, рекомбинантная плазмидная днк pl610, способ получения рекомбинантного белка hbd-epo, рекомбинантный белок hbd-epo, композиция для специфической индукции регенерации костной ткани, способ специфической индукции регенерации костной ткани
AU648997C (en) Osteogenic devices
Prakash et al. Fibrosin: a novel lymphokine in wound healing

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124